CHAPTER 5

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

The Interlisp programming system is designed to help the user dene and debug functions. Developing
an applications program in Interlisp involves dening a number of functions in terms of the system
primitives and other user-dened functions. Once dened, the user's functions may be referenced exactly
like Interlisp primitive functions, so the programming process can be viewed as extending the Interlisp
language to include the required functionality.

The user denes a function with a list expressions known as an EXPR. An EXPR speci es if the function
has a xed or variable number of arguments, whether these arguments are evaluated or not, the function
argument names, and a series of forms which dene the behavior of the function. For example:

(LAVBDA (X Y) (PRINT X) (PRINT Y))

A function dened with this EXPR would have two evaluated arguments, X and Y, and it would execute
(PRINT X) and (PRI NT Y) when evaluated. Other types of EXPRs are described below.

A function isdened by putting an EXPR in the function denition cell of alitatom. There are a number
of functions for accessing and setting function denition cells, but one usualy denes a function with
DEFI NEQ (page 5.9). For example:

_ (DEFINEQ (FOO (LAMBDA (X Y) (PRINT X) (PRINT VY))
(FOO

The expression above will dene the function FOOto have the EXPR denition (LAMBDA (X Y) (PRI NT
X) (PRI NT Y)). After being dened, this function may be evaluated just like any system function:

_ (FOO 3 (1PLUS 3 4))

~N N w

All function denition cells do not contain EXPRs. The compiler (page 12.1) translates EXPR de nitions
into compiled code objects, which execute much faster. In Interlisp- 10, many primitive system functions
are dened with machine code objects known as SUBRs. Interlisp provides a number of ‘‘function type
functions’ which determine how a given function is dened (EXPR/compiled code/ SUBR), the number
and names of function arguments, etc. See page 5.6.

Usuadlly, functions are evaluated automatically when they appear within another function or when typed
into Interlisp. However, sometimes it is useful to envoke the Interlisp interpreter explicitly to apply a
given ‘‘functiona argument’’ to some data. There are a number of functions which will apply a given
function repeatedly. For example, MAPCAR will apply a function (or an EXPR) to all of the elements of
a list, and return the values returned by the function:

_ (MAPCAR (1 2 3 4 5) ' (LAMBDA (X) (ITIMES X X))

51

Function Types

(1 4 9 16 25)

When using functional arguments, there are a number of problems which can arise, related with accessing
free variables from within a function argument. Many times these problems can be solved using the
function FUNCTI ON to create a FUNARG object (see page 5.15).

The macro facility provides another way of specifying the behavior of a function (see page 5.17). Macros
are very useful when developing code which should run very quickly, which should be compiled di erently
than it is interpreted, or which should run di erently in di erent implementations of Interlisp.

51 FUNCTION TYPES

Interlisp functions are dened using list expressions called EXPRs. An EXPR is a list of the form
(LAMBD A-WORD ARG LIST FORM FORM) . LAMBD A-WORD determines whether the arguments to
this function will be evaluated or not, ARG LI ST determines the number and names of arguments, and
FORM 4 FORM \ are a series of forms to be evaluated after the arguments are bound to the local
variables in ARG LI ST.

If LAMBD A-WORD is the litatom LANMBDA, then the arguments to the function are evauated. If LAMBD A-
WORD is the litatom NLANMBDA, then the arguments to the function are not evaluated. Functions which
evaluate or don't evaluate their arguments are therefore known as ‘‘lambda’ or ‘‘nlambda’ functions,
respectively.

If ARG LISTiISNIL or alist of litatoms, this indicates a function with a xed number of arguments. Each
litatom is the name of an argument for the function dened by this expression. The process of binding
these litatoms to the individua arguments is called ‘‘spreading’’ the arguments, and the function is called
a ‘‘spread’’ function. If the argument list is any litatom other than NI L, this indicates a function with a
variable number of arguments, known as a ‘‘nospread’’ function.

If ARG LIST is anything other than a litatom or a list of litatoms, such as (LAVBDA " FOO'),
attempting to use this EXPR will generate an ARG NOT LI TATOM error. In addition, if NI L or T is used
as an argument name, the error ATTEMPT TO BIND NI L OR T is generated.

These two parameters (lambda/nlambda and spread/nospread) may be speci ed independently, so there
are four main function types, known as lambda- spread, nlambda- spread, lambda- nospread, and nlambda-
nospread functions. Each one has a dierent form, and is used for a di erent purpose. These four
function types are described more fully below.

Note: The Lambdatran lispusers package provides facilities for creating new function types which
evaluate/spread their arguments in di erent ways than those provided by Interlisp. See page 23.16.

511 LambdaSpread Functions

Lambda spread functions take a xed number of evaluated arguments. This isthe most common function
type. A lambda- spread EXPR has the form:

(LAMBDA (ARG, ARG);) FORM 4 FORM)

52

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

The argument list (ARG, ARG),) isalist of litatoms that gives the number and names of the formal
arguments to the function. If the argument list is () or NI L, this indicates that the function takes no
arguments. When a lambda- spread function is applied to some arguments, the arguments are evaluated,
and bound to the local variables ARG; ARG),. Then, FORM ; FORM \ are evaluated in order, and
the value of the function is the vaue of FORM .

_ (DEFINEQ (FOO (LAMBDA (X Y) (PRINT X) (PRINT Y))))
(FOO

_ (FOD 99 (PLUS 3 4))

99

7

7

In the above example, the function FOO dened by (LAMBDA (X Y) (PRINT X) (PRINT Y)) is
applied to the arguments 99 and (PLUS 3 4), these arguments are evaluated (giving 99 and 7), the local
variable X is bound to 99 and Y to 7, (PRI NT X) is evaluated, printing 99, (PRI NT Y) is evaluated,
printing 7, and 7 (the value of (PRI NT Y)) isreturned as the value of the function.

A standard feature of the Interlisp system is that no error occurs if a spread function is called with too
many or too few arguments. If a function is called with too many arguments, the extra arguments are
evaluated but ignored. If afunction iscaled with too few arguments, the unsupplied ones will be delivered
as NI L. In fact, a spread function cannot distinguish between being given NI L as an argument, and not
being given that argument, e.g., (FOO) and (FOO NI L) are exactly the same for spread functions. If it
is necessary to distinguish between these two cases, use an nlambda function and explicitly evaluate the
arguments with the EVAL function (page 5.11).

