DIRECTORY Atom USING [ GetPropFromList, PutPropOnList ], Real USING [ Fix ], ImagerBackdoor USING [ AccessBufferRectangle ], ImagerPixel USING [ PixelMap ], ScanConvert USING [ PutLine ], G3dMatrix USING [ Mul ], ShapeUtilities USING [ ShapePatch, ShapePatchToPatch, XfmPtToEyeSpace ], ThreeDBasics USING [ Context, Error, GetSurfaceType, ImagerProc, ImagerProcRec, IntegerPairSequence, NoneOut, OutCode, Patch, PatchProc, Pixel, PtrPatchSequence, RegisterSurfaceType, ShapeClass, ShapeInstance, ShapeProc, Triple, TripleSequence, Xfm3D ]; QuickListProcs: CEDAR PROGRAM IMPORTS Atom, ImagerBackdoor, G3dMatrix, Real, ScanConvert, ShapeUtilities, ThreeDBasics ~ BEGIN LORA: TYPE ~ LIST OF REF ANY; PixelMap: TYPE ~ ImagerPixel.PixelMap; Context: TYPE ~ ThreeDBasics.Context; Pixel: TYPE ~ ThreeDBasics.Pixel; Xfm3D: TYPE ~ ThreeDBasics.Xfm3D; OutCode: TYPE ~ ThreeDBasics.OutCode; NoneOut: OutCode ~ ThreeDBasics.NoneOut; ShapePatch: TYPE ~ ShapeUtilities.ShapePatch; Patch: TYPE ~ ThreeDBasics.Patch; PatchProc: TYPE ~ ThreeDBasics.PatchProc; ShapeClass: TYPE ~ ThreeDBasics.ShapeClass; ShapeInstance: TYPE ~ ThreeDBasics.ShapeInstance; IntegerPairSequence: TYPE ~ ThreeDBasics.IntegerPairSequence; Triple: TYPE ~ ThreeDBasics.Triple; TripleSequence: TYPE ~ ThreeDBasics.TripleSequence; TripleSeqSequence: TYPE ~ RECORD[ length: NAT _ 0, s: SEQUENCE maxLength: CARDINAL OF REF TripleSequence ]; PtrPatchSequence: TYPE ~ ThreeDBasics.PtrPatchSequence; BoolSequence: TYPE ~ RECORD[ SEQUENCE length: CARDINAL OF BOOLEAN ]; BoolSeqSequence: TYPE ~ RECORD[ SEQUENCE length: CARDINAL OF REF BoolSequence ]; InitClasses: PROC[] ~ { -- register procedures for basic surface types polygonClass: ShapeClass _ ThreeDBasics.GetSurfaceType[$ConvexPolygon]; polygonClass.display _ DoDisplayList; ThreeDBasics.RegisterSurfaceType[polygonClass, polygonClass.type]; }; DoDisplayList: ThreeDBasics.ShapeProc ~ { IF context.viewer # NIL -- do through viewer THEN context.class.drawInViewer[ context, NEW[ThreeDBasics.ImagerProcRec _ [ViewerDisplayList, shape]] ] ELSE DrawShape[context, shape]; -- do directly RETURN[shape]; }; ViewerDisplayList: ThreeDBasics.ImagerProc ~ { DoIt: PROC[pixelMap: PixelMap] ~ { shape: REF ShapeInstance _ NARROW[ data ]; tempPixels: PixelMap _ context.pixels; context.pixels _ pixelMap; DrawShape[context, shape]; context.pixels _ tempPixels; }; ImagerBackdoor.AccessBufferRectangle[imagerCtx, DoIt, context.viewPort^]; }; DrawShape: PROC [ context: REF Context, shape: REF ShapeInstance ] ~ { dList: REF _ Atom.GetPropFromList[shape.props, $LinesList]; color: Pixel _ [ Real.Fix[shape.shadingClass.color.R * 255.0], Real.Fix[shape.shadingClass.color.G * 255.0], Real.Fix[shape.shadingClass.color.B * 255.0], 0, 0 ]; SELECT context.class.displayType FROM $PseudoColor => color[r] _ 42 * (color[r] * 6 / 256) + 6 * (color[g] * 7 / 256) + (color[b] * 6 / 256) +2; $Gray => color[r] _ (color[r] + color[g] + color[b]) / 3; ENDCASE; IF dList = NIL THEN dList _ MakeDisplayList[context, shape]; IF shape.class.type = $ConvexPolygon THEN { list: REF IntegerPairSequence _ NARROW[dList]; FOR i: NAT IN [0..list.length) DO IF context.stopMe^ THEN RETURN; ScanConvert.PutLine[ context, [ Real.Fix[shape.vertex[list[i].x].sx], Real.Fix[shape.vertex[list[i].x].sy] ], [ Real.Fix[shape.vertex[list[i].y].sx], Real.Fix[shape.vertex[list[i].y].sy] ], color, color ]; ENDLOOP; } ELSE { -- not