
CHAPTER 7

VARIABLE BINDINGS AND THE INTERLISP STACK

A number of schemes have been used in di�erent implementations of LISP for storing the values of
variables. These include:

(1) Storing values on an association list paired with the variable names.

(2) Storing values on the property list of the atom which is the name of the variable.

(3) Storing values in a special value cell associated with the atom name, putting old values on a pushdown
list, and restoring these values when exiting from a function.

(4) Storing values on a pushdown list.

Interlisp- 10 uses the third scheme, so called ‘‘shallow binding’’. When a function is entered, the value
of each variable bound by the function (function argument) is stored in a value cell associated with that
variable name. The value that was in the value cell is stored in a block of storage called the basic
frame for this function call. In addition, on exit from the function each variable must be individually
unbound; that is, the old value saved in the basic frame must be restored to the value cell. Thus there is a
higher cost for binding and unbinding a variable than in the fourth scheme, ‘‘deep binding’’. However, to
�nd the current value of any variable, it is only necessary to access the variable’s value cell, thus making
variable reference considerably cheaper under shallow binding than under deep binding, especially for free
variables. However, the shallow binding scheme used does require an additional overhead in switching
contexts when doing ‘‘spaghetti stack’’ operations.

Interlisp- D uses the forth scheme, ‘‘deep binding.’’ Every time a function is entered, a basic frame
containing the new variables is put on top of the stack. Therefore, any variable reference requires
searching the stack for the �rst instance of that variable, which makes free variable use somewhat more
expensive than in a shallow binding scheme. On the other hand, spaghetti stack operations are considerably
faster. Some other tricks involving copying freely- referenced variables to higher frames on the stack are
also used to speed up the search.

The basic frames are allocated on a stack or pushdown list; for most user purposes, these frames should
be thought of as containing the variable names associated with the function call, and the values
for that frame. The descriptions of the stack functions in below are presented from this viewpoint. Both
interpreted and compiled functions store both the names and values of variables so that interpreted and
compiled functions are compatible and can be freely intermixed, i.e., free variables can be used with
no declarations necessary. However, it is possible to storing of names in compiled
functions, either for e�ciency or to avoid a clash, via a declaration (see page 12.4). The
names are also very useful in debugging, for they make possible a complete symbolic backtrace in case
of error.

In addition to the binding information, additional information is associated with each function call: access
information indicating the path to search the basic frames for variable bindings, control information, and
temporary results are also stored on the stack in a block called the frame extension. The interpreter also
stores information about partially evaluated expressions as described on page 7.10.

7.1

current

SPECVAR suppress
LOCALVAR

1

1

The Spaghetti Stack

7.1 THE SPAGHETTI STACK

The Bobrow/Wegbreit paper, ‘‘AModel and Stack Implementation for Multiple Environments’’, describes
an access and control mechanism more general than the simple pushdown stack. The access and control
mechanism used by Interlisp is a slightly modi�ed version of the one proposed by Bobrow and Wegbreit.
This mechanism is called the ‘‘spaghetti stack.’’

The spaghetti system presents the access and control stack as a data structure composed of ‘‘frames.’’ The
functions described below operate on this structure. These primitives allow user functions to manipulate
the stack in a machine independent way. Backtracking, coroutines, and more sophisticated control schemes
can be easily implemented with these primitives.

The evaluation of a function requires the allocation of storage to hold the values of its local variables
during the computation. In addition to variable bindings, an activation of a function requires a return
link (indicating where control is to go after the completion of the computation) and room for temporaries
needed during the computation. In the spaghetti system, one ‘‘stack’’is used for storing all this information,
but it is best to view this stack as a tree of linked objects called frame extension s (or simply frame s).

A frame extension is a variable sized block of storage containing a frame name, a pointer to some variable
bindings (the BLINK), and two pointers to other frame extensions (the ALINK and CLINK). In addition
to these components, a frame extension contains other information (such as temporaries and reference
counts) that does not interest us here.

The block of storage holding the variable bindings is called a basic frame. A basic frame is essentially
an array of pairs, each of which contains a variable name and its value. The reason frame extensions
point to basic frames (rather than just having them ‘‘built in’’) is so that two frame extensions can share
a common basic frame. This allows two processes to communicate via shared variable bindings.

The chain of frame extensions which can be reached via the successive ALINKs from a given frame is
called the ‘‘access chain’’ of the frame. The �rst frame in the access chain is the starting frame. The chain
through successive CLINKs is called the ‘‘control chain’’.

A frame extension completely speci�es the variable bindings and control information necessary for the
evaluation of a function. Whenever a function (or in fact, any form which generally binds local variables)
is evaluated, it is associated with some frame extension.

In the beginning there is precisely one frame extension in existence. This is the frame in which the
top- level call to the interpreter is being run. This frame is called the ‘‘top-level’’ frame.

Since precisely one function is being executed at any instant, exactly one frame is distinguished as having
the ‘‘control bubble’’ in it. This frame is called the active frame. Initially, the top- level frame is the active
frame. If the computation in the active frame invokes another function, a new basic frame and frame
extension are built. The frame name of this basic frame will be the name of the function being called.
The ALINK, BLINK, and CLINK of the new frame all depend on precisely how the function is invoked.
The new function is then run in this new frame by passing control to that frame, i.e., it is made the active
frame.

Vol. 16, 10, October 1973.

7.2

Communications of the ACM,

VARIABLE BINDINGS AND THE INTERLISP STACK

Once the active computation has been completed, control normally returns to the frame pointed to by
the CLINK of the active frame. That is, the frame in the CLINK becomes the active frame.