5.1.2 Nlambda-Spread Functions

Nlambda- spread functions take a xed number of unevaluated arguments. An nlambda- spread EXPR has
the form:

(NLAMBDA (ARG, ARG);) FORM FORM y)

Nlambda- spread functions are evaluated similarly to lambda- spread functions, except that the arguments
are not evaluated before being bound to the varigbles ARG, ARGy;.

_ (DEFINEQ (FOO (NLAMBDA (X Y) (PRINT X) (PRINT Y))))
(FOO

_ (FOD 99 (PLUS 3 4))

99

(PLUS 3 4)

(PLUS 3 4)

In the above example, the function FOO dened by (NLAMBDA (X Y) (PRINT X) (PRINT VY)) is
applied to the arguments 99 and (PLUS 3 4), these arguments are bound unevaluated to X and Y,
(PRINT X) is evaluated, printing 99, (PRI NT Y) is evauated, printing (PLUS 3 4), and the list
(PLUS 3 4) isreturned as the value of the function.

Note: Functions can be dened so that al of their arguments are evaluated (lambda functions) or none

5.3

LambdaNospread Functions

are evaluated (nlambda functions). If it is desirable to write a function which only evaluates some of its
arguments (e.g. SETQ), the function should be dened as an nlambda, with some arguments explicitly
evaluated using the function EVAL (page 5.11). If this is done, the user should put the litatom EVAL on
the property list of the function under the property | NFO. This informs various system packages such as
DWIM, CLISP, and Masterscope that this function in fact does evauate its arguments, even though it is
an nlambda.

513 LambdaNospread Functions

Lambda nospread functions take a variable number of evaluated arguments. A lambda nospread EXPR
has the form:

(LAVMBDA VAR FORM 4 FORM)

VAR may be any litatom, except NIL and T. When a lambda nospread function is applied to some
arguments, each of these arguments is evaluated and the values stored on the pushdown list. VAR is
then bound to the number of arguments which have been evaluated. For example, if FOO is dened by
(LAMBDA X), when (FOO A B C) is evauated, A, B, and C are evaluated and X is bound to 3.
VAR should never be reset.

The following functions are used for accessing the arguments of lambda- nospread functions:

(ARG VAR M) [NLambda Function]
Returns the mth argument for the lambda- nospread function whose argument list
iISVAR . VAR isthe name of the atomic argument list to a lambda nospread function,
and is not evaluated; M isthe number of the desired argument, and is evaluated.
The value of ARG is undened for M less than or equal to O or greater than the
value of VAR.

(SETARG VAR M X) [NLambda Function]
Sets the mth argument for the lambda- nospread function whose argument list is
VAR t0 X. VAR is not evaluated; M and x are evaluated. M should be between 1
and the value of vAR.

In the example below, the function FOOisdened to print al of the evaluated arguments it is given, and
return NI L (the value of the f or statement).

_ (DEFI NEQ (FCO

(LAVBDA X

(for ARGNUM from 1 to X do (PRINT (ARG X ARGNUM)))))

(FOO
_ (FOO 99 (PLUS 3 4))
99
7
NI L
_ (FOO 99 (PLUS 3 4) (TIMES 3 4))
99
7
12
NI L

54

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

514 Nlambda-Nospread Functions

Nlambda- nospread functions take a variable number of unevaluated arguments. An nlambda- nospread
EXPR has the form:

(NLAVMBDA VAR FORM FORM)

VAR may be any litatom, except NIL and T. Though similar in form to lambda nospread EXPRS, an
nlambda- nospread is evaluated quite di erently. When an nlambda- nospread function is applied to some
arguments, VAR issimply bound to alist of the unevaluated arguments. The user may pick apart this list,
and evaluate di erent arguments.

In the example below, FOOisdened to print (and then return) the reverse of list of arguments it is given
(uneva uated):

_ (DEFINEQ (FOO (NLAMBDA X (REVERSE X))))
(FOO

_ (FOD 99 (PLUS 3 4))

((PLUS 3 4) 99)

((PLUS 3 4) 99)

_ (FOD 99 (PLUS 3 4) (TIMES 3 4))
((TIMES 3 4) (PLUS 3 4) 99)

((TIMES 3 4) (PLUS 3 4) 99)

515 Compiled Functions

Functions dened by EXPRs can be compiled by the Interlisp compiler (page 12.1), which produces
compiled code objects, which execute more quickly than the corresponding EXPR code. Functions dened
by compiled code objects may have the same four types as EXPRs (lambda/nolambda, spread/nospread).

Functions created by the compiler are referred to as compiled functions.

516 SUBRs

In Interlisp- 10, basic built-in functions such as CONS, CAR, and COND are handcoded in machine language.
These functions are known as ‘‘SUBRs.’’ Functions dened as SUBRs can be lambda/nolambda or
spread/nospread, the same four function types as EXPR functions.

SUBRs are called in a specia way, so their denitions are stored dierently than those of compiled
or interpreted functions. GETD of a SUBR returns a dotted pair, CAR of which is an encoding of the
ARGTYPE and number of arguments of the SUBR, and CDR of which isthe address of the rst instruction.
Note that each GETD of a subr performs a CONS. Similarly, PUTD of a denition of the form (NUMBER

ADDRESS), where NUMBER and ADDRESS are in the appropriate ranges, stores the denition as a SUBR.

55

Function Type Functions

517 Function Type Functions

There are a variety of functions used for examining the type, argument list, etc. of functions. These
functions may be given either a litatom, in which case they obtain the function denition from the
litatom's denition cell, or a function denition itself.

(FNTYP FN)

(EXPRP FN)

(CCODEP FN)

(SUBRP FN)

(ARGTYPE FN)

[Function]
Returns NI L if FN is not a function denition or the name of a dened function.
Otherwise FNTYP returns one of the following twelve litatoms:

Expressions Compiled Built-1n
Lambda- Spread EXPR CEXPR SUBR
Nlambda- Spread FEXPR CFEXPR FSUBR
Lambda- Nospread EXPR* CEXPR* SUBR*
Nlambda- Nospread FEXPR* CFEXPR* FSUBR*

The types in the rst column are all dened by EXPRs. The types in the second
column are compiled versions of the types in the rst column, asindicated by the
prex C. In the third column are the parald types for built-in subroutines (only
in Interlisp- 10). Functions of types in the rst two rows have a xed number of
arguments, i.e., are spread functions. Functions in the third and fourth rows have
an indenite number of arguments, as indicated by the sux *. The prex F
indicates unevaluated arguments. Thus, for example, a CFEXPR* is a compiled
nospread- nlambda function.

