CHAPTER 17

THE TELETYPE EDITOR

The Interlisp teletype editor alows rapid, convenient modi cation of list structures. Most often it is
used to edit function denitions, (often while the function itself is running) via the function EDI TF, e.g.,
EDI TF(FOO) . However, the editor can aso be used to edit the value of a variable, via EDI TV, to edit a
property list, via EDI TP, or to edit an arbitrary expression, via EDI TE. It is an important feature which
alows good on-line interaction in the Interlisp system.

In Interlisp- D, most editing is done using the display editor DEdit (page 20.1), which is an extended,
display-oriented version of the teletype editor. The teletype editor is ill available, as it oers a facility
for doing complex modi cations of program structure under program control. For example, BREAKI N
(page 10.5) calls the teletype editor to insert a function break within the body of a function. By calling
the function EDI TMODE (page 20.2) it is possible to set the ‘‘default editor’” (TELETYPE or DI SPLAY)
caled by Masterscope, the break package, etc.

This chapter begins with a lengthy introduction intended for the new user. The reference portion begins
on page 17.9.

171 INTRODUCTION

Let us introduce some of the basic editor commands, and give a avor for the editor’s language structure
by guiding the reader through a hypothetical editing session. Suppose we are editing the following
incorrect denition of APPEND:

[LAVBDA (X)
Y
(COND
((NUL X)
2)
(T (CONS (CAR)
(APPEND (CDR X V]

We call the editor via the function EDI TF:

_EDI TF(APPEND)
EDIT

*

The editor responds by typing EDI T followed by *, which is the editor's prompt character. This signi es
that the editor is ready to accept commands. In the examples in this chapter, al lines beginning with *
were typed by the user, the rest by the editor.

At any given moment, the editor’'s attention is centered on some substructure of the expression being

17.1

Introduction

edited. This substructure is caled the current expression, and it is what the user sees when he gives the
editor the command P, for print. Initially, the current expression is the top level one, i.e, the entire
expression being edited. Thus:

*p
(LAVBDA (X) Y (COND & &))

Note that the editor prints the current expression as though printlevel (page 6.18) were set to (2 . 20),
i.e., sublists of sublists are printed as &, tails of long lists printed as--. The command ? will print the
current expression as though printlevel were 1000.

%9
(LAVMBDA (X) Y (COND ((NUL X) Z) (T (CONS (CAR) (APPEND (CDR X Y))))))

and the command PP will prettyprint the current expression.

A positive integer isinterpreted by the editor asacommand to descend into the correspondingly numbered
element of the current expression. Thus:

*2
*P
(X)

A negative integer has a similar eect, but counting begins from the end of the current expression and
proceeds backward, i.e, - 1 refers to the last element in the current expression, -2 the next to the last,
etc. For either positive integer or negative integer, if there is no such element, an error occurs. ‘‘Editor
errors’ are not the same as Interlisp function errors, i.e., they never cause breaks or even go through the
error machinery but are direct calls to ERROR! indicating that a command isin some way faulty. What
happens next depends on the context in which the command was being executed. For example, there are
conditional commands which branch on errors. In most situations, though, an error will cause the editor
to type the faulty command followed by a ? and wait for more input. Note that typing control- E while
a command is being executed aborts the command exactly as though it had caused an error. The current
expression is never changed when a command causes an error. Thus:

*p
(X)
*2

2 7
*1
*p
X

*

A phrase of the form ‘‘the current expression is changed’ or ‘‘the current expression becomes’ refers to a
shift in the editor’s attention, not to a modi cation of the structure being edited.

When the user changes the current expression by descending into it, the old current expression is not lost.
Instead, the editor actually operates by maintaining a chain of expressions leading to the current one. The

17.2

THE TELETYPE EDITOR

current expression is simply the last link in the chain. Descending adds the indicated subexpression onto
the end of the chain, thereby making it be the current expression. The command O is used to ascend the
chain; it removes the last link of the chain, thereby making the previous link be the current expression.
Thus:

*p

X

*0 P

(X)

*0 -1 P

(COND (& 2) (T &))

Note the use of severa commands on a single line in the previous output. The editor operates in aline
buered mode, the same as EVALQT. Thus no command is actually seen by the editor, or executed, until
the line is terminated, either by a carriage return, or a matching right parenthesis. The user can thus use
control- A and control- Q for line-editing edit commands, the same as he does for inputs to the Interlisp
executive.

In our editing session, we will make the following corrections to APPEND: delete Y from where it appears,
add Y to the end of the argument list, change NUL to NULL, change Z to Y, add X after CAR, and insert
a right parenthesis following CDR X.

First we will delete Y. By now we have forgotten where we are in the function denition, but we want to
be at the ‘‘top’’ so we use the command ”, which ascends through the entire chain of expressions to the
top level expression, which then becomes the current expression, i.e., » removes al links except the rst
one.

* N P
(LAVMBDA (X) Y (COND & &))

Note that if we are aready at the top, » has no eect, i.e, it isa no-op. However, 0 would generate an
error. In other words, ~ means ‘‘goto the top,”” while 0 means ‘‘ascend one link."”

The basic structure modi cation commands in the editor are:

(N) (N 1) [Editor Command]
Deletes the corresponding element from the current expression.

