CHAPTER 6

INPUT/OUTPUT

6.1 FILES

All input/output functions in Interlisp can specify their source/destination le with an optional extra
argument, which is the name of the le, given as a litatom. These functions generaly require that the le
be open. Files are opened and manipulated by the functions described below. The name T designates
terminal input and output, and is always considered open. It is also possible to supply a string as an
input “‘ le'’, without needing to open it; input operations remove successive characters from the string.
Note that because of this feature, le names must always be speci ed as litatoms, not strings.

(OPENFI LE FILE ACCESS RECOG BYTESIZE MA CHI NE. DEPENDENT. P ARAMETERS) [Function]
Opens FILE with access rights as speci ed by Access, one of | NPUT, OUTPUT,
BOTH, or APPEND, and returns the full name of the le. Causes error FI LE NOT
FOUND if FILE is not recognized by the le system, or other errors if FILE is
recognized but cannot be opened, eg. FILE WON' T OPEN if the le is aready
opened by someone else or is protected against the operation, FI LE SYSTEM
RESOURCES EXCEEDED if there is no more room in the le system.

For Access = | NPUT, only input operations are permitted on the le for
ACCESS = QUTPUT or Access = APPEND, only output operations are permitted.
Note: in Interlisp- 10 and Interlisp- D, AcceSs = OUTPUT implies that one intends
to write a new or dierent le, even if a version number was specied and
the corresponding le aready exists. Thus any previous contents of the le are
discarded, and the le is empty immediately after the OPENFI LE. If it is desired
to write on an aready existing le while preserving the old contents, the le must
be opened for access BOTH or APPEND.

RECOG speci es the recognition mode of FILE, as described on page 6.4. |If
RECOG = NI L, it defaults according to the value of Access : for ACCESS = | NPUT,
RECOG = OLD isused; for Access = OUTPUT, Recoc = NEWIs used; for the other
values of ACCESS , RECOG = OLD/ NEWis used.

BYTESI ZE , if supplied, isthe byte sizein which to open the le. If BYTESIZE= NI L,
the bytesize used is the default for the implementation (8 for Interlisp- D, 7 for
Interlisp- 10).

MA CHI NE. DEPENDENT. P ARAMETERS isalist specifying additional opening parameters.
In Interlisp- 10, this list may contain the following litatoms:

WAI T Wait if le is busy.

DON' T. CHANGE. DATE

6.1

Files

Don't change the access dates.
THAVED Open le in ‘‘thawed’’ mode.

In Interlisp- D, MA CHI NE. DEPENDENT. P ARAMETERS should be a list of pairs
(ATTRIB VAL UE), where ATTRIB isany le attribute that the le system iswilling
to alow the user to set (see SETFI LEI NFO, page 6.7).

If the FILE argument to an input (output) function is not given (has value NI L), the le specied as
“primary’’ for input (output) isused. Normally these are both T, for terminal input and output. However,
the primary input or output le may be changed with the functions below.

(1 NPUT FILE) [Function]
Sets FILE as the primary input le; returns the name of the old primary input
le. FILE must be open for input. | NPUT can also be given a string as argument,
interpreted as described above.

(I'NPUT) returns the current primary input le, which is not changed.

(QUTPUT FI LE) [Function]
Sets FI LE as the primary output le; returns the name of the old primary output
le. FILE must be open for output. A string cannot be used as an output le.

(QUTPUT) returns the current primary output le, which is not changed.

(I NFI LE FILE) [Function]
Opens FI LE for input, and sets it as the primary input le. Equivalent to (1 NPUT
(OPENFI LE FILE ' INPUT ' OLD))

(OQUTFI LE FILE) [Function]
Opens FILE for output, and sets it as the primary output le. Equivaent to
(OQUTPUT (OPENFI LE FILE ' OQUTPUT ' NEW) .

(1 OFI LE FILE) [Function]
(OPENFI LE FiLE " BOTH ' OLD) ; opens FiILE for both input and output. Does
not aect the primary input or output le.

(OPENP FILE ACCESS) [Function]
If Access = NI L, returns the full name of FILE if FILE is open either for input or
for output; otherwise NI L.

If Access is| NPUT, QUTPUT or BOTH, returns the full name of FILE if it is open
in that access mode; otherwise NI L.

Note: If FILE is not recognized, OPENP returns NI L without generating an error.

(OPENP) returns a list of al les open for input or output, excluding T and the
current typescript (dribble) le, if any (page 6.12).

(CLOSEF FILE) [Function]
Closes FI LE. Generates an error, FI LE NOT OPEN, if FILE is not open. If FILE is
NI L, it attempts to close the primary input le if other than termina. Failing that,
it attempts to close the primary output le if other than terminal. Failing both, it

6.2

INPUT/OUTPUT

returns NI L. If it closes any le, it returns the name of that le. If it closes either
of the primary les, it resets that primary le to terminal.

WHENCLCSE (page 6.11) alows the user to ‘‘advise’” CLOSEF to perform various
operations when a le is closed.

? FILE unction
CLOSEF? Functi
Closes FI LE if it is open, otherwise does nothing. Returns Fi LE.

(CLOSEALL ALLFL G) [Function]
Closes all open les, except T and the current typescript le, if any. Returns alist
of the les closed.

WHENCLCSE (page 6.11) allows certain les to be ‘‘protected’”’ from CLOSEALL.
(CLOSEALL T) overrides this protection.

(DELFI LE FILE) [Function]
Deletes Fi LE if possible. Returns FiLE if deleted, else NI L.

(RENAVEFI LE OLDFILE NEWFILE) [Function]
Renames OLDFI LE to be NEwrl LE . Returns Newrl LE if successful, else NI L.

6.1.1 File Naming and Recognition

In Interlisp, a le name is a literal atom composed of one or more elds, separated by suitable
punctuation. The precise elds and their interpretation is dependent on the implementation; the functions
PACKFI LENAME and UNPACKFI LENAME (page 6.6) are used to construct and take apart lenames in an
implementation- independent way.

Depending on the le system implementation, le names given to input/output functions may be
incompletely speci ed, with the le system handling the task of obtaining a specic le from a partia
name, or recognizing the le. For example, in le systems that support version numbers, one can call
OPENFI LE giving a le name without a version number, and the le system will supply a default version
number based on the context (opening anew le for output vs. an old le for input). Internaly, however,
each open le has associated with it a completely- speci ed lename, one that uniquely identi es the le
to the le system in any context. It is this “‘full’” le name that is returned from OPENFI LE and other
functions that return names of open les. For example, (OPENFILE ' FOO ' OQUTPUT) might return
<LI SP>FQQ. ; 3. Any time that an input/output function is called with a le name other than the full
le name, Interlisp must perform recognition on the partial le name in order to determine which open
le isintended. Thus if repeated operations are to be performed, it is considerably more ecient to use
the full le name returned from OPENFI LE than to repeatedly use the possibly incomplete name that
was used to open the le

In Interlisp- 10, lenames follow the conventions of the operating system (either TENEX or TOPS-20),
i.e, FILE can be prexed by a directory name enclosed in angle brackets, can contain <esc>sor control-
F's, and can include suxes and/or version numbers. When a le is opened for input and no version
number is given, the highest existing version number is used. Similarly, when a le is opened for
output and no version number is given, a new le is created with a version number one higher than the
highest one currently in use with that le name. The full lename in Interlisp- 10 consists of directory,
name, extension, and version. In Interlisp- D, it aso includes a device or host name in brackets, i.e,

6.3

File Naming and Recognition

{ PHYLUM <LI SP>FQO. ; 3).
The following functions can be used to perform le recognition without opening a le:

Warning: In some implementations of Interlisp (such as Interlisp- D), it may not be possible to determine
the full name of a new le without trying to open it. In this case, OUTFI LEP and FULLNAME may not
always return the correct value. These functions should not be used in general, because the idea ‘‘what a le
would be named if it were opened’’ is not well dened in some le systems.

(1 NFI LEP FILE) [Function]
Returns full le name of FILE if FILE is recognized as specifying the name of an
existing le that could potentially be opened for input, NI L otherwise. Recognition
isin input context, i.e, in Interlisp- 10, if no version number is given, the highest
existing version number is returned.

(QUTFI LEP FILE) [Function]
Similar to | NFI LEP, except recognition isin output context, i.e., in Interlisp- 10, if
no version number is given, a version number one higher than the highest existing
version number is returned. Roughly speaking, OUTFI LEP returns the full name
of the le that would be created if OUTFI LE were caled with the same argument.

A more general version of | NFI LEP and QUTFI LEP is provided by the function FULLNAME:

(FULLNAME X RECOG) [Function]
If X isrecognized in the recognition mode speci ed by RECOG as an abbreviation
for some le, returns the Ie's full name, otherwise NI L. Recoc can be OLD,
meaning choose the (newest) existing version of the le; NEW meaning make the
full le name one which does not yet exist (version number one higher than
highest existing version); OLDEST, meaning choose the existing le with the lowest
version number; or OLD/ NEW meaning to recognize an existing version if possible,
otherwise a new version (useful only for writing a le). REcoG = NI L defaults to
QOLD. For all other values of RECOG , generates an error | LLEGAL ARG. If X is not
a literal atom, generates an error, ARG NOT LI TATOM.

For example, | NFILEP could be dened as (FULLNAME FILE ' OLD) and
QUTFI LEP as (FULLNAME FILE ' NEW .

The RECOG argument is used only for defaulting unspeci ed parts of the lename
(in Interlisp- 10 and Interlisp- D, the version), not to pass judgment on the speci ed
parts. In particular, RECOG = NEW does not require that the le be new. For
example, (FULLNAME ' FOO. ; 2 ' NEW may return <MASI NTER>FQO. ; 2 if that
le aready exists, even though (FULLNAME ' FOO ' NEW would default the
version to a new number, perhaps returning <MASI NTER>FQO. ; 5.

Note that | NFI LEP, QUTFI LEP and FULLNAME do not open any les, or change the primary les, they
are pure predicates. In general they are aso only hints, as they do not necessarily imply that the caller
has access rights to the le. For example, | NFI LEP might return non-NI L, but OPENFI LE might fail for
the same le because the le isread- protected against the user, or the le happens to be open for output
by another user at the time. Similarly, OUTFI LEP could return non-NI L, but OPENFI LE could fail with
a FI LE SYSTEM RESOURCES EXCEEDED error. Note aso that in a multi-user le system, intervening
le operations by another user could contradict the information returned by recognition. For example,
a le that was | NFI LEP might be deleted, or between an OUTFI LEP and the subsequent OPENFI LE,

6.4

INPUT/OUTPUT

another user might create a new version or delete the highest version, causing the names returned by
QUTFI LEP and OPENFI LE to have di erent version numbers. Thus, in general, the ‘‘truth’” about a le
can only be obtained by actually opening the le; in particular, creators of les should rely on the name
returned from OPENFI LE, not from OUTFI LEP.

If the le system does not successfully recognize an incomplete le name, a FI LE NOT FOUND error
is generated (except for | NFI LEP, OUTFI LEP, FULLNAME and OPENP, which in this case return NI L).
As described on page 9.16, before a FI LE NOT FOUND error occurs, it is intercepted via an entry on
ERRORTYPELST, which causes SPELLFI LE (page 15.20) to be caled. SPELLFI LE will search alternate
directories and possibly attempt spelling correction on the le name. Only if SPELLFI LE is unsuccessful
will the error actually occur.

Note that recognition is performed on the user’'s entire directory, not just the open les, which can result
in certain anomalies. Thus, even if only one le is open, say FOO ; 1, the name F$ (F<esc>) will not
be recognized if the user's directory also contains the le FIE.; 1. Similarly, it is possible for a le
name that was previously recognized to become ambiguous. For example, a program performs (| NFI LE
"FOO) , opening FQOQ. ; 1, and reads several expressions from FOO. Then the user interrupts the program,
creates a FOO. ; 2 and reenters his program. Now a call to READ giving it FOO as its FI LE argument will
generate a FI LE NOT OPEN error, because FOO will be recognized as FOOQ. ; 2.

6.1.2 Manipulating File Names

Di erent operating systems have di erent conventions for naming les. However, it is desirable for
Interlisp to be as implementation independent as possible. Therefore, all programs that need to reference
parts of a lename, or construct new le names from existing ones, should use the functions described
below. The implementation of these functions obviously is dependent on the operating system they will
run under, but as far as the programs that use them are concerned, they permit expressing operations
that are implementation independent. 1

Every le name is composed of a collection of elds which have di erent semantic interpretations. A
eld name is a literal atom which is the name of a le- name eld. Interlisp assumes that NAMVE and
EXTENSI ON are valid eld names; the implementor isfree to alow other elds. In Interlisp- 10, allowable
eld names aree DEVI CE, DI RECTCORY, NAME, EXTENSI ON, VERSI ON, PROTECTI ON, ACCOUNT, and
TEMPORARY . Interlisp- D allows HOST, DI RECTORY, NAME, EXTENSI ON, and VERSI ON.

(FI LENAVEFI ELD FILENAME FI ELDNAME) [Function]
Returns the contents of the FIELDNAME e€ld of FI LENAME .

(UNPACKFI LENAVE FILENAME _) [Function]
Returns a list of alternating eld names and eld contents.

Examples from Interlisp- D:

_ (UNPACKFI LENAME ’ FOO. BAR)
(NAVE FOO EXTENSI ON BAR)
_ (UNPACKFI LENAME * { PHYLUM <SANNELLA>LI SP>I MTRAN. DCOM 21)

1In particular, the Interlisp- 10 implementation recognizes le names in both Tenex and TOPS-20 format,
and builds new names as appropriate.

6.5

File Attributes

(HCST PHYLUM DI RECTORY SANNELLA>LI SP NAME | MTRAN
EXTENSI ON DCOM VERSI ON 21)

Examples from Interlisp- 10 on Tenex:

_ (UNPACKFI LENAME °’ <L| SP>MAC. COM 3)

(DI RECTORY LISP NAME MAC EXTENSI ON COM VERSI ON 3)
_ (UNPACKFI LENAVE ’ WORK. ; T)

(NAME WORK EXTENSI ON NI L TEMPORARY T)

Note: In Interlisp- 10, (UNPACKFI LENAME ' DSK: FOO) returns (DEVI CE DSK:
NAME FQO) ,i.e. the: isleftin. Thisisso (DEVI CE NI L:) may be distinguished
from (DEVICE NL).

(PACKFI LENAVE FIELDNAME 4 FIELDCONTENTS 4 FIELDNAVE p FIELDCONTENTS)
[NoSpread Function]
Takes a list of aternating eld names and eld contents (atoms or strings),
and returns the corresponding le name. For example, (PACKFI LENAME
"Dl RECTORY ' LI SP ' NAME ' NET) returns <LI SP>NET.

If the same eld name is given twice, the rst occurrence is used.

If the ** eld name’ BODY is given, this means that the operand to BODY should
itself be unpacked and spliced into the argument list at that point. This is useful
for providing default eld names, or to change just one eld in an existing name.

For example, to take a le name FILE and change the DI RECTORY eld, perform
(PACKFI LENAVE ’ DI RECTORY NEWDI RECTOR Y ' BODY FILE). Alternatively,
to provide a default for the EXTENSI ON eld, perform (PACKFI LENAME ' BODY
FILE ' EXTENSI ON DEFAULT) . This uses DEFAULT as the extension unless one is
already speci ed in FiILE.

Note that anull eld isa eld that has been speci ed, eg., if FILE= FOO 1 in the
above example, the default extension will be used, but if FILE= FOO. ; 1, it will
not, because a null extension has been speci ed.

If the rst argument to PACKFI LENAME is a list, PACKFI LENAME is called on that
argument. Thus PACKFI LENAVE and UNPACKFI LENANME operate as inverses.

6.1.3 File Attributes

Any le has a number of ‘‘ le attributes’, such read date, protection, and bytesize. The exact attributes
that a le can have is implementation- dependent. The functions GETFI LEI NFO and SETFI LEI NFO
allow the user to conveniently access le attributes:

(GETFI LEI NFO FILE ATTRIB) [Function]
Returns the current setting of the ATTRI B attribute of FILE. In Interlisp- 10, FI LE
may also be a JFN as returned by GTJFN (page 22.22).

In Interlisp- 10, GETFI LEI NFO takes an optional third argument, SCRA TCH , which
is analogous to the third argument of GDATE (page 14.10): a string pointer to reuse

6.6

INPUT/OUTPUT

for those ATTRI B 'swhich return string values.

(SETFI LEI NFO FILE ATTRIB VAL UE) [Function]
Sets the attribute ATTRIB of FILE to be vALUE. SETFI LEI NFO returns T if it
is able to change the attribute ATTRIB, and NI L if unsuccessful (some attributes
cannot be changed, e.g. it doesn't make sense to change the SI ZE of a le without
writing something on it).

GETFI LEI NFO and SETFI LEI NFO currently recognize the following values for ATTRIB :

ACCESS The current access mode of FILE (e.g. | NPUT, OUTPUT, BOTH, APPEND) or NI L
if FILE is not open.

BYTESI ZE The byte size of the le.

LENGTH The byte position of the end-of- le. Like (GETEOFPTR FILE), but FI LE does not

have to be open.
SI ZE The size of FILE in pages.

WRI TEDATE, READDATE, CREATI ONDATE
The date (and time) as a string that FI LE was respectively last written, last read,
and originally created.

| WRI TEDATE, | READDATE, | CREATI ONDATE
The respective date in integer form, as | DATE (page 14.10) would return.

TYPE (Interlisp- D) Either TEXT or Bl NARY.

OPENBYTESI ZE (Interlisp- 10) It is possible that the byte size for the ‘‘opening’’ of a le might di er
from the ‘‘permanent’’ bytesize. For example, a 7-bit text le can be opened in
36-bit mode. To obtain the ‘‘open’’ bytesize, use attribute OPENBYTESI ZE.

PROTECTI ON (Interlisp- 10) The ‘‘protection code’’ of FI LE, as an integer.
DELETED (Interlisp- 10) T if FILE isthe name of a deleted le, NI L otherwise.

Additional attributes which are available for Interlisp- 10 on TOPS-20 systems (DEC release 4 or later)
are:

I NVI SI BLE T if FILE has the invisible attribute, NI L otherwise.
ARCHI VED T if F1LE has been archived, NI L otherwise.
OFF- LI NE T if the contents of FILE are 0- line (i.e. FILE has been archived and its contents

ushed), NI L otherwise.

(POSI TI ON FILE N) [Function]
Returns the column number at which the next character will be read or printed.
After a end of line, the column number is 0. If N isnon-NI L, resets the column
number to be N.

Note that (PCSI TI ON FILE) is not the same as (GETFI LEPTR FILE) which
gives the position in the le, not on the line.

6.7

Randomly Accessible Files

(LI NELENGTH N FILE) [Function]
Sets the length of the print line for the output le FILE to N; returns the former
setting of the line length. FiI LE defaults to the primary output le. (LI NELENGTH
NI L FILE) returns the current setting for FILE. When a le is rst opened, its
linelength is set to the value of the variable FI LELI NELENGTH.

Whenever printing an atom or string would increase a le's position beyond the
line length of the le, an end of line is automatically inserted rst. This action can
be defeated by using PRI N3 and PRI N4 (page 6.17).

(SETLI NELENGTH N) [Function]
If N is NIL, interrogates the operating system for the line length of the terminal
device, and sets the variable TTYLI NELENGTH to this value. If N is not NIL,
instructs the operating system to set the terminal line length to N, and also sets
TTYLI NELENGTH to N. Then, in either case, SETLI NELENGTH performs (and
returns as its value) (LI NELENGTH TTYLI NELENGTH T) .

Both AFTERSYSOUTFORMS and RESETFORMS (page 8.19) contain a (SETLI NELENGTH) so that when
the user rst runs a SYSOUT, or types control- D, the system obtains the latest information about the
terminal.

6.1.4 Randomly Accessible Files

For most applications, les are read starting at their beginning and proceeding sequentiadly, i.e, the
next character read is the one immediately following the last character read. Similarly, les are written
sequentially. However, it is also possible to read/write characters at arbitrary positions in a le, essentialy
treating the le as alarge block of auxiliary storage. For example, one application might involve writing
an expression at the beginning of the le, and then reading an expression from a speci ed point in its
middle. This particular example requires the le be open for both input and output. However, random
le input or output can aso be performed on les that have been opened for only input or only output.

Associated with each le isa ‘' le pointer’’ that points to the location where the next character is to be
read from or written to. The le pointer to a le is automatically advanced after each input or output
operation. This section describes functions which can be used to reposition the le pointer on those les
that can be randomly accessed. A le used in this fashion is much like an array in that it has a certain
number of addressable locations that characters can be put into or taken from. However, unlike arrays,
les can be enlarged. For example, if the le pointer is positioned at the end of a le and anything is
written, the le ‘‘grows.’ It is aso possible to position the le pointer beyond the end of le and then
to write. (If the program attempts to read beyond the end of le, an END OF FI LE error occurs.) In
this case, the le is enlarged, and a ‘‘hole’’ is created, which can later be written into. Note that this
enlargement only takes place at the end of a le; it is not possible to make more room in the middle of
a le. In other words, if expression A begins at position 1000, and expression B at 1100, and the program
attempts to overwrite A with expression C, which is 200 characters long, part of B will be altered.