FNTYP returns the litatom FUNARG if FN is a FUNARG expression. See page 5.15.

[Function]
Returns T if (FNTYP FN) is either EXPR, FEXPR, EXPR*, or FEXPR* , i.e, rst
column of FNTYPs; NI L otherwise. However, (EXPRP FN) is aso true if FN is
(has) alist denition that isnot a SUBR, even if it does not begin with LAMBDA or
NLAMBDA. In other words, EXPRP is not quite as selective as FNTYP.

[Function]
Returns T if (FNTYP FN) is either CEXPR, CFEXPR, CEXPR*, or CFEXPR*, i.e.,
second column of FNTYPs, NI L otherwise.

[Function]
Returns T if (FNTYP FN) is either SUBR, FSUBR, SUBR*, or FSUBR*, i.e, the
third column of FNTYPs; NI L otherwise.

[Function]
FN is the name of a function or its denition. ARGTYPE returns O, 1, 2, or 3, or
NI L if FN is not a function. The interpretation of this value is:

0 lambda- spread functions (EXPR, CEXPR, SUBR)

5.6

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

(NARGS FN)

(ARGLI ST FN)

(SMARTARGLI ST FN

1 nlambda- spread functions (FEXPR, CFEXPR, FSUBR)
2 lambda- nospread functions (EXPR* , CEXPR* , SUBR*)
3 nlambda- nospread functions (FEXPR* , CFEXPR* , FSUBR*)

i.e., ARGTYPE corresponds to the rows of FNTYP’s.

[Function]
Returns the number of arguments of FN, or NI L if FN is not a function. If FN is
a nospread function, the value of NARGS is 1.

[Function]
Returns the ‘‘argument list’”’ for FN. Note that the ‘‘argument list'”’ is a litatom
for nospread functions. Since NI L is a possible value for ARGLI ST, an error is
generated, ARGS NOT AVAI LABLE, if FN is not a function.

If FN is a compiled function, the argument list is constructed, i.e, each cal to
ARGLI ST requires making a new list. For EXPRs, whose denitions are lists
beginning with LAMBDA or NLAMBDA, the argument list is simply CADR of GETD.
If FN has a list denition, and CAR of the denition is not LAMBDA or NLAVBDA,
ARGLI ST will check to see if CAR of the denition isa member of LAMBDASPLST
(page 15.12). If itis, ARGLI ST presumes this isafunction object the user isdening

via DW MUSERFORMS (page 15.10), and simply returns CADR of the denition as
its argument list. Otherwise ARCGLI ST generates an error as described above.

(Interlisp- 10) If FN is a spread SUBR, the ARGLI ST returns (U), (U V), (U V
W, etc. depending on the number of arguments; if a nospread SUBR, it returns
U. This is merely a ‘‘feature’”’ of ARGLI ST; SUBRs do not actually store the names
of their arguments(s) on the stack.

EXPLAINFL G TAIL) [Function]
A “‘smart’”’ version of ARCLI ST that tries various strategies to get the arglist of FN.

If FN is not dened as a function, SMARTARGLI ST attempts spelling correction
on FN by caling FNCHECK (page 15.19), passing TAIL to be used for the call to
FI XSPELL . If unsuccessful, an error will be generated, FN NOT A FUNCTI ON.

If FN is known to the le package (page 11.1) but not loaded in, SMARTARGLI ST
will obtain the arglist information from the le.

In Interlisp- 10, if the HELPSYS help system is installed, SMARTARGLI ST may
use it to look up the arguments to FN in the Interlisp manua les. Speci caly,
HELPSYS will be used if EXPLAINFL G= T and FN is a nospread function, or
if FN is a spread SUBR, regardless of the value of ExPLAINFL G. For all other
cases, and when HELPSYS is undened or unsuccessful in nding the arguments,
SMARTARGLI ST simply returns (ARGLI ST FN).

In order to avoid repeated calls to HELPSYS, and aso to provide the user with an
override, SMARTARGLI ST stores the arguments returned from HELPSYS on the
property list of FN under the property ARGNAMES and checks for this property
before caling HELPSYS. For spread functions, the argument list itself is stored.

5.7

Function Denition

For nospread, the form is(NIL ARGLIST; . ARGLIST,) where ARGLI ST is the
value of SMARTARGLI ST when EXPLAINFL G= T, and ARGLI ST, the value when
EXPLAINFL G= NI L. For example, (GETPROP ' DEFI NEQ ' ARGNAMES) = (NIL
(XL X1 ... XN . X.

SMARTARGLI ST is used by BREAK (page 10.4) and ADVI SE (page 10.9) with ExPLAINFL G= NI L for
constructing equivalent EXPR denitions, and by the programmer’s assistant command ?= (page 9.5), with
EXPLAINFL G= T.

52 FUNCTION DEFINITION

Function denitions are stored in a ‘‘function denition cell’’ associated with each litatom. This cell is
directly accessible via the two functions PUTD and GETD, but it is usually easier to dene functions with
DEFI NEQ (page 5.9).

(CGETD FN) [Function]
Returns the function denition of FN. Returns NI L if FN is not a litatom, or has
no de nition.

GETD of a compiled function constructs a pointer to the denition, with the result
that two successive calls do not produce EQ results. EQP or EQUAL must be used
to compare compiled de nitions.

(Interlisp- 10) GETD of a SUBR performs a CONS.

(FGETD FN) [Function]
Faster version of GETD. Interpreted, generates an error, BAD ARGUMENT -
FCGETD, if FN is not a litatom.

FCGETD is intended primarily to check whether a function has a denition, rather
than to obtain the denition. Therefore, in Interlisp- 10, FGETD of a SUBR returns
just the address of the function denition, not the dotted pair returned by GETD,
thereby saving the CONS.