In most cases, the storage associated with the basic frame and frame extension just abandoned can be
reclaimed. However, it is possible to obtain a pointer to a frame extension and to ‘‘hold on’’ to this
frame even after it has been exited. This pointer can be used later to run another computation in that
environment, or even ‘‘continue’’ the exited computation.

A separate data type, called a stack pointer, is used for this purpose. A stack pointer is just a cell that
literally points to a frame extension. Stack pointers print as , e.g., .
Stack pointers are returned by many of the stack manipulating functions described below. Except for
certain abbreviations (such as ‘‘the frame with such-and- such a name’’), stack pointers are the only way
the user can reference a frame extension. As long as the user has a stack pointer which references a frame
extension, that frame extension (and all those that can be reached from it) will not be garbage collected.

Note that two stack pointers referencing the same frame extension are necessarily , i.e.,
= . However, can be used to test if two di�erent stack

pointers reference the same frame extension (page 2.3).

It is possible to evaluate a form with respect to an access chain other than the current one by using a stack
pointer to refer to the head of the access chain desired. Note, however, that this can be very expensive
when using a shallow binding scheme such as that in Interlisp- 10. When evaluating the form, since all
references to variables under the shallow binding scheme go through the variable’s value cell, the values
in the value cells must be adjusted to re�ect the values appropriate to the desired access chain. This
is done by changing all the bindings on the current access chain (all the name- value pairs) so that they
contain the value current at the time of the call. Then along the new access path, all bindings are made
to contain the previous value of the variable, and the current value is placed in the value cell. For that
part of the access path which is shared by the old and new chain, no work has to be done. The context
switching time, i.e. the overhead in switching from the current, active, access chain to another one, is
directly proportional to the size of the two branches that are not shared between the access contexts. This
cost should be remembered in using generators and coroutines (page 7.13).

7.2 STACK FUNCTIONS

In the descriptions of the stack functions below, when we refer to an argument as a stack descriptor, we
mean that it is either a stack pointer or one of the following abbreviations:

� means the active frame; that is, the frame of the stack function itself.

� means the top- level frame.

� Any other literal atom is equivalent to .

� A number is equivalent to .

In the stack functions described below, the following errors can occur: The error
occurs when a stack descriptor is expected and the supplied argument is either not a legal stack

descriptor (i.e., not a stack pointer, litatom, or number), or is a litatom or number for which there
is no corresponding stack frame, e.g., where there is no frame named

7.3

/ #1,13636/COND

not EQ (EQ
(STKPOS ’FOO) (STKPOS ’FOO)) NIL EQP

NIL

T

(STKPOS -1)

(STKNTH)

ILLEGAL STACK
ARG

(STKNTH -1 ’FOO) FOO

ADR FRAMENAME

ATOM

NUMBER

Stack Functions

in the active control chain or . The error
occurs whenever a released stack pointer is supplied as a stack descriptor argument for any

purpose other than as a stack pointer to re-use.

Note: The creation of a single stack pointer can result in the retention of a large amount of stack space.
Therefore, one should try to release stack pointers when they are no longer needed. See page 7.10.

[Function]
Returns a stack pointer to the th frame with frame name . The search
begins with (and includes) the frame speci�ed by the stack descriptor . The
search proceeds along the control chain from if is negative, or along the
access chain if is positive. If is , is used. Returns a stack pointer to
the frame if such a frame exists, otherwise returns . If is supplied and
is a stack pointer, it is reused. If is supplied and is a stack pointer and

returns , is released. If is not a stack pointer it is
ignored.

Note: causes an error, ; it is not
permissible to create a stack pointer to the active frame.

[Function]
Returns a stack pointer to the th frame back from the frame speci�ed by the
stack descriptor . If is negative, the control chain from is followed. If

is positive the access chain is followed. If equals 0, returns a stack
pointer to (this provides a way to copy a stack pointer). Returns if there
are fewer than frames in the appropriate chain. If is supplied and is a
stack pointer, it is reused. If is not a stack pointer it is ignored.

Note: causes an error, ; it is not possible to
create a stack pointer to the active frame.

[Function]
Returns the frame name of the frame speci�ed by the stack descriptor .

[Function]
Changes the frame name of the frame speci�ed by to be . Returns .

[Function]
Returns the frame name of the th frame back from . Equivalent to

but avoids creation of a stack pointer.

In summary, converts function names to stack pointers, converts numbers to stack
pointers, converts stack pointers to function names, and converts numbers to
function names.

[Function]
Returns if the user never wrote a call to the function at , e.g. in Interlisp- 10,

is for , , and frames (see block
compiler, page 12.13).

and can be used to write functions which manipulate the stack and work on
either interpreted or compiled code:

7.4

(STKNTH -10 ’EVALQT) STACK POINTER HAS BEEN
RELEASED

(STKPOS)

NIL -1
NIL

STKPOS NIL

(STKPOS ’STKPOS) ILLEGAL STACK ARG

(STKNTH)

STKNTH
NIL

(STKNTH 0) ILLEGAL STACK ARG

(STKNAME)

(SETSTKNAME)

(STKNTHNAME)
(STKNAME

(STKNTH))

STKPOS STKNTH
STKNAME STKNTHNAME

(DUMMYFRAMEP)
T

DUMMYFRAMEP T *PROG*LAM *ENV* FOOBLOCK

REALFRAMEP REALSTKNTH

NAME N POS OLDPOS

N NAME

POS

POS N

N N

OLDPOS

OLDPOS

OLDPOS OLDPOS

N POS OLDPOS

N

POS N POS

N N

POS

N OLDPOS

OLDPOS

POS

POS

POS NAME

POS NAME NAME

N POS

N POS

N POS

POS

POS

VARIABLE BINDINGS AND THE INTERLISP STACK

[Function]
Returns if is a ‘‘real’’ frame, i.e. if is not a dummy frame and
is a frame that does not disappear when compiled (such as); otherwise .
If = , returns if is not a dummy frame. For example, if

= , is , but
is .