The address of a character (byte) is the number of characters (bytes) that precede it in the le, i.e, Ois
the address of the beginning of the le. However, the user should be careful about computing the space
needed for an expression, since end-of-line may be represented by a di erent number of characters in
di erent implementations, even though NCHARS only counts it as one; e.g., end-of-line in Interlisp- 10
les is represented as the two characters carriage-return, line-feed. Output functions may aso introduce
end- of-line's as a result of LI NELENGTH considerations.

6.8

INPUT/OUTPUT

(GETFI LEPTR FI LE) [Function]
Returns the current position of the le pointer for FILE, i.e, the byte address at
which the next input/output operation will commence.

(SETFI LEPTR FILE ADR) [Function]
Sets the le pointer for FILE to the position ADR ; returns ADR . The special value
ADR = - 1 isinterpreted to mean the address of the end of le. 2

(GETEOFPTR FI LE) [Function]
Returns the byte address of the end of le, i.e, the number of bytes in the le
Equivalent to performing (SETFI LEPTR FILE - 1) and returning (GETFI LEPTR
FILE) except that it does not change the current le pointer.

(EOFP FILE) [Function]
Returns T if the le pointer to FILE is pointing to the end of le; NI L otherwise.
FI LE must be open for (at least) input, or an error is generated, FI LE NOT OPEN.

(RANDACCESSP FI LE) [Function]
Returns FILE if FILE is randomly accessible, NI L otherwise. The le T is not
randomly accessible, nor are the les LPT: , NI L: in Interlisp- 10, or certain network
le connections in Interlisp- D. FILE must be open or an error is generated, FI LE
NOT OPEN.

(COPYBYTES SRCFIL DSTFIL START END) [Function]
Copies bytes (characters) from SRCFIL to DSTFIL, starting from position START
and up to but not including position END . Both SRCFI L and DSTFIL must be open.
Returns T.

If END = NI L, START isinterpreted as the number of bytes to copy (starting at the
current position). If START isaso NI L, bytes are copied until the end of the le
is reached.

(FI LEPOS PATTERN FILE START END SKIP TAIL CASEARRA YY) [Function]
Analogous to STRPCS (page 2.31), but searches a le rather than astring. FI LEPOS
searches FILE for the string PATTERN . Search begins a START (or the current
position of the le pointer, if START= NI L), and goes to END (or the end of FILE,
if END = NI L). Returns the address of the start of the match, or NI L if not found.

SKI P can be used to specify a character which matches any character in the le. If
TAIL isT, and the search is successful, the value is the address of the rst character
after the sequence of characters corresponding to PATTERN , instead of the starting
address of the sequence. In either case, the le isleft so that the next i/o operation
begins at the address returned as the value of FI LEPCS.

2Note: If a le isopened for output only, the end of le isinitialy zero, even if an old le by the same
name had existed (see OPENFI LE, page 6.1). If a le isopened for both input and output, the initia le
pointer is the beginning of the le, but (SETFI LEPTR FILE - 1) will set it to the end of the le. If
the le had been opened in append mode by (OPENFI LE FILE ' APPEND) , the le pointer right after
opening would be set to the end of the existing le, in which case a SETFI LEPTR to position the le at
the end would be unnecessary.

6.9

Randomly Accessible Files

CASEARRA Y should be a ‘‘casearray’’ that speci es that certain characters should
be transformed to other characters before matching. Casearrays are returned by
CASEARRAY or SEPRCASE below. cAseARRA Y= NI L means no transformation
will be performed.

A casearray is an implementation- dependent object that is logically an array of
character codes with one entry for each possible character. FI LEPCS maps
each character in the le ‘‘through’” CASEARRA Y in the sense that each character
code is transformed into the corresponding character code from CASEARRA Y
before matching. Thus if two characters map into the same value, they are
treated as equivalent by FI LEPOS. CASEARRAY and SETCASEARRAY provide an
implementation- independent interface to casearrays.

For example, to search without regard to upper and lower case di erences,

CASEARRA Y would be a casearray where al characters map to themselves, except
for lower case characters, whose corresponding elements would be the upper case
characters. To search for a delimited atom, one could use ‘* ATOM '’ as the pattern,
and specify a CASEARRA Y in which all of the break and separator characters
mapped into the same code as space.

For applications calling for extensive le searches, the function FFI LEPGCS is often faster than FI LEPCS.

(FFI LEPOS PATTERN FILE START END SKIP TAIL CASEARRA Y) [Function]
Like FI LEPCS, except much faster in most applications. 2 FFI LEPCS is an
implementation of the Boyer-Moore fast string searching algorithm . This algorithm
preprocesses the string being searched for and then scans through the le in steps
usually equa to the length of the string. Thus, FFI LEPCS speeds up roughly in
proportion to the length of the string, e.g., a string of length 10 will be found twice
as fast as a string of length 5 in the same position.

Because of certain xed overheads, it is generaly better to use FI LEPCS for short
searches or short strings.

(CASEARRAY QLD ARRA Y) [Function]
Creates and returns a new casearray, with all elements set to themselves, to indicate
the identity mapping.

(Interlisp- D) If OLD ARRA Y is given, it is reused.

(SETCASEARRAY CASEARRA Y FROMCODE TOCODE) [Function]
Modi es the casearray CASEARRA Y SO that character code FROMOODE — is mapped
to character code TOCODE

(SEPRCASE CLFL G) [Function]
Returns a new casearray suitable for use by FI LEPOS or FFI LEPCS in which all
of the break/separators of FI LERDTBL are mapped into character code zero. If
CLFL G isnon-NI L, then all CLISP characters will be mapped into this character as
well. This isuseful for nding adelimited atom in a le. For example, if PATTERN

SIn Interlisp- 10, a speedup of 10 to 50 times is typical. In Interlisp- D the speedup is much smaller.

6.10

INPUT/OUTPUT

is" FOO ", and (SEPRCASE T) is used for CASEARRA Y, then FI LEPCS will
nd "(FOO ".

6.1.5 Closing and Reopening Files

The function WHENCLOSE permits the user to associate certain operations with open les that govern how
and when the le will be closed, and how the le's status will be restored when a SYSOUT is started up.
The user can specify that certain functions will be executed before CLOSEF closes the le and/or after
CLOSEF closes the le. The user can make a particular le be invisible to CLOSEALL, so that it will
remain open across user invocations of CLOSEALL. Finaly, the user can associate a status- saving function
with a le which will be called before SYSOUT and which can specify what to do when a SYSQUT is
restarted.

(WHENCLOSE FILE PROP; VAL | PROP \ VAL \) [NoSpread Function]
FILE must specify the name of an open le other than T (NI L defaults to the
primary input le, if other than T, or primary output le if other than T). The
remaining arguments specify properties to be associated with the full name of Fi LE.
VWHENCLGSE returns the full name of FILE as its value.

VWHENCL GSE recognizes the following property names:

BEFORE VAL is a function that CLOSEF will apply to the full name of FiLE just before it is
closed. This might be used, for example, to copy information about the le from an
in-core data structure to the le just before it is closed.

AFTER VAL is a function that CLOSEF will apply to the full name of FILE just after it is
closed. This capability permits in-core data structures that know about the le to be
cleaned up when the le is closed.

BEFCORE and AFTER dier in their behavior with respect to SYSOUT. If a le that
was open before SYSOUT does not have a STATUS function associated with it that
causes the le to be successfully restored after the SYSOUT is started, then the le
is considered to have been ‘‘closed’’ by the SYSOUT, and its AFTER function will be
executed after the SYSOUT darts.

STATUS This property provides a way of restoring the status of les when a SYSOUT is
resumed. VAL is a function that will be applied to the full name of Fi LE just before
a SYSQUT. VAL is expected to return a list, CAR of which is a function which will
be APPLY’d to the CDR when the SYSOUT is started up and which will restore the
status of FiILE. If the value of the APPLY is NI L, it is assumed the le could not be
successfully restored, a warning message is printed, and then any AFTER functions
associated with the le are executed.

The function PERMSTATUS (page 23.17) produces an expression for re-opening a le
after SYSOUT and restoring as many of its attributes as possible.

CLOSEALL VAL is either YES or NO and determines whether Fi LE will be closed by CLOSEALL
(YES) or whether CLOSEALL will ignore it (NO). CLOSEALL uses CLOSEF, so that
any AFTER functions will be executed if the le isin fact closed.

ECF VAL is a function that will be applied to the full name of FILE when an end- of- le

6.11

Dribble Files

error occurs, and the ERRORTYPELST entry for that error, if any, returns NI L. The
function can examine the context of the error, and can decide whether to close the
le, RETFROM some function, or perform some other computation. If the function
supplied returns normally (i.e. does not RETFROM some function), the normal error
machinery will be invoked (but FiILE will not be automatically closed if the EOF
function did not close it).

Note that multiple AFTER and BEFCRE functions may be associated with a le; they are executed
in sequence with the most recently associated function executed rst. However, a second STATUS
speci cation will supercede an earlier one. The CLOSEALL and EOF values will also override earlier
values, so only the last value speci ed will have an eect. Files are initialized with CLOSEALL - YES,
EOF - CLOSEF.

6.1.6 Dribble Files

A dribble le is a “‘transcript’’ of all of the input and output on a terminal. The following function
enables dribble les for Interlisp:

(DRI BBLE FILENAME APPENDFL G THAVEDFL G) [Function]
Opens FILENAVE and begins recording the typescript. Returns the old dribble
le if any, otherwise NI L. If APPENDFL G= T, the typescript will be appended to
the end of FILENAMVE . If THAVEDFL G= T, the le will be opened in ‘‘thawed”
mode, for those implementations that support it. (DRI BBLE) closes the dribble
le. Only one dribble le can be active at any one time, so (DRI BBLE FiILE1)
followed by (DRI BBLE FiLE2) will cause FILEL to be closed.

In Interlisp- D, DRI BBLE opens a dribble le for the current process, recording the
input and output for that process. Multiple processes can have separate dribble
les open a the same time.

(DRI BBLEFI LE) [Function]
Returns the name of the current dribble le, if any, otherwise NI L.

Terminal input is echoed to the dribble le aline buer at atime. Thus, the typescript produced is
somewhat neater than that appearing on the user's terminal, because it does not show characters that were
erased via control- A or control- Q. Note that the typescript le is not included in the list of les returned
by (OPENP) , nor will it be closed by a cal to CLOSEALL or CLOSEF. Only (DRI BBLE) closes the
typescript le.

6.2 INPUT FUNCTIONS

Most of the functions described below have an argument FiILE, which speci es the name of the le on
which the operation is to take place. If FILE is NI L, the primary input le will be used. If the le
argument is a string, input will be taken from that string (and the string pointer reset accordingly).

Most input functions also have a ROTBL argument, which speci es the readtable to be used for input. If
ROTBL iSNI L, the primary readtable will be used. Readtables are described on page 6.32.

6.12

INPUT/OUTPUT

Note: in al Interlisp- 10 symbolic les, end-of-line is indicated by the characters carriage-return and
line-feed in that order. Accordingly, on input from les, Interlisp- 10 skips al line-feeds that immediately
follow carriage-returns. On input from the terminal, Interlisp echos a line-feed whenever a carriage- return
is input.

When reading from the terminal, the input isbuered aline at atime (unless buering has been inhibited
by (CONTROL T), or the input is being read by READC or PEEKC) and can be backed up over using
speci ed editing characters. The user can erase a character at atime, the whole ling, or, in Interlisp- D, a
word at atime. The keys that perform these editing functions are assignable via the SETSYNTAX function
(page 6.34), with the intia settings chosen to be those most natura for the given operating system:
characters are deleted one at a time by control- A under Tenex, Delete under Tops20, and BackSpace in
Interlisp- D; the whole line is erased by control- Q under Tenex and in Interlisp- D, and control- U under
Tops20; words are erased by control- W in Interlisp- D.

The character- deleting action on norma terminals isto echo a\ followed by the erased character; on the
Interlisp- D display the character is physically erased from the screen (this action can also be speci ed for
display terminals in other Interlisps; see page 6.43). The line-deleting action is normaly to print ## and
start over on a new line. Neither will back up beyond the previous carriage- return.

When reading from a le, and an end of le isencountered, all input functions close the le and generate
an error, END OF FI LE (unless WHENCLOSE has been used to alter this behavior; see page 6.11).

(READ FILE RDTBL FLG) [Function]
Reads one expression from FILE. Atoms are delimited by the break and separator
characters as dened in RDTBL . To include a break or separator character in an
atom, the character must be preceded by the input escape character % e.g., AB% C
is the atom AB(C, %%is the atom % %control-A is the atom control- A. For input
from the terminal, an atom containing an interrupt character can be input by typing
instead the corresponding alphabetic character preceded by control- V, e.g., *VC for
control- C.

Strings are delimited by double quotes. To input a string containing a double
guote or a %, precede it by %, e.g., " AB% C' isthe string AB" C. Note that % can
aways be typed even if next character is not ‘‘specid’’, e.g., YAYBYC is read as
ABC.

If an atom is interpretable as a number, READ creates a number, e.g., 1E3 reads as
a oating point number, 1D3 as a litera atom, 1. 0 as a number, 1, 0 as a litera
atom, etc. An integer can be input in octal by terminating it with a Q eg., 17Q
and 15 read in as the same integer. The setting of RADI X (page 6.19) determines
in which base integers are printed.

When reading from the terminal, al input is lineebuered to enable the action
of the backspacing control characters (unless inhibited by (CONTROL T) (page
6.45)). Thus no characters are actually seen by the program until a carriage- return is
typed. 4 However, for reading by READ, when a matching right parenthesis is
encountered, the eect isthe same asthough a carriage-return were typed, i.e, the

4Actually, the line buering isterminated by the character with terminal syntax class EOL (see page 6.33),
which in most cases is carriage- return.

6.13

Input Functions

characters are transmitted. > To indicate this, Interlisp also prints a carriage- return
line-feed on the terminal.

In Interlisp- 10, the character control- W is dened as an | MVEDI ATE read macro
that erases the last expression read, echoing a\\ and the erased expression, eg.,
(NOW IS THE TI MEAW\\ TI ME) returns (NOW IS THE) . Control- W can be
used repeatedly, and can also back up and erase expressions on previous lines.
However, since control- W isimplemented as an | MVEDI ATE read- macro character,
(page 6.36), once it is typed, then individual characters typed before it cannot be
deleted by control- A or control- Q, since they will already have passed through the
line bu er.

In Interlisp- D, control- W isinstead dened as an editing character that deletes the
last ““word’’ of input, i.e., back to the rst non- OTHER character preceding the rst
non- SEPR character, essentially a repeated BackSpace. The character performing
this function is assignable using the WORDDELETE syntax (page 6.34).

FLG= T suppresses the carriage-return normally typed by READ following a
matching right parenthesis. (However, the characters are ill given to READ;
i.e, the user does not have to type the carriage- return.)

(RATOM FILE RDTBL) [Function]
Reads in one atom from FILE. Separation of atoms is dened by RDTBL . %is
also an escape character for RATOM, and the remarks concerning line-bu ering and
editing control characters also apply.

If the characters comprising the atom would normally be interpreted as a number
by READ, that number is returned by RATOM Note however that RATOM takes no
specia action for " whether or not it is a break character, i.e., RATOM never makes
a string.

(RSTRI NG FILE RDTBL) [Function]
Reads characters from FILE up to, but not including, the next break or separator
character, and returns them as a string. Control- A, control- Q, control-V, and %
have the same eect as with READ.

Note that the break or separator character that terminates a call to RATOM or RSTRI NG is not read by
that call, but remains in the buer to become the rst character seen by the next reading function that is
caled. If that function is RSTRI NG, it will return the null string. This is a common source of program
bugs.

(RATOVS A FILE RDTBL) [Function]
Calls RATOM repeatedly until the atom A isread. Returns a list of the atoms read,
not including A.

(RATEST FLG) [Function]
If FLG = T, RATEST returns T if a separator was encountered immediately prior
to the last atom read by RATOM, NI L otherwise.

5The line buer is also transmitted to READ whenever an | MVEDI ATE read- macro character is typed
(page 6.36).

6.14

INPUT/OUTPUT

If FLG = N L, RATEST returns T if last atom read by RATOM or READ was a
break character, NI L otherwise.

If FLG = 1, RATEST returns T if last atom read (by READ or RATOM) contained
a % (as an escape character, eg., % or Y%AYBUC), NI L otherwise.

(READC FILE RDTBL) [Function]
Reads and returns the next character, including % ", etc, i.e, is not aected
by break, separator, or escape character. The action of READC is subject to line-
buering, i.e, READC does not return a vaue until the line has been terminated
even if a character has been typed. Thus, the editing control characters have their
usual eect. RDTBL does not directly aect the value returned, but isused as usual
in line-bu ering, e.g., determining when input has been terminated. If (CONTROL
T) has been executed (page 6.45), defeating line-bu ering, the RDTBL argument is
irrelevant, and READC returns a value as soon as a character is typed (even if the
character typed is one of the editing characters, which ordinarily would never be
seen in the input bu er).

(PEEKC FILE RDTBL) [Function]
Returns the next character, but does not actually read it and remove it from the
buer. If rRoTBL = NI L, PEEKC is not subject to line-buering % i.e, it returns
a value as soon as a character has been typed. Otherwise, PEEKC waits until the
line has been terminated before returning its value. This means that control- A,
control- Q, and control-V will be able to perform their usual editing functions.

(LASTC FILE) [Function]
Returns the last character read from Fi LE.

READ, RATOM, RATOVS, PEEKC, READC al wait for input if there is none. The only way to test whether
or not there isinput isto use READP:

(READP FILE FLG) [Function]
Returns T if there is anything in the input buer of FILE, NI L otherwise. Note
that because of line-buering, READP may return T, indicating there is input in
the buer, but READ may still have to wait.

Frequently, the termina’s input buer contains a single ECL character left over
from a previous input. For most applications, this situation wants to be treated
as though the buer were empty, and so (READP T) returns NI L in this case.
However, if FLG= T, READP aso returns T in this casg, i.e.,, (READP T T) returns
T if there is any character in the input buer.

(WAl TFORI NPUT FI LE) [Function]
Waits until input is available from FILE or from the termina, i.e. from T.
WAl TFORI NPUT isfunctionally equivalent to (until (OR (READP T) (READP

61f reading from the terminal, the character is echoed as soon as PEEKC reads it, even though it is then
““put back’’ into the system buer, where a subsequent del (or control- Z on TOPS- 20) before the character
isread can clear it, and where subsequent line buer backspacing could change it. Thus it is possible for
the value returned by PEEKC to ‘‘disagree” in the rst character with a subsequent READ.

6.15

Output Functions

FILE)) do NIL), except that it does not use up machine cycles while waiting.
Returns the device for which input is now available, i.e. FILE or T.

FILE can aso be an integer, in which case WAI TFORI NPUT waits until there is
input available from the terminal, or until FILE milliseconds have elapsed. Vaue
is T if input is now available, NI L in the case that WAl TFORI NPUT timed out.

In Interlisp- 10, WAI TFORI NPUT operates by dismissing, checking for available
input, and then, if there is none, dismissing again, each time for an increasingly
larger interval. The initia interval is DI SM SSI NI T milliseconds (initialy
500), and the interval grows by 1/16 for each dismissal, up to a maximum of
DI SM SSMAX milliseconds (initially 10,000).

(SKREAD FILE REREADSTRING) [Function]
“*Skip Read’’. It moves the le pointer for FILE ahead as if one call to READ had
been performed, without paying the storage and compute cost to really read in the
structure. REREADSTRING is for the case where the user has aready performed
some READC's and RATOM s before deciding to skip this expression. In this case,
REREADSTRING should be the material aready read (as a string), and SKREAD
operates as though it had seen that material rst, thus getting its paren- count,
double- quote count, etc. set up properly.

SKREAD always uses FI LERDTBL for its readtable. SKREAD may have di culties if
unusual read- macros have been added to FI LERDTBL. SKREAD will not recognize
read- macro characters in REREADSTRING , nor SPLI CE or | NFI X read macros.
This is only a problem if the read- macros are dened to parse subsequent input in
the le which does not follow the normal parenthesis and string- quote conventions
in FI LERDTBL.

SKREAD returns %) if the read terminated on an unbalanced closing parenthess,
% if the read terminated on an unbalanced %, i.e, one which also would have
closed any extant open left parentheses; otherwise NI L.

6.3 OUTPUT FUNCTIONS

Most of the functions described below have an argument FiILE, which speci es the name of the le on
which the operation is to take place. If FILE is NI L, the primary output le is used. Some of the
functions have a RDTBL argument, which speci es the readtable to be used for output. If rROTBL iSNI L,
the primary readtable is used.