(N Eq Ev) (N 1) [Editor Command]
Replaces the Nth element in the current expression with E; Ey.

(-N Eq Ev) (N 1) [Editor Command]
Inserts E; Ey, before the Nth element in the current expression.

Thus:

*p

(LAMBDA (X) Y (COND & &))
*(3)

*(2 (X'Y)

*p

17.3

Introduction

(LAVMBDA (X Y) (COND & &))

All structure modi cation done by the editor is destructive, i.e., the editor uses RPLACA and RPLACD to
physically change the structure it was given.

Note that al three of the above commands perform their operation with respect to the Nth element from
the front of the current expression; the sign of N is used to specify whether the operation is replacement
or insertion. Thus, there is no way to specify deletion or replacement of the Nth element from the
end of the current expression, or insertion before the Nth element from the end without counting out
that element’s position from the front of the list. Similarly, because we cannot specify insertion after
a particular element, we cannot attach something at the end of the current expression using the above
commands. Instead, we use the command N (for NCONC). Thus we could have performed the above
changes instead by:

*p
(LAVMBDA (X) Y (COND & &))
*(3)

*2 (NY)

*p

(X'Y)

* N\ P

*(LAVBDA (X Y) (COND & &))

Now we are ready to change NUL to NULL. Rather than specify the sequence of descent commands
necessary to reach NUL, and then replace it with NULL, eg., 3 2 1 (1 NULL), we will use F, the nd
command, to nd NUL:

*p
(LAVBDA (X Y) (COND & &))
*F NUL

*p

(NUL X)

*(1 NULL)

*0 P

((NULL X) 2)

*

Note that F is specia in that it corresponds to two inputs. In other words, F says to the editor, ‘‘treat
your next command as an expression to be searched for.”” The search is carried out in printout order in
the current expression. If the target expression is not found there, F automatically ascends and searches
those portions of the higher expressions that would appear after (in a printout) the current expression. If
the search is successful, the new current expression will be the structure where the expression was found, 1
and the chain will be the same as one resulting from the appropriate sequence of ascent and descent

1If the search is for an atom, e.g., F NUL, the current expression will be the structure containing the
atom.

174

THE TELETYPE EDITOR

commands. If the search is not successful, an error occurs, and neither the current expression nor the
chain is changed: 2

*p
((NULL X) 2)
*F COND P
COND ?

*p

*((NULL X) 2)

Here the search failed to nd a COND following the current expression, although of course a COND does
appear earlier in the structure. This last example illustrates another facet of the error recovery mechanism:
to avoid further confusion when an error occurs, al commands on the line beyond the one which caused
the eror (and all commands that may have been typed ahead while the editor was computing) are
forgotten.

We could aso have used the R command (for Replace) to change NUL to NULL. A command of the form
(R Eq Ey) will replace all occurrences of Eq in the current expression by E,. There must be at least one
such occurrence or the R command will generate an error. Let us use the R command to change al Z's
(even though there is only one) in APPEND to Y:

* N\ (RZY)
*F Z

z?
*pp
[LAVBDA (X Y)
(COND
((NULL X)
Y)
(T (CONS (CAR)
(APPEND (CDR X V]

The next task isto change (CAR) to (CAR X). We could do this by (R (CAR) (CAR X)), or by:

*F CAR
*(N X)
*p
(CAR X)
*

The expression we now want to change is the next expression after the current expression, i.e, we are
currently looking at (CAR X) in (CONS (CAR X) (APPEND (CDR X Y))). We could get to the

2F isnever ano-op, i.e, if successful, the current expression after the search will never be the same as the
current expression before the search. Thus F EXPR repeated without intervening commands that change
the edit chain can be used to nd successive instances of EXPR .

17.5

Introduction

APPEND expression by typing O and then 3 or - 1, or we can use the command NX, which does both
operations:

*P

(CAR X)

*NX P

(APPEND (CDR X Y))

Finally, to change (APPEND (CDR X Y)) to (APPEND (CDR X) Y), we could perfform (2 (CDR
X) Y),or (2 (COR X)) and (N Y), or 2 and (3), deleting the Y, and then O (N Y). However, if
Y were a complex expression, we would not want to have to retype it. Instead, we could use a command
which eectively inserts and/or removes left and right parentheses. There are six of these commands: BI
(‘‘Both In""), BO (‘*‘Both Out’’), LI (‘‘Left In'"), LO (*'Left Out’’), RI (‘*‘Right In'"), and RO (‘*‘Right Out’").
Of course, we will always have the same number of left parentheses as right parentheses, because the
parentheses are just a notational guide to structure that is provided by our print program. Herein lies one
of the principal advantages of a LISP oriented editor over a text editor: unbalanced parentheses errors
are not possible. Thus, LI, LO, R, and RO actually do not insert or remove just one parenthesis, but this
is very suggestive of what actually happens.

In this case, we would like a right parenthesis to appear following X in (CDR X Y). Therefore, we use
the command (Rl 2 2), which means insert aright parentheses after the second element in the second
element (of the current expression):

*p

(APPEND (CDR X Y))
(R 2 2)

*p

(APPEND (CDR X) Y)

We have now nished our editing, and can exit from the editor, to test APPEND, or we could test it while
gtill inside of the editor, by using the E command:

*E APPEND((A B) (C D E))
(ABCDE

The E command causes the next input to be evaluated by Interlisp. If there is another input following
it, as in the above example, the rst will be applied (with APPLY) to the second. Otherwise, the input is
evaluated (with EVAL).