[Function]
Returns a stack pointer to the th (or - th) frames for which

is .

The following functions are used for accessing and changing bindings. Some of functions take an
argument, , which speci�es a particular binding in the basic frame. If is a literal atom, it is assumed
to be the name of a variable bound in the basic frame. If is a number, it is assumed to reference the

th binding in the basic frame. The �rst binding is 1. If the basic frame contains no binding with the
given name or if the number is too large or too small, the error occurs.

[Function]
Searches beginning at for a frame in which a variable named is bound.
The search follows the access chain. Returns a stack pointer to the frame if found,
otherwise returns . If is a stack pointer it is reused, otherwise it is ignored.

[Function]
Returns the relative position of the binding of in the basic frame of .
Returns if is not found.

[Function]
Returns the value of the binding speci�ed by in the basic frame of the frame
speci�ed by the stack descriptor . can be a literal atom or number.

[Function]
Returns the name of the binding speci�ed by , in the basic frame of the frame
speci�ed by the stack descriptor . can be a literal atom or number.

[Function]
Sets the value of the binding speci�ed by in the basic frame of the frame speci�ed
by the stack descriptor . can be a literal atom or a number. Returns value.

[Function]
Sets the of the binding speci�ed by in the basic frame of the frame
speci�ed by the stack descriptor . can be a literal atom or a number. Returns

.

[Function]
Returns the number of arguments bound in the basic frame of the frame speci�ed
by the stack descriptor .

[Function]
Returns a list of the variables bound at .

As an example of the use of and , could be
de�ned by:

7.5

(REALFRAMEP)

COND NIL
T

(STKNAME) COND (REALFRAMEP) NIL (REALFRAMEP
T)

(REALSTKNTH)
(REALFRAMEP

)

ILLEGAL ARG

(STKSCAN)

NIL

(FRAMESCAN)

NIL

(STKARG)

(STKARGNAME)

(SETSTKARG)

(SETSTKARGNAME)

(STKNARGS)

(VARIABLES)

STKNARGS STKARGNAME VARIABLES

POS INTERPFL G

POS POS POS POS

INTERPFL G POS POS

POS POS POS

POS

N POS INTERPFL G OLDPOS

N N POS

INTERPFL G POS

N N

N

N

VAR IPOS OPOS

IPOS VAR

OPOS

ATOM POS

ATOM POS

ATOM

N POS _

N

POS N

N POS

N

POS N

N POS VAL UE

N

POS N

N POS NAME

NAME N

POS N

NAME

POS _

POS

POS

POS

Stack Functions

[Function]
Returns a list of the of variables bound at .

The following functions are used to evaluate an expression in a di�erent environment, and/or to alter the
�ow of control.

[Function]
Evaluates in the environment speci�ed by and . That is, a new
active frame is created with the frame speci�ed by the stack descriptor as its
ALINK , and the frame speci�ed by the stack descriptor as its CLINK . Then

is evaluated. If is not , and is a stack pointer, then
will be released. Similarly, if is not , and is a stack pointer, then

will be released.

[Function]
s to in the environment speci�ed by and . and

have the same interpretation as with .

[Function]
Evaluates in the access environment of the frame speci�ed by the stack
descriptor . If is not and is a stack pointer, releases . The
de�nition of is .

[Function]
Similar to but applies to .

[Function]
Evaluates in the access environment of the frame speci�ed by the stack
descriptor , and then returns from with that value. If is not
and is a stack pointer, then is released. The de�nition of is
equivalent to , except that

does not create a stack pointer.

[Function]
Similar to except applies to .

[Function]
Return from the frame speci�ed by the stack descriptor , with the value .
If is not , and is a stack pointer, then is released. An attempt to

the top level (e.g., causes an error,
. can be written in terms of as follows:

7.6

(VARIABLES
[LAMBDA (POS)

(for N from 1 to (STKNARGS POS)
collect (STKARGNAME N POS])

(STKARGS)
values

(ENVEVAL)

NIL
NIL

(ENVAPPLY)
APPLY

ENVEVAL

(STKEVAL)

NIL
STKEVAL (ENVEVAL NIL)

(STKAPPLY)
STKEVAL

(RETEVAL)

NIL
RETEVAL

(ENVEVAL (STKNTH -1) T)
RETEVAL

(RETAPPLY)
RETEVAL

(RETFROM)

NIL
RETFROM (RETFROM T)) ILLEGAL STACK
ARG RETFROM ENVEVAL

(RETFROM
(LAMBDA (POS VAL FLG)

(ENVEVAL (LIST ’QUOTE VAL)
NIL
(if (STKNTH -1 POS (if FLG then POS))

POS _

POS

FORM APOS CPOS AFL G CFL G

FORM APOS CPOS

APOS

CPOS

FORM AFL G APOS APOS

CFL G CPOS

CPOS

FN AR GS APOS CPOS AFL G CFL G

FN AR GS APOS CPOS AFL G

CFL G

POS FORM FL G _

FORM

POS FL G POS POS

FORM POS FL G

POS FN AR GS FL G _

FN AR GS

POS FORM FL G _

FORM

POS POS FL G

POS POS

FORM POS POS FL G

POS FN AR GS FL G _

FN AR GS

POS VAL FL G

POS VAL

FL G POS POS

VARIABLE BINDINGS AND THE INTERLISP STACK

[Function]
Like , except returns the frame speci�ed by .