Unless otherwise speci ed by DEFPRI NT (page 6.23), pointers other than lists, strings, atoms, or numbers,
are printed in the form { DATATYPE } followed by the octal representation of the address of the pointer
(regardiess of radix). For example, an array pointer might print as { ARRAYP} #43, 2760 . This printed
representation is for compactness of display on the user's terminal, and will not read back in correctly; if
the form above is read, it will produce the atom ‘{ ARRAYP} #43, 2760 ".

Note: the term end-of-line appearing in the description of an output function means the character or

characters used to terminate aline in the le system being used by the given implementation of Interlisp.
For example, in Interlisp- 10 end- of-line is indicated by the characters carriage-return and line-feed in that

6.16

INPUT/OUTPUT

order.

(PRINL X FILE) [Function]
Prints X on FI LE.

(PRIN2 X FILE RDTBL) [Function]

Prints X on FILE with %sand "’sinserted where required for it to read back in
properly by READ, using RDTBL .

Both PRI N1 and PRI N2 print lists as well as atoms and strings, PRI N1 is usually used only for explicitly
printing formatting characters, e.g., (PRINL (QUOTE %)) might be used to print a left square bracket
(the % would not be printed by PRI N1). PRI N2 is used for printing S-expressions which can then be
read back into Interlisp with READ; i.e, break and separator characters in atoms will be preceded by %s.
For example, the atom ‘() '’ is printed as %€ % by PRI N2. If RADI X=8 (page 6.19), PRI N2 prints a
Q after integers but PRI N1 does not (but both print the integer in octal).

(PRIN3 X FILE) [Function]

(PRINA X FILE RDTBL) [Function]
PRI N3 and PRI N4 are the same as PRI N1 and PRI N2 respectively, except that
they do not increment the horizontal position counter nor perform any linelength
checks. They are useful primarily for printing control characters.

(PRINT X FILE RDTBL) [Function]
Prints the expression x using PRI N2 followed by an end- of-line. Returns Xx.

(SPACES N FILE) [Function]
Prints N spaces. Returns NI L.

(TERPRI FILE) [Function]
Prints an end-of-line. Returns NI L.

(TAB PGS M NSP ACES FILE) [Function]
Prints the appropriate number of spaces to move to position PGS. M NSP ACES
indicates how many spaces must be printed (if NI L, 1 is used). If the current
position plus M NSP ACES is greater than Pos, TAB does a TERPRI and then
(SPACES pPos) . If MNSPACES isT, and the current position is greater than pPcs,
then TAB does nothing.

Note: A sequence of PRI NT, PRI N2, SPACES, and TERPRI expressions can often be more conveniently
coded with a single PRI NTOUT statement (page 6.25).

(SHOWPRI N2 X FILE RDTBL) [Function]
Like PRI N2 except if SYSPRETTYFLG= T, prettyprints X instead. Returns X.

(SHOWPRI NT X FILE RDTBL) [Function]
Like PRI NT except if SYSPRETTYFLG= T, prettyprints X instead, followed by an
end- of-line. Returns X.

SHOWPRI NT and SHOWPRI N2 are used by the programmer’s assistant (page 8.1) for printing the values
of expressions and for printing the history list, by various commands of the bresk package (page 9.1),
eg. ?= and BT commands, and various other system packages. The idea is that by simply settting or
binding SYSPRETTYFLG to T (initially NI L), the user instructs the system when interacting with the user

6.17

Printlevel

to PRETTYPRI NT expressions (page 6.47) instead of printing them.

(PRI NTBELLS) [Function]
Used by DWIM (page 15.1) to print a sequence of bells to alert the user to stop
typing. Can be advised or redened for specia applications, e.g., to ash the screen
on a display terminal.

(DOBE) [Function]
(Interlisp- 10) Dismiss until Qutput Buer is Empty, i.e, until all of the characters
that have been printed by Interlisp functions have actually been printed on the
user's terminal. For example, it is important to perform a DOBE after printing
an error message before clearing the input buers to make sure that the user has
actualy seen the error message.

In systems that do not handle output to the display asynchronously with user
computation, such as Interlisp- D, DOBE is a no-op.

6.3.1 Printlevel

When using Interlisp one often has to handle large, complicated lists, which are di cult to understand
when printed out. PRI NTLEVEL allows the user to specify in how much detail lists should be printed.
The print functions PRI NT, PRI N1, and PRI N2 are all aected by level parameters set by:

(PRI NTLEVEL CARVAL CDRVAL) [Function]
Sets the CAR print level to cAR VAL, and the CDR print level to CDR VAL . Returns a
list cell whose CAR and CDR are the old settings. PRI NTLEVEL is initialized with
the value (1000 . -1).

In order that PRI NTLEVEL can be used with RESETFORM or RESETSAVE, if
CAR VAL is a list cdl it is equivalent to (PRI NTLEVEL (CAR carvAL) (CDR
CARVAL)) .

(PRI NTLEVEL N NI L) changes the CAR printlevel without aecting the CDR
printlevel. (PRI NTLEVEL N L N) changes the CDR printlevel with aecting the
CAR printlevel. (PRI NTLEVEL) gives the current setting without changing either.

The CAR printlevel species how ‘‘deep’’ to print a list. Speci cally, it is the number of unpaired left
parentheses which will be printed. Below that level, al lists will be printed as & For example, suppose
x= (A(BC(D(EF) G H K. If cArvAL=3, (PRINT x) would print (A (B C (D & QG
H K),ifcaervaL=2, (A (B C & H K),if carvaL=1, (A & K), and if CARVAL =0, just &.

If the CAR printlevel is negative, the action is similar except that an end- of-line isinserted after each right
parentheses that would be immediately followed by a left parenthesis.

The CDR printlevel speci es how ‘‘long’’ to print a list. It is the number of top level list elements that
will be printed before the printing is terminated with - -. For example, if cbRvAL=2, (A B C D E)
will print as (A B --). For sublists, the number of list elements printed is aso aected by the depth
of printing in the CAR direction: Whenever the sum of the depth of the sublist (i.e. the number of
unmatched left parentheses) and the number of elements is greater than the CDR printlevel, - - is printed.
This gives a ‘‘triangular’’ eect in that lessis printed the farther one goes in either CAR or CDR direction.
For example, if coRvAL=2, then (A (B C(D(EF) G H K L) will print as (A (B --) --)

6.18

INPUT/OUTPUT

and if coRvAL=3, as(A (B C--) K --).
If the CDR printlevel is negative, then it is the same as if the CDR printlevel were in nite.

The printlevel setting can be changed dynamicaly, even while Interlisp is printing, by typing control- P
followed by a number, i.e, a string of digits, followed by a period or exclamation point. As soon as
control- P is typed, Interlisp clears and saves the input buer, clears the output buer, rings the bell
indicating it has seen the control- P, and then waits for input, which is terminated by any non- number.
The input buer isthen restored and the program continues. If the input was terminated by a period or
an exclamation point, the CAR printlevel isimmediately set to this number; otherwise, the input isignored.
Characters cleared from the output buer will have been lost in either case, and printing continues with
the (possibly new) printlevel. If the print routine is currently deeper than the new level, al un nished

lists above that level will be terminated by ‘- -)"". Thus, if acircular or long list of atoms, is being printed
out, typing ‘‘control-P0.”” will cause the list to be terminated immediately.

If the string of digits following a control- P is terminated by a comma, another number may be typed
terminated by a period or exclamation point. The CAR printlevel will then be set to the rst number, the
CDR printlevel to the second number.

In either case, if a period is used to terminate the printlevel setting, the printlevel will be returned to
its previous setting after the current printout has nished. If an exclamation point is used, the change is
permanent and the printlevel is not restored (until it is changed again).

PLVLFI LEFLG [Variable]
Normally, PRI NTLEVEL only aects termina output. Output to al other les
acts as though the print level isinnite. However, if PLVLFI LEFLG is T (initially
NI L), then PRI NTLEVEL aects output to les as well.

6.3.2 Printing numbers

How the ordinary printing functions (PRI N1, PRI N2, etc.) print numbers can be aected in severa ways.
RADI X inuences the printing of integers, and FLTFMT inuences the printing of oating point numbers.
The setting of the variable PRXFLG determines how the symbol- manipulation functions handle numbers.
The PRI NTNUM package permits greater controls on the printed appearance of numbers, alowing such
things as left-justi cation, suppression of trailing decimals, etc.

(RADI X N) [Function]
Resets the output radix for integers to the absolute value of N. If N is negative,
integers are interpreted by the print routines as unsigned numbers; i.e., the actua
two's complement representation of the integer in the integer size of the particular
implementation is interpreted as if it were a positive number on a machine of
innite integer size. Thus, numeric output under a negative radix varies with the
implementation, and numbers printed in this way by one implementation will not
read correctly in an implementation whose integers are of a di erent size.

For example, in Interlisp- 10, whose integer size is 36 hits, -9 will print as shown
with the following radices:

6.19

(FLTFMT FORVA T)

Printing numbers

(RADI X) (PRINT -9)

10 -9

8 -11Q

-10 68719476727 (i.e. 236-9)
-8 777777777767Q

The value of RADI X is its previous setting. (RADI X) gives the current setting
without changing it. The initial setting is 10.

Note that RADI X aects output only. There is no input radix; on input, numbers
are interpreted as decima unless they end in Q in which case they are interpreted
as octal. Thus READ and PRI NT are inverses, independent of any radix setting.
RADI X also does not aect the behavior of UNPACK, etc., unless the value of
PRXFLG (below) is T; eg., with (RADI X 8), the value of (UNPACK 9) is(9),
not (1 1).

[Function]
Resets the output format for oating point numbers to the FLOAT format FORMA T
(see PRI NTNUM below for a description of FLOAT formats). FORMA T= T speci es
the default ‘‘free’” formatting: some number of signi cant digits (a function of
the implementation) are printed, with trailing zeros suppressed; numbers with
suciently large or small exponents are instead printed in exponent notation.

FLTEMT returns its current setting. (FLTFMT) returns the current setting without
changing it. The initial setting is T.

In Interlisp- 10, FORMA T may aso be a machine- dependent FLOAT format- code as
returned by NUMFORVATCODE (page 6.23).

Whether print name manipulation functions (UNPACK, NCHARS, etc.) use the values of RADI X and
FLTFMT is determined by the variable PRXFLG:

PRXFLG

[Variable]
If PRXFLG= NI L (the initial setting), then the ‘PRI N1’ name used by PACK,
UNPACK, MKSTRI NG, etc., is computed using base 10 for integers and the system
default oating format for oating point numbers, independent of the current
setting of RADI X or FLTFMT. If PRXFLG= T, then RADI X and FLTFMT do dictate
the PRI N1'’ name of numbers. Note that in this case, PACK and UNPACK are not
inverses.

Examples with (RADI X 8), (FLTFMI * (FLOAT 4 2)):
With PRXFLG= NI L,
(UNPACK 13) => (1 3)

(PACK " (A 9)) => A9

6.20

INPUT/OUTPUT

(UNPACK 1.2345) => (1 % 2 3 4 5)
With PRXFLG= T,

(UNPACK 13) => (1 5)

(PACK ' (A 9)) => All

(UNPACK 1.2345) => (1 % 2 3)

Note that PRXFLG does not eect the radix of ‘PRI N2'’ names, so with (RADI X
8), (NCHARS 9 T), which uses PRI N2 names, would return 3, (since 9 would
print as 11Q) for either setting of PRXFLG.

Warning: Some system functions will not work correctly if PRXFLG is not NI L.
Therefore, resetting the global value of PRXFLG is not recommended. It is much
better to rebind PRXFLG as a SPECVAR for that part of a program where it needs
to be non-NI L.

The basic function for printing numbers under format control is PRI NTNUM. Its utility is considerably
enhanced when used in conjunction with the PRI NTOUT package (page X.XX), which implements a
compact language for specifying complicated sequences of elementary printing operations, and makes
fancy output formats easy to design and simple to program.

(PRI NTNUM FORMA T NUMBER FILE) [Function]
Prints NUMBER on FI LE according to the format FORMA T. FORMA T isalist structure
with one of the forms described below. FORMA T can also be a machine dependent
format- code as returned by NUMFORMATCODE (page 6.23).

(Interlisp- 10) If NUMBER does not t in the eld specied by Forva T, the full
print name is printed. Then a TAB is executed so that the line position of the le
after PRI NTNUM is aways the position prior to printing plus the indicated width.

If FoRMA T is a list of the form (FI X WDIH RADI X PADO LEFTFL USH), this species a FI X
format. NUMBER isrounded to the nearest integer, and then printed in a eld wDTH characters long with
radix set to rRaDI X (or 10 if RADI X = NI L; note that the setting of RADI X is not used as the default). If
PADO and LEFTFL USH are both NI L, the number isright-justied in the eld, and the padding characters
to the left of the leading digit are spaces. If PAaD0 is T, the character ‘0’ is used for padding. If
LEFTFL USH is T, then the number is left-justied in the eld, with trailing spaces to Il out wDTH
characters.

The following examples illustrate the eects of the FI X format options (the vertica bars indicate the eld
width):

6.21

Printing numbers

FORMA T NUMBER PRI NTNUM prints
(FIX 2) 3 | 3l
(FIX 2 NIL T) 7 | 07]

(FIX 12 8 T) 14 | 000000000016|
(FIX5 NIL NIL T) 2 | 2 |

If FORMA T is a list of the form (FLOAT WDTH DECP ART EXPP ART PADO ROUND), this species a
FLOAT format. NUMBER is printed as a decimal number ina eld wDTH characters wide, with DECP ART
digits to the right of the decimal point. If ExPP ART isnot O (or NI L), the number is printed in exponent
notation, with the exponent occupying ExPP ART characters in the eld. ExPp ART should alow for the
character E and an optional sign to be printed before the exponent digits. As with FI X format, padding
on the left is with spaces, unless pADD is T. If ROUND is given, it indicates the digit position at which
rounding is to take place, counting from the leading digit of the number. 7

FLOAT format examples:

FORMA T NUMBER PRI NTNUM prints

(FLOAT 7 2) 27. 689 | 27.69]

(FLOAT 7 2 NIL T) 27.689 | 0027. 69|

(FLOAT 7 2 2) 27. 689 | 2. 77E1]

(FLOAT 11 2 4) 27.689 | 2. 77E+01| 8

(FLOAT 7 2 NIL NI'L 1) 27. 689 | 30.00|

(FLOAT 7 2 NIL NIL 2) 27. 689 | 28.00]

NI LNUVPRI NTFLG [Variable]

If PRI NTNUM sSNUMBER — argument isnot a number and not NI L, a NON- NUMVERI C
ARG error is generated. If NUMBER iSNI L, the eect depends on the setting of the
variable NI LNUMPRI NTFLG. If NI LNUMPRI NTFLG isNI L, then the error occurs as
usual. If it isnon-NI L, then no error occurs, and the value of NI LNUMPRI NTFLG
is printed right-justied in the eld described by FORMA T. This option facilitates
the printing of numbers in aggregates with missing values coded as NI L.

"The interpretation of wbTH = NI L and DEcP ART= NI L are not speci ed, and are currently a function
of the implementation. Interlisp- 10 prohibits wbtH = NI L, and treats DeEce ART= NI L as equivaent to
DECP ART= 0; Interlisp- D interprets wDTH = NI L to mean no padding, i.e, to use however much space
the number needs, and interprets DECP ART= NI L to mean as many decimal places as needed.

8As of this writing, the Interlisp- 10 implementation actually does something less intuitive with the ExPP AR T
eld: the placement of the decimal point is aected by DECP ART, and padding never occurs. These two
examples in Interlisp- 10 would actually print as | . 28E+02| and | 27. 69E+0000] .

6.22

INPUT/OUTPUT

In some implementations, formatted printing of numbers receives assistance from the operating system,
provided that the format is specied in some sort of special code. PRI NTNUM works by converting the
machine- independent format speci cations described above into machine- dependent codes the exact form
of which may vary from implementation to implementation. This conversion process takes place on each
call to PRI NTNUM. For eciency purposes, if the user is going to be performing a particular cal to
PRI NTNUM frequently, he may wish to separate the conversion from the actua printing, performing the
conversion process just once and saving the result. The function NUMFORMATCODE is available for this
purposes NUMFORMATCODE takes a format, performs the conversion and returns a machine dependent
format- code, which can be given to PRI NTNUM in place of a list structure format as described above. In
this case, PRI NTNUM will not have to perform the conversion, but can simply use the machine- dependent
format code directly.

(NUMFORVATCODE FORMA T SMASHCODE) [Function]
Converts the FI X or FLOAT format FORMA T to a machine- dependent format-
code. If SwMASHCODE s recognized as a format- code data- structure, then the
new format- code is smashed into that structure instead of alocating new storage.
(NUMFORMATCODE) returns an uninitialized datum that can later be smashed.

In Interlisp- D, this function is ano-op, as there isno specia internal representation
for number formats.

6.3.3 User Dened Printing

(DEFPRI NT TYPE FN) [Function]
TYPE isatype name (see page 2.1). Whenever aprinting function (PRI NT, PRI N1,
PRI N2, etc.) encounters an object of the indicated type, FN is called with the item
to be printed asits argument. If it returns NI L, the datum is printed in the manner
the system defaults; for user data types, it is printed as { dat at ype} #nnnnnn . If
FN wishes to specify how the datum should be printed, it should return a list of
the form (1TEML . 1TEM). ITEM isprinted using PRI N1 (unless it isNI L), and
then 1 TEM printed using PRI N2 with no spaces between the two items. (Typically,
ITEM isaread macro character.)

In Interlisp- 10, TYPE may aso be a type number (see page 22.2). Note that the
user can specify di erent action for type names ARRAYP, HARRAYP, TERMTABLEP,
READTABLEP, and CCODEP, even though they al have the same type number.

Note that DEFPRI NT also aects internal calls to print from PACK, CONCAT, etc., i.e. any operation that
involves obtaining a print name (see page 2.8). A consequence of this fact is that in implementations
that do not have reentrant printing code (in particular, Interlisp- 10), the user’'s DEFPRI NT function must
not call any print name manipulating functions itself, or the results of the whole printing operation are
unde ned.

6.3.4 Dumping Unusual Data Structures

HPRI NT (for ‘‘Horrible Print’’) and HREAD provide a mechanism for printing and reading back in genera
data structures that cannot normally be dumped and loaded easily, such as (possibly re-entrant or circular)
structures containing user datatypes, arrays, hash tables, as well as list structures. HPRI NT will correctly
print and read back in any structure containing any or al of the above, chasing al pointers down to the

6.23

READFILE and WRITEFILE

level of literal atoms, numbers or strings. HPRI NT currently cannot handle compiled code arrays, stack
positions, or arbitrary unboxed numbers.

HPRI NT operates by simulating the Interlisp PRI NT routine for normal list structures. When it encounters
a user datatype (see page 3.14), or an array or hash array, it prints the data contained therein, surrounded

by special characters dened as read- macro characters (see page 6.36). While chasing the pointers of a
structure, it also keeps a hash table of those items it encounters, and if any item is encountered a second
time, another read- macro character isinserted before the rst occurrence (by resetting the le pointer with
SETFI LEPTR) and all subsequent occurrences are printed as a back reference using an appropriate macro
character. Thus the inverse function, HREAD merely calls the Interlisp READ routine with the appropriate

readtable.

(HPRI NT EXPR FILE UNCIR CULAR DATATYPESEEN) [Function]
Prints EXPR on FILE. If UNGIR CULAR isnon-NI L, HPRI NT does no checking for
any circularities in EXPR (but is till useful for dumping arbitrary structures of
arrays, hash arrays, lists, user data types, etc., that do not contain circularities).
Specifying UNCI R CULAR as nhon-NI L results in a large speed and internal- storage
advantage.

Normally, when HPRI NT encounters a user data type for the rst time, it outputs
a summary of the data type's declaration. When this is read in, the data type is
redeclared. If DATATYPESEEN isnon-Nl L, HPRI NT will assume that the same data
type declarations will be in force at read time as were at HPRI NT time, and not
output declarations.

HPRI NT isintended primarily for output to disk les, since the algorithm depends
on being able to reset the le pointer. If FILE isnot adisk le (and UNCI R CULAR

= NI L), atemporay le, HPRI NT. SCRATCH, is opened, ExPR is HPRI NTed on
it, and then that le is copied to the nal output le and the temporary le is

deleted.

(HREAD FILE) [Function]
Reads and returns an HPRI NT-ed expression from Fi LE.

(HCOPYALL x) [Function]
Copies data structure X. X may contain circular pointers as well as arbitrary
structures.

Note: HORRI BLEVARS and UGLYVARS (page 11.25) are two le package commands for dumping and
reloading circular and re-entrant data structures. They provide a convenient interface to HPRI NT and
HREAD.