We prettyprint APPEND, and leave the editor.

* PP
[LAVBDA (X V)
(COND
((NULL X)

(T (CONS (CAR X)

(APPEND (CDR X) Y]
* OK

17.6

THE TELETYPE EDITOR

APPEND

17.2 COMMANDS FOR THE NEW USER

As mentioned earlier, the Interlisp manual isintended primarily as areference manual, and the remainder
of this chapter is organized and presented accordingly. While the commands introduced in the previous
scenario congtitute a complete set, i.e., the user could perform any and all editing operations using just
those commands, there are many situations in which knowing the right command(s) can save the user
considerable eort. We include here as part of the introduction a list of those commands which are not
only frequently applicable but aso easy to use. They are not presented in any particular order, and are
all discussed in detail in the reference portion of the chapter.

UNDO [Editor Command]
Undoes the last modi cation to the structure being edited, e.g., if the user deletes
the wrong element, UNDO will restore it. The availability of UNDO should give the
user condence to experiment with any and all editing commands, no matter how
complex, because he can aways reverse the eect of the command.

BK [Editor Command]
Like NX, except makes the expression immediately before the current expression
become current.

BF [Editor Command]
Backwards Find. Like F, except searches backwards, i.e, in inverse print order.

\ [Editor Command)]
Restores the current expression to the expression before the last ‘‘big jump’’, eg.,
a nd command, an *, or ancther \ . For example, if the user types F COND, and
then F CAR,\ would take him back to the COND. Another \ would take him back
to the CAR.

\P [Editor Command]
Like \ except it restores the edit chain to its state as of the last print, either by P,
?, or PP. If the edit chain has not been changed since the last print, \ P restores it
to its state as of the printing before that one, i.e, two chains are aways saved.

Thus if the user types P followed by 3 2 1 P, \ P will take him back to the rst P, i.e, would be
equivalent to 0 O 0. Another \ P would then take him back to the second P. Thus the user can use \ P
to ip back and forth between two current expressions.

The search expression given to the F or BF command need not be a literal expression. Instead, it can be
a pattern. The symbol & can be used anywhere within this pattern to match with any single element of a
list, and - - can be used to match with any segment of alist. Thus, in the incorrect denition of APPEND
used earlier, F (NUL &) could have been used to nd (NUL X),and F (CDR --) or F (CDR & &),
but not F (CDR &),to nd (CDR X Y).

Note that & and - - can be nested arbitrarily deeply in the pattern. For example, if there are many places
where the variable X is set, F SETQ may not nd the desired expression, nor may F (SETQ X &) . It

17.7

Commandsfor the New User

may be necessary to use F (SETQ X (LI ST --)). However, the usual technique in such a case is to
pick out a unique atom which occurs prior to the desired expression, and perform two F commands. This
““homing in'’ process seems to be more convenient than ultra- precise speci cation of the pattern.

$ (<esc>) is equivalent to - - at the character level, eg., VER$S will match with VERYLONGATQOM, as will
$ATOM, SLONGS, (but not SLONG and $VENSMB. $ can be nested inside of a pattern, eg., F (SETQ
VER$ (CONS --)).

If the search is successful, the editor will print = followed by the atom which matched with the $-atom,
eg.,

*F (SETQ VERS$ &)
=VERYLONGATOM

*

Frequently the user will want to replace the entire current expression, or insert something before it. In
order to do this using a command of the form (N E; Em) O (-N Eq Ep) » the user must be
above the current expression. In other words, he would have to perform a O followed by a command
with the appropriate number. However, if he has reached the current expression via an F command, he
may not know what that number is. In this case, the user would like a command whose eect would be
to modify the edit chain so that the current expression became the rst element in a new, higher current
expression. Then he could perform the desired operation via (1 E; Em) O (-1 Eq Epm) - UP
is provided for this purpose.

uP [Editor Command]
After UP operates, the old current expression isthe rst element of the new current
expression. Note that if the current expression happens to be the rst element
in the next higher expression, then UP is exactly the same as 0. Otherwise, UP
modi es the edit chain so that the new current expression is a proper tail (page
2.19) of the next higher expression:

*F APPEND P
(APPEND (CDR X) Y)
*UP P
(APPEND & Y))
*0 P
(CONS (CAR X) (APPEND & V))
*

The is used by the editor to indicate that the current expression is a tail of
the next higher expression as opposed to being an element (i.e., a member) of the
next higher expression. Note: if the current expression is already a tail, UP has no

eect.

(B Eg Em) [Editor Command]
Inserts E4 Ey before the current expression, i.e., does an UP and then a (-1
Eq Em) -

(A Eq Em) [Editor Command]
Inserts E4 Ey after the current expression, i.e., does an UP and then either a
(-2 g Eym) Or an (N E; Ep) . if the current expression is the last one

in the next higher expression.

17.8

THE TELETYPE EDITOR

(: Eq Em) [Editor Command]
Replaces the current expression by E; Ep. i.€, does an UP and then a (1 E;

Em) -
DELETE [Editor Command]

Deletes the current expression; equivalent to (:) .