[Function]
Evaluates , where is assumed to be a litatom, in the access environment
specifed by the stack descriptor . If is unbound, returns

and does not generate an error. While could be de�ned as
it is in fact a which is somewhat faster.

compiles open when = .

The following functions and variables are used to manipulate stack pointers.

[Function]
Returns if is a stack pointer, otherwise returns .

[Function]
Release the stack pointer (see page 7.10). If is not a stack pointer, does
nothing. Returns .

[Function]
Returns is is a released stack pointer, otherwise.

[Function]
If is , releases all active stack pointers, and returns . If is ,
returns a list of all the active (unreleased) stack pointers.

[Variable]
A variable used by top- level . Every time is re-entered (e.g.,
following errors, or control- D), is checked. If its value is , all
active stack pointers are released using . If its value is a list, then all
stack pointers on that list are released. If its value is , nothing is released.

is initially .

[Variable]
A variable used by top- level . If is (see above) all active
stack pointers those on are released.
is initially .

Thus if one wishes to use multiple environments that survive through control- D, either
should be set to , or else those stack pointers to be retained should be explicitly added to

.

[Function]
(Interlisp- 10) Copies the stack, including basic frames, from the frame speci�ed
by the stack descriptor to the frame speci�ed by the stack descriptor .
That is, copies the frame extensions and basic frames in the access chain from

to (inclusive). must be in the access chain of , i.e., ‘‘above’’
. Returns the new . This provides a way to save an entire environment

7.7

else (ERRORX (LIST 19 POS)))
NIL
T)))

(RETTO)
RETFROM to

(EVALV)

EVALV
NOBIND EVALV
(ENVEVAL) SUBR EVALV

NIL

(STACKP)
NIL

(RELSTK)

(RELSTKP)
T NIL

(CLEARSTK)
NIL NIL T

CLEARSTKLST
EVALQT EVALQT

CLEARSTKLST T
CLEARSTK

NIL
CLEARSTKLST T

NOCLEARSTKLST
EVALQT CLEARSTKLST T

except NOCLEARSTKLST NOCLEARSTKLST
NIL

CLEARSTKLST
NIL

NOCLEARSTKLST

(COPYSTK)

POS VAL FL G

POS

VAR POS

VAR VAR

POS VAR

VAR POS

POS

X

X X

POS

POS POS

POS

X

X

FL G

FL G FL G

POS1 POS2

POS1 POS2

POS2 POS1 POS1 POS2

POS2 POS2

2

2

Stack Functions

including variable bindings.

[Function]
Starts at and applies , a function of two arguments, to the
function at each frame, and the frame (stack pointer) itself, until the top of
the stack is reached. Returns . For example,

will print all functions of more than two arguments.

[Function]
Similar to , except searches the pushdown list starting at position
until it �nds a frame for which , a function of two arguments applied to the

of the frame and the frame itself, is not . Returns
if such a frame is found, otherwise .

[Function]
Performs a backtrace beginning at the frame speci�ed by the stack descriptor ,
and ending with the frame speci�ed by the stack descriptor . is a
number in which the options of the are encoded. If a bit is set, the
corresponding information is included in the backtrace.

bit 0 - print arguments of non- s.

bit 1 - print temporaries of the interpreter.

bit 2 - print arguments and local variables.

bit 3 - omit printing of and function names.

bit 4 - follow access chain instead of control chain.

bit 5 - print temporaries, i.e. the blips.

For example: if = , everything is printed; if = , follows the
access chain, prints arguments.

is the �le that the backtrace is printed to. must be open. is
used when printing the values of variables, temporaries, blips, etc. =
defaults to .

[Function]
Prints a backtrace from to onto . speci�es the options of
the backtrace, e.g., do/don’t print arguments, do/don’t print temporaries of the
interpreter, etc., and is the same as for .

calls with a of (page 6.17), so that if = ,
the values will be prettyprinted.

7.8

(MAPDL)

name
NIL

[MAPDL (FUNCTION (LAMBDA (X POS)
(if (IGREATERP (STKNARGS POS) 2)

then (PRINT X)]

(SEARCHPDL)
MAPDL

name NIL (.)
NIL

(BACKTRACE)

BACKTRACE

SUBR

SUBR

UNTRACE:

47Q 21Q

NIL
PRINT

(BAKTRACE)

BACKTRACE

BAKTRACE BACKTRACE SHOWPRINT SYSPRETTYFLG T

MAPDLFN MAPDLPOS

MAPDLPOS MAPDLFN

SR CHFN SR CHPOS

SR CHPOS

SR CHFN

NAME FRAME

IPOS EPOS FLA GS FILE PRINTFN

IPOS

EPOS FLA GS

FLA GS FLA GS

FILE FILE PRINTFN

PRINTFN

IPOS EPOS SKIPFNS FLA GS FILE

IPOS EPOS FILE FLA GS

PRINTFN

VARIABLE BINDINGS AND THE INTERLISP STACK

is a list of functions. As scans down the stack, the stack name
of each frame is passed to each function in , and if any of them return
non- , is skipped (including all variables).

collapses the sequence of several function calls corresponding to a call
to a system package into a single ‘‘function’’ using as described
below. For example, any call to the editor is printed as , a break is
printed as , etc.

is used by the , , , , and commands, with
= , , , , and respectively.