6.4 READFILE AND WRITEFILE

For those applications where the user simply wants to simply read all of the expressions on a le, and

not evaluate them, the function READFI LE is available:

(READFI LE FILE) [Function]
Reads successive expressions from le using READ (with FI LERDTBL as readtable)

6.24

INPUT/OUTPUT

until the single atom STOP is read, or an end of le encountered. Returns a list
of these expressions.

(WRI TEFI LE X FILE) [Function]
Inverse of READFI LE. Writes a date expression onto FiILE, followed by successive
expressions from X, using FI LERDTBL as a readtable. If X is atomic, its value is
used. If FILE isnot open, it isopened. If FILE isalist, (CAR FILE) isused and
the le isleft opened. Otherwise, when x is nished, a STOP is printed on FI LE
and it is closed. Returns FiLE.

(ENDFI LE FI LE) [Function]
Prints STOP on FI LE and closes it.

6.5 PRINTOUT

Interlisp provides many facilities for controlling the format of printed output. By executing various
sequences of PRI N1, PRI N2, TAB, TERPRI , SPACES, PRI NTNUM, and PRI NTDEF, amost any eect can
be achieved. PRI NTOUT implements a compact language for specifying complicated sequences of these
elementary printing functions. It makes fancy output formats easy to design and simple to program.

PRI NTOUT is a CLISP word (like for and if) for interpreting a special printing language in which
the user can describe the kinds of printing desired. The description is trandated by DW M FY to the
appropriate sequence of PRI N1, TAB, etc., before it is evaluated or compiled. PRI NTOUT printing
descriptions have the following general form:

(PRINTQUT FILE PRINTCOM 1 PRINTCOM » PRINTCOM)

FILE is evaluated to obtain the name of the le to which the output from this speci cation is directed.
The PRI NTOUT commands are strung together, one after the other without punctuation, after FILE. Some
commands occupy asingle position in this list, but many commands expect to nd arguments following the
command name in the list. The commands fall into several logical groups. one set deals with horizontal
and vertical spacing, another group provides controls for certain formatting capabilities (font changes and
subscripting), while a third set is concerned with various ways of actually printing items. Finadly, there is
a command that permits escaping to a simple Lisp evaluation in the middle of a PRI NTOUT form. The
various commands are described below. The following examples give a general avor of how PRI NTOUT
is used:

Example 1. Suppose the user wanted to print out on the terminal the values of three variables, X, Y, and
Z, separated by spaces and followed by a carriage return. This could be done by:

(PRINL X T)
(SPACES 1 T)
(PRINL Y T)
(SPACES 1 T)
(PRINL Z T)
(TERPR T)

or by the more concise PRI NTOUT form:

6.25

Horizontal Spacing Commands

(PRRNTQUT T X, Y, ZT)

Here the rst T speci es output to the terminal, the commas cause single spaces to be printed, and the
na T species a TERPRI . The variable names are not recognized as special PRI NTOUT commands, so
they are printed using PRI N1 by default.

Example 2: Suppose the values of X and Y are to be pretty- printed lined up at position 10, preceded by
identifying strings. If the output isto go to the primary output le, the user could write either:

(PRINL "X ="

(PRI NTDEF X 10 T)
(TERPR)

(PRINL "Y ="

(PRI NTDEF Y 10 T)
(TERPRI)

or the equivalent:
(PRINTQUT NIL "X =" 10 .PPV X T "Y =" 10 .PPV Y T)

Since strings are not recognized as special commands, "X =" is also printed with PRI N1 by default.
The positive integer means TAB to position 10, where the . PPV command causes the value of X to be
prettyprinted as a variable. By convention, special atoms used as PRI NTOUT commands are prexed with
a period. The T causes a carriage return, so the Y information is printed on the next line.

Example 3. As a na example, suppose that the value of X is an integer and the value of Y is a
oating- point number. X is to be printed right- ushed in a eld of width 5 beginning at position 15,
and Y isto be printed in a eld of width 10 also starting at position 15 with 2 places to the right of the
decimal point. Furthermore, suppose that the variable names are to appear in the font nhamed BOLDFONT
and the values in font SMALLFONT. The program in ordinary Lisp that would accomplish these eects is
too complicated to include here. With PRI NTOQUT, one could write:

(PRI NTOUT NI L
. FONT BOLDFONT "X =" 15
_FONT SMALLFONT .15 X T
. FONT BOLDFONT "Y =" 15
_FONT SMALLFONT .F10.2 Y T
. FONT BOLDFONT)

The . FONT commands do whatever is necessary to change the font on a multi- font output device. The
.15 command sets up a FI X format for a call to the function PRI NTNUM (page 6.21) to print X in the
desired format. The . F10. 2 speci es a FLQAT format for PRI NTNUM.

6.5.1 Horizontal Spacing Commands

The horizontal spacing commands provide convenient ways of calling TAB and SPACES. In the following
descriptions, N stands for a literal positive integer.

N Used for absolute spacing. It results in a TAB to position N (literaly, a (TAB
N)). If the line is currently at position N or beyond, the le will be positioned at
position N on the next line.

6.26

. TAB POs

. TABO PCs

. SP DI STANCE

. RESET

INPUT/OUTPUT

Speci es TAB to position (the value of) pos. This is one of severa commands
whose eect could be achieved by simply escaping to Lisp, and executing the
corresponding form. It is provided as a separate command so that the PRI NTOUT
form is more concise and is prettyprinted more compactly. Note that . TAB N and
N, where N is an integer, are equivalent.

Like . TAB except that it can result in zero spaces (i.e. the call to TAB speci es
M NSP ACES =0).

Negative integers indicate relative (as opposed to absolute) spacing. Trandates as
(SPACES |N|).

Provides a short- hand way of specifying 1, 2 or 3 spaces, i.e,, these commands are
equivalent to -1, - 2, and - 3, respectively.

Trandates as (SPACES DI STANCE). Note that . SP N and - N, where N is an
integer, are equivaent.

Resets the current line by causing a carriage-return to be printed without a line-
feed. Useful for overprinting, or for regaining control of aline on which characters
have been printed in a variable pitched font.

6.5.2 Vertical Spacing Commands

Vertical spacing is obtained by calling TERPRI or printing form-feeds. The relevant commands are:

T

. SKI P LINES

. PAGE

Trandates as (TERPRI) . This command is functionally equivaent to the integer
command O; they both move to position 0 (= column 1) of the next line. To print
the letter T, use the string " T".

Equivalent to a sequence of LINES (TERPRI) ’s. The . SKI P command allows for
skipping large constant distances and for computing the distance to be skipped.

Puts a form-feed (control-L) out on the le. Care is taken to make sure that
Interlisp’s view of the current line position is correctly updated.

6.5.3 Special Formatting Controls

There are a smal number of commands for invoking some of the formatting capabilities of multi- font
output devices. The available commands are:

. FONT FONTSPEC

. SUP

Puts out a control sequence that causes a change to font FONTSPEC (the association
between FONTSPEC and a speci ¢ font must be dened in the user’'s font prole, as
described in page 6.55). FONTSPEC may be a font-name variable or an expression
that evauates to the value of a font-name variable. FONTSPEC may aso be a
positive integer N, which is taken as an abbreviated reference to the font named
FONTN (eg. 1 => FONT1).

Speci es superscripting. All subsequent characters are printed above the base of
the current line. Note that this is absolute, not relative: a . SUP following a . SUP

6.27

Printing Speci cations

is a no-op.

. SUB Speci es subscripting. Subsequent printing is below the base of the current line.
As with superscripting, the eect is absolute.

. BASE Moves printing back to the base of the current line. Un-does a previous . SUP or
. SUB; a no-op, if printing is currently at the base.

6.5.4 Printing Speci cations

The value of any expression in a PRI NTOUT form that is not recognized as a command itself or as a
command argument is printed using PRI N1 by default. For example, title strings can be printed by
simply including the string as a separate PRI NTOUT command, and the values of variables and forms can
be printed in much the same way. Note that a literal integer, say 51, cannot be printed by including it as
a command, since it would be interpreted as a TAB; the desired eect can be obtained by using instead
the string speci cation ‘‘51"’,or the form (QUOTE 51).

For those instances when PRI N1 is not appropriate, e.g., PRI N2 is required, or alist structures must be
prettyprinted, the following commands are available:

. P2 TH NG Causes THI NG to be printed using PRI N2; trandlates as (PRI N2 THI NG) .

. PPF THI NG Causes TH NG to be prettyprinted at the current line position via PRI NTDEF (page
6.49). The call to PRI NTDEF speci es that THING isto be printed asif it were part
of afunction denition. That is, SELECTQ, PROG, etc., receive special treatment.

. PPV THI NG Prettyprints THING as a variable; no specia interpretation is given to SELECTQ,
PRCG, etc.
. PPFTL TH NG Like . PPF, but prettyprints THING as a tail, that is, without the initial and na

parentheses if it is a list. Useful for prettyprinting sub-lists of a list whose other
elements are formatted with other commands.

. PPVTL THI NG Like . PPV, but prettyprints TH NG as a tail.

6.5.4.1 Paragraph Format

Interlisp’s prettyprint routines are designed to display the structure of expressions, but they are not really
suitable for formatting unstructured text. If a list is to be printed as a textual paragraph, its internal
structure is less important than controlling its left and right margins, and the indentation of its rst line.
The . PARA and . PARA2 commands alow these parameters to be conveniently speci ed.

. PARA LMAR G RVAR G LIST
Prints LIST in paragraph format, using PRI N1. Translates as (PRI NTPARA
LMAR G RVAR G LIST) (see page 6.31). Examples (PRI NTOUT T 10 . PARA
5 -5 LST) will print the elements of LST as a paragraph with left margin at 5,
right margin at (LI NELENGTH) -5, and the rst line indented to 10.

. PARA2 LMAR G RVAR G LIST

6.28

INPUT/OUTPUT

Print as paragraph using PRI N2 instead of PRI N1. Trandates as (PRI NTPARA
LMAR G RMAR G LIST T).

6.5.4.2 Right-Flushing

Two commands are provided for printing simple expressions ushed- right against a speci ed line position,
using the function FLUSHRI GHT (page 6.31). They take into account the current position, the number
of characters in the print- name of the expression, and the position the expression isto be ush against,
and then print the appropriate number of spaces to achieve the desired eect. Note that this might entail
going to a new line before printing. Note also that right- ushing of expressions longer than aline (e.g. a
large list) makes little sense, and the appearance of the output is not guaranteed.

. FR Pos EXPR Flush-right using PRI N1. The value of pos determines the position that the
right end of ExPR will line up at. As with the horizontal spacing commands,
a negative position number means | Pos| columns from the current position, a
positive number speci es the position absolutely. Pos =0 speci es the right- margin,
i.e. isinterpreted as (LI NELENGTH) .

. FR2 Pos EXPR Flush- right using PRI N2 instead of PRI N1.

6.5.4.3 Centering

Commands for centering simple expressions between the current line position and another speci ed
position are also available. As with right ushing, centering of large expressions is not guaranteed.

. CENTER PCs EXPR

Centers ExPR between the current line position and the position specied by
the value of Pos. A positive PoOs is an absolute position number, a negative PCs

speci es a position relative to the current position, and O indicates the right- margin.
Uses PRI N1 for printing.

. CENTER2 PCs EXPR
Centers using PRI N2 instead of PRI N1.

6.5.44 Numbering

The following commands provide FORTRAN- like formatting capabilities for integer and oating- point
numbers. Each command speci es aprinting format and a number to be printed. The format speci cation
trandlates into a format- list for the function PRI NTNUM (see page 6.21).

.| FORMA T NUMBER

Speci es integer printing. Trandates as a call to the function PRI NTNUM with
a FI X format- list constructed from FORMA T. The atomic format is broken apart
at internal periods to form the format-list. For example, .15.-8. T yields the
format-list (FIX 5 -8 T), and the command sequence (PRI NTOQUT T .15. -
8. T FOO) will trandate as (PRINTNUM ' (FIX 5 -8 T) FOO . It will cause
the value of FOO to be printed with radix -8 right- ushed in a eld of width 5,

6.29

Escaping to LISP

with O's used for padding on the left. Internal NI L's may be omitted, eg. the
commands . 15..Tand .15 NL.T are equivalent.

. FFORVMA T NUMBER
Speci es oating- number printing. Like the . | format command, except trandates
with a FLOAT format- list.

. N FORVA T NUMBER
The .1 and .F commands specify calls to PRI NTNUM with quoted format
speci cations. The . N command translates as (PRI NTNUM FORMA T NUMBER),
i.e, it permits the format to be the value of some expression. Note that, unlike
the .| and . F commands, FORVA T is a separate element in the command list, not
part of an atom beginning with . N.

6.5.5 Escaping to LISP

There are many reasons for taking control away from PRI NTOUT in the middle of along printing expres-
sion. Common situations involve temporary changes to system printing parameters (e.g. LI NELENGTH),
conditiona printing (e.g. print FOO only if FI E isT), or lower-level iterative printing within a higher- level
print speci cation.

FORM The escape command. FORM is an arbitrary Lisp expression that is evaluated
within the context established by the PRI NTOUT form, i.e.,, FORM can assume that
the primary output le has been set to be the FI LE argument to PRI NTOUT. Note
that nothing is done with the value of FORM ; any printing desired is accomplished
by ForM itself, and the value is discarded.

Note: Although PRI NTQUT logicaly encloses its trandlation in a RESETFORM (page 9.20) to change the
primary output le to the FILE argument (if non-NI L), in most cases it can actually pass Fi LE (or alocally
bound variable if FI LE isanon-trivial expression) to each printing function. Thus, the RESETFORM is only
generated when the # command is used, or user-dened commands (below) are used. If many such occur
in repeated PRI NTOUT forms, it may be more ecient to embed them all in a single RESETFORM which
changes the primary output le, and then specify FILE= NI L in the PRI NTOUT expressions themselves.

6.5.6 User-Dened Commands

The collection of commands and options outlined above is aimed at ful lling al common printing
needs. However, certain applications might have other, more specialized printing idioms, so a facility is
provided whereby the user can dene new commands. This is done by adding entries to the global list
PRI NTOUTMACRCS to dene how the new commands are to be translated.

PRI NTOUTMACROCS [Variable]
PRI NTOUTMACRCS is an association- list whose elements are of the form (cow
FN) . Whenever cow appears in command position in the sequence of PRI NTOUT
commands (as opposed to an argument position of another command), FN isapplied
to the tail of the command- list (including the command).

After inspecting as much of the tail as necessary, the function must return a list
whose CAR is the trandation of the user-dened command and its arguments, and

6.30

INPUT/OUTPUT

whose CDR is the list of commands <till remaining to be trandlated in the normal
way.

For example, suppose the user wanted to dene acommand ‘“?’",which will cause its single argument to be
printed with PRI N1 only if itisnot NI L. This can be done by entering (? ?TRAN) on PRI NTOUTMACROS,
and dening the function ?TRAN as follows:

(LAVBDA (COVB)
(CONS (SUBST (CADR COVB) ' ARG
' (PROG ((TEMP ARQG))
(COND (TEMP (PRINL TEMP)))))
(CDDR COVB)))

Note that ?TRAN does not do any printing itself; it returns a form which, when evaluated in the proper
context, will perform the desired action. This form should direct al printing to the primary output le.

6.5.7 Special Printing Functions

The paragraph printing commands are translated into calls on the function PRI NTPARA, which may also
be called directly:

(PRI NTPARA LMAR G RMAR G LIST P2FLAG PARENFLA G FILE) [Function]
Prints LI sT on FILE in line- lled paragraph format with its rst element beginning at
the current line position and ending at or before RMAR G, and with subsequent lines
appearing between LMAR G and RVMAR G. If P2FLAG is non-NI L, prints elements
using PRI N2, otherwise PRI N1. If PARENFLA G isnon-NI L, then parentheses will
be printed around the elements of LI ST.

If LMAR G is zero or positive, it is interpreted as an absolute column position.
If it is negative, then the left margin will be a | LMAR G| + (PCSI TI ON) . If
LMAR G= NIL, the left margin will be a (POSI TI ON) , and the paragraph will
appear in block format.

If RVAR G is positive, it also is an absolute column position (which may be greater
than the current (LI NELENGTH)). Otherwise, it is interpreted as relative to
(LI NELENGTH) , i.e., the right margin will be at (LI NELENGTH) + | RMAR G| .
Example: (TAB 10) (PRINTPARA 5 -5 LST T) will PRI N2 the elements of
LST in a paragraph with the rst line beginning at column 10, subsequent lines
beginning at column 5, and all lines ending at or before (LI NELENGTH) -5.

The current (LI NELENGTH) isunaected by PRI NTPARA, and upon completion,
FI LE will be positioned immediately after the last character of the last item of LI ST.
PRI NTPARA is a no-op if LI ST isnot a list.

The right- ushing and centering commands translate as calls to the function FLUSHRI GHT:

(FLUSHRI GHT POS X MN P2FLAG CENTERFLA G FILE) [Function]
If CENTERFLA G= NI L, prints x right- ushed against position POS on FiLE;
otherwise, centers X between the current line position and Pos . Makes sure that it
spaces over at least M N spaces before printing by doing a TERPRI if necessary;
MN= N L isequivdent to MmN=1. A positive PCs indicates an absolute position,

6.31

Readtables

while a negative Pos signi es the position which is | Pos| to the right of the
current line position. pPos=0 isinterpreted as (LI NELENGTH) , the right margin.

6.6 READTABLES

Many Interlisp input functions treat certain characters in special ways. For example, READ recognizes that
the right and left parenthesis characters are used to specify list structures, and that the quote character is
used to delimit text strings. The Interlisp input and (to a certain extent) output routines are table driven
by readtables. Readtables are objects that specify the syntactic properties of characters for input routines.
Since the input routines parse character sequences into objects, the readtable in use determines which
sequences are recognized as literal atoms, strings, list structures, etc.

Most Interlisp input functions take an optional readtable argument, which speci es the readtable to use
when reading an expression. If NI L is given as the readtable, the ‘‘primary readtable’’ isused. If T is
speci ed, the system termina readtable is used. Some functions will also accept the atom ORI G (not the
value of ORI G) as indicating the ‘‘origina’’ system readtable. Some output functions aso take a readtable
argument. For example, PRI N2 prints an expression so that it would be read in correctly using a given
readtable.

The Interlisp system uses three readtables. T for input/output from terminals, the value of FI LERDTBL for
input/output from les, and the value of EDI TRDTBL for input from terminals while in the editor. These
three tables are initially copies of the ORI G readtable, with changes made to some of them to provide
read macros (page 6.36) that are specic to termina input or le input. Using the functions described
below, the user may further change, reset, or copy these tables. The user can also create new readtables,
and either explicitly pass them to input/output functions as arguments, or install them as the primary
readtable, via SETREADTABLE, and then not specify a ROTBL argument, i.e, use NI L.

6.6.1 Readtable Functions

(READTABLEP RDTBL) [Function]
Returns ROTBL if ROTBL is ared readtable (not T or ORI G), otherwise NI L.

(GETREADTABLE RDTBL) [Function]
If ROTBL = NI L, returns the primary read table. If ROTBL = T, returns the system
terminal readtable. If RDTBL is a read readtable, returns RDTBL . Otherwise,
generates an | LLEGAL READTABLE error.

(SETREADTABLE RDTBL FLG) [Function]
Sets the primary readtable to rROTBL . If FLG= T, SETREADTABLE sets the system
termina readtable, T. Note that the user can reset the other system readtables with
SETQ, eg., (SETQ FI LERDTBL (GETREADTABLE)) .

Generates an | LLEGAL READTABLE error if rRoTBL is not NIL, T, or a
real readtable. Returns the previous setting of the primary readtable, so
SETREADTABLE is suitable for use with RESETFORM (page 9.20).

6.32

INPUT/OUTPUT

(COPYREADTABLE ROTBL) [Function]
Returns a copy of RDTBL . ROTBL can be a rea readtable, NIL, T, or ORI G (in
which case COPYREADTABLE returns a copy of the original system readtable),
otherwise COPYREADTABLE generates an | LLEGAL READTABLE error.

Note that COPYREADTABLE is the only function that creates a readtable.

(RESETREADTABLE RDTBL FROM) [Function]
Copies (smashes) FROM into RDTBL . FROM and RDTBL can be NI L, T, or a rea
readtable. In addition, FRov can be ORI G, meaning use the system’s original
readtable.

6.6.2 Syntax Classes

A readtable is an object that contains information about the ‘‘syntax class’ of each character. There are
nine basic syntax classes. LEFTPAREN, RI GHTPAREN, LEFTBRACKET, Rl GHTBRACKET , STRI NGDELI| M,
ESCAPE, BREAKCHAR, SEPRCHAR, and OTHER, each associated with a primitive syntactic property. In
addition, there is an unlimited assortment of user-dened syntax classes, known as ‘‘read-macros’. The
basic syntax classes are interpreted as follows:

LEFTPAREN (normally left parenthesis) Begins list structure.

Rl GHTPAREN (normally right parenthesis) Ends list structure.