Earlier, we introduced the RI command in the APPEND example. The rest of the commands in this
family: Bl , BO, LI, LO, and RO, perform similar functions and are useful in certain situations. In addition,
the commands MBD and XTR can be used to combine the eects of several commands of the Bl - BO
family. MBD (page 17.28) is used to embed the current expression in a larger expression. For example,
if the current expression is (PRI NT bigexpressi)onand the user wants to replace it by (COND (FLG
(PRI NT bi gexpressi)on) , he could accomplish this by (LI 1),(-1 FLG, (LI 1),and (-1 COND),
or by a single MBD command.

XTR (page 17.27) is used to eXTRact an expression from the current expression. For example, extracting
the PRI NT expression from the above COND could be accomplished by (1), (LO 1), (1), and (LO 1)
or by a single XTR command. The new user is encouraged to include XTR and MBD in his repertoire as
soon as he is familiar with the more basic commands.

17.3 LOCAL ATTENTION-CHANGING COMMANDS

This section describes commands that change the current expression (i.e., change the edit chain) thereby
‘“*shifting the editor's attention.”” These commands depend only on the structure of the edit chain, as
compared to the search commands (presented later), which search the contents of the structure.

uP [Editor Command]
UP modi es the edit chain so that the old current expression (i.e., the one at the
time UP was cdled) is the rst element in the new current expression. If the
current expression isthe rst element in the next higher expression UP simply does
a 0. Otherwise UP adds the corresponding tail to the edit chain.

If a P command would cause the editor to type before typing the current
expression, ie., the current expression is a tail of the next higher expression, UP
has no eect.
For Example:
*PP
(COND ((NULL X) (RETURN Y)))
*1 P
COND
*UP P
(COND (& &)
*-1 P
((NULL X) (RETURN Y))
*UP P
((NULL X) (RETURN Y))
*UP P

179

Local Attention-Changing Commands

((NULL X) (RETURN Y)))
*F NULL P
(NULL X)
*UP P
((NULL X) (RETURN Y))
*UP P
((NULL X) (RETURN Y)))

The execution of UP is straightforward, except in those cases where the current expression appears more
than once in the next higher expression. For example, if the current expression is(A NIL B NIL C
NI L) and the user performs 4 followed by UP, the current expression should then be... NIL C NIL).
UP can determine which tail isthe correct one because the commands that descend save the last tail on an
internal editor variable, LASTAI L. Thus after the 4 command is executed, LASTAIL is(NIL C NIL).
When UP iscaled, it rst determines if the current expression is atail of the next higher expression. If it
is, UP is nished. Otherwise, UP computes (MEMB CURRENT- EXPRESSION NEXT- HI GHER- EXPRESSI ON)
to obtain a tail beginning with the current expression.3 If there are no other instances of the current
expression in the next higher expression, this tail isthe correct one. Otherwise UP uses LASTAI L to select
the correct tail.*

N (N 1) [Editor Command]
Adds the Nth element of the current expression to the front of the edit chain,
thereby making it be the new current expression. Sets LASTAI L for use by UP.
Generates an eror if the current expression is not a list that contains at least N
elements.

-N (N 1) [Editor Command)]
Adds the Nth element from the end of the current expression to the front of the
edit chain, thereby making it be the new current expression. Sets LASTAI L for
use by UP. Generates an error if the current expression is not a list that contains
at least N elements.

0 [Editor Command]
Sets the edit chain to CDR of the edit chain, thereby making the next higher
expression be the new current expression. Generates an error if there is no higher
expression, i.e., CDR of edit chain is NI L.

Note that O usually corresponds to going back to the next higher left parenthesis, but not always. For
example:

SThe current expression should always be either a tail or an element of the next higher expression. If it
is neither, for example the user has directly (and incorrectly) manipulated the edit chain, UP generates an
error.

4Occasionally the user can get the edit chain into a state where LASTAI L cannot resolve the ambiguity,
for example if there were two non-atomic structures in the same expression that were EQ, and the user
descended more than one level into one of them and then tried to come back out using UP. In this case,
UP prints LOCATI ON UNCERTAI N and generates an error. Of course, we could have solved this problem
completely in our implementation by saving at each descent both elements and tails. However, this would
be a costly solution to a situation that arises infrequently, and when it does, has no detrimental eects.
The LASTAI L solution is cheap and resolves 99% of the ambiguities.

17.10

*p
(ABCDEF B
*3 UP P
CDEF Q
*3 UP P
EF O
*0 P
CDEF Q

THE TELETYPE EDITOR

If the intention is to go back to the next higher left parenthesis, regardless of any intervening tails, the
command ! 0 can be used.

10

BK

[Editor Command]
Does repeated 0’s until it reaches a point where the current expression is not a
tail of the next higher expression, i.e, always goes back to the next higher left
parenthesis.

[Editor Command]
Sets the edit chain to LAST of edit chain, thereby making the top level expression
be the current expression. Never generates an error.

[Editor Command]
E ectively does an UP followed by a 2, thereby making the current expression be
the next expression. Generates an error if the current expression is the last one in
a list. (However, ! NX described below will handle this case)

[Editor Command]
Makes the current expression be the previous expression in the next higher
expression. Generates an error if the current expression is the rst expression
in alist.