[Variable]
Used for telling (therefore, the , , etc. commands) to abbreviate
various sequences of function calls on the stack by a single key, e.g. ,

, etc.

The operation of and format of is described so that the user can add his
own entries to . Each entry on is a list of the form

or ��� , where a pattern
is a list of elements that are either atoms, which match a single frame, or lists, which are interpreted
as a list of alternative patterns, e.g.

operates by scanning up the stack and, at each point, comparing the current frame name, with
the frame names on , i.e. it does an . If the frame name does appear,
attempts to match the stack as of that point with (one of) the patterns. If the match is successful,

prints the corresponding key, and continues with where the match left o�. If the frame name
does not appear, or the match fails, simply prints the frame name and continues with the next
higher frame (unless the applied to the frame name are non- as described above).

Matching is performed by comparing atoms in the pattern with the current frame name, and matching
lists as patterns, i.e. sequences of function calls, always working up the stack. For example, either of
the sequence of function calls ‘‘��� ��� ’’ or ‘‘���

��� ’’ would match with the sample entry given above, causing to be printed.

Special features:

� The litatom can be used to match any frame.

� The pattern ‘‘ ’’ can be used to match nothing. is useful for specifying an optional match, e.g. the
example above could also have been written as

.

� It is not necessary to provide in the pattern for matching dummy frames, i.e. frames for which
(see page 7.4) is true, e.g. in Interlisp- 10, , , , etc. When

working on a match, the matcher automatically skips over these frames when they do not match.

� If a match succeeds and the is , nothing is printed. For example,
. This sequence will occur following an error which then causes a break if some of the function’s

7.9

BAKTRACE

NIL

BAKTRACE
BAKTRACELST

EDITOR
BREAK

BAKTRACE BT BTV BTV+ BTV* BTV!
0 1 5 7 47Q

BAKTRACELST
BAKTRACE BT BTV

BREAK
EDITOR

BAKTRACE BAKTRACELST
BAKTRACELST BAKTRACELST (

.) ((.) (.))

(PROGN **BREAK** EVAL ((ERRORSET BREAK1A BREAK1)
(BREAK1)))

BAKTRACE
BAKTRACELST ASSOC BAKTRACE

BAKTRACE
BAKTRACE

NIL

BREAK1 BREAK1A ERRORSET EVAL PROGN BREAK1
EVAL PROGN **BREAK**

&

- -
(PROGN **BREAK** EVAL ((ERRORSET BREAK1A)

-) BREAK1)

DUMMYFRAMEP *PROG*LAM *ENV* NOLINKDEF1

NIL (*PROG*LAM NIL EVALA
*ENV)

SKIPFNS

SKIPFNS

POS

FLA GS

FRAMENAME KEY

PATTERN FRAMENAME KEY 1 PATTERN 1 KEY N PATTERN N

SKIPFNS

KEY

Releasing and Reusing Stack Pointers

arguments are .

7.3 RELEASING AND REUSING STACK POINTERS

The creation of a single stack pointer can result in the retention of a large amount of stack space.
Furthermore, this space will not be freed until the next garbage collection,

, unless the stack pointer is explicitly released or reused. If there is su�cient amount
of stack space tied up in this fashion, a condition can occur, even in the simplest of
computations. For this reason, the user should consider releasing a stack pointer when the environment
referenced by the stack pointer is no longer needed.

The e�ects of releasing a stack pointer are:

(1) The link between the stack pointer and the stack is broken by setting the contents of the stack pointer
to the ‘‘released mark’’ (currently unboxed 0). A released stack pointer prints as .

(2) If this stack pointer was the last remaining reference to a frame extension; that is, if no other stack
pointer references the frame extension and the extension is not contained in the active control or access
chain, then the extension may be reclaimed, and is reclaimed immediately. The process repeats for the
access and control chains of the reclaimed extension so that all stack space that was reachable only from
the released stack pointer is reclaimed.

A stack pointer may be released using the function , but there are some cases for which
is not su�cient. For example, if a function contains a call to in which a stack pointer was used
to specify where to return to, it would not be possible to simultaneously release the stack pointer. (A

appearing in the function following the call to would not be executed!) To permit
release of a stack pointer in this situation, the stack functions that relinquish control have optional �ag
arguments to denote whether or not a stack pointer is to be released (and). Note that in this
case releasing the stack pointer will cause the stack space to be reclaimed immediately because the
frame referenced by the stack pointer will have become part of the active environment.

Another way of avoiding creating new stack pointers is to stack pointers that are no longer needed.
The stack functions that create stack pointers (, , and) have an optional
argument which is a stack pointer to reuse. When a stack pointer is reused, two things happen. First the
stack pointer is released (see above). Then the pointer to the new frame extension is deposited in the
stack pointer. The old stack pointer (with its new contents) is the value of the function. Note that the
reused stack pointer will be released even if the function does not �nd the speci�ed frame.

Note that even if stack pointers are explicitly being released, of many stack pointers can cause
a garbage collection of stack pointer space. Thus, if the user’s application requires creating many stack
pointers, he de�nitely should take advantage of reusing stack pointers.