polygonal have to transform curved paths list: REF TripleSeqSequence _ NARROW[dList]; xfm: Xfm3D _ G3dMatrix.Mul[shape.position, context.eyeSpaceXfm]; lsx, lsy: INTEGER; FOR i: NAT IN [0..list.length) DO FOR j: NAT IN [0..list[i].length) DO OPEN list[i][j]; clip: OutCode; ex, ey, ez, sx, sy: REAL; isx, isy: INTEGER; [ [ex, ey, ez], clip ] _ ShapeUtilities.XfmPtToEyeSpace[ context, [x, y, z], xfm ]; IF clip # NoneOut -- oops, ShapeUtilities.XfmToEyeSpace got it wrong THEN { shape.clipState _ clipped; EXIT; } ELSE { sx _ context.eyeToNdc.scaleX * ex / ez + context.eyeToNdc.addX; sy _ context.eyeToNdc.scaleY * ey / ez + context.eyeToNdc.addY; isx _ Real.Fix[ context.ndcToPixels.scaleX * sx + context.ndcToPixels.addX ]; isy _ Real.Fix[ context.ndcToPixels.scaleY * sy + context.ndcToPixels.addY ]; IF j > 0 THEN ScanConvert.PutLine[context, [isx, isy], [lsx, lsy], color, color]; lsx _ isx; lsy _ isy; } ENDLOOP; ENDLOOP; }; }; MakeDisplayList: PROC [ context: REF Context, shape: REF ShapeInstance ] RETURNS[REF] ~ { IF shape.class.type = $ConvexPolygon THEN RETURN[ MakePolygonDisplayList[context, shape] ] ELSE RETURN[ MakePatchDisplayList[context, shape] ]; }; MakePolygonDisplayList: PROC [ context: REF Context, shape: REF ShapeInstance ] RETURNS[REF] ~ { patches: REF PtrPatchSequence; size: NAT _ shape.vertex.length; displayList: REF IntegerPairSequence _ NEW[IntegerPairSequence[3*size]]; -- all triangles makes < 3 edges per vertex connections: REF BoolSeqSequence _ NEW[BoolSeqSequence[shape.vertex.length]]; c1, c2, count: NAT _ 0; patches _ NARROW[shape.surface, REF PtrPatchSequence]; FOR i: NAT IN (0..shape.vertex.length) DO -- fill half matrix less diagonal with FALSE connections[i] _ NEW[ BoolSequence[i] ]; FOR j: NAT IN [0..i) DO connections[i][j] _ FALSE; ENDLOOP; ENDLOOP; FOR i: NAT IN [0..shape.numSurfaces) DO IF shape.class.type # $ConvexPolygon THEN SIGNAL ThreeDBasics.Error[[$MisMatch, "Operation only for convex polygons"]] ELSE FOR j: NAT IN [0..patches[i].nVtces] DO k: NAT _ IF j = patches[i].nVtces THEN 0 ELSE j; c2 _ patches[i].vtxPtr[k]; IF j > 0 THEN { IF c1 > c2 THEN IF connections[c1][c2] = FALSE THEN { displayList[count] _ [c1, c2]; count _ count + 1; connections[c1][c2] _ TRUE; }; IF c2 > c1 THEN IF connections[c2][c1] = FALSE THEN { displayList[count] _ [c2, c1]; count _ count + 1; connections[c2][c1] _ TRUE; }; }; c1 _ c2; ENDLOOP; ENDLOOP; displayList.length _ count; shape.props _ Atom.PutPropOnList[shape.props, $LinesList, displayList]; RETURN[displayList]; }; tol: REAL _ .001; -- tolerance for endpoint matching GrabEdges: PatchProc ~ { shape: REF ShapeInstance _ NARROW[ Atom.GetPropFromList[patch.props, $Shape] ]; displayList: REF TripleSeqSequence _ NARROW[ Atom.GetPropFromList[shape.props, $LinesList] ]; FOR i: NAT IN [0..displayList.length) DO OPEN patch[patch.nVtces-1].coord; pt: Triple _ displayList[i][0]; -- get first point in sequence IF ABS[pt.x - x] < tol AND ABS[pt.y - y] < tol AND ABS[pt.z - z] < tol THEN { OPEN patch[0].coord; -- opposite endpoints match, try other ends pt: Triple _ displayList[i][displayList[i].length-1]; -- get last point in sequence IF ABS[pt.x - x] < tol AND ABS[pt.y - y] < tol AND ABS[pt.z - z] < tol THEN { OPEN patch[patch.nVtces/2].coord; -- check middle points pt: Triple _ displayList[i][displayList[i].length - 1 - patch.nVtces/2]; IF ABS[pt.x - x] < tol AND ABS[pt.y - y] < tol AND ABS[pt.z - z] < tol THEN RETURN[patch]; -- both ends and middle match, line stored in other direction }; }; pt _ displayList[i][displayList[i].length-1]; IF ABS[pt.x - x] < tol AND ABS[pt.y - y] < tol AND ABS[pt.z - z] < tol THEN { OPEN patch[0].coord; -- last endpoints match, try other end pt: Triple _ displayList[i][0]; -- get first point in sequence IF ABS[pt.x - x] < tol AND ABS[pt.y - y] < tol AND ABS[pt.z - z] < tol THEN { OPEN patch[patch.nVtces/2].coord; -- check middle points pt: Triple _ displayList[i][patch.nVtces/2]; IF ABS[pt.x - x] < tol AND ABS[pt.y - y] < tol AND ABS[pt.z - z] < tol THEN RETURN[patch]; -- both ends and middle match, line stored in other direction }; }; ENDLOOP; IF displayList.length = displayList.maxLength THEN { -- extend display list newList: REF TripleSeqSequence _ NEW[ TripleSeqSequence[displayList.length + shape.vertex.length] ]; FOR i: NAT IN [0..displayList.length) DO newList[i] _ displayList[i] ENDLOOP; newList.length _ displayList.length; displayList _ newList; }; displayList[displayList.length] _ NEW[TripleSequence[patch.nVtces]]; -- add new edge FOR i: NAT IN [0..patch.nVtces) DO displayList[displayList.length][i] _ [ patch[i].coord.x, patch[i].coord.y, patch[i].coord.z ]; ENDLOOP; displayList[displayList.length].length _ patch.nVtces; displayList.length _ displayList.length + 1; RETURN[patch]; }; MakePatchDisplayList: PROC [ context: REF Context, shape: REF ShapeInstance ] RETURNS[REF] ~ { patches: REF PtrPatchSequence; size: NAT _ shape.vertex.length; displayList: REF TripleSeqSequence _ NEW[TripleSeqSequence[3*size]]; -- max. for triangles tempProc: PatchProc _ context.class.displayPolygon; context.class.displayPolygon _ GrabEdges; -- ambush polygon display proc shape.props _ Atom.PutPropOnList[shape.props, $LinesList, displayList]; patches _ NARROW[shape.surface, REF PtrPatchSequence]; FOR i: NAT IN [0..shape.numSurfaces) DO IF patches[i] # NIL THEN { patch: REF Patch _ ShapeUtilities.ShapePatchToPatch[ context, NEW[ ShapePatch _ [shape, i, 0, 0, 0.0] ] ]; [] _ shape.class.displayPatch[ context, patch ]; }; ENDLOOP; context.class.displayPolygon _ tempProc; -- restore polygon display proc RETURN[displayList]; }; InitClasses[]; END. „QuickListProcs.mesa Copyright Σ 1987 by Xerox Corporation. All rights reserved. Frank Crow, February 15, 1988 3:21:02 pm PST Quick display lists for lines. Bloomenthal, September 26, 1988 12:04:42 pm PDT Type Definitions Initialization of Classes Line Drawings PROC[context: REF Context, shape: REF ShapeInstance, data: REF ANY _ NIL] RETURNS[REF ShapeInstance] Call this to get through viewer to draw on screen PROC[context: REF Context, imagerCtx: Imager.Context, data: REF ANY _ NIL] This gets pixel map and calls proc which draws lines based on display list This acquires display list from shape.props and executes it, calls proc to build list if none Creates display list for line drawings of polygonal object, culls duplicated edges PROC[context: REF Context, patch: REF Patch, data: REF ANY _ NIL] RETURNS[REF Patch] Used to temporarily replace polygon rendering proc in context, captures calls and culls duplicates, stores result in display list Creates display list for line drawings of patch shape by replacing polygon display proc with GrabEdges then calling for display of all patches of shape to capture the resulting polygon calls Κ Ό˜Ihead2™™