(PUTD FN DEF _) [Function]
Puts DEF into FN'sfunction cell, and returns DEF . Generates an error, ARG NOT
LI TATOM if FN is not a litatom. Generates an error, | LLEGAL ARG, if DEF isa
string, number, or a litatom other than NI L.

(PUTDQ FN DEF) [NLambda Function]
Nlambda version of PUTD; both arguments are unevaluated. Returns FN.

(PUTDQ? FN DEF) [NLambda Function]
If FN isnot dened, same as PUTDQ. Otherwise, does nothing and returns NI L.

(MOVD FROM TO COPYFL G) [Function]
Moves the denition of FRoM to TO, i.e, redenes TO. If coPpyFL G= T, a COPY
of the denition of FRov is used. copyFL G= T is only meaningful for EXPRs,
although MOVD works for compiled functions and SUBRs as well. MOVD returns

5.8

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

TO.

(MOVD? FROM TO COPYFL G) [Function]

(DEFI NEQ X; X,

(DEFINE X _)

If TO is not dened, same as (MOVD FROM TO COPYFL G). Otherwise, does
nothing and returns NI L.

XN) [NLambda NoSpread Function]
DEFI NEQ isthe function normally used for dening functions. It takes an inde nite
number of arguments which are not evaluated. Each X; must be alist dening one
function, of the form (NAME DEFINITION) . For example:

(DEFI NEQ (DOUBLE (LAMBDA (X) (I1PLUS X X))))

The above expression will dene the function DOUBLE with the EXPR de nition
(LAMBDA (X) (IPLUS X X)). X; may aso have the form (NAME ARGS .
DEF- BOD Y), in which case an appropriate Lambda EXPR will be constructed.
Therefore, the above expression is exactly the same as:

(DEFI NEQ (DOUBLE (X) (IPLUS X X)))

Note that this alternate form can only be used for Lambda functions. The rst
form must be used to dene an Nlambda function.

DEFI NEQ returns a list of the names of the functions de ned.

[Function]
Lambda- spread version of DEFI NEQ. Each element of the list X isitself alist either
of the form (NAME DEFINITION) or (NAME ARGS . DEF- BOD Y) . DEFI NE will
generate an error, | NCORRECT DEFI NI NG FORM on encountering an atom where
adening list is expected.

Note: DEFI NE and DEFI NEQ will operate correctly if the function is aready dened and BROKEN,
ADVI SED, or BROKEN- | N.

For expressions involving type-in only, if the time stamp facility is enabled (page 17.60), both DEFI NE
and DEFI NEQ will stamp the denition with the user's initials and date.

DFNFLG

(SAVEDEF FN)

[Variable]
DFNFLG is a globa variable that eects the operation of DEFI NE (and DEFI NEQ,
which calls DEFI NE). If DFNFLG= NI L, an attempt to redene a function FN
will cause DEFI NE to print the message (FN REDEFI NED) and to save the
old denition of FN using SAVEDEF before redening it, except if the old and
new denitions are the same (i.e. EQUAL), the eect is smply a no-op. If
DFNFLG= T, the function issimply redened. If DFNFLG= PROP or ALLPROP, the
new denition is stored on the property list under the property EXPR. ALLPROP
aects the operation of RPAQQ and RPAQ (page 11.37). DFNFLG is initialy NI L.

DFNFLG is reset by LOAD (page 11.4) to enable various ways of handling the
dening of functions and setting of variables when loading a le. For most
applications, the user will not reset DFNFLG directly.

[Function]
Saves the denition of FN on its property list under the property EXPR, CODE,

59

Function Evaluation

or SUBR depending on its FNTYP. Returns the property name used. If (GETD
FN) isnon-NI L, but (FNTYP FN)= NI L, SAVEDEF saves the denition on the
property name LI ST. This situation can arise when a function is redened which
was originaly dened with LAMBDA misspelled or omitted.

If FN is alist, SAVEDEF operates on each function in the list, and returns a list of
the individual values.

(UNSAVEDEF FN PROP) [Function]
Restores the denition of FN from its property list under property PROP (See
SAVEDEF above). Returns PROP . If nothing issaved under PROP, and FN isde ned,
returns (PROP NOT FOUND) , otherwise generates an error, NOT A FUNCTI ON.

If PROP is not given, i.e, NI L, UNSAVEDEF looks under the properties EXPR,
CODE, and SUBR, in that order. The value of UNSAVEDEF is the property name,
or if nothing is found and FN is a function, the value is (NOTHI NG FOUND) ;
otherwise generates an error, NOT A FUNCTI ON.

If DFNFLG= NI L, the current denition of FN, if any, is saved using SAVEDEF.
Thus one can use UNSAVEDEF to switch back and forth between two de nitions
of the same function, keeping one on its property list and the other in the function
denition cell.

If FN is alist, UNSAVEDEF operates on each function of the list, and its value isa
list of the individual values.

Both SAVEDEF and UNSAVEDEF are redened in more general terms (see page 11.18) to operate on
typed denitions of which a function denition is but one example. Thus, their actual argument lists in
Interlisp are di erent than given here. However, when their extra arguments are defaulted to NI L, they
operate as described above.

53 FUNCTION EVALUATION

Usudly, function application is done automatically by the Interlisp interpreter. If a form is typed into
Interlisp whose CAR is a function, this function is applied to the arguments in the CDR of the form. These
arguments are evaluated or not, and bound to the function parameters, as determined by the type of the
function, and the body of the function is evaluated. This sequence is repeated as each form in the body
of the function is evaluated.

There are some situations where it is necessary to explicitly call the evaluator, and Interlisp supplies a
number of functions that will do this. These functions take ‘‘functional arguments’, which may either be
litatoms with function denitions, or EXPR forms such as (LAMBDA (X)), or FUNARG expressions
(see page 5.15).

The following functions are useful when one wants to supply a functional argument which will aways
return NI L, T, or O.

(NILL) [NoSpread Function]
Returns NI L.

5.10

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

(TRUE) [NoSpread Function]
Returns T.

(ZERO) [NoSpread Function]
Returns 0.

Note: When using EXPR expressions as functional arguments, they should be enclosed within the function
FUNCTI ON (page 5.15) rather than QUOTE, so that they will be compiled as separate functions. FUNCTI ON
can also be used to create FUNARG expressions, which can be used to solve some problems with referencing
free variables, or to create functional arguments which carry ‘‘state’’ along with them.