LEFTBRACKET (normally left bracket) Begins list structure. Also matches Rl GHTBRACKET
characters.

Rl GHTBRACKET (normally left bracket) Ends list structure. Can close an arbitrary numbers of

LEFTPAREN lists, back to the last LEFTBRACKET .

STRI NGDELI M (normally double quote) Begins and ends text strings. Within the string, all
characters except for the one(s) with class ESCAPE are treated as ordinary, i.e,
interpreted as if they were of syntax class OTHER. To include the string delimiter
inside a string, prex it with the ESCAPE character.

ESCAPE (normally percent sign) Inhibits any special interpretation of the next character, i.e.,
the next character is interpreted to be of class OTHER, independent of its normal
syntax class.

BREAKCHAR (None initialy) Is a break character, i.e, delimits atoms, but is otherwise an
ordinary character.

SEPRCHAR (space, carriage return, etc.) Delimits atoms, and is otherwise ignored.

OTHER Characters that are not otherwise special belong to the class OTHER.

Characters of syntax class LEFTPAREN, Rl GHTPAREN, LEFTBRACKET, Rl GHTBRACKET , and STRI NGDELI M

are al break characters. That is, in addition to their interpretation as delimiting list or string structures,
they also terminate the reading of an atom. Characters of class BREAKCHAR serve only to terminate atoms,
with no other special meaning. In addition, if a break character isthe rst non-separator encountered by
RATOM it is read as a one-character atom. In order for a break character to be included in an atom, it

6.33

Syntax Classes

must be preceded by the ESCAPE character.

Characters of class SEPRCHAR also terminate atoms, but are otherwise completely ignored; they can be
thought of as logically spaces. As with break characters, they must be preceded by the ESCAPE character
in order to appear in an atom.

For example, if $ were a break character and * a separator character, the input stream ABC** DEF$GH* $$
would be read by 6 calls to RATOM returning respectively ABC, DEF, $, GH, $, $.

Although normally there isonly one character in a readtable having each of the list- and string- delimiting
syntax classes (such as LEFTPAREN), it is perfectly acceptable for any character to have any syntax class,
and for more than one to have the same class.

Note that a ‘‘syntax class’ is an abstraction: there is no object referencing a collection of characters called
a syntax class. Instead, a readtable provides the association between a character and its syntax class, and
the input/output routines enforce the abstraction by using readtables to drive the parsing.

The functions below are used to obtain and set the syntax class of a character in a readtable. cH can
either be a character code (a number), or a character (a single-character atom); those Interlisp objects
that happen to be both, viz., one-digit numbers, are interpreted as character codes. For example, in
Interlisp- 10, 1 indicates control- A, and 49 indicates the character 1.

Note: Termina tables, described in page 6.40, aso associate characters with syntax classes, and they can
also be manipulated with the functions below. The set of readtable and termina table syntax classes are
digoint, so there is never any ambiguity about which type of table is being referred to.

(GETSYNTAX CH TABLE) [Function]
Returns the syntax class of cH, a character or a character code, with respect to
TABLE . TABLE can be NI L, T, ORI G, or a real readtable or terminal table.

CH can aso be a syntax class, in which case GETSYNTAX returns a list of the
character codes in TABLE that have that syntax class.

(SETSYNTAX CHAR CLASS TABLE) [Function]
Sets the syntax class of CHAR , a character or character code, in TABLE . TABLE can
be either NIL, T, or area readtable or terminal table. SETSYNTAX returns the
previous syntax class of CHAR . CLASS can be any one of the following:

The name of one of the basic syntax classes.
A list, which is interpreted as a read macro (see page 6.36).

NI L, T, ORI G, or areal readtable or termina table, which means to give CHAR
the syntax classit has in the table indicated by cLAss . For example, (SETSYNTAX
"of ' ORI G TABLE) givesthe left parenthesis character in TABLE the same syntax
class that it has in the original system readtable.

A character code or character, which means to give cHAR the same syntax class
as the character cHAR in TABLE . For example, (SETSYNTAX '{ "% TABLE)
gives the left brace character the same syntax class as the left bracket.

(SYNTAXP CODE CLASS TABLE) [Function]
CODE is a character code; TABLE isNIL, T, or area readtable or termina table.

6.34

INPUT/OUTPUT

Returns T if cobE has the syntax class CLASS in TABLE ; NI L otherwise.

CLASS can aso be a read- macro type (MACRO, SPLI CE, | NFI X), or a read- macro
option (FI RST, | MVEDI ATE, etc.), in which case SYNTAXP returns T if the syntax
class is a read- macro with the speci ed property.

Note: SYNTAXP will not accept a character as an argument, only a character code.

For convenience in use with SYNTAXP, the atom BREAK may be used to refer to all break characters,
i.e, it is the union of LEFTPAREN, RI GHTPAREN, LEFTBRACKET, RI GHTBRACKET, STRI NGDELI M,
and BREAKCHAR. For purely symmetrical reasons, the atom SEPR corresponds to al separator characters.
However, since the only separator characters are those that aso appear in SEPRCHAR, SEPR and
SEPRCHAR are equivalent.

Note that GETSYNTAX never returns BREAK or SEPR as a value athough SETSYNTAX and SYNTAXP
accept them as arguments. Instead, GETSYNTAX returns one of the digoint basic syntax classes that
comprise BREAK. BREAK as an argument to SETSYNTAX is interpreted to mean BREAKCHAR if the
character isnot already of one of the BREAK classes. Thus, if %4 isof class LEFTPAREN, then (SETSYNTAX
"0 ' BREAK) doesn't do anything, since % is already a break character, but (SETSYNTAX ' %
" BREAKCHAR) means make % be just a break character, and therefore disables the LEFTPAREN
function of % . Similarly, if one of the format characters is disabled completely, e.g., by (SETSYNTAX
"0 ' OTHER) , then (SETSYNTAX ' % ' BREAK) would make % be only a break character; it would
not restore %4 as LEFTPAREN.

The following functions provide a way of collectively accessing and setting the separator and break
characters in a readtable;

(GETSEPR RDTBL) [Function]
Returns a list of separator character codes in RDTBL . Equivalent to (GETSYNTAX
" SEPR RDTBL).

(GETBRK RDTBL) [Function]
Returns a list of break character codes in ROTBL . Equivalent to (GETSYNTAX
' BREAK RDTBL).

(SETSEPR LST FLG RDTBL) [Function]
Sets or removes the separator characters for RDTBL . LST is a list of charactors or
character codes. FL G determines the action of SETSEPR as follows: If FLG= NI L,
makes RDTBL have exactly the elements of LST as separators, discarding from
ROTBL any old separator characters not in LST. If FLG=0, removes from RDTBL
as separator characters al elements of LsT. This provides an ‘“‘UNSETSEPR’. If
FLG=1, makes each of the characters in LST be a separator in RDTBL .

If LST= T, the separator characters are reset to be those in the system’s readtable
for terminas, regardiess of the value of FLG, i.e., (SETSEPR T) is equivaent to
(SETSEPR (GETSEPR T)). If ROTBL is T, then the characters are reset to those
in the original system table.

Returns NI L.

(SETBRK LST FLG RDTBL) [Function]
Sets the break characters for RDOTBL . Similar to SETSEPR.

6.35

Read-Macros

As with SETSYNTAX to the BREAK class, if any of the list- or string-delimiting break characters are
disabled by an appropriate SETBRK (or by making it be a separator character), its special action for READ
will not be restored by simply making it be a break character again with SETBRK. However, making these
characters be break characters when they aready are will have no eect.

The action of the ESCAPE character (normaly 9% is not aected by SETSEPR or SETBRK. It can be
disabled by setting its syntax to the class OTHER, and other characters can be used for escape on input
by assigning them the class ESCAPE. As of this writing, however, there is nho way to change the output
escape character; it is ‘*hardwired’”” as % That is, on output, characters of special syntax that need to
be preceded by the ESCAPE character will aways be preceded by % independent of the syntax of %or
which, if any characters, have syntax ESCAPE.

The following function can be used for defeating the action of the ESCAPE character or characters:

(ESCAPE FLG RDTBL) [Function]
If FLG= NI L, makes characters of class ESCAPE behave like characters of class
OTHER on input. Norma setting is (ESCAPE T) . ESCAPE returns the previous
setting.

6.6.3 Read-M acr os

Read- macros are user-dened syntax classes that can cause complex operations when certain characters
are read. Read- macro characters are dened by specifying as a syntax class an expression of the form:

(TYPE CPTION q OPTION FN)

where TYPE is one of MACRO, SPLI CE, or | NFI X, and FN is the name of a function or a lambda
expression. Whenever READ encounters a read-macro character, it cals the associated function, giving it
as arguments the input le and readtable being used for that call to READ. The interpretation of the value
returned depends on the type of read- macro:

MACRO This is the simplest type of read macro. The result returned from the macro is
treated as the expression to be read, instead of the read-macro character. Often
the macro reads more input itself. For example, in order to cause ~EXPR to be
read as (NOT EXPR), one could dene ~ as

[MACRO (LAVBDA (FL RDTBL) (LIST 'NOT (READ FL RDTBL]

SPLI CE The result (which should be alist or NI L) is spliced into the input using NCONC.
For example, if $ isdened by:

(SPLI CE (LAMBDA NI L (APPEND FOO)))

and the value of FOOis(A B C), then when the user inputs (X $ Y), the result
willbe (X AB CY).

I NFI X The associated function is called with a third argument, which is a list, in TCONC
format (page 2.17), of what has been read at the current level of list nesting. The
function’s value is taken as a new TCONC list which replaces the old one. For
example, + could be dened by:

6.36

INPUT/OUTPUT

(I NFI X (LAVBDA (FL RDTBL 2)
(RPLACA (CDR 2)
(LI ST (QUOTE | PLUS)
(CADR Z)
(READ FL RDTBL)))
2))

If an | NFI X read- macro character isencountered not in alist, the third argument to
its associated function isNI L. If the function returns NI L, the read- macro character
is essentially ignored and reading continues. Otherwise, if the function returns a
TCONC list of one element, that element is the value of the READ. If it returns a
TCONC list of more than one element, the list is the value of the READ.

The speci cation for a read-macro character can be augmented to specify various options OPTION
OPTION , €0, (MACRO FI RST | MVEDI ATE FN). The following three disoint options specify when
the read- macro character isto be eective

ALVAYS The default. The read- macro character is aways eective (except when preceded
by the escape character), and is a break character, i.e.,, a member of (GETSYNTAX
" BREAK RDTBL).

FI RST The character is interpreted as a read- macro character only when it is the rst
character seen after a break or separator character; in al other situations, the
character istreated as having class OTHER. The read- macro character is not a break
character. For example, the quote character is a FI RST read- macro character, so
that DON T is read as the single aaom DON T, rather than as DON followed by
(QUOTE T).

ALONE The read-macro character is not a break character, and is interpreted as a read-
macro character only when the character would have been read as a separate atom
if it were not a read- macro character, i.e, when its immediate neighbors are both
break or separator characters. For example, * is an ALONE read- macro character
in order to implement the comment pointer feature (see page 6.51).

Making a FI RST or ALONE read- macro character be a break character (with SETBRK) disables the
read- macro interpretation, i.e., converts it to syntax class BREAKCHAR. Making an ALWAYS read- macro
character be a bresk character is a no-op.

The following two disoint options control whether the read- macro character is to be protected by the
ESCAPE character on output:

ESCQUOTE or ESC The default. When printed with PRI N2, the read- macro character will be preceded
by the output escape character (%9.

NOESCQUOTE or NOESC
The read-macro character will be printed without an escape, eg., ' is a
NOESCQUOTE character. Unless you are very careful what you are doing, read-
macro characters in FI LERDTBL should never be NOESCQUOTE, since symbols
that happen to contain the read- macro character will not read back in correctly.

The following two digoint options control when the macro’s function is actually executed:

6.37

Read-Macros

| MVEDI ATE or | MVED
The read-macro character is immediately activated, i.e, the current line is
terminated, asif an EOL had been typed, a carriage-return line-feed is printed, and
the entire line (including the macro character) is passed to the input function.

| MVEDI ATE read- macro characters enable the user to specify a character that will
take eect immediately, as soon as it is encountered in the input, rather than
waiting for the line to be terminated. Note that this is not necessarily as soon as
the character is typed. Characters that cause action as soon as they are typed are
interrupt characters (see page 9.17).

Note that since an | MVEDI ATE macro causes any input before it to be sent to the
reader, characters typed before an | MVEDI ATE read- macro character cannot be
erased by control- A or control- Q once the | MVEDI ATE character has been typed,
since they have aready passed through the line buer. However, an | NFI X read
macro can till ater some of what has been typed earlier, via its third argument.

NONI MVEDI ATE or NONI MVED
The default. The read- macro character is a norma character with respect to the
line buering, and so will not be activated until a carriage-return or matching right
parenthesis or bracket is seen.

Making a read- macro character be both ALONE and | MVEDI ATE is a contradiction, since ALONE reguires
that the next character be input in order to see if it is a break or separator character. Thus, ALONE
read- macros are always NONI MVEDI ATE, regardless of whether or not | MVEDI ATE is speci ed.

Read- macro characters can be ‘‘nested’’. For example, if = isdened by
(MACRO (LAMBDA (FL RDTBL) (EVAL (READ FL RDTBL))))
and ! isdened by

(SPLI CE (LAMBDA (FL RDTBL) (READ FL RDTBL)))

then if the value of FOOis(A B C),and (X =FOO Y) isinput, (X (A B C) Y) will be returned. If
(X '=FOO V) isinput, (X A B C Y) will be returned.

If a read-macro’'s function calls READ, and the READ returns NI L, the function cannot distinguish the
case where a RI GHTPAREN or RI GHTBRACKET followed the read- macro character, (eg. ‘(A B ')'"),
from the case where the atom NI L (or ‘() ') actually appeared. Therefore, in Interlisp- 10, reading a
single RI GHTPAREN or RI GHTBRACKET via a READ inside of a read- macro function is disallowed. If this
occurs, the paren/bracket is put back into the input buer, and a READ- MACRO CONTEXT ERRCR is
generated. The following two functions are useful for avoiding this error:

(1 NREADMACROP) [Function]
Returns NI L if currently not under a read- macro function, otherwise the number
of unmatched left parentheses or brackets.

(SETREADMACROFLG FLG) [Function]
Resets the ‘‘read-macro’’ ag, i.e, the internal system ag that informs READ
that it is under a read macro function, and causes it to generate a READ- MACRO
CONTEXT ERROR, if an unmatched) or] is encountered. Returns the previous

6.38

INPUT/OUTPUT

value of the ag. The main use for this iswhen debugging read- macro functions: to
avoid spurious READ- MACRO CONTEXT error messages when typing into breaks,
the user can put (SETREADMACROFLG) on BREAKRESETFORMS (page 9.13).

The READ- MACRO CONTEXT error does not occur in Interlisp- D; a READ inside of a read- macro when
the next input character is a RI GHTPAREN or Rl GHTBRACKET eats the character and returns NI L, just
as if the READ had not occurred inside a read- macro.

If acal to READ from within a read- macro encounters an unmatched RI GHTBRACKET within a list, the
bracket is simply put back into the buer to be read (again) at the higher level. Thus, inputting an
expression such as (A B ' (C D] works correctly.

(READMACRCS FLG RDTBL) [Function]
If FLe= NI L, turns o action of read-macros. If FLG= T, turns them on. Returns
previous setting.

In Interlisp- D, turns o/on action of read- macros in readtable RDTBL .
The following read macros are standardly dened in Interlisp:

" (single-quote) Currently dened only in T and EDI TRDTBL . Returns the next expression, wrapped
in a cal to QUOTE; eg., ' FOO reads as (QUOTE FQOO) . The macro isdened as
a FI RST read macro, so that the quote character has no eect in the middle of a
symbol. The macro is also ignored if the quote character is immediately followed
by a separator character.

control -Y Dened in T and EDI TRDTBL . Returns the result of evaluating the next expression.
For example, if the value of FOO is (A B), then (LI ST 1 control-YFOO 2) is
reed as (1 (A B) 2), but note that no structure is copied; the CADR of that
input expression is still EQto the value of FOO. Control- Y can thus be used to read
structures that ordinarily have no read syntax. For example, the value returned
from reading (KEY1 control-Y(ARRAY 10)) has an array as its second element.
Control- Y can be thought of as an ‘‘un-quote’’ character. The choice of character
to perform this function is changeable with SETTERMCHARS (page 17.59).

* (back- quote) Back-quote makes it easier to write programs to construct complex data structures.

Back-quote is like quote, except that within the back-quoted expression, forms can
be evaluated. The general idea is that the back-quoted expression is a ‘‘template’”
containing some constant parts (as with a quoted form) and some parts to be lled
in by evaluating something.
Within the back-quoted expression, the character ‘‘, '’ (comma) introduces a form
to be evaluated. A form preceded by ‘', @' isto be spliced in, using APPEND, and
a form preceded by ‘, . "’ isto be spliced in, using NCONC. Unlike with control-Y,
however, the evaluation occurs not at the time the form is read, but at the time
the back-quoted expression is evaluated. That is, the back-quote macro returns an
expression which, when evaluated, produces the desired structure.

For example, if the value of FOOis(1 2 3 4), then the form ‘(A , (CAR FQOO)
, @CDDR FOO) D E) evaduatesto (A 1 3 4 D E); itislogicaly equivalent to
writing (CONS " A (CONS (CAR FQOO) (APPEND (CDDR FOO '(D E)))).
Back-quote is particularly useful for writing compiler macros. For example,

6.39

Terminal Tables

‘(COND
((FIXP , (CAR X))
, (CADR X))
(T ,@CDDR X)))

is equivalent to writing

(LI ST * COND
(LIST (LIST "FIXP (CAR X))
(CADR X))
(CONS * T (CDDR X)))

Note that comma does not have any specia meaning outside of a back-quote
context.

For users without a back-quote character on their keyboards, back-quote can also
be written as |’ (vertical-bar, quote). In Interlisp- D, back-quote is typed as
shift-linefeed.

? Dened in T and EDI TRDTBL. Implements the ?= command for on-line help
regarding the function currently being ‘‘caled’ in the typein (see page 9.5).

* Dened in FI LERDTBL only. Implements the comment pointer feature for saving
space by keeping the text of comments outside memory (page 6.51).

control - W Dened in T and EDI TRDTBL, Interlisp- 10 only. An | MVEDI ATE read macro that
deletes the previous expression. In Interlisp- D, control- W is an editing character
that deletes the previous ‘‘word’’.

| (vertical bar) When followed by ' (quote), is a synonym for back-quote; followed by certain
other characters, it is used by HPRI NT and HREAD to print and read in unusual
expressions; otherwise isignored, i.e., treated as a separator character, enabling the
editor's CHANGECHAR feature (page 6.55).

6.7 TERMINAL TABLES

A readtable contains input/output information that is media-independent. For example, the action of
parentheses is the same regardless of the device from which the input is being performed. A termina
table is an object that contains information that pertains to terminal input/output operations only, such
as the character to type to delete the last character or to delete the last line. In addition, terminal tables
contain such information as how line-buering is to be performed, how control characters are to be
echoed/printed, whether lower case input isto be converted to upper case, etc.

Using the functions below, the user may change, reset, or copy termina tables, or create a new terminal
table and install it asthe primary terminal table via SETTERMIABLE. However, unlike readtables, terminal
tables cannot be passed as arguments to input/output functions.

6.40

INPUT/OUTPUT

6.7.1 Terminal Table Functions

(TERMTABLEP TTBL) [Function]
Returns TTBL , if TTBL isarea terminal table, NI L otherwise.

(GETTERMTABLE TTBL) [Function]
If T7BL = NI L, returns the primary (i.e, current) terminal table. If TTBL is a
real termina table, return TTBL . Otherwise, generates an | LLEGAL TERM NAL
TABLE error.

(SETTERMTABLE TTBL) [Function]
Sets the primary terminal table to be TTBL . Returns the previous TTBL . Generates
an | LLEGAL TERM NAL TABLE eror if TTBL isnot area terminal table.

(COPYTERMTABLE TTBL) [Function]
Returns a copy of TTBL . TTBL can be a real termina table, NIL, or ORI G, in
which case it returns a copy of the original system terminal table. Note that
COPYTERMTABLE is the only function that creates a termina table.

(RESETTERMITABLE TTBL FROM) [Function]
Copies (smashes) FROM into TTBL . FROM and TTBL can be NI L or area terminal
table. In addition, FRov can be ORI G, meaning to use the system’s origina
termina table.

6.7.2 Terminal Syntax Classes

A terminal table associates with each character a single ‘‘terminal syntax class’, one of CHARDELETE,
LI NEDELETE, WORDDELETE (Interlisp- D only), RETYPE, CTRLV, ECQL, and NONE. Unlike readtable
classes, only one character in a particular terminal table can belong to each of the classes (except for the
default class NONE). When a new character is assigned one of these syntax classes by SETSYNTAX, the
previous character is disabled (i.e, reassigned the syntax class NONE), and the value of SETSYNTAX is the
code for the previous character of that class, if any, otherwise NI L.