7.4 THE PUSH- DOWN LIST AND THE INTERPRETER

In addition to the names and values of arguments for functions, information regarding partially- evaluated
expressions is kept on the push- down list. For example, consider the following de�nition of the function

7.10

LOCALVARS

even if the stack pointer is no
longer being used

STACK OVERFLOW

/#

RELSTK RELSTK
RETFROM

RELSTK RETFROM

not

reuse
STKPOS STKNTH STKSCAN

creation

ADR 0

AFL G CFL G

VARIABLE BINDINGS AND THE INTERLISP STACK

(intentionally faulty):

In evaluating the form , as soon as is entered, the interpreter begins evaluating the
implicit following the . The �rst function entered in this process is . begins
to process its list of clauses. After calling and getting a value, proceeds to the next
clause and evaluates . Since is true, the evaluation of the implicit that is the consequent of the

clause is begun. This requires calling the function . However before can be called,
its arguments must be evaluated. The �rst argument is evaluated by retrieving the current binding of
from its value cell; the second involves a recursive call to , and another implicit , etc.

Note that at each stage of this process, some portion of an expression has been evaluated, and another
is awaiting evaluation. The output below (from Interlisp- 10) illustrates this by showing the state of the
push- down list at the point in the computation of when the unbound atom is reached.

7.11

FACT

(FACT
[LAMBDA (N)

(COND
((ZEROP N)

L)
(T (ITIMES N (FACT (SUB1 N])

(FACT 1) FACT
PROGN LAMBDA COND COND

ZEROP NIL COND
T T PROGN

T ITIMES ITIMES
N

FACT PROGN

(FACT 1) L

_FACT(1)
u.b.a. L {in FACT} in ((ZEROP N) L)
(L broken)
:BTV!

TAIL (L)

*ARG1 (((ZEROP N) L) (T (ITIMES N (FACT (SUB1 N)))))
COND

FORM (COND ((ZEROP N) L) (T (ITIMES N (FACT (SUB1 N)))))
TAIL ((COND ((ZEROP N) L) (T (ITIMES N (FACT (SUB1 N))))))

N 0
FACT

FORM (FACT (SUB1 N))
FN ITIMES
TAIL ((FACT (SUB1 N)))
ARGVAL 1
FORM (ITIMES N (FACT (SUB1 N)))
TAIL ((ITIMES N (FACT (SUB1 N))))

*ARG1 (((ZEROP N) L) (T (ITIMES N (FACT (SUB1 N)))))
COND

FORM (COND ((ZEROP N) L) (T (ITIMES N (FACT (SUB1 N)))))
TAIL ((COND ((ZEROP N) L) (T (ITIMES N (FACT (SUB1 N))))))

The Push-Down List and the Interpreter

Internal calls to , e.g., from and the interpreter, are marked on the push- down list by a special
mark or blip which the backtrace prints as . The genealogy of ’s is thus a history of the
computation. Other temporary information stored on the stack by the interpreter includes the tail of a
partially evaluated implicit (e.g., a cond clause or lambda expression) and the tail of a partially
evaluated form (i.e., those arguments not yet evaluated), both indicated on the backtrace by ,
the values of arguments that have already been evaluated, indicated by , and the names of
functions waiting to be called, indicated by . , ��� , are used by the backtrace to
indicate the (unnamed) arguments to s.

Note that a function is not actually entered and does not appear on the stack, until its arguments have
been evaluated (except for nlambda functions, of course). Also note that the , , ,
etc. ‘‘bindings’’ comprise the actual working storage. In other words, in the above example, if a (lower)
function changed the value of the binding, the would continue interpreting the new binding
as a list of clauses. Similarly, if the binding were changed, the new value would be
given to as its �rst argument after its second argument had been evaluated, and was
actually called.

Note that , , , etc., do not actually appear as variables on the stack, i.e.,
evaluating or calling to search for it will not work. However, the functions ,

, and described below are available for accessing these internal blips. These
functions currently know about four di�erent types of blips:

the name of a function about to be called

an argument for a function about to be called

a form in the process of evaluation

the tail of a clause, implicit , , etc.

[Function]
Returns the value of the speci�ed blip of type . If is a number ,
�nds the th blip of the desired type, searching the control chain beginning at the
frame speci�ed by the stack descriptor . If is , 1 is used. If is ,
returns the number of blips of the speci�ed type at .

[Function]
Sets the value of the speci�ed blip of type . Searches for the th blip of
the desired type, beginning with the frame speci�ed by the stack descriptor ,
and following the control chain.

[Function]
Returns a stack pointer to the frame in which a blip of type is located.
Search begins at the frame speci�ed by the stack descriptor and follows the
control chain.

7.12

N 1
FACT

TOP

EVAL COND
FORM *FORM*

PROGN
TAIL

ARGVAL
FN *ARG1 *ARGn

SUBR

*ARG1 *FORM* *TAIL*

*ARG1 COND
COND *ARGVAL*

ITIMES ITIMES

FORM *TAIL* *ARGVAL*
FORM STKSCAN BLIPVAL

SETBLIPVAL BLIPSCAN

FN

ARGVAL

FORM

TAIL COND PROGN PROG

(BLIPVAL)
N

N
NIL T

(SETBLIPVAL)

(BLIPSCAN)

BLIPTYP IPOS FL G

BLIPTYP FL G

IPOS FL G FL G

IPOS

BLIPTYP IPOS N VAL

BLIPTYP N

IPOS

BLIPTYP IPOS

BLIPTYP

IPOS

VARIABLE BINDINGS AND THE INTERLISP STACK

7.5 GENERATORS AND COROUTINES

This section describes an application of the spaghetti stack facility to provide mechanisms for creating
and using simple generators, generalized coroutines, and Conniver style possibility lists.