(EVAL x _) [Function]
EVAL evauates the expression x and returns this value, i.e,, EVAL provides a way
of calling the Interlisp interpreter. Note that EVAL is itself a lambda function, so
its argument is rst evauated, eg.,

_(SETQ FOO ’ (ADDL 3))
(ADDL 3)

_(EVAL FOO)

4

_(EVAL ’ FOO)

(ADD1 3)

Interlisp functions can either evaluate or not evaluate these arguments. For those cases where it is
desirable to specify arguments unevaluated, one may use the QUOTE function:

(QUOTE x) [NLambda NoSpread Function]
This is a function that prevents its arguments from being evaluated. Its value is X
itself, eg., (QUOTE FOO) is FOO.

Note: Since giving QUOTE more than one argument is amost always a parentheses
error, and one that would otherwise go undetected, QUOTE itself generates an error
in this case, PARENTHESI S ERROR.

(KWOTE x) [Function]
Value is an expression which when evaluated yields X. If X is NI L or a number,
this is x itself. Otherwise, (LI ST (QUOTE QUOTE) x). For example, if the
value of X is A and the value of Y isB, then (KWOTE (CONS X Y)) = (QUOTE
(A. B)).

(DEFEVAL TYPE FN) [Function]
Speci es how a datum of a particular type is to be evaluated. ! Intended primarily
for user dened data types, but works for all data types except lists, literal atoms,
and numbers. TYPE is a type name. FN is a function object, i.e. name of a
function or alambda expression. Whenever the interpreter encounters a datum of
the indicated type, FN is applied to the datum and its value returned as the result
of the evaluation. DEFEVAL returns the previous evaling function for this type. If
FN= NI L, DEFEVAL returns the current evaling function without changing it. If

1COWPI LETYPELST (page 12.9) permits the user to specify how a datum of a particular type is to be
compiled.

511

Function Evaluation

FN= T, the evaling function is set back to the system default (which for al data
types except lists is to return the datum itself).

(APPLY FN ARGLIST _) [Function]

Applies the function FN to the arguments in the list AR GLI ST, and returns its value.
APPLY is a lambda function, so its arguments are evaluated, but the individual
elements of ARGLI ST are not evaluated. Therefore, lambda and nlambda functions
are treated the same by APPLY; lambda functions take their arguments from
AR GLI ST without evauating them. Note that FN may still explicitly evaluate one
or more of its arguments itself, as SETQ does. Thus, (APPLY ' SETQ ' (FOO
(ADD1 3))) will set FOO to 4, whereas (APPLY ’ SET ' (FOO (ADD1 3)))
will set FOO to the expression (ADD1 3).

APPLY can be used for manipulating EXPRs, for example:

_(APPLY ’ (LAMBDA (X Y) (ITIMES X V))

(3 4))
12
(APPLY* FN ARG; ARG ARGy) [NoSpread Function]
1 2 N
Nospread version of APPLY, equivalent to (APPLY FN (LI ST ARG; ARG,
ARGY)) .

(EVALA X A) [Function]

Simulates a-list evaluation asin LISP 1.5. x isaform, A is alist of the form:
((NavE ;. VALg) (NAME 5, . VAL (NAVE . VALY))

The variable names and values in A are ‘‘spread’’ on the stack, and then X is
evaluated. Therefore, any variables appearing free in X, that also appears as CAR
of an element of A will be given the value in the CDR of that element.

The functions below are used to evaluate a form or apply a function repeatedly. RPT, RPTQ, and FRPTQ
evaluate a given form a speci ed number of times. MAP, MAPCAR, MAPLI ST, etc. apply a given function
repeatedly to di erent elements of alist, possibly constructing another list. These functions alow e cient
iterative computations, but they are di cult to use. For programming iterative computations, it is usually
better to use the CLISP Iterative Statement facility (page 4.5), which provides a more general and complete
facility for expressing iterative statements. Whenever possible, CLISP trandates iterative statements into
expressions using the functions below, so there isno eciency loss.

(RPT N FORM) [Function]

Evaluates the expression FORM , N times. Returns the value of the last evaluation.
If N 0, FORM is not evaluated, and RPT returns NI L.

Before each evaluation, the local variable RPTN is bound to the number of
evaluations yet to take place. This variable can be referenced within FORM . For

example, (RPT 10 ' (PRINT RPTN)) will print the numbers 10, 9, 1, and
return 1.

(RPTQ N FORM 1 FORM , FORM) [NLambda NoSpread Function]
Nlambda- nospread version of RPT: N is evaluated, FORM ; are not. Returns the
value of the last evaluation of FORM .

512

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

(FRPTQ N FORM ; FORM , FORM) [NLambda NoSpread Function]
Faster version of RPTQ. Does not bind RPTN.

(MAP MAPX MAPFNL MAPFN2) [Function]
If vaPFN2 is NI L, MAP applies the function mMAPFN1 to successive tails of the
list MaPx . That is, rst it computes (MAPFNL MAPX), and then (maPFNL (CDR
MAPX)), etc., until mMaPX becomes a non-list. If MAPFN2 is provided, (MAPFN2
MaPX) is used instead of (CDR wmapx) for the next call for MapFNL |, eg., if
MAPFN2 were CDDR, alternate elements of the list would be skipped. MAP returns
NI L.

(MAPC mMAPX MAPFNL MAPFN2) [Function]
Identicad to MAP, except that (maPFN1 (CAR maPx)) is computed at each
iteration instead of (MAPFNL mAPX), i.e, MAPC works on elements, MAP on
tails. MAPC returns NI L.

(MAPLI ST mMAPX MAPFN1 MAPFN2) [Function]
Successively computes the same values that MAP would compute, and returns a list
consisting of those values.

(MAPCAR MAPX MAPFN1 MAPFN2) [Function]
Computes the same values that MAPC would compute, and returns a list consisting
of those values, eg., (MAPCAR X ' FNTYP) isalist of FNTYPs for each element
on X.

(MAPCON MAPX MAPFNL MAPFN2) [Function]
Computes the same values as MAP and MAPLI ST but NCONCs these values to form
a list which it returns.

