
PROMPTREMINDERS -- to be periodically reminded of things

File: <lispusers>PromptReminders.tty
Revised: Feb 21, 1983, and Apr 15, 1984, by JonL White

One may want to be periodically "reminded" of important things by
a message which is aggressively "winked" and "flashed" in a prompt
window (or on primary output for systems without bitmap display, such
as Interlisp-10 and Interlisp/VAX). It will desist the wink/flash
"hassling" only after it has been acknowledged by user response, or
after a pre-set interval of "hassling" time has elapsed. Such is
implemented using an Interlisp-D background process (or for the non-
Interlisp-D systems, the facility of PROMPTCHARFORMS).

If the MESSAGE given for the reminder (see description of the
function SETREMINDER below) is a listp, then when the reminder
"goes off", that listp will be EVAL’d rather than any of the "winking",
"flashing", or "hassling" mentioned above.

In Interlisp-D, the global variable REMINDERSTREAM holds the window
(or, indeed, stream!) that the "winking/flashing" is to occur; if not
set by the user, it will default to PROMPTWINDOW. After the "hassling"
has completed, the window (if indeed REMINDERSTREAM holds a window) will
be closed, depending on the value of CLOSEREMINDERSTREAMFLG.

REMINDERS is a filepkg type, so that they may be easily saved on
files, and so that the general typed-definition facilities may be used.
On any file which uses the REMINDERS filepkgcom, it is advisable to
precede this command with a command

(FILES (SYSLOAD COMPILED FROM LISPUSERS) PROMPTREMINDERS)
since this package is not in the initial Lisp loadup. When initially
defining a reminder, it is preferable for the user to call SETREMINDER
rather than PUTDEF; but HASDEF is the accepted way to ask if some name
currently defines a "reminder", and DELDEF is the accepted way to cancel
an existing "reminder".

In the first example below, the user wants to be reminded every 30
minutes that he ought to be using MAKEFILE to save his work; in the
second example, he merely wants to be told once, at precisely 4:00PM to
call home; in the third, he merely checks every 10 minutes to see if
there is a process called LISTFILES. Examples:

(SETREMINDER NIL (ITIMES 30 60) "Have you MADEFILE recently?")

(SETREMINDER ’WOOF NIL "Don’t forget to inform wife of dinner plans."
"8-Jan-83 4:00PM")

(SETREMINDER NIL 600
’(PROGN (AND (FIND.PROCESS ’LISTFILES) (add FREQ 1))

(add TOTAL 1)))

Functions:

(SETREMINDER NAME PERIOD MESSAGE INITIALDELAY EXPIRATION)
This will create and install a "reminder" with the name NAME

(NIL given for a name will be replaced by a gensym), which will
be executed every PERIOD number of seconds by winking the string
MESSAGE into the prompt window; if MESSAGE is null, then NAME is
winked; if MESSAGE is a listp, then it is EVAL’d and no "winking"
takes place. "Winking" means alternately printing the message and
clearing the window in which it was printed, at a rate designed to
attract the eye’s attention.

The first such execution will occur at PERIOD seconds after



the call to SETREMINDER unless INITIALDELAY is non-NIL, in which
case that time will be used; a fixp value for INITIALDELAY is
interpreted as an offset in seconds from the time of the call to
SETREMINDER, and a stringp value is an absolute date/time string.

If PERIOD is null, then the reminder is to be run precisely
once. If EXPIRATION is non-null, then a fixp means that that
number of seconds after the first execution, the timer will be
deleted; a stringp means a precise date/time at which to delete
the timer.

Optional 6th and 7th arguments -- called REMINDINGDURATION
and WINKINGDURATION -- permit one to vary the amount of time spent
in one cycle of the wink/flash loop, and the amount of time spent
winking before initiating a "flash". The attention-attracting
action will continue for REMINDINGDURATION seconds (default: the
value of the global variable DEFAULT.REMINDER.DURATION which is
initialized to 60), or until the user types something on the
keyboard; care is taken not to consume the typed character.
Type-ahead does not release the winking. In case the user has
become "drowsy", or otherwise fails to notice the winking, then
every WINKINGDURATION seconds (default: the value of the global
variable DEFAULT.REMINDER.WINKINGDURATION which is initialized
to 10) during the "reminding", the whole display videocolor will
be wagged back and forth a few times, which effects a most

obnoxious
stimulus (for non-bitmap systems, this just types some <bell>’s).

Returns the name (note above when NIL is supplied for the
name).

(ACTIVEREMINDERNAMES)
No arguments; self-explanatory.

(REMINDER.NEXTREMINDDATE NAME)
Returns the time (in GDATE format) at which the next reminding

from the named reminder will occur; NIL if NAME isn’t a REMINDERS.
(REMINDER.NEXTREMINDDATE NAME Date/Time.string)

Sets the time at which the reminder is next to be executed.

(REMINDER.EXPIRATIONDATE NAME)
Returns the time (in GDATE format) at which the reminder will

be automatically deleted.
(REMINDER.EXPIRATIONDATE NAME Date/Time.string)

Sets the expiration time.

(INSPECTREMINDER NAME)
In Interlisp-D, this will call INSPECT on the definition of

the named reminder; in other systems, it merely calls SHOWDEF.

Function in Interlisp-D only:

(UNTILKEYDOWNP FN INTERVAL.SECS DURATION.SECS
subCycleDuration.secs subCycleFN)

For a period of up to DURATION.SECS seconds, the function FN
will be "run" (i.e., applied to no arguments) every INTERVAL.SECS
seconds; both of these time durations may be floatp’s, and hence
specify fractional parts of a second. The process is stopped
whenever there is any change in the state of the keyboard; except
that CTRL, LOCK, LSHIFT, RSHIFT, and LEFT and RIGHT (tow of the
three mouse buttons) don’t count.

The function FN, of course, may save "state" in order to do
different things cyclically on the various "runnings". But a
common structure is to have a major cycle and a minor cycle for
which some activity is to be performed. The two optional
arguments, subCycleDuration.secs and subCycleFN, allow for this
second function to be "run" at the end of the subCycle duration



time.
For example, INTERVAL.SECS may be 0.5 in order to cause a

"winking" of a message in the PROMPTWINDOW every second or so, and
subCycleDuration.secs may be 10.0 in order to cause a "flashing"
of the whole screen every 10 seconds or so. In this case, the
major cycle is the "fast rate winking" every second, whereas the
minor cycle is the "slow rate flashing" every 10 secs.