For example,

* PP
(COND ((NULL X) (RETURN Y)))
*F RETURN P

(RETURN Y)

*BK P

(NULL X)

Both NX and BK operate by performing a ! 0 followed by an appropriate number, i.e., there won't be
an extra tail above the new current expression, as there would be if NX operated by performing an UP

followed by a 2.

(NX'N)

(BK N)

[Editor Command]
(N 1) Equivalent to N NX commands, except if an error occurs, the edit chain
is not changed.

[Editor Command]
(N 1) Equivalent to N BK commands, except if an error occurs, the edit chain
is not changed.

1711

Local Attention-Changing Commands

Note: (NX -N) isequivalent to (BK N), and vice versa.

I'NX [Editor Command)]
Makes the current expression be the next expression at a higher level, i.e., goes
through any number of right parentheses to get to the next expression. For

example:
* PP
(PROG ((L L)
(UF L))
LP (COND
((NULL (SETQ L (CDR L)))
(ERROR!))
([NULL (CDR (FMEMB (CAR L) (CADR L]
(GO LP)))

(EDI TCOM (QUOTE NX))
(SETQ UNFIND UF)
(RETURN L))

*F CDR P

(CDR L)

* NX

NX 2
*INX P

(ERROR!)

*INX P

((NULL & (GO LP))
*INX P

(EDI TCOM (QUOTE NX))

I NX operates by doing 0’suntil it reaches a stage where the current expression is not the last expression
in the next higher expression, and then does a NX. Thus ! NX always goes through at least one unmatched
right parenthesis, and the new current expression is aways on a di erent level, i.e,, ! NX and NX aways
produce di erent results. For example using the previous current expression:

*F CAR P
(CAR L)
*INX P
(GO LP)
“\P P
(CAR L)
*NX P
(CADR L)

(NTH N) [Editor Command]
(N 0) Equivalent to N followed by UP, i.e, causes the list starting with the Nth
element of the current expression (or Nth from the end if N < Q) to become the
current expression. Causes an error if current expression does not have at least N
elements.

17.12

THE TELETYPE EDITOR

(NTH 1) is a no-op, as is (NTH -L) where L is the length of the current
expression.

l'ine-feed [Editor Command]
Moves to the ‘‘next’’ expression and prints it, i.e. performs a NX if possible,
otherwise performs a ! NX. (The latter case isindcated by rst printing “>"".

control - X [Editor Command]
Control- X5 moves to the ‘‘previous’ thing and then prints it, i.e. perfforms a BK if
possible, otherwise a! O followed by a BK.

control -Z [Editor Command]
Control- Z8 moves to the last expression and prints it, i.e. does - 1 followed by P.

Line-feed, control- X, and control- Z are implemented as immediate read macros;, as soon as they are read,
they abort the current printout. They thus provide a convenient way of moving around in the editor.
In order to facilitate using di erent control characters for those macros, the function SETTERMCHARS is
provided (see page 17.59).

174 COMMANDS THAT SEARCH

All of the editor commands that search use the same pattern matching routine (the function EDI T4E, page
17.57). We will therefore begin our discussion of searching by describing the pattern match mechanism.
A pattern PAT matches with x if any of the following conditions are true:

@ If PAT is EQto X.

2 If PAT is &

©)] If PAT isa number and EQP to X.

4 If PAT isastring and (STREQUAL PAT X) is true.

(5) If (CAR PAT) isthe atom * ANY*, (CDR PAT) isalist of patterns, and one of the patterns on

(CDR PAT) matches X.

(6) If PAT is a literal atom or string containing one or more $s (<esc>s), each $ can match an
inde nite number (including 0) of contiguous characters in the atom or string X, e.g., VER$
matches both VERYLONGATOM and " VERYLONGSTRI NG' as do $LONG$ (but not $LONG) ,
and $VELSTS. Note: the atom $ (<esc>) matches only with itself.

(7 If PAT is a literal atom or string ending in two <esc>s, PAT matches with the atom or string X

if it is‘‘close’’to PAT, in the sense used by the spelling corrector (page 15.13). E.g. CONSS$$
matches with CONS, CNONC$$ with NCONC or NCONCL.

5Control- A in Interlisp on TOPS- 20.
6Control- L in Interlisp on TOPS-20.

17.13

CommandsThat Search

The pattern matching routine aways types a message of the form =mMA TCHING | TEM to inform the user
of the object matched by a pattern of the above two types, unless EDI TQUI ETFLG= T. For example, if
VER$ matches VERYLONGATOM, the editor would print =VERYLONGATOM.

(8) If (CAR PAT) isthe atom --, PAT matches x if (CDR PAT) matches with some tail of x.
For example, (A -- (&)) will match with (A B C (D)), but not (A B C D),or (ABC
(D) E). However, note that (A -- (& --) will match with (A B C (D) E). In other
words, - - can match any interior segment of a list.

If (CDR PAT)= NIL,i.e, PAT= (--), then it matches any tail of alist. Therefore, (A --)
matches (A), (A B C) and (A . B).

(9) If (CAR PAT) isthe atom ==, PAT matches X if and only if (CDR PAT) is EQto X.

This pattern is for use by programs that call the editor as a subroutine, since any non-atomic
expression in a command typed in by the user obviously cannot be EQ to aready existing
structure.