The terminal syntax classes are interpreted as follows:

CHARDELETE or DELETECHAR
(Initially control- A under Tenex, del under Tops20, BackSpace in Interlisp- D)
Typing this character deletes the previous character typed. Repeated use of this
character deletes successive characters back to the beginning of the line.

LI NEDELETE or DELETELI NE
(Initially control- Q in Interlisp- 10 under Tenex and in Interlisp- D, control- U under
Tops20) Typing this character deletes the whole ling; it cannot be used repeatedly.

WORDDELETE (Interlisp- D only; initidly control- W) Typing this character deletes the previous
““‘word’’,i.e., sequence of non- separator characters.

RETYPE (Initially control- R) Causes the line to be retyped as Interlisp sees it (useful when
repeated deletions make it di cult to see what remains).

6.41

Terminal Control Functions

CTRLV or CNTRLV (Initialy control- V) When followed by A, B, Z, inputs the corresponding control
character control- A, control- B, control- Z. This allows interrupt characters to be
input without causing an interrupt.

ECQL On input from a terminal, the EOL character signals to the line buering routine
to pass the input back to the calling function. It also isused to terminate inputs to
READLI NE (page 8.30). In general, whenever the phrase carriage-return linefeed
is used, what is meant is the character with terminal syntax class EOL.

NONE The terminal syntax class of all other characters.

GETSYNTAX, SETSYNTAX, and SYNTAXP al work on termina tables as well as readtables (see page
6.34). When given NI L as a TABLE argument, GETSYNTAX and SYNTAXP use the primary readtable or
primary termina table depending on which table contains the indicated cLASS argument. For example,
(SETSYNTAX cH ' BREAK) refers to the primary readtable, and (SETSYNTAX cH ' CHARDELETE)
refers to the primary terminal table. In the absence of such information, al three functions default to the
primary readtable; e.g., (SETSYNTAX '{ ' %) refers to the primary read table. If given incompatible
cLAss and table arguments, al three functions generate errors. For example, (SETSYNTAX cH ' BREAK
TTBL), where TTBL is a terminal table, generates an | LLEGAL READTABLE error, and (GETSYNTAX
" CHARDELETE ROTBL) generates an | LLEGAL TERM NAL TABLE error.

6.7.3 Terminal Control Functions

(ECHOCONTROL CHAR MODE TTBL) [Function]
Used to indicate how control characters are to be echoed or printed. cHAR s
a character or character code. MoDE may be one of the atoms | GNORE, REAL,
S| MULATE, or | NDI CATE,® which specify how the control character should be

printed:

I GNORE CHAR is never printed.

REAL CHAR itself is printed; i.e, the raw control character is
sent to the terminal. Some terminals, particularly displays,
respond to certain control characters in interesting ways.

SI MULATE Output of cHAR is simulated. For example, control-1 (tab)
may be simulated by printing spaces. The simulation is
machine- speci ¢ and beyond the control of the user.

| NDI CATE CHAR is printed as ” followed by the corresponding al-

phabetic character.

The value of ECHOCONTRCL isthe previous output mode for cHAR . If MODE = NI L,
ECHOCONTROL returns the current output mode without changing it.

Note that although the name of this function suggests echoing only, it aects all
output of the control character, both echoing of input and printing of output.

SUPARROW s an obsolete synonym of | NDI CATE.

6.42

INPUT/OUTPUT

The two cannot be speci ed independently, which can lead to some trickiness in
DELETECONTROL messages (below).

In Interlisp- 10, echoing information can be speci ed only for control characters
(although all echoing can be disabled using ECHOMODE, below). Therefore, if cHaR
isan aphabetic character (or code), it refers to the corresponding control character,
e.g., (ECHOCONTRCL ' Z ' | NDI CATE) makes control-Z echo as ~Z. All other
values of CHAR generate | LLEGAL ARG errors. In Interlisp- D and Interlisp- VAX,
it is possible to specify echoing information for all characters, using the function
ECHOCHAR.

(ECHOCHAR CHAR CODE MODE TTBL) [Function]
(Interlisp- D, Interlisp- VAX only) Like ECHOCONTROL, but cHAR CODE must be a
character code, and can specify any character no coercions are performed. The
| NDI CATE mode for ‘‘meta’ characters, i.e, characters whose codes are in the
range 200Q through 377Q, causes the character to be printed following a #. For
example, meta- A would print as #A, meta- control- B as #"B.

CHAR CODE can aso be a list of characters, in which case ECHOCHAR is applied to
each of them with arguments MoDE and TTBL .

(ECHOMODE FLG TTBL) [Function]
If FLG= T, turns echoing for terminal table TTBL on. If FLG= NI L, turns echoing
0. Returns the previous setting.

(GETECHOMODE TTBL) [Function]
Returns the current echo mode for TTBL .

(DELETECONTRCOL TYPE MESSA GE TTBL) [Function]
Speci es the output protocol when a CHARDELETE or LI NEDELETE is typed. In
the case of character deletion, Interlisp- 10 isinitially set up for hardcopy terminals:
it echos the characters being deleted, preceding the rst by a\ and following the
last by a\, so that it is easy to see exactly what was deleted, viz., the characters
between the \’'s. Interlisp- D and Interlisp- VAX are initiadly set up to physicaly
erase the deleted characters from the display, backing up over them. The various
values of TYPE gpecify di erent phases of the deletion, as follows:

1STCHDEL MESSA GE isthe message printed the rst time CHARDELETE
is typed. Initially ‘\ "’ in Interlisp- 10.

NTHCHDEL MESSA GE isthe message printed on subsequent CHARDELETE's
(without intervening characters). Initially ‘“’’in Interlisp- 10.

POSTCHDEL MESSA GE is the message printed when input is resumed
following a sequence of one or more CHARDELETE' s.
Initially ‘\ " in Interlisp- 10.

EMPTYCHDEL MESSA GE is the message printed when a CHARDELETE is
typed and there are no characters in the buer. Initialy
“HHCT in Interlisp- 10.

ECHO The characters deleted by CHARDELETE are echoed. MESSA GE

6.43

Terminal Control Functions

is ignored.

NOECHO The characters deleted by CHARDELETE are not echoed
MESSA GE is ignored.

LI NEDELETE MESSA GE isthe message printed when LI NEDELETE charac-
ter istyped. Initially “##cr’,

Note: In Interlisp- 10, the LI NEDELETE, 1STCHDEL, NTHCHDEL , POSTCHDEL ,
and EMPTYCHDEL messages must be 4 characters or fewer in length.

DELETECONTROL returns the previous message as a string. If MESSA Gce= NI L,
the value returned is the previous message without changing it. For ECHO and
NOECHO, the value of DELETECONTRCL is the previous echo mode, i.e., ECHO or
NOECHO.

(GETDELETECONTROL TYPE TTBL) [Function]
Returns the current DELETECONTROL mode for TYPE in TTBL .

If the user's terminal is a display, DELETECONTROL and ECHOCONTROL can be used to make it really
delete the last character by performing the following:

(ECHOCONTROL 8 ' REAL)
8 is the code for control- H, which is backspace; we want the terminal to realy
backspace when we send "H.

(DELETECONTROL ' NCECHO
Do not echo the deleted characters.

(DELETECONTRCL ' 1STCHDEL "~H ~H')

(DELETECONTRCL ' NTHCHDEL "~H ~H')
Erase each character by backspacing over it, printing a space, then backspacing
again to put the carriage in the right place.

The following functions manipulate the RAI SE mode, which determines whether lower case characters
are converted to upper case when input from the terminal. (There currently isno ‘‘raise’ mode for input
from les)

(RAISE FLG TTBL) [Function]
Sets the RAI SE mode for terminal table TTBL . If FLG= NI L, all characters are
passed as typed. If FLG= T, input is echoed as typed, but lowercase letters are
converted to upper case. If FLG= O, input is converted to upper case before it is
echoed. Returns the previous setting.10

10In Interlisp- 10, both (RAI SE) and (RAI SE T) execute Tenex/Tops20 JSYS calls corresponding to the
Executive command NORAISE, while (RAI SE 0) executes the JSYS calls corresponding to the Executive
command RAISE. Thus with (RAI SE T), the conversion to uppercase is performed by Interlisp, while
with (RAI SE 0) the conversion is performed at the operating system level, i.e., before Interlisp- 10 even
sees the characters. The initial setting of RAI SE in Interlisp- 10 is determined by the terminal mode at
the time the user rst starts up the system. When a SYSQUT is started, the RAI SE mode is restored to
whatever it was prior to the SYSOUT.

6.44

INPUT/OUTPUT

(GETRAI SE TTBL) [Function]
Returns the current RAI SE mode for TTBL .

6.7.4 Line-Bu ering

Characters typed at the terminal are stored in two bu ers before they are passed to an input function. All
characters typed in are put into the low-level ‘‘system buer’’, which alows type-ahead. When an input
function is entered, characters are transferred to the ‘‘line buer’” until a character with termina syntax
class EQL appears (or, for calls from READ, when the count of unbalanced open parentheses reaches 0).11
Until this time, the user can delete characters one at a time from the line buer by typing the current
CHARDELETE character, or delete the entire line buer back to the last carriage-return by typing the
current LI NEDELETE.

Note that this line editing is not performed by READ or RATOM, but by Interlisp, i.e., it does not matter
(nor is it necessarily known) which function will ultimately process the characters, only that they are till
in the Interlisp line buer. However, the function that is requesting input at the time the buering starts
does determine whether parentheses counting is observed. For example, if a program performs (PROGN
(RATOM (READ)) and the user types in “A (B C D) ', the user must type in the carriage-return
following the right parenthesis before any action is taken, because the line buering is happening under
RATOM If the program had performed (PROGN (READ) (READ)), the line-buering would be under
READ, so that the right parenthesis would terminate line buering, and no terminating carriage- return
would be required.

Once a carriage- return has been typed, the entire line is‘‘available’’ even if not al of it is processed by the
function initiating the request for input. If any characters are ‘‘left over’’, they are returned immediately
on the next request for input. For example, (LI ST (RATOM (READC) (RATOM) when the input is
“A B¢ returns the three- element list (A % B) and leaves the carriage-return in the buer.

If a carriage-return is typed when the input under READ is not ‘‘complete’’ (the parentheses are not
balanced or a string is in progress), line buering continues, but the lines completed so far are not
available for editing with CHARDELETE or LI NEDELETE.

The function CONTRCL is available to defeat line-bu ering:

(CONTROL MoDE TTBL) [Function]
If MDE = T, eliminates Interlisp’s normal line-bu ering for the termina table TTBL .
If MoDE = NI L, restores line-buering (normal). When operating with a terminal
table in which (CONTROL T) has been performed, characters are returned to the
calling function without line-buering as described below.

CONTROL returns its previous setting.

(GETCONTROL TTBL) [Function]
Returns the current control mode for TTBL .

The function that initiates the reguest for input determines how the line is treated when (CONTROL T)
isin eect:

11PEEKC is an exception; it returns the character immediately when its second argument is NI L.

6.45

READ

RATOM

READC or PEEKC

Line-Bu ering

If the expression being typed is a list, the eect isthe same as though done with
(CONTROL NI'L),i.e, line-buering continues until a carriage-return or matching
parentheses. If the expression being typed is not a list, it is returned as soon
as a break or separator character is encountered, e.g., (READ) when the input
is “‘ABC<space>"" immediately returns ABC. CHARDELETE and LI NEDELETE are
available on those characters till in the buer. Thus, if a program is performing
several reads under (CONTROL T), and the user types “‘NOW IS THE TI ME”
followed by control- Q, only Tl ME is deleted, since the rest of the line has aready
been transmitted to READ and processed.

An exception to the above occurs when the break or separator character is an
opening parenthesis, bracket or double- quote, since returning at this point would
leave the line buer in a‘‘funny”’ state. Thus if the input to (READ) is “‘ABC(",
the ABC is not read until a carriage-return or matching parentheses is encountered.

In this case the user could LI NEDELETE the entire line, since al of the characters
are till in the buer.

Characters are returned as soon as a break or separator character is encountered.
Until then, LI NEDELETE and CHARDELETE may be used as with READ. For
example, (RATOM) followed by ‘‘ABC<control- A><space>"’ returns AB. (RATOM)
followed by *‘(<control-A>"" returns (and types ## indicating that control- A was
attempted with nothing in the buer, since the (is a break character and would
therefore aready have been read.

The character is returned immediately; no line editing is possible. In particular,
(READC) is perfectly happy to return the CHARDELETE or LI NEDELETE
characters, or the ESCAPE character (%).

The system buer and line buer can be directly manipulated using the following functions.

(CLEARBUF FILE FLG) [Function]

(SYSBUF FLG)

Clears the input buer for FILE. If FILEiST and FLG iS T, the contents of Interlisp’s
system buer and line buer are saved (and can be obtained via SYSBUF and
LI NBUF described below).

When control-D or control- E is typed, or any of the interrupt characters that
require terminal interaction is typed (control-H, control- P, or control- S), Interlisp
automatically performs (CLEARBUF T T). For control- P, control- S, and, when
the break is exited normally, control-H, Interlisp restores the buer after the
interaction.

The action of (CLEARBUF T), i.e, clearing of typeahead, is aso available as the
RUBQUT interrupt character, initially assigned to the del key in Interlisp- D and in
Interlisp- 10 under Tenex, control- Z under Tops20. Note that this interrupt clears
both buers at the time it is typed, whereas the action of the CHARDELETE and
LI NEDELETE character occur at the time they are read.

[Function]

If FLG= T, returns the contents of the system buer (as a string) that was saved at
the last (CLEARBUF T T). If FLG= NI L, clears this interna bu er.

6.46

INPUT/OUTPUT

(LI NBUF FLG) [Function]
Same as SYSBUF for the line buer .

If both the system buer and Interlisp’s line buer are empty, the internal buers associated with LI NBUF
and SYSBUF are not changed by a (CLEARBUF T T).

(BKSYSBUF X FLG RDTBL) [Function]
BKSYSBUF sets the system buer to the PRI N1-name of X. The eect isthe same
as though the user typed x. Some implementations have a limit on the length of
X, in which case characters in X beyond the limit are ignored. Returns X.

If FLG is T, then the PRI N2-name of X is used, computed with respect to the
readtable RDTBL .

Note that if the user istyping at the same time as the BKSYSBUF isbeing performed,
the relative order of the type-in and the characters of x is unpredictable.

Compatibility note: Some implementations of BKSYSBUF (Interlisp- 10) use a
“‘system’” buer, from which keyboard interrupts are also processed. In this
case, BKSYSBUF of an interrupt character actually invokes the interrupt at some
(asynchronous) time after the BKSYSBUF is initiated. In other implementations
(Interlisp- D), the characters are not processed for interrupts, and it is possible to
BKSYSBUF characters which would otherwise be impossible to type.

(BKLI NBUF STR) [Function]
STR isastring. BKLI NBUF sets Interlisp’s line buer to STR. Some implementations
have a limit on the length of STR, in which case characters in STR beyond the
limit are ignored. Returns STR.

BKLI NBUF, BKSYSBUF, LI NBUF, and SYSBUF provide a way of ‘‘undoing’’ a CLEARBUF. Thus to
“‘peek’’ a various characters in the buer, one could perform (CLEARBUF T T), examine the buers
via LI NBUF and SYSBUF, and then put them back.

The more common use of these functions isin saving and restoring typeahead when a program requires
some unanticipated (from the user’s standpoint) input. The function RESETBUFS provides a convenient
way of simply clearing the input buer, performing an interaction with the user, and then restoring the
input bu er.

(RESETBUFS FORM ; FORM FORM y) [NLambda NoSpread Function]
Clears any typeahead (ringing the terminal’s bell if there was, indeed, typeahead),
evaluates FORM 4, FORM ,, FORM p;, then restores the typeahead. Returns the
value of ForRm . Compiles open.

6.8 PRETTYPRINT

The standard way of printing out function denitions (on the terminal or into les) isto use PRETTYPRI NT.

(PRETTYPRI NT FNS PRETTYDEFL G _) [Function]
FNS is a list of functions. If FNS is atomic, its value is used). The denitions of

6.47

Prettyprint

the functions are printed in a pretty format on the primary output le using the
primary readtable. For example, if FACTORI AL were dened by typing

(DEFI NEQ (FACTORI AL [LAVBDA (N) (COND ((ZEROP N) 1)
(T (I1TIMES N (FACTORI AL (SUBL N|

(PRETTYPRI NT ’ (FACTORI AL)) would print out

(FACTORI AL
[LAVBDA (N)
(COND
((ZERCP N)
1)
(T (I1TIMES N (FACTORIAL (SUBL N])

PRETTYDEFL G isT when caled from PRETTYDEF (and hence MAKEFI LE). Among
other actions taken when this argument istrue, PRETTYPRI NT indicates its progress
in writing the current output le: whenever it starts a new function, it prints on
the terminal the name of that function if more than 30 seconds (real time) have
elapsed since the last time it printed the name of a function.

PRETTYPRI NT operates correctly on functions that are BROKEN, BROKEN- | N, ADVI SED, or have been
compiled with their denitions saved on their property lists: it prints the original, pristine denition, but
does not change the current state of the function. If a function is not dened but is known to be on
one of the les noticed by the le package, PRETTYPRI NT loads in the denition (using LOADFNS) and
prints it (except when called from PRETTYDEF). If PRETTYPRI NT is given an atom which is not the
name of afunction, but has a value, it prettyprints the value. Otherwise, PRETTYPRI NT attempts spelling
correction. If al fails, PRETTYPRI NT returns (FN NOT PRI NTABLE) .

(PP FN4 FNp) [NLambda NoSpread Function]
For prettyprinting functions to the terminal. PP cals PRETTYPRI NT with the
primary output le set to T and the primary read table set to T. The primary
output le and primary readtable are restored after printing.

(PP FOO) is equivalent to (PRETTYPRINT ' (FOO)); (PP FOO FIE) is
equivalent to (PRETTYPRI NT ’ (FOO FIE)).

As described above, when PRETTYPRI NT, and hence PP, is called with the name of a function that is
not dened, but whose denition ison a le known to the le package, the denition is automatically
read in and then prettyprinted. However, if the user does not intend on editing or running the de nition,
but simply wants to see the denition, the function PF described below can be used to simply copy the
corresponding characters from the le to the terminal. This results in a savings in both space and time,
since it is not necessary to allocate storage to actually read in the denition, and it is not necessary to
re-prettyprint it (since the function is aready in prettyprint format on the le).

(PF FN FROWILES TOFILE) [NLambda NoSpread Function]
Copies the denition of FN found on each of the les in FROWILES to TOFILE .
If ToFiLE = NI L, defaults to T. If FROWILES = NI L, defaults to (WHEREI S FN
NIL T) (see page 11.10). The typica usage of PF is simply to type “PF FN’’.

When printing to the terminal, PF performs several transformations on the characters in the le that
comprise the denition for FN: (1) font information (page 6.55) is stripped out (except in Interlisp- D,

6.48

INPUT/OUTPUT

whose display supports multiple fonts); (2) occurrences of the CHANGECHAR (page 6.55) are not printed;
(3) since functions typicaly tend to be printed to a le with a larger linelength than when printing to
a terminal, the number of leading spaces on each line is cut in haf;12 and (4) comments are elided, if
** COVMENT* * FLG is non- NI L (see page 6.50).

While the function PRETTYPRI NT prints entire function denitions, the function PRI NTDEF can be used
to print parts of functions, or arbitrary Interlisp structures:

(PRI NTDEF EXPR LEFT DEF TAILFLG FNSLST FILE) [Function]
Prints the expression EXPR in a pretty format on FI LE using the primary readtable.
LEFT isthe left hand margin (LI NELENGTH determines the right hand margin.) 13

DEF = T means EXPR is a function denition, or a piece of one. If DEF= NI L,
no special action is taken for LAMBDA's, PROG's, COND's, comments, CLISP, etc.
DEF iSNI L when PRETTYDEF calls PRETTYPRI NT to print variables and property
lists, and when PRI NTDEF is called from the editor via the command PPV.

TAILFLG= T means EXPR is interpreted as a tail of a list, to be printed without
parentheses.

FNSLST isfor use with the Font package (page 6.55). PRI NTDEF prints occurrences
of any function in the list FNSLST in a di erent font, for emphasis. MAKEFI LE
passes as FNSLST the list of al functions on the le being made.

6.8.1 Comment Feature

A facility for annotating Interlisp functions is provided in PRETTYPRI NT. Any expression beginning with
the atom * isinterpreted as a comment and printed in the right margin. Example:

(FACTORI AL
[LAVMBDA (N) (* COVPUTES NI)
(COND
((Z)EROP N) (* 0!=1)
1
(T (* RECURSI VE DEFI NI TI ON:

NI =N¢N- 1)
(ITIMES N (FACTORIAL (SUBL N])

These comments actually form a part of the function denition. Accordingly, * isdened asan nlambda
nospread function that returns its argument, similar to QUOTE. When running an interpreted function, * is
entered the same as any other Interlisp function. Therefore, comments should only be placed where they
will not harm the computation, i.e., where a quoted expression could be placed. For example, writing

(ITIMES N (FACTORIAL (SUBL N)) (* RECURSIVE DEFI NI TION))

12Unless PFDEFAULT is T. PFDEFAULT is initially NI L.