7.5.1 Generators

A is like a subroutine except that it retains information about previous times it has been called.
Some of this state may be data (for example, the seed in a random number generator), and some may be
in program state (as in a recursive generator which �nds all the atoms in a list structure). For example,
if is de�ned as:

we can use the function (described below) to create a generator that uses to
produce the elements of a list one at a time, e.g.,

creates a generator, which can be called by

to produce as values on successive calls, , , . When (not) is called the �rst
time, it simply starts evaluating . gets called from , and
pops back up to with the indicated value after saving the state. When gets called
again, it continues from where the last left o�. This process continues until �nally
completes and returns a value (it doesn’t matter what it is). then returns itself as its value,
so that the program that called can tell that it is �nished, i.e., there are no more values to be
generated.

q q q q [NLambda Function]
An nlambda function that creates a generator which uses q q to compute
values. returns a which is represented by a dotted
pair of stack pointers.

q q is optional. If its value (of) is a generator handle, the list
structure and stack pointers will be reused. Otherwise, a new generator handle will
be constructed.

compiles open.

[Function]
Used from within (below) a generator to return as the value of the
corresponding call to .

[Function]
Restarts the generator represented by . is returned as the value of

7.13

generator

LISTGEN

(LISTGEN (L)
(IF L THEN (PRODUCE (CAR L))

(LISTGEN (CDR L))))

GENERATOR LISTGEN

(SETQ GR (GENERATOR (LISTGEN ’(A B C)))

(GENERATE GR)

A B C GENERATE GENERATOR
(LISTGEN ’(A B C)) PRODUCE LISTGEN

GENERATE GENERATE
PRODUCE LISTGEN

GENERATE GR
GENERATE

(GENERATOR)

GENERATOR generator handle

EVAL

GENERATOR

(PRODUCE)

GENERATE

(GENERATE)

FORM COMV AR

FORM

COMV AR

VAL

VAL

HANDLE VAL

HANDLE VAL

Coroutines

the which last suspended the operation of the generator. When the
generator runs out of values, returns itself.

Examples:

The following function will go down recursively through a list structure and produce the atoms in the list
structure one at a time.

The following function prints each of these atoms as it appears. It illustrates how a loop can be set up to
use a generator.

Note that the loop terminates when the value of the generator is to the dotted pair which is the value
produced by the call to . A CLISP iterative operator, , is provided which makes it
much easier to write the loop in . (or) can precede a form which is to be
used as a generator. On each iteration, the iteration variable will be set to successive values returned
by the generator; the loop will be terminated automatically when the generator runs out. Therefore, the
following is equivalent to the above program :

Here is another example; the following form will print the �rst atoms.

7.5.2 Coroutines

This package provides facilities for the creation and use of fully general coroutine structures. It uses
a stack pointer to preserve the state of a coroutine, and allows arbitrary switching between di�erent
coroutines, rather than just a call to a generator and return. This package is slightly more e�cient than
the generator package described above, and allows more �exibility on speci�cation of what to do when a
coroutine terminates.

7.14

PRODUCE
GENERATE

[LEAVESG (L)
(if (ATOM L)

then (PRODUCE L)
else (LEAVESG (CAR L))

(if (CDR L)
then (LEAVESG (CDR L)]

(PLEAVESG1 (L)
(PROG (X LHANDLE)

(SETQ LHANDLE (GENERATOR (LEAVESG L)))
LP (SETQ X (GENERATE LHANDLE))

(if (EQ X LHANDLE)
then (RETURN NIL))

(PRINT X)
(GO LP)))

EQ
GENERATOR OUTOF

PLEAVESG1 OUTOF outof

PLEAVESG1

(PLEAVESG2 (L)
(for X outof (LEAVESG L) do (PRINT x))

N

(for X outof (MAPATOMS (FUNCTION PRODUCE))
as I from 1 to N do (PRINT X))

N

HANDLE

VARIABLE BINDINGS AND THE INTERLISP STACK

q q q q q q q q
[NLambda Function]

This nlambda function is used to create a coroutine and initialize the linkage.
q q and q q are the names of two variables, which will be

set to appropriate stack pointers. If the values of q q or q q
are already stack pointers, the stack pointers will be reused. q q is
the form which is evaluated to start the coroutine; q q is a form to be
evaluated if q q actually returns when it runs out of values.

compiles open.

[Function]
Used to transfer control from one coroutine to another. should be the
stack pointer for the current coroutine, which will be smashed to preserve the
current state. should be the stack pointer which has preserved the state of
the coroutine to be transferred to, and is the value that is to be returned to
the latter coroutine as the value of the which suspended the operation of
that coroutine.

For example, the following is the way one might write the program using the coroutine package:

A function which uses can be de�ned as follows:

By ing repeatedly, this function will print all the leaves of list and then return out
of via the . The is necessary to break out of the non- terminating do- loop.
This was done to illustrate the additional �exibility allowed through the use of q q .

We use two coroutines working on two trees in the example , de�ned below. tests
to see whether two trees have the same leaf set in the same order, e.g.,

is true.