(20 If (CADR PAT) isthe atom .. (two periods), PAT matches x if (CAR PAT) matches (CAR
x) and (CDDR PAT) iscontained in X, as described on page 17.20.

(11) Otherwise if x is a list, PAT matches x if (CAR PAT) matches (CAR Xx), and (CDR PAT)
matches (CDR X).

When the editor is searching, the pattern matching routine is called to match with elements in the structure,
unless the pattern begins with ... (three periods), in which case CDR of the pattern is matched against
proper tails in the structure. Thus,

*p
(ABC (B Q)
“F (B --)
*p
(B O
O F (... B--)
*p

B C(BOQ)

Matching is also attempted with atomic tails (except for NI L). Thus,

*P
(A(B. Q)
*F C
*P

0
Although the current expression is the atom C after the na command, it isprinted as... . C) to
alert the user to the fact that Cis a tail, not an element. Note that the pattern C will match with either
instance of Cin (A C (B . Q) ,whereas (... . C) will match only the second C. The pattern NI L
will only match with NI L as an element, i.e, it will not match in (A B), even though CDDR of (A B)
isNI'L. However, (... . NL) (or equivalently (...)) may be used to specify a NI L tail, eg., (...

17.14

THE TELETYPE EDITOR

NI L) will match with CDR of the third subexpression of ((A . B) (C. D) (E)).

17.4.1 Search Algorithm

Searching begins with the current expression and proceeds in print order. Searching usually means nd
the next instance of this pattern, and consequently a match is not attempted that would leave the edit
chain unchanged. At each step, the pattern is matched against the next element in the expression currently
being searched, unless the pattern begins with ... (three periods) in which case it is matched against
the next tail of the expression.

If the match is not successful, the search operation is recursive rst in the CAR direction, and then in the
CDR direction, i.e, if the element under examination is a list, the search descends into that list before
attempting to match with other elements (or tails) at the same level. Note: A nd command of the form
(F PATTERN NI L) will only attempts matches at the top level of the current expression, i.e, it does not
descend into elements, or ascend to higher expressions.

However, at no point is the total recursive depth of the search (sum of number of CARs and CDRs
descended into) allowed to exceed the vaue of the variable MAXLEVEL. At that point, the search of
that element or tail is abandoned, exactly as though the element or tail had been completely searched
without nding a match, and the search continues with the element or tail for which the recursive depth is
below MAXLEVEL. This feature is designed to enable the user to search circular list structures (by setting
MAXLEVEL small), as well as protecting him from accidentally encountering a circular list structure in the
course of norma editing. MAXLEVEL can also be set to NI L, which is equivalent to innity. MAXLEVEL
is initialy set to 300.

If a successful match is not found in the current expression, the search automatically ascends to the next
higher expression, and continues searching there on the next expression after the expression it just nished
searching. If there is none, it ascends again, etc. This process continues until the entire edit chain has
been searched, at which point the search fails, and an error is generated. If the search fails (or is aborted
by control- E), the edit chain is not changed (nor are any CONSes performed).

If the search is successful, i.e., an expression isfound that the pattern matches, the edit chain is set to the
value it would have had had the user reached that expression via a sequence of integer commands.

If the expression that matched was a list, it will be the na link in the edit chain, i.e., the new current
expression. If the expression that matched is not a list, eg., is an atom, the current expression will be
the tail beginning with that atom, unless the atom is atail, eg., Bin (A . B). In this case, the current
expression will be B, but will print as... . B). In other words, the search eectively does an UP.7

17.4.2 Search Commands

All of the commands below set LASTAI L for use by UP, set UNFI ND for use by \ (page 17.21), and do
not change the edit chain or perform any CONSes if they are unsuccessful or aborted.

F PATTERN [Editor Command]
Actually two commands. the F informs the editor that the next command isto be

7Unless UPFI NDFLG= NI L (initially set to T). For discussion, see ‘‘Form Oriented Editing’’, page 17.26.

17.15

Search Commands

interpreted as a pattern. This is the most common and useful form of the nd
command. If successful, the edit chain always changes, i.e, F PATTERN means
nd the next instance of PATTERN .

If (MEMB PATTERN CURRENT- EXPRESSION) is true, F does not proceed with
a full recursive search. If the value of the MEMB is NI L, F invokes the search
algorithm described on page 17.15.

Note that if the current expression is (PROG NIL LP (COND (-- (GO LP1))) LP1), then
F LP1 will nd the PROG label, not the LP1 inside of the GO expression, even though the latter appears
rst (in print order) in the current expression. Note that typing 1 (making the atom PROG be the current
expression) followed by F LP1 would nd the rst LP1.

F PATTERN N [Editor Command)]
Same as F PATTERN , i.e, Finds the Next instance of PATTERN , except that the
MEMB check of F PATTERN is not performed.

F PATTERN T [Editor Command]
Similar to F PATTERN , except that it may succeed without changing the edit chain,
and it does not perform the MEMB check.

For example, if the current expression is (COND), F COND will look for the
next COND, but (F COND T) will ‘‘stay here’’.