13PRI NTDEF initially performs (TAB LEFT T), which means to space to position LEFT , unless already
beyond this position, in which case it does nothing.

6.49

Comment Feature

in the above function would cause an error when | TI MES attempted to multiply N, N- 1! , and RECURSI VE.

For compilation purposes, * isdened asamacro which compiles into no instructions (unless the comment
has been placed where it has been used for value, in which case the compiler prints an appropriate error
message and compiles * as QUOTE). Thus, the compiled form of a function with comments does not use
the extra atom and list structure storage required by the comments in the source (interpreted) code. This
is the way the comment feature is intended to be used.

A comment of the form (* E X) causes x to be evaluated at prettyprint time, as well as printed as a
comment in the usual way. For example, (* E (RADI X 8)) as a comment in a function containing
octal numbers can be used to change the radix to produce more readable printout.

The comment character * is stored in the variable COMWENTFLG. The user can set it to some other value,

eg. ' " ,and use this to indicate comments.

COMMENTFLG [Variable]
If CAR of an expression is EQ to COVWENTFLG, the expression is treated as a
comment by PRETTYPRI NT. COWWENTFLG is initidlized to *. Note that whatever
atom ischosen for COMVENTFLG should also have an appropriate function de nition
and compiler macro, for example, by copying those of *.

Comments are designed mainly for documenting listings. Therefore, when prettyprinting to the terminal,
comments are suppressed and printed as the string ** COMVENT** . The value of ** COVWENT** FLG
determines the action.

** COMMVENT* * FLG [Variable]
If ** COMMENT**FLG is NI L, comments are printed. Otherwise, the value of
** COMMENT* * FLG is printed. Initidly " ** COMMVENT** ",

The functions PP* and PF* are provided to easily print functions, including their comments.

(PP* Xx) [NLambda NoSpread Function]
PP* operates exactly like PP except it rst sets ** COMMENT**FLG to NI L, so
comments are printed in full.

(PF* FN FROWILES TOFILE) [NLambda NoSpread Function]
PF* operates exactly like PF except it rst sets ** COMWENT**FLG to NI L, so
comments are printed in full.

(COMMENTL L _) [Function]
Prints the comment L. COMVENTL is a separate function 14 to permit the user to
write prettyprint macros (page 6.54) that use the regular comment printer. For
example, to cause comments to be printed at a larger than normal linelength, one
could put an entry for * on PRETTYPRI NTMACRCS:

(* LAVBDA (X) (RESETFORM (LI NELENGTH 100) (COMMENTL X)))

14COVMENT1 is an entry to the PRETTYPRI NT block. However, it is called internally by PRETTYPRI NT
so that advising or redening it will not aect the action of PRETTYPRI NT. COMVENT1 should not be
called when not under a PRI NTDEF.

6.50

INPUT/OUTPUT

This macro resets the line length, prints the comment, and then restores the line
length.

COWMENT1 expects to be caled from within the environment established by
PRI NTDEF, so ordinarily the user should cal it only from within prettyprint macros.

6.8.2 Comment Pointers

For a well-commented collection of programs, the list structure, atom, and pname storage required to
represent the comments in core can be signi cant. If the comments aready appear on a le and are
not needed for editing, a signi cant savings in storage can be achieved by simply leaving the text of the
comment on the le when the le isloaded, and instead retaining in core only a pointer to the comment.
This feature has been implemented by dening * as a read-macro in FI LERDTBL which, instead of
reading in the entire text of the comment, constructs an expression containing (1) the name of the le in
which the text of the comment is contained, (2) the address of the rst character of the comment, (3) the
number of characters in the comment, and (4) a ag indicating whether the comment appeared at the right
hand margin or centered on the page. For output purposes, * isdened on PRETTYPRI NTMACROS (page
6.54) so that it prints the comments represented by such pointers by simply copying the corresponding
characters from one le to another, or to the termina. Norma comments are processed the same as
before, and can be intermixed freely with comment pointers.

The comment pointer feature is controlled by the value of NORMALCOMVENTSFLG.

NORMAL COWWENTSFLG [Variable]
The comment pointer feature isenabled by setting NORMALCOWMMENTSFLG to NI L.

NORMALCOMMVENTSFLG s initially T.

NORMALCOVMENTSFLG can be changed as often as desired. Thus, some les can be
loaded normally, and others with their comments converted to comment pointers.

For convenience of editing selected comments, an edit macro, GET*, is included, which loads in the
text of the corresponding comment. The editor's PP* command, in contrast, prints the comment without
reading it by simply copying the corresponding characters to the terminal. GET* isdened in terms of
GETCOMMENT :

(GETCOMMVENT X DESTFL _) [Function]
If X isacomment pointer, replaces x with the actual text of the comment, which
it reads from its le. Returns x in al cases. If DESTFL is non-NI L, it is the
name of an open le, to which GETCOMVENT copies the comment; in this case,
X remains a comment pointer, but it has been changed to point to the new le
(unless NORVALCOMMVENTSFLG = DONTUPDATE).

(PRI NTCOVMENT X) [Function]
Dened as the prettyprint macro for *: copies the comment to the primary output
le by using GETCOMVENT .

(READCOMIVENT FL RDTBL LST) [Function]
Dened asthe read macro for * in FI LERDTBL : if NORVALCOMMVENTSFLG isNI L,

6.51

Converting Commentsto Lower Case

it constructs a comment pointer. 15

Note that a certain amount of care isrequired in using the comment pointer feature. Since the text of the
comment resides on the le pointed to by the comment pointer, that le must remain in existence as long
as the comment is needed. GETCOMVENT helps out by changing the comment pointer to always point
at the most recent le that the comment lives on. However, if the user has been performing repeated
MAKEFI LE’s (page 11.6) in which di ering functions have changed at each invocation of MAKEFI LE, it is
possible for the comment pointers in memory to be pointing at several versions of the same le, since a
comment pointer isonly updated when the function it lives in is prettyprinted, not when the function has
been copied verbatim to the new le. This can be a problem for le systems, such as Tenex and Tops20,
that have a built-in limit on the number of versions of a given le that will be made before old versions
are expunged. In such a case, the user should set the version retention count of any directories involved
to be innite. GETCOMMENT prints an error message if the le that the comment pointer points at has
disappeared.

Similarly, one should be cognizant of comment pointers in SYSOUTSs, and be sure to retain any les thus
pointed to.

When using comment pointers, the user should also not set PRETTYFLG (page 6.54) to NI L or cal
MAKEFI LE with option FAST, since this will prevent functions from being prettyprinted, and hence not
get the text of the comment copied into the new le.

If the user changes the value of COMMENTFLG but still wishes to use the comment pointer festure,
the new COMMVENTFLG should be given the same read- macro denition in FI LERDTBL as * has, and
the same entry be put on PRETTYPRI NTMACRCS. For example, if COVMENTFLG is reset to be ‘"',
then (SETSYNTAX '; '* FILERDTBL) should be performed, and (; . PRI NTCOMVENT) added to
PRETTYPRI NTMACRCS .

6.8.3 Converting Commentsto Lower Case

This section is for users operating on terminals without lower case, eg. model 33 teletypes, who
nevertheless would like their comments to be converted to lower case for more readable line-printer
listings. If the second atom in a comment is %84 the text of the comment is converted to lower case so
that it looks like English instead of LISP. Note that comments are converted only when they are actually
written to a le by PRETTYPRI NT.

The agorithm for conversion to lower case is the following: If the rst character in an atom is”, do not
change the atom (but remove the 7). If the rst character is % convert the atom to lower case.16 If the
atom (minus any trailing punctuation marks) is an Interlisp word,1” do not change it. Otherwise, convert
the atom to lower case. Conversion only aects the upper case alphabet, i.e, atoms aready converted
to lower case are not changed if the comment is converted again. When converting, the rst character
in the comment and the rst character following each period are left capitalized. After conversion, the
comment is physically modi ed to be the lower case text minus the %86 ag, so that conversion is thus

15Unless it believes the expression beginning with * is not actually a comment, e.g., if the next atom is

hor E
16User must type %%bas %is the escape character.

17i.e., isabound or free variable for the function containing the comment, or has atop level value, or is
adened function, or has a non-NI L property list.

6.52

INPUT/OUTPUT

only performed once (unless the user edits the comment inserting additional upper case text and another

%% ag).

LCASELST

UCASELST

ABBREVLST

[Variable]
Words on LCASELST will aways be converted to lower case. LCASELST is
initialized to contain words which are Interlisp functions but also appear frequently
in comments as English words (AND, EVERY, GET, GO, LAST, LENGTH, LI ST, etc.).
Therefore, if one wished to type a comment including the lisp fuction GO, it would
be necessary to type ~GO in order that it might be left in upper case.

[Variable]
Words on UCASELST (that do not appear on LCASELST) will be left in upper
case. UCASELST s initialized to NI L.

[Variable]
ABBREVLST is used to distinguish between abbreviations and words that end in
periods. Normally, words that end in periods and occur more than halfway to the
right margin cause carriage-returns. Furthermore, during conversion to lowercase,
words ending in periods, except for those on ABBREVLST, cause the rst character
in the next word to be capitalized. ABBREVLST is initialized to the upper and
lower case forms of ETC. , | .E.,and E. G .

6.84 Special Prettyprint Controls

PRETTYTABFLG

#RPARS

FI RSTCOL

PRETTYLCOM

#CAREFULCOLUWNS

[Variable]
In order to save space on les, tabs are used instead of spaces for the inital spaces
on each line, assuming that each tab corresponds to 8 spaces. This results in a
reduction of le size by about 30%. Tabs are not used if PRETTYTABFLG is set to
NI L (initidly T).

[Variable]
Controls the number of right parentheses necessary for square bracketing to
occur. If #RPARS= NI L, no brackets are used. #RPARS is initialized to 4.

[Variable]
The starting column for comments. Initial setting is 48. Comments run between
FI RSTCOL and LI NELENGTH. If a word in a comment ends with a ‘. "’ and

is not on the list ABBREVLST, and the position is greater than hafway between
FI RSTCOL and LI NELENGTH, the next word in the comment begins on a new
line. Also, if alist is encountered in a comment, and the position is greater than
halfway, the list begins on a new line.

[Variable]
If a comment is bigger (using COUNT) than PRETTYLCOM in size, it is printed
starting at column 10, instead of FI RSTCOL. PRETTYLCOM is initidlized to 14
(arrived at empirically). Comments are also printed starting at column 10 if their
second element isaso a*, i.e, comments of the form (* * --).

[Variable]
In the interests of eciency, PRETTYPRI NT approximates the number of characters

6.53

Special Prettyprint Controls

in each atom, rather than calling NCHARS, when computing how much will t on
a line. This procedure works satisfactorily in most cases. However, users with
unusually long atoms in their programs, e.g., such as produced by CLI SPI FY, may
occasionlly encounter some glitches in the output produced by PRETTYPRI NT. The
vaue of #CAREFULCOLUWNS tells PRETTYPRI NT how many columns (counting
from the right hand margin) in which to actualy compute NCHARS instead of
approximating. Setting #CAREFULCOLUMWNS to 20 or 30 will eliminate the glitches,
although it will slow down PRETTYPRI NT dlightly. #CAREFULCOLUMNS isinitially
0.

(W DEPAPER FLG) [Function]
(W DEPAPER T) setsFI LELI NELENGTH to 120, FI RSTCOL to 80, and PRETTYLCOM
to 28. These are useful settings for prettyprinting les to be listed on wide paper.
(W DEPAPER) restores these parameters to their initiadl values. The vaue of
W DEPAPER is its previous setting.

PRETTYFLG [Variable]
If PRETTYFLG is NI L, PRI NTDEF uses PRI N2 instead of prettyprinting. This is
useful for producing a fast symbolic dump (see FAST option of MAKEFI LE, page
11.6). Note that the le loads the same as if it were prettyprinted. PRETTYFLG is
initially set to T. PRETTYFLG should not be set to NI L if comment pointers (page
6.51) are being used.

CLI SPI FYPRETTYFLG [Variable]
Used to inform PRETTYPRI NT to cal CLI SPI FY on selected function de nitions
before printing them (see page 16.20).

PRETTYPRI NTMACRCS [Variable]
An association- list that enables the user to control the formatting of selected
expressions. CAR of each expression being PRETTYPRI NTed is looked up on
PRETTYPRI NTMACRCS, and if found, CDR of the corresponding entry is applied
to the expression. If the result of this application is NI L, PRETTYPRI NT ignores
the expression; i.e, it prints nothing, assuming that the prettyprintmacro has
done any desired printing. If the result of applying the prettyprint macro is
non-NI L, the result is prettyprinted in the normal fashion. This gives the user
the option of computing some other expression to be prettyprinted in its place.
PRETTYPRI NTMACROS s initially NI L.

Note: “‘prettyprinted in the normal fashion’’ includes processing prettyprint macros,
unless the prettyprint macro returns a structure EQ to the one it was handed, in
which case the potential recursion is broken.

PRETTYPRI NTYPEMACROS [Variable]
A list of elements of the form (TYPENAME . FN). For types other than lists
and atoms, the type name of each datum to be prettyprinted is looked up on
PRETTYPRI NTYPEMACROS, and if found, the corresponding function is applied
to the datum about to be printed, instead of simply printing it with PRI N2.
PRETTYPRI NTYPEMACRCS s initially NI L.

PRETTYEQUI VLST [Variable]
An association- list that tells PRETTYPRI NT to treat a CAR-of-form the same
as some other CAR-of-form. For example, if (QLAMBDA . LANMBDA) appears

6.54

INPUT/OUTPUT

on PRETTYEQUI VLST, then expressions beginning with QLAMBDA are pret-
typrinted the same as LAMBDAs. PRETTYEQUI VLST s initially NI L. Currently,
PRETTYEQUI VLST only alows (i.e., supports in an interesting way) equiv alences
to forms that PRETTYPRI NT internaly handles. Equivalence to forms for which
the user has speci ed a prettyprint macro should be made by adding further entries
to PRETTYPRI NTMACROS

CHANGECHAR [Variable]
If non-NI L, and PRETTYPRI NT isprinting to a le or display terminal, PRETTYPRI NT
prints CHANGECHAR in the right hand margin while printing those expressions
marked by the editor as having been changed (see page 17.22). CHANGECHAR is
initialy | .

6.8.5 Font Package

PRETTYPRI NT contains afacility for printing elements of various classes (user functions, system functions,
clisp words, comments, etc.) in di erent fonts to emphasize (or deemphasize) their importance, and in
general to provide for more pleasing printout when printing to a le. Of course, in order to be useful,
this facility requires that the user has access to a printer which supports multiple fonts, such as an XGP.

Prettyprint signals font changes by inserting a user-dened escape sequence, e.g. “F"C meaning change
to font 3, "F*A change back to font 1, etc. It is convenient if these sequences can consist of control
characters, because by making these characters be separator charactors in FI LERDTBL, a le with font
changes in it can also be loaded back in. Otherwise, the user would have to dump two les, one for
listing, and one for loading.

Currently, the user can specify fonts for each of the following eight classes, each di erent, or the same
for several classes.

L AVBDAFONT The font for printing the name of the function being prettyprinted, before the
actual denition (usualy a large font).

CLI SPFONT If CLI SPFLG ison, the font for printing any clisp words, i.e. atoms with property
CLI SPWORD.

COVIVENTFONT The font for everything inside of a comment.

USERFONT The font for the name of any function in the le, or any member of the list
FONTFNS.

SYSTEMFONT The font for any other (dened) function.

CHANGEFONT The font for anything in an expression marked by the editor as having been
changed.

PRETTYCOVFONT The font used in printing the operand of a le package command.

DEFAULTFONT The font for everything else, or any of the above classes for which a font is not
speci ed.

Note: the output primitives PRI NT, PRI N1, etc., currently do not know about variable width fonts, so

6.55

Font Package

the user may have to experiment to nd a compatible (pleasing) set of fonts. Note also that the user does
not set LAMBDAFONT, CLI SPFONT, et a, but indicates what font to be used by including an appropriate
entry in FONTPROFI LE. FONTSET will then set LAMBDAFONT, CLI SPFONT, et al, to a data structure
that contains the necessary information for performing the font change.

FONTPROFI LE [Variable]
A list of elements of the form (FoNTcLASS NI L FONT) ,18 where FONTCLASS
is one of the eight font classes and FONT q isthe font number for that class. it is
assumed that the user has some way of communicating to the printing device the
correspondence between font numbers and fonts. For each fontclass, the escape
sequence consists of FONTESCAPECHAR followed by the character code for the
font number, i.e. for font humber 1, *A, for font humber 2, "B, etc.

If FONT g is NIL for any fontclass, the DEFAULTFONT is used. Note that the
DEFAULTFONT must be speci ed or an error is generated.

The operation of the font package is aected by alarge number of parameters, e.g. FI LELI NELENGTH,
LI STFI LESTR, etc. plus the various fontnames themselves. To facilitate switching back and forth between
various congurations, the font package alows the user to set the various parameters to their desired
values, and then use the function FONTNAME to package up and save this conguration. Subsequently,
the user invokes this conguration by performing (FONTSET NAME).

Note that the user may also want to reset FI LELI NELENGTH (page 23.14), PRETTYLCOM (page 6.53),
and FI RSTCOL (page 6.53) as a part of various font con gurations.

(FONTNAME NaMveE) [Function]
Performs some processing on FONTPROFI LE, and then collects names and values
of variables on FONTDEFSVARS, and saves them on FONTDEFS.

(FONTSET Nanve) [Function]
Restores font conguration for NaVE . Generates an error if NAME not previously
de ned.

FONTDEFSVARS [Variable]

The list of variables to be packaged by a FONTNAME. Initially FONTCHANGEFLG,
FI LELI NELENGTH, COMVENTLI NELENGTH, FI RSTCOL, PRETTYLCOM, LI STFI LESTR,
and FONTPROFI LE.

FONTESCAPECHAR [Variable]
The character or string used to signal the start of a font escape sequence.

FONTCHANGEFLG [Variable]
If T, enables fonts, if NI L, disables fonts, i.e. no font changes are performed when
prettyprinting.

18The NIL is a place marker. FONTNAME replaces (RPLACA) CADR when the font conguration is
de ned.

6.56

INPUT/OUTPUT

LI STFI LESTR [Variable]
Passed to the operating system by LI STFI LES (page 11.9). Can be used to specify
subcommands to the LI ST command, eg. to establish correspondance between
font number and font name.

COVMVENTLI NELENGTH [Variable]
Since comments are usually printed in a smaller font, COMVENTLI NELENGTH is
provided to oset the fact that Interlisp does not know about font widths. When
FONTCHANGEFLG= T, CAR of COMVENTLI NELENGTH is the linelength used to
print short comments, i.e. those printed in the right margin, and CDR is the
linelength used when printing full width comments.

(CHANGEFONT FONTCLASS) [Function]
Prints the font escape sequence to change to FONTCLASS . Note that FONTCLASS
is not a font name, so one should use (CHANGEFONT LANMBDAFONT) , not
(CHANGEFONT ' LAMBDAFONT). For use in PRETTYPRI NTMACROS.

FONTDEFS [Variable]
The dictionary of font congurations. FONTDEFS is a list of elements of form
(NAME . PARAMETER- PAIRS). To save aconguration on a le after performing

a FONTNAME to dene it, the user could either save the entire value of FONTDEFS,
or simply use an ALI STS le package command (page 11.23) to dump out just the
one con guration.

6.9 ASKUSER

DWIM, the compiler, the editor, and many other system packages all use ASKUSER, an extremely genera
user interaction package, for their interactions with the user at the terminal. ASKUSER takes as its principal
argument KeyLST which is used to drive the interaction. KEYLST speci es what the user can type at
any given point, how ASKUSER should respond to the various inputs, what value should be returned by
ASKUSER, and is also used to present the user at any given point with a list of the possible responses.
ASKUSER also takes other arguments which permit specifying a wait time, a default value, a message
to be printed on entry, a ag indicating whether or not typeahead is to be permitted, a ag indicating
whether the transaction is to be stored on the history list (page 8.1), a default set of options, and an
(optional) input le/string.

6.9.1 Startup Protocol

Interlisp permits and encourages the user to typeahead; in actual practice, the user frequently does this.
This presents a problem for ASKUSER. When ASKUSER is entered and there has been typeshead, was
the input intended for ASKUSER, or was the interaction unanticipated, and the user simply typing ahead
to some other program, eg. the programmer’'s assistant? Even where there was no typeahead, i.e., the
user starts typing after the call to ASKUSER, the question remains of whether the user had time to see
the message from ASKUSER and react to it, or simply began typing ahead at an inauspicious moment.
Thus, what is needed is an interlock mechanism which warns the user to stop typing, gives him a chance
to respond to the warning, and then alows him to begin typing to ASKUSER.