7.15

(COROUTINE)

COROUTINE

(RESUME)

RESUME

LEAVES

(LEAVESC (L COROUTPTR CALLPTR)
(if (ATOM L)

then (RESUME COROUTPTR CALLPTR L)
else (LEAVESC (CAR L) COROUTPTR CALLPTR)

(if (CDR L) then (LEAVESC (CDR L) COROUTPTR CALLPTR))))

PLEAVESC LEAVESC

(PLEAVESC (L)
(bind PLHANDLE LHANDLE

first (COROUTINE PLHANDLE LHANDLE
(LEAVESC L LHANDLE PLHANDLE)
(RETFROM ’PLEAVESC))

do (PRINT (RESUME PLHANDLE LHANDLE))))

RESUME LEAVESC L
PLEAVESC RETFROM RETFROM

EQLEAVES EQLEAVES
(EQLEAVES ’(A B C) ’(A B

(C)))

(EQLEAVES (L1 L2)
(bind LHANDLE1 LHANDLE2 PE EL1 EL2

first (COROUTINE PE LHANDLE1 (LEAVESC L1 LHANDLE1 PE) ’NO-MORE)
(COROUTINE PE LHANDLE2 (LEAVESC L2 LHANDLE2 PE) ’NO-MORE)

do (SETQ EL1 (RESUME PE LHANDLE1))
(SETQ EL2 (RESUME PE LHANDLE2))
(if (NEQ EL1 EL2)

then (RETURN NIL))

CALLPTR COR OUTPTR COR OUTF ORM ENDF ORM

CALLPTR COR OUTPTR

CALLPTR COR OUTPTR

COR OUTF ORM

ENDF ORM

COR OUTF ORM

FR OMPTR TOPTR VAL

FR OMPTR

TOPTR

VAL

ENDF ORM

Possibilities Lists

7.5.3 Possibilities Lists

A possibilities list is the interface between a generator and a consumer. The possibilities list is initialized
by a call to , and elements are obtained from it by using . By using the
spaghetti stack to maintain separate environments, this package allows a regime in which a generator can
put a few items in a possibilities list, suspend itself until they have been consumed, and be subsequently
aroused and generate some more.

q q [NLambda Function]
This nlambda function is used for the initial creation of a possibilities list. q q
will be evaluated to create the list. It should use the functions and

described below to generate possibilities. Normally, one would set some
variable to the possibilities list which is returned, so it can be used later, e.g.:

.

compiles open.

[Function]
Used within a generator to put items on the possibilities list being generated. If

is equal to , is treated as a single item. If is non- ,
then the list is ed on the end of the possibilities list. Note that it
is perfectly reasonable to create a possibilities list using a second generator, and

that list as possibilities for the current generator with equal to .
The lower generator will be resumed at the appropriate point.

q q [NoSpread Function]
Puts q q on the possibilities list if it is given, and then suspends the generator
and returns to the consumer in such a fashion that control will return to the
generator at the if the consumer exhausts the possibilities list.

Note: is not put on the possibilities list unless it is explicitly given as an
argument to , i.e., and are
the same. and are lambda nospreads to enable them to
distinguish these two cases.

q q [NoSpread Function]
Like except releases the generator instead of suspending it.

q q q q q q [NLambda Function]
This nlambda function allows a consumer to use a possibilities list. It removes
the �rst item from the possibilities list named by q q (i.e. q q must
be an atom whose value is a possiblities list), and returns that item, provided it
is not a generator handle. If a generator handle is encountered, the generator is
reawakened. When it returns a possibilities list, this list is added to the front of the
current list. When a call to causes a generator to be awakened, q q
is returned as the value of the which put that generator to sleep. If

q q is empty, it evaluates q q in the caller’s environment.

7.16

repeatuntil (EQ EL1 ’NO-MORE)
finally (RETURN T)))

POSSIBILITIES TRYNEXT

(POSSIBILITIES)

NOTE AU-
REVOIR

(SETQ PLIST (POSSIBILITIES (GENERFN V1 V2)))

POSSIBILITIES

(NOTE)

NIL NIL
NCONC

NOTE T

(AU-REVOIR)

AU-REVOIR

NIL
AU-REVOIR (AU-REVOIR) (AU-REVOIR NIL) not

AU-REVOIR ADIEU

(ADIEU)
AU-REVOIR

(TRYNEXT)

TRYNEXT
AU-REVOIR

FORM

FORM

VAL LSTFL G

LSTFL G VAL LSTFL G

VAL

LSTFL G

VAL

VAL

VAL

PLST ENDF ORM VAL

PLST PLST

VAL

PLST ENDF ORM

VARIABLE BINDINGS AND THE INTERLISP STACK

compiles open.

[Function]
This function is provided to release any stack pointers which may be left in the

which was not used to exhaustion.

For example, is a generator for �bonnaci numbers. It starts out by ing its two arguments, then
suspends itself. Thereafter, on being re-awakened, it will two more terms in the series and suspends
again. uses to print the �rst �bonacci numbers.

Note that this just suspends the generator and adds nothing to the possibilities list except
the generator.

Note that itself will never terminate.

7.17

TRYNEXT

(CLEANPOSLST)

FIB NOTE
NOTE

PRINTFIB FIB N

[FIB (F1 F2)
(do (NOTE F1)

(NOTE F2)
(SETQ F1 (IPLUS F1 F2))
(SETQ F2 (IPLUS F1 F2))
(AU-REVOIR)]

AU-REVOIR

[PRINTFIB (N)
(PROG ((FL (POSSIBILITIES (FIB 0 1))))

(RPTQ N (PRINT (TRYNEXT FL)))
(CLEANPOSLST FL)]

FIB

PLST

PLST

Possibilities Lists

7.18