(MAPCONC MAPX MAPFNL MAPFN2) [Function]
Computes the same values as MAPC and MAPCAR, but NCONCs the values to form
a list which it returns.

Note that MAPCAR creates a new list which is a mapping of the old list in that each element of the new
list is the result of applying a function to the corresponding element on the original list. MAPCONC is used
when there are a variable number of elements (including none) to be inserted at each iteration. Examples:

(MAPCONC " (A B C NIL D NI'L)
"(LAMBDA (Y) (if (NULL Y) then NIL else (LIST V))))
==> (A B C D)

This MAPCONC returns a list consisting of mapx with all NI Ls removed.
(MAPCONC " ((AB) C(DEF) (G HI)
"(LAMBDA (Y) (if (LISTP Y) then Y else NL)))
==> (ABDEFGQ
This MAPCONC returns a linear list consisting of al the lists on maPx .

Since MAPCONC uses NCONC to string the corresponding lists together, in this example the origina list will
be dtered tobe ((AB DEF G C(DEF G (G HI). If thisisan undesirable side eect, the
functional argument to MAPCONC should return instead a top level copy of the lists, i.e. (LAMBDA ()
(if (LISTP Y) then (APPEND Y) else NIL))).

513

Function Evaluation

(MAP2C MAPX MAPY MAPFNL MAPFN2) [Function]
Identical to MAPC except MapFNL is a function of two arguments, and (MAPFNL
(CAR maPx) (CAR maPY)) is computed at each iteration. Terminates when
either MaPX or MAPY is a non-list.

MAPFN2 is still a function of one argument, and is applied twice on each iteration;
(MAPFN2 MAPX) gives the new maPX , (MAPFN2 MAPY) the new mMAPY . CDRis
used if MAPFN2 is not supplied, i.e, isNI L.

(MAP2CAR MAPX MAPY MAPFNL MAPFN2) [Function]
Identical to MAPCAR except MAPFNL s a function of two arguments and (MAPFNL
(CAR maPx) (CAR maPY)) isused to assemble the new list. Terminates when
either MAPX or MAPY is a non-list.

(SUBSET MAPX MAPFNL MAPFN2) [Function]
Applies maPFNL to elements of MaPx and returns a list of those elements for
which this application isnon-NI L, eg.,

(SUBSET ' (A B 3 C 4) 'NUMBERP) = (3 4).
MAPFN2 plays the same role as with MAP, MAPC, et al.

(EVERY EVER YX EVER YFN1 EVER YFN2) [Function]
Returns T if the result of applying EVER YFN1 to each element in EVER YX is true,
otherwise NI L. For example, (EVERY ' (X Y 2Z) 'ATOM => T.

EVERY operates by evauating (EVER YFN1 (CAR EVER YX) EVER YX). The
second argument is passed to EVER YFNL soO that it can look at the next element
on EVER YX if necessary. If EVER YFNL yields NI L, EVERY immediately returns
NI L. Otherwise, EVERY computes (EVER YFN2 EVER YX), or (CDR EVER Yx) if
EVER YFN2 = NI L, and uses this as the ‘‘new’’ EVER Yx, and the process continues.
For example, (EVERY x ' ATOM ' CDDR) is true if every other element of X is
atomic.

(SOVE SOMEX SOMEFNL SOVEFN2) [Function]
Returns the tail of sovex beginning with the rst element that satises SOVEFNL
i.e, for which soveFrN1 applied to that element is true. Vaue is NI L if no such
element exists. (SOVE X ' (LAMBDA (Z) (EQUAL Z Y))) is equivaent to
(MEMBER Y X). SOVE operates analogoudly to EVERY. At each stage, (SOVEFNL
(CAR sovex) sovex) iscomputed, and if thisisnot NI L, SOMEX isreturned as
the value of SOVE. Otherwise, (SOVEFN2 SOMVEX) iscomputed, or (CDR SOVEX)
if soveFN2 = NI L, and used for the next sovex .

(NOTANY SOMEX SOMEFNL SOVEFN2) [Function]
(NOT (SOVE SOVEX SOMEFNL SOVEFN2))

(NOTEVERY EVER YX EVER YFNL EVER YFN2) [Function]
(NOT (EVERY EVER YX EVER YFNL EVER YFN2))

(MAPRI NT LST FILE LEFT RIGHT SEP PFN LISPXPRINTFL G) [Function]
A genera printing function. It cyclesthrough LST applying PFN (or PRI N1 if PFN
not given) to each element of LST. Between each application, MAPRI NT performs

514

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

PRI N1 of sep (or ** " if sep= NI L). If LEFT isgiven, it is printed (using PRI N1)
initialy; if RGHT is given it is printed (using PRI N1) at the end.

For example, (MAPRINT X NIL "% ' 9%) isequivalent to PRI N1 for lists. To
print a list with commas between each element and a na ‘‘.’ one could use
(MAPRINT X T NIL "% ' %).

If LISPXPRINTFL G= T, LI SPXPRI N1 (page 8.20) is used instead of PRI N1.

54 FUNCTIONAL ARGUMENTS

When using functional arguments, the following function is very useful:

(FUNCTI ON FN ENV) [NLambda Function]
If ENv = NI L, FUNCTI ON is the same as QUOTE, except that it istreated di erently
when compiled. Consider the function de nition:

(DEFI NEQ (FOO
(FIE LST (FUNCTION (LAVBDA (2) (ITIMES Z 2))))
))

FQO calls the function FI E with the value of LST and the EXPR expression
(LAMBDA (Z) (LIST (CAR 2))).

If FOO is run interpreted, it doesn't make any di erence whether FUNCTI ON or
QUOTE isused. However, when FOOiscompiled, if FUNCTI ON isused the compiler
will dene and compile the EXPR as an auxiliary function (See page 12.8). The
compiled EXPR will run considerably faster, which can make a big di erence if it
is applied repeatedly.

Note: Compiling FUNCTI ON will not create an auxiliary function if it isa functional
argument to a function that compiles open, such as most of the mapping functions
(MAPCAR, MAPLI ST, etc.).