6.57

Startup Protocol

Therefore, when ASKUSER is rst entered, and the interaction is to take place with a terminal, and
typeahead to ASKUSER is not permitted, the following protocol is observed:

(1) If there is typeahead, ASKUSER clears and saves the input buers and rings the bell to warn the user
to stop typing. The buers will be restored when ASKUSER completes operation and returns.

(2) If MESS , the message to be printed on entry, isnot NI L (the typical case), ASKUSER then prints MESS
if it isa string, otherwise CAR of MESS , if MESS is a list.

(3) After printing MESS or CAR of MESS , ASKUSER waits until the output has actually been printed on the
termina to make sure that the user has actually had a chance to see the output. This also give the user
a chance to react. ASKUSER then checks to see if anything additional has been typed in the intervening
period since it rst warned the user in (1). If something has been typed, ASKUSER clears it out and
again rings the bell. This latter material, i.e., that typed between the entry to ASKUSER and this point,
is discarded and will not be restored since it is not certain whether the user simply reacted quickly to
the rst warning (bell) and this input is intended for ASKUSER, or whether the user was in the process
of typing ahead when the call to ASKUSER occurred, and did not stop typing at the rst warning, and
therefore this input is a continuation of input intended for another program.

Anything typed after (3) is considered to be intended for ASKUSER, i.e., once the user sees MESS or CAR
of MESs, he is free to respond. For example, UNDO (page 8.11) calls ASKUSER when the number
of undosaves are exceeded for an event with MESS = (LI ST NUMBER- UNDOSA VES "undosaves,

continue saving"). Thus, the user can type a response as Soon as NUMBER- UNDOSA VES is typed.

(4) ASKUSER then types the rest of MESS, if any.

(5) Then ASKUSER goes into a wait loop until something is typed. If wal T, the wait time, is not NI L,
and nothing is typed in WAl T seconds, ASKUSER will type ‘. .."" and treat the elements of DEFAULT,
the default value, as a list of characters, and begin processing them exactly as though they had been
typed. If the user does type anything within wal T seconds, he can then wait as long as he likes, i.e., once
something has been typed, ASKUSER will not use the default value speci ed in DEFAULT.

If the user wants to consider his response for more than wal T seconds, and does not want ASKUSER to
default, he can type a carriage return or a space, which are ignored if they are not speci ed as acceptable
inputs by KEYLST (see below) and they are the rst thing typed.

If the calling program knows that the user is expecting an interaction with ASKUSER, e.g. another
interaction preceded this one, it can specify in the call to ASKUSER that typeahead is permitted. In this
case, ASKUSER simply notes whether there is any typeahead, 1° then prints MESS and goes into a wait
loop as described above.

(6) Finally, if the interaction is not with the terminal, i.e, the optiona input le/string is speci ed,
ASKUSER simply prints MESS and begins reading from the le/string.

19In this case, if the typeahead turns out to contain unacceptable input, ASKUSER will assume that the
typeahead was not intended for ASKUSER, and will restore the typeahead when it completes operation
and returns.

6.58

INPUT/OUTPUT

6.9.2 Operation

All input operations are executed with the terminal table in the variable ASKUSERTTBL,, in which (1)
(CONTROL T) has been executed, so that ASKUSER can interact with the user after each character
is typed; and (2) (ECHOMCDE NI L) has been executed, so that ASKUSER can decide after it reads a
character whether or not the character should be echoed, and with what, e.g. unacceptable inputs are
never echoed.

As each character is typed, it is matched against KEYLST , and appropriate echoing and/or prompting is
performed. If the user types an unacceptable character, ASKUSER simply rings the bell and alows him
to try again.

At any point, the user can type ? and receive a list of acceptable responses at that point (generated from
KEYLST), or type a control- A, control- Q, control- X, or , which causes ASKUSER to reinitialize, and
start over.

Note that ?, Control- A, Control- Q, and Control- X will not work if they are acceptable inputs, i.e., they
match one of the keys on KEYLST . will not work if it is an interrupt character, in which case it is
not seen by ASKUSER.

When an acceptable sequence is completed, ASKUSER returns the indicated value.

6.9.3 Format of KEYLST

KEYLST is a list of elements of the form (KEY PROWTSTRING . OPTIONS), where KEY is an atom
or a string (equivalent), PROWPTSTRING IS an aom or a string, and oPTIONS a list of options in
property list format. The following options are recognized and explained below: KEYLST, CONFI RMFLG,
PROVPTCONFI RMFLG, NOCASEFL G, RETURN, EXPLAI NSTRI NG, NOECHOFL G, KEYSTRI NG, PROVPTON,
COVPLETEON, AUTOCOVPLETEFLG. If an option is speci ed in oPTI NS |, the value of the option is the
next element. Otherwise, if the option is speci ed in oPTIONSLST (the seventh argument to ASKUSER),
its value is the next element on OPTIONSLST . Thus, OPTIONSLST can be used to provide default options
for an entire KEYLST , rather than having to include the option at each level. If an option does not appear
on either OPTIONS oOr OPTIONSLST |, its value is NI L.

For convenience, an entry on KevyLsT of the form (KEY . ATOMSTRING), can be used as an
abbreviation for (KEY ATOM STRING CONFIRMFLG T), and an entry of just the form key, i.e, a
non-list, as an abbreviation for (Key N L CONFI RMFLG T).

As each character isread, it is matched against the currently active keys. A character matches a key if it
is the same character as that in the corresponding position in the key, or, if the character is an aphabetic
character, if the characters are the same without regard for upper/lower case di erences, i.e. “‘A’’ matches
“a” and vice versa.2% In other words, if two characters have aready been input and matched, the third
character is matched with each active key by comparing it with the third character of that key. If the
character matches with one or more of the keys, the entries on KevLST corresponding to the remaining
keys are discarded. If the character does not match with any of the keys, the character is not echoed, and
a bell isrung instead.

20Unless the NOCASEFLG option (page 6.62) is T.

6.59

Format of KEYLST

When akey iscomplete, PROWTSTRING isprinted (NI L isequivalent to ‘'’ ,the empty string, i.e., nothing
will be printed). Then, if the value of the CONFI RMFLG option is T, ASKUSER waits for con rmation of
the key by acr2! or space. Otherwise, the key does not require conrmation.

Then, if the value of the KEYLST option isnot NI L, its value becomes the new KeyLST , and the process
recurses. Otherwise, the key isa ‘‘leaf,’’i.e, it terminates a particular path through the origina, top-level
KEYLST , and ASKUSER returns the result of packing all the keys that have been matched and completed
aong the way (unless the RETURN option is used to specify some other value, as described below).

For example, the following KEYLST is the default KEYLST , i.e, is used when ASKUSER is called with
KEYLST = NIL: ((Y "esc") (N "oc°™"))

This KEYLST speci es that if (as soon as) the user types Y (or y), ASKUSER echoes with Y, prompts with
“es ¢’ and returns Y as its value. Similarly, if the user types N, ASKUSER echoes the N, prompts with
“oc¢’’ and returns N. If the user types ?, ASKUSER prints:

Yes
No

to indicate his possible responses. All other inputs are unacceptable, and ASKUSER will ring the bell and
not echo or print anything.

Here is a more complicated example, the KeyLST used for the compiler questions (page 12.1):

((ST "ore and redefine " KEYLST ("" (F . "orget exprs"))

(S . "ame as last tinme")
(F. "File only")

(T . "o terminal")

1

2

(Y . "es")

(N. "0"))

When ASKUSER is called with this KeyLST , and the user types an S, two keys are matched: ST and S.
The user can then type a T, which matches only the ST key, or conrm the S key by typing a°" or space.
If the user conrms the S key, ASKUSER prompts with ‘‘ane as last tine’, and returns S as its
value. (Note that the conrming character is not included in the value)) If the user types a T, ASKUSER
prompts with ‘‘ore and redefine’ ,and makes ("" (F . "orget exprs")) be the new KEYLST ,
and waits for more input. The user can then type an F, or conrm the '“’’ (which essentially starts out
with al of its characters matched). If he conrms the **’’,ASKUSER returns ST as its value the result of
packing ST and ‘*'’.If he types F, ASKUSER prompts with ‘‘or get exprs’’,and waits for conrmation
again. If the user then conrms, ASKUSER returns STF, the result of packing ST and F.

As mentioned earlier, a any point the user can type a ? and be prompted with the possible responses.
For example, if the user types S and then ?, ASKUSER will type:

STore and redefine Forget exprs
STore and redefine
Sanme as last tine

2ler js used throughout the discussion to denote carriage return.

6.60

INPUT/OUTPUT

6.94 Completing a Key

The decision about when a key is complete is more complicated than simply whether or not al of its
characters have been matched. In the example above, al of the characters in the S key are matched as
soon as the S has been typed, but until the next character istyped, ASKUSER does not know whether the
S completes the S key, or is simply the rst character in the ST key. Therefore, a key is considered to
be complete when:

(1) All of its characters have been matched and it is the only key l€ft, i.e, there are no other keys for
which this key is a substring; or

(2) All of its characters have been matched and a conrming character is typed; or

(3) All of its characters have been matched, and the value of the CONFI RMFLG option is NI L, and the
value of the KEYLST option isnot NI L, and the next character matches one of the keys on the value of
the KEYLST option; or

(4) There isonly one key left and a conrming character istyped. Note that if the value of CONFI RMFLG
is T, the key still has to be conrmed, regardless of whether or not it is complete. For example, if the
rst entry in the above example were instead

(ST "ore and redefine " CONFIRWFLG T KEYLST ("" (F . "orget exprs"))

and the user wanted to specify the STF path, he would have to type ST, then conrm before typing F,
even though the ST completed the ST key by the rule in case (1). However, he would be prompted with
““ore and redefine’ assoon as he typed the T, and completed the ST key.

Case (2) saysthat conrmation can be used to complete a key in the case where it is a substring of another
key, even where the value of CONFI RMFLG is NI L. In this case, the conrming character doubles as both
an indicator that the key is complete, and aso to conrm it, if necessary. This situation corresponds to
typing S° in the above example.

Case (3) says that if there were another entry whose key was STX in the above example, so that after
the user typed ST, two keys, ST and STX, were still active, then typing F would complete the ST key,
because F matches the (F . "orget exprs") entry on the value of the KEYLST option of the ST
entry. In this case, ‘‘ore and redefine’ would be printed before the F was echoed.

Finally, case (4) says that the user can use conrmation to specify completion when only one key is left,
even when al of its characters have not been matched. For example, if the rst key in the above example
were STORE, the user could type ST and then conrm, and ORE would be echoed, followed by whatever
prompting was speci ed. In this case, the conrming character also conrms the key if necessary, so that
no further action isrequired, even when the value of CONFI RMFLG is T.

Case (4) permits the user not to have to type every character in a key when the key is the only one left.
Even when there are severa active keys, the user can type type $ (the ESC key, or on some terminals,
the key labelled ALT) to specify the next N>0 common characters among the currently active keys. The
eect is exactly the same as though these characters had been typed. If there are ho common characters
in the active keys at that point, i.e. N=0, the $ is treated as an incorrect input, and the bell is rung.
For example, if KeyLST is (CLI SPFLG CLI SPI FYPACKFLG CLI SPI FTRANFLG) , and the user types
C followed by $, ASKUSER will supply the L, I, S, and P. The user can then type F followed by°" or
space to complete and conrm CLI SPFLG, as per case (4), or type |, followed by $, and ASKUSER will
supply the F, etc. Note that the characters supplied do not have to correspond to atermina segment of

6.61

Options

any of the keys. Note also that the $ does not conrm the key, athough it may complete it in the case
that there is only one key active.

If the user types a conrming character when severa keys are left, the next N>0 common characters are
still supplied, the same as with $. However, ASKUSER assumes the intent was to complete a key, i.e,
case (4) is being invoked. Therefore, after supplying the next N characters, the bell is rung to indicate
that the operation was not completed. In other words, typing a conrming character has the same eect
as typing an $ in that the next N common characters are supplied. Then, if there is only one key left,
the key is complete (case 4) and conrmation isnot required. If the key is not the only key left, the bell
is rung.

6.9.5 Options

KEYLST When a key is complete, if the value of the KEYLST option isnot NI L, this value
becomes the new KevLsST and the process recurses. Otherwise, the key terminates
a path through the original, top-level KevLsT , and ASKUSER returns the indicated
value.

CONFI RMFLG If T, the key must be conrmed with either a or a space. If the value of
CONFI RMFLG is a list, the conrming character may be any member of the list.

PROVPTCONFI RVFLG
If T, whenever conrmation is required, the user is prompted with the string *°

[confirm .

NOCASEFLG If T, says do not perform case independent matching on alphabetic characters. If
NI L, do perform case independent matching, i.e. ‘A’ matches with ‘‘a’’ and vice
versa

RETURN If non-NI L, EVAL of the value of the RETURN option is returned as the value

of ASKUSER. Note that di erent RETURN options can be specied for di erent

keys. The variable ANSVER is bound in ASKUSER to the list of keys that have
been matched. In other words, RETURN (PACK ANSWER) would be equivalent
to what ASKUSER normally does.

EXPLAI NSTRI NG If the value of the EXPLAI NSTRI NG option is non-NI L, its value is printed when
the user types a ?, rather than Key + PROWPTSTRING . EXPLAI NSTRI NG enables
more elaborate explanations in response to a ? than what the user sees when he
is prompted as a result of simply completing keys. See example below.

NOECHOFLG If non-NI L, characters that are matched (or automatically supplied as a result of
typing $ or conrming) are not echoed, nor is the conrming character, if any.
The value of NOECHOFLG is automatically NI L when ASKUSER is reading from a
le or string. The decision about whether or not to echo a character that matches
severa keys is determined by the vaue of the NOECHOFLG option for the rst key.

Example: one of the entries on the KeyLsST used by ADDTOFI LES? (page 11.8) is:

(] "Nowherec¢" NOECHOFLG T
EXPLAINSTRING "] - nowhere, itemis marked as a dunmyc°")

6.62

INPUT/OUTPUT

When the user types] , ASKUSER just prints ‘‘Nowher e’ i.e, the] isnot echoed. If the user types ?,
the explanation corresponding to this entry will be:

] - nowhere, itemis marked as a dumy

KEYSTRI NG

PROVPTON

COVPLETEON

If non-NI L, characters that are matched are echoed as though the value of
KEYSTRI NG were used in place of the key. KEYSTRI NG isalso used for computing
the value returned. The main reason for this feature is to enable echoing in
lowercase.

If non-NI L, PROVPTSTRING is printed only when the key is conrmed with a
member of the value of PROVPTON. See example below.

When a conrming character is typed, the N characters that are automatically
supplied, as speci ed in case (4), are echoed only when the key is conrmed with
a member of the value of PROVPTON.

The PROVPTON and COMPLETEON options enable the user to construct a KevLsT which will cause
ASKUSER to emulate the action of the TENEX exec. The protocol followed by the TENEX exec is
that the user can type as many characters as he likes in specifying a command. The command can be
completed with a" or space, in which case no further output is forthcoming, or with a $, in which case
the rest of the characters in the command are echoed, followed by some prompting information. The
following kevLsT would handle the TENEX COPY and CONNECT comands:

((COPY " (FILE LIST) "
PROVPTON ($)
COWPLETEON ($)
CONFI RVFLG ($))

(CONNECT " (TO DI RECTCRY) "
PROVMPTON ($)
COVPLETEON ($)
CONFI RVFLG ($)))

AUTOCOVPLETEFLG

MACRCOCHARS

EXPLAI NDELI M TER

If the value of the AUTOCOVPLETEFLG option is not N L, ASKUSER will
automatically supply unambiguous characters whenever it can, i.e, ASKUSER acts
as though $ were typed after each character (except that it does not ring the bell
if there are no unambiguous characters).

value isalist of dotted pairs of form (CHARA CTER . FORM). When CHARA CTER
is typed, and it does not match any of the current keys, FORM is evaluated and
nothing else happens, i.e. the matching process stays where it is. For example, ?
could have been implemented using this option. Essentially MACROCHARS provides
aread macro facility while inside of ASKUSER (since ASKUSER does READC's, read
macros dened via the readtable are never invoked).

value is what is printed to delimit explanation in response to ?. Initialy ‘"’ but
can be reset, eg. to ', ', for more linear output.

6.63

Special Keys

6.9.6 Special Keys

& can be used as a key to match with any single character, provided the character does not match with
some other key at that level. For the purposes of echoing and returning a value, the eect isthe same as
though the character that were matched actualy appeared as the key.

$ (esc) can be used as a key to match with the result of a single call to READ. For example, if the rst
entry in the TENEX KEYLST above were:

(COPY " (FILE LIST) "
PROVPTON ($)
COVPLETEON ($)
CONFI RVFLG ($)
KEYLST (($ NIL RETURN ANSVER)))

then if the user typed COP FQOOC, (COPY FOO) would be returned as the value of ASKUSER. One
advantage of using $, rather than having the calling program perform the READ, is that the call to READ
from inside ASKUSER is ERRORSET protected, so that the user can back out of this path and reinitialize
ASKUSER, eg. to change from a COPY command to a CONNECT command, simply by typing control- E.

$$ can be used as a key to match with the result of a single call to READLI NE.

A list can be used as a key, in which case the list/form is evaluated and its value ‘‘matches’ the key.
This feature is provided primarily as an escape hatch for including arbitrary input operations as part of
an ASKUSER sequence. For example, the eect of $$ could be achieved simply by using (READLI NE T)
as a key.22

‘““’’can be used as a key. Since it has no characters, al of its characters are automatically matched.
‘" essentially functions as a place marker. For example, one of the entries on the KevLST used by
ADDTOFI LES? is:

("" "Filellist: "
EXPLAI NSTRING "a file name or nane of a function list"
KEYLST ($))

Thus, if the user types a character that does not match any of the other keys on the KeyLST , then the
character completes the ‘*’" key, by virtue of case (4), since the character will match with the $ in the
inner KEYLST . ASKUSER then prints ‘“Fil e/l ist: ' before echoing the character, then calls READ.
The character will be read as part of the READ. The value returned by ASKUSER will be the value of the
READ.

(ASKUSER WAIT DEFAULT MESS KEYLST TYPEAHEAD LISPXPRNTFL G OPTIONSLST FILE)
[Function]
WAIT is either NI L or a number (of seconds). DEFAULT is a single character or
a sequence (list) of characters to be used as the default inputs for the case when
WAIT isnhot NI L and more than wal T seconds elapse without any input. In this

22For $, $3, or a list, if the last character read by the input operation is a separator, the character is
treated as a conrming character for the key. However, if the last character is a break character, it will
be matched against the next key.

6.64

INPUT/OUTPUT

case, the character(s) from DEFAULT are processed exactly as though they had been
typed, except that ASKUSER rst types ‘... "".

MESS is the initial message to be printed by ASKUSER, if any, and can be a string,
or alist. In the latter case, each element of the list is printed, separated by spaces,
and terminated with a ** ? '’. KEYLST and OPTIONSLST were described earlier.
TYPEAHEAD isT if the user is permitted to typeahead aresponse to ASKUSER. NI L
means any typeahead should be cleared and saved. LISPXPRNTFL G determines
whether or not the interaction is to be recorded on the history list. FILE can be
gither NI L (in which case it is set to T), the name of a le, or a string.23 All input
operations take place from FILE until an unacceptable input is encountered, i.e,
one that does not conform to the protocol dened by KEYLST . At that point, FI LE
isset to T, DEFAULT is set to NI L, the input buer is cleared, and a bell is rung.
Unacceptable inputs are not echoed.

The value of ASKUSER is the result of packing &l the keys that were matched,
unless the RETURN option is speci ed (page 6.62).

(MAKEKEYLST LST DEFAULTKEY LCASEFL G _) [Function]
LST isalist of atoms or strings. MAKEKEYLST returns an ASKUSER KeyLST which
will permit the user to specify one of the elements on LST by either typing enough
characters to make the choice unambiguous, or else typing a number between 1
and N, where N is the length of LsT.

For example, if ASKUSER is caled with keyLsT = (MAKEKEYLST ' (CONNECT
SUPPORT COWPI LE)) , then the user can type C-ON, S, COM 1, 2, or 3 to
indicate one of the three choices.

If LcaserL G= T, then echoing of upper case elements will be in lower case (but
the value returned will till be one of the elements of LST). If DEFAULTKEY is
non-NI L, it will be the last key on the KevLsT . Otherwise, a key which permits
the user to indicate ‘‘No - none of the above’ choices, in which case the value
returned by ASKUSER will be NI L.

23If FILE is a string, and all of its characters are read before ASKUSER nishes, FiILE will be reset to T,
and the interaction will continue with ASKUSER reading from the terminal.

6.65

Special Keys

6.66