(F PATTERN N) [Editor Command]
(N 1) Finds the Nth place that PATTERN matches. Equivalent to (F PATTERN
T) followed by (F PATTERN N) repeated N-1 times. Each time PATTERN
successfully matches, N is decremented by 1, and the search continues, until N
reaches 0. Note that PATTERN does not have to match with N identical expressions;
it just has to match N times. Thus if the current expression is (FOOL FOO2
FOXB), (F FOO& 3) will nd FOGB.

If PATTERN does not match successfully N times, an error is generated and the edit
chain is unchanged (even if PATTERN matched N-1 times).

(F PATTERN) [Editor Command]

F PATTERN NI L [Editor Command]
Similar to F PATTERN , except that it only matches with elements at the top level of
the current expression, i.e, the search will not descend into the current expression,
nor will it go outside of the current expression. May succeed without changing the
edit chain.

For example, if the current expression is(PROG NIL (SETQ X (COND & &) (COND & ...),the
command F COND will nd the COND inside the SETQ, whereas (F (COND --)) will nd the top level
COND, i.e, the second one.

(FS PATTERN 4 PATTERN) [Editor Command]
Equivalent to F PATTERN , followed by F PATTERN , followed by F PATTERN ,
so that if F PATTERN ,, fails, the edit chain is left at the place PATTERN ;1
matched.

17.16

THE TELETYPE EDITOR

(F= EXPRESSION X) [Editor Command]
Equivalent to (F (== . EXPRESSION) X), i.e, searches for a structure EQ to
EXPRESSI ON (see page 17.13).

(ORF PATTERN 4 PATTERN) [Editor Command]
Equivalent to (F (*ANY* PATTERN 4 PATTERN) N), i.e, searches for an
expression that is matched by either PATTERN 1, PATTERN ,, OF PATTERN , (see
page 17.13).

BF PATTERN [Editor Command]

““‘Backwards Find'’. Searches in reverse print order, beginning with the expression
immediately before the current expression (unless the current expression is the top
level expression, in which case BF searches the entire expression, in reverse order).

BF uses the same pattern match routine as F, and MAXLEVEL and UPFI NDFLG
have the same eect, but the searching begins at the end of each list, and descends
into each element before attempting to match that element. If unsuccessful, the
search continues with the next previous element, etc., until the front of the list is
reached, at which point BF ascends and backs up, etc.

For example, if the current expression is
(PROG NIL (SETQ X (SETQ Y (LIST 2))) (COND ((SETQ W--) --)) --),

the command F LI ST followed by BF SETQ will leave the current expression as (SETQ Y (LI ST 2)),
as will F COND followed by BF SETQ.

BF PATTERN T [Editor Command]
Similar to BF PATTERN , except that the search aways includes the current
expression, i.e, starts at the end of current expression and works backward, then
ascends and backs up, etc.

Thus in the previous example, where F COND followed by BF SETQ found (SETQ Y (LIST 2)), F
COND followed by (BF SETQ T) would nd the (SETQ W --) expression.

(BF PATTERN) [Editor Command]
BF PATTERN NI L [Editor Command]
Same as BF PATTERN .

(GO LABEL) [Editor Command]
Makes the current expression be the rst thing after the PROG label LABEL , i.e
goes where an executed GO would go.

17.4.3 Location Speci cation

Many of the more sophisticated commands described later in this chapter use a more general method of
specifying position called a location speci cation . A location speci cation is a list of edit commands that
are executed in the normal fashion with two exceptions. First, all commands not recognized by the editor
are interpreted as though they had been preceded by F; normally such commands would cause errors.
For example, the location speci cation (COND 2 3) speci es the 3rd element in the rst clause of the

17.17

L ocation Speci cation

next COND.8

Secondly, if an error occurs while evaluating one of the commands in the location speci cation, and the
edit chain had been changed, i.e, was not the same as it was at the beginning of that execution of the
location speci cation, the location operation will continue. In other words, the location operation keeps
going unless it reaches a state where it detects that it is ‘‘looping’’, a which point it gives up. Thus, if
(COND 2 3) is being located, and the rst clause of the next COND contained only two elements, the
execution of the command 3 would cause an error. The search would then continue by looking for the
next COND. However, if a point were reached where there were no further CONDs, then the rst command,
COND, would cause the error; the edit chain would not have been changed, and so the entire location
operation would fail, and cause an error.

The | F command (page 17.46) in conjunction with the ## function (page 17.46) provide a way of using
arbitrary predicates applied to elements in the current expression. | F and ## will be described in detail
later in the chapter, along with examples illustrating their use in location speci cations.

Throughout this chapter, the meta- symbol @is used to denote a location speci cation. Thus @is a list of
commands interpreted as described above. @can also be atomic, in which case it isinterpreted as (LI ST

Q.

(LC. @ [Editor Command]
Provides a way of explicitly invoking the location operation, e.g., (LC COND 2
3) will perform the the search described above.

(LcL . @ [Editor Command]
Same as LC except the search is conned to the current expression, i.e, the edit
chain isrebound during the search so that it looks as though the editor were called
on just the current expression. For example, to nd a COND containing a RETURN,
one might use the location speci cation (COND (LCL RETURN) \) where the
\ would reverse the eects of the LCL command, and make the na current
expression be the COND.

(2ND . @ [Editor Command]
Same as (LC . @ followed by another (LC . @ except that if the rst succeeds
and second fails, no change is made to the edit chain.