If ENv isnot NI L, it can be alist of variables that are (presumably) used freely by
FN. In this case, the value of FUNCTI ON isan expression of the form (FUNARG FN
PCs), where Pos is a stack pointer to a frame that contains the variable bindings
for those variables on ENv . ENv can aso be a stack pointer itself, in which case
the value of FUNCTI ON is (FUNARG FN ENv). Finadly, ENv can be an atom, in
which case it is evaluated, and the value interpreted as described above.

As explained above, one of the possible values that FUNCTI ON can return is the form (FUNARG FN
POS), where FN is a function and Pos is a stack pointer. FUNARG is not a function itself. Like LAMBDA
and NLAMBDA, it has meaning and is specially recognized by Interlisp only in the context of applying a
function to arguments. In other words, the expression (FUNARG FN Pos) isused exactly like a function.
When a FUNARG expression is applied or is CAR of a form being EVAL’ed, the APPLY or EVAL takes
place in the access environment speci ed by ENv (see page 7.1). Consider the following example:

_ (DEFINEQ (DO. TWCE (FN VAL)

515

Functional Arguments

(APPLY* FN (APPLY* EN VAL))))

(DO TW CE)

_ (DO. TWCE [FUNCTION (LAMBDA (X) (1PLUS X X))]
5)

20

_ (SETQ VAL 1)

1

_ (DO. TWCE [FUNCTION (LAMBDA (X) (1PLUS X VAL))]
5)

20

_ (DO TWCE [FUNCTION (LAMBDA (X) (1PLUS X VAL)) (VAL)]
5)

7

DO. TW CE isdened to apply a function FN to a value VAL, and apply FN again to the value returned;
in other words it calculates (FN (FN VAL)) . Given the EXPR expression (LAMBDA (X) (IPLUS X
X)), which doubles a given value, it correctly calculates (FN (FN 5)) = (FN 10) = 20. However,
when given (LAMBDA (X) (I PLUS X VAL)), which should add the value of the global variable VAL to
the argument X, it does something unexpected, returning 20 again, rather than 5+1+1 = 7. The problem
is that when the EXPR is evaluated, it is evaluated in the context of DO. TW CE, where VAL is bound
to the second argument of DO. TW CE, namely 5. In this case, one solution is to use the ENV argument
to FUNCTI ON to construct a FUNARG expression which contains the value of VAL at the time that the
FUNCTI ON is executed. Now, when (LAMBDA (X) (IPLUS X VAL)) is evauated, it is evauated in
an environment where the global value of VAL is accessable. Admittedly, this is a somewhat contrived
example (it would be easy enough to change the argument names to DO TW CE so there would be no
conict), but this situation arises occasionaly with large systems of programs that construct functions, and
pass them around.

Note: System functions with functional arguments (APPLY, MAPCAR, etc.) are compiled so that their
arguments are local, and not accessable (see page 12.4). This reduces problems with conicts with free
variables used in functional arguments.

FUNARG expressions can be used for more than just circumventing the clashing of variables. For example,
a FUNARG expression can be returned as the value of a computation, and then used ‘‘higher up’.
Furthermore, if the function in a FUNARG expression sets any of the variables contained in the frame,
only the frame would be changed. For example, consider the following function:

(MAKECOUNTER (CNT)
(FUNCTI ON [LAVBDA NI L
(PROGL CNT (SETQ CNT (ADDL CNT]
(CNT)))

The function MAKECOUNTER returns a FUNARG that increments and returns the previous vaue of the
counter CNT. However, this isdone within the environment of the call to MAKECOUNTER where FUNCTI ON
was executed, which the FUNARG expression ‘‘carries around’’ with it, even after MAKECOUNTER has
nished executing. Note that each call to MAKECOUNTER creates a FUNARG expression with a new,
independent environment, so that multiple counters can be generated and used:

_ (SETQ Cl (MAKECOUNTER 1))

(FUNARG (LAVBDA NIL (PROGL CNT (SETQ CNT (ADDL CNT)))) #1, 13724/ * FUNARG)
_ (APPLY C1)

1

5.16

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

_ (APPLY C1)

2

_ (SETQ C2 (MAKECOUNTER 17))
(FUNARG (LAMBDA NIL (PROGL CNT (SETQ CNT (ADDL CNT)))) #1, 13736/ * FUNARG)
_ (APPLY 2)

17

_ (APPLY 2)

18

_ (APPLY C1)

3

_ (APPLY 2)

19

By creating a FUNARG expression with FUNCTI ON, a program can create a function object which has
updateable binding(s) associated with the object which last between calls to it, but are only accessible
through that instance of the function. For example, using the FUNARG device, a program could
maintain two di erent instances of the same random number generator in di erent states, and run them
independently.

Note: In Interlisp- 10, environment switching is expensive because it is a shallow-binding system (see page
7.1), so this may restrict the applications of FUNARG expressions.

55 MACROS

Macros provide an alternative way of specifying the action of a function. Whereas function denitions are
evaluated with a ‘‘function call’’, which involves binding variables and other housekeeping tasks, macros
are evaluated by trandating one Interlisp form into another, which is then evaluated.

A litatom may have both a function denition and a macro denition. When a form is evaluated by
the interpreter, if the CAR has a function denition, it is used (with a function call), otherwise if it has
a macro denition, then that is used. However, when a form is compiled, the CAR is checked for a
macro denition rst, and only if there isn't one isthe function denition compiled. This alows functions
that behave di erently when compiled and interpreted. For example, it is possible to dene a function
that, when interpreted, has a function denition that is slow and has a lot of error checks, for use when
debugging a system. This function could also have a macro denition that denes a fast version of the
function, which is used when the debugged system is compiled.

Macro denitions are represented by lists that are stored on the property list of a litatom. Macros are
often used for functions that should be compiled dierently in dierent Interlisp implementations, and
the exact property name a macro denition is stored under determines whether it should be used in a
particular implementation. The global variable MACROPROPS contains a list of al possible macro property
names which should be saved by the MACROS le package command. Typical macro property names
are 10MACRO for Interlisp- 10, DMACRO for Interlisp- D,2 and MACRO for ‘‘implementation independent’”’
macros. The global variable COWVPI LERMACROPROPS is a list of macro property names. Interlisp
determines whether a litatom has a macro denition by checking these property names, in order, and

2also VAXMACRO for Interlisp- VAX, and JMACRO for Interlisp- Jerico.

517

Macros

using the rst non- NI L property vaue asthe macro denition. In Interlisp- D this list contains DMACRO and
MACRO in that order so that DMACROs will override the implementation- independent MACRO properties.
In general, use a DMACRO property for macros that are to be used only in Interlisp- D, use 10MACRO for
macros that are to be used only in Interlisp- 10, and use MACRO for macros that are to aect both systems.

Macro denitions can take the following forms:

(LAMBDA) or (NLAMBDA)
A function can be made to compile open by giving it a macro denition of the form (LAMBDA
) or (NLAMBDA), eg., (LAVBDA (X) (COND ((GREATERP X 0) X) (T (M NUS
X)))) for ABS. The eect is as if the macro denition were written in place of the function
wherever it appears in a function being compiled, i.e, it compiles as a lambda or nlambda
expression. This saves the time necessary to cal the function at the price of more compiled code
generated in-line.

(NI'L EXPRESSION) oOr (LIST EXPRESSION)
‘“*Substitution’” macro. Each argument in the form being evaluated or compiled is substituted for
the corresponding atom in LI ST, and the result of the substitution isused instead of the form. For
example, if the macro denition of ADD1 is((X) (IPLUS X 1)), then, (ADDL (CAR Y)) is
compiled as (I PLUS (CAR Y) 1).

Note that ABS could be dened by the substitution macro ((X) (COND ((GREATERP X 0)
X) (T (MNUS X)))) . In this case, however, (ABS (FOO X)) would compile as

(COND ((GREATERP (FOO X) 0)
(FOO X))
(T (MNUS (FOO X))))

and (FOO X) would be evaluated two times. (Code to evaluate (FOO X) would be generated
three times.)

(OPENLAMBDA ARGS BOD YY)
This is a cross between substitution and LAMBDA macros. When the compiler processes an
OPENLANMBDA, it attempts to substitute the actual arguments for the formals wherever this preserves
the frequency and order of evaluation that would have resulted from a LAMBDA expression, and
produces a LAMBDA binding only for those that require it.

When a macro denition isthe atom T, it means that the compiler should ignore the macro, and
compile the function denition; this is a smple way of turning o other macros. For example,
the user may have a function that runs in both Interlisp- D and Interlisp- 10, but has a macro
denition that should only be used when compiling in Interlisp- 10. If the MACRO property has
the macro speci cation, a DMACRO of T will cause it to be ignored by the Interlisp- D compiler.
Note that this DMACRO would not be necessary if the macro were speci ed by a 10MACRO instead
of a MACRO.

(= . OTHER- FUNCTION)
A simple way to tell the compiler to compile one function exactly as it would compile another.

For example, when compiling in Interlisp- D, FRPLACAS are treated as RPLACAs. This is achieved
by having FRPLACA have a DMACRO of (= . RPLACA) .

(LI TATOM EXPRESSION)

518

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

If a macro denition begins with a litatom other than those given above, this alows computation
of the Interlisp expression to be evaluated or compiled in place of the form. LI TATOM is bound
to the CDR of the calling form, EXPRESSI ON is evaluated, and the result of this evaluation is
evaluated or compiled in place of the form. For example, LI ST could be compiled using the
computed macro:

[X (LIST * CONS
(CAR X)
(AND (CDR X)
(CONS ’ LI ST
(CDR X]

This would cause (LI ST X Y Z) to compile as(CONS X (CONS Y (CONS Z NIL))) . Note
the recursion in the macro expansion.

If the result of the evaluation is the litatom | GNOREMACRO, the macro is ignored and the
compilation of the expression proceeds as if there were no macro denition. If the litatom in
question is normally treated specialy by the compiler (CAR, CDR, COND, AND, etc.), and aso has
a macro, if the macro expansion returns | GNOREMACRO, the litatom will still be treated specially.

In Interlisp- 10, if the result of the evaluation is the atom | NSTRUCTI ONS, no code will be
generated by the compiler. It is then assumed the evaluation was done for eect and the
necessary code, if any, has been added. This isaway of giving direct instructions to the compiler
if you understand it.

Note: It is often useful, when constructing complex macro expressions, to use the BQUOTE facility (see
page 6.39).

The following function is quite useful for debugging macro de nitions:

(EXPANDVACRO FORM QUIETFL G _) [Function]
Takes a form whose CAR has a macro denition and expands the form as it would
be compiled. The result is prettyprinted, unless QU ETFL G= T, in which case the
result is simply returned.

551 MACROTRAN

Interpreted macros are implemented by the function MACROTRAN. When the interpreter encounters a
form CAR of which is an undened function, 3 MACROTRAN is caled. If CAR of the form has a macro
denition, the macro is expanded, and the result of this expansion is evaluated in place of the original
form. CLI SPTRAN (page 16.19) is used to save the result of this expansion so that the expansion only has
to be done once. On subsequent occasions, the translation (expansion) is retrieved from CLI SPARRAY
the same as for other CLISP constructs; MACROTRAN never even has to be invoked.

Sometimes, macros contain cals to functions that assume that the macro is being compiled. The

variable SHOULDCOWPI LEMACROATOMS is a list of functions that should be compiled to work correctly
(initialy (OPCODES) in Interlisp- D, (ASSEMBLE LOC) in Interlisp- 10). UNSAFEMACROATOMS is a list

SIn other words, if you have a macro on FQO, then typing (FOO * A ’ B) will work, but FOO(A B) will
not work.

519

MACROTRAN

of functions which eect the operation of the compiler, so such macro forms shouldn’t even be expanded
except by the compiler (initially NI L in Interlisp- D, (C2EXP STORI N CEXP COWP) in Interlisp- 10). If
MACROTRAN encounters a macro containing calls to functions on these two lists, instead of the macro
being expanded, a dummy function is created with the form as its denition, and the dummy function is
then compiled. A form consisting of a call to this dummy function with no arguments is then evaluated
in place of the origina form, and CLI SPTRAN is used to save the trandation as described above. There
are some situations for which this procedure is not amenable, eg. a GO inside the form which is being
compiled will cause the compiler to give an UNDEFI NED TAG error message because it is not compiling
the entire function, just a part of it.

Note: MACROTRAN is an entry on DW MJUSERFORMS (page 15.10) and thus will not work if DWIM is not
enabled.

5.20