(3IND . @ [Editor Command]
Similar to 2ND.

(_ PATTERN) [Editor Command]
Ascends the edit chain looking for alink which matches PATTERN . In other words,
it keegps doing O’s until it gets to a speci ed point. If PATTERN is atomic, it is
matched with the rst element of each link, otherwise with the entire link. If no
match is found, an error is generated, and the edit chain is unchanged.

Note: If PATTERN is of the form (| F EXPRESSION), EXPRESSI ON is evaluated
at each link, and if its value is NI L, or the evaluation causes an error, the ascent
continues. See page 17.46.

8Note that the user could always write F COND followed by 2 and 3 for (COND 2 3) if he were not
sure whether or not COND was the name of an atomic command.

17.18

THE TELETYPE EDITOR

For example:

* PP
[PROG NI L
(COND
[(NULL (SETQ L (CDR L)))
(COND
(FLG (RETURN L]
([NULL (CDR (FMEMB (CAR L)
(CADR L]]
*F CADR
*(_ COND)
*p

(COND (& & (& &)

Note that this command di ers from BF in that it does not search inside of each link, it simply ascends.
Thus in the above example, F CADR followed by BF COND would nd (COND (FLG (RETURN L))),
not the higher COND.

(BELOW cov x) [Editor Command]
Ascends the edit chain looking for alink speci ed by cov , and stops X links below
that (only links that are elements are counted, not tails). In other words BELOW
keeps doing O’suntil it gets to a speci ed point, and then backs 0 X 0’s.

Note that X is evaluated, so one can type (BELOW com (I PLUS X Y)).

(BELOW com) [Editor Command]
Same as (BELOW caov 1).

For example, (BELOW COND) will cause the COND clause containing the current expression to become
the new current expression. Thus if the current expression is as shown above, F CADR followed by
(BELOW COND) will make the new expression be ([NULL (CDR (FMEMB (CAR L) (CADR L] (@O
LP)), and is therefore equivdent to 0 0 O O.

The BELOW command is useful for locating a substructure by specifying something it contains. For
example, suppose the user is editing a list of lists, and wants to nd a sublist that contains a FOO (at any
depth). He simply executes F FOO (BELOW \).

(NEX com) [Editor Command]
Same as (BELOW cov) followed by NX.

For example, if the user is deep inside of a SELECTQ clause, he can advance to the next clause with
(NEX SELECTQ) .

NEX [Editor Command]
Same as (NEX).

The atomic form of NEX is useful if the user will be performing repeated executions of (NEX covm). By
simply MARKing (see page 17.21) the chain corresponding to com , he can use NEX to step through the

17.19

Commands That Save and Restore the Edit Chain

sublists.

(NTH cow) [Editor Command]
Generalized NTH command. Eectively performs (LCL . cov), followed by
(BELOW \), followed by UP.

If the search is unsuccessful, NTH generates an error and the edit chain is not
changed.

Note that (NTH NUMBER) isjust a special case of (NTH cov), and in fact, no
special check is made for cov a number; both commands are executed identically.

In other words, NTH locates com , using a search restricted to the current expression, and then backs up
to the current level, where the new current expression is the tail whose rst element contains, however
deeply, the expression that was the terminus of the location operation. For example:

*p
(PROG (& & LP (COND & & (EDI TCOM & (SETQ UNFIND UF) (RETURN L))
*(NTH UF)
*p

(SETQ UNFIND UF) (RETURN L))

*

PATTERN .. @ [Editor Command]
E.g, (COND .. RETURN). Finds a COND that contains a RETURN, at any depth.
Equivalent to (but more ecient than) (F PATTERN N), (LCL . @ followed
by (_ PATTERN).

An inx command, is not a meta- symbol, it is the name of the command. @
is CDDR of the command. Note that (PATTERN .. @ can also be used directly
as an edit pattern as described on page 17.13,eg. F (PATTERN .. @.

For example, if the current expression is
(PROG NIL [COND ((NULL L) (COND (FLG (RETURN L] --),

then (COND .. RETURN) will make (COND (FLG (RETURN L))) be the current expression. Note
that it is the innermost COND that is found, because this is the rst COND encountered when ascending
from the RETURN. In other words, (PATTERN .. @ is not always equivaent to (F PATTERN N),
followed by (LCL . @ followed by \.

Note that @is a location speci cation, not just a pattern. Thus (RETURN .. COND 2 3) can be used

to nd the RETURN which contains a COND whose rst clause contains (at least) three elements. Note also

that since @permits any edit command, the user can write commands of the form (COND .. (RETURN
COND)) , which will locate the rst COND that contains a RETURN that contains a COND.

175 COMMANDS THAT SAVE AND RESTORE THE EDIT CHAIN

Severa facilities are available for saving the current edit chain and later retrieving it: MARK, which marks

17.20

THE TELETYPE EDITOR

the current chain for future reference, _, which returns to the last mark without destroying it, and __,
which returns to the last mark and also erases it.

MARK [Editor Command]
Adds the current edit chain to the front of the list MARKLST.

[Editor Command]
Makes the new edit chain be (CAR MARKLST) . Generates an error if MARKLST
isNI'L, i.e, no MARKs have been performed, or al have been erased.

This is an atomic command; do not confuse it with the list command (_
PATTERN).

[Editor Command]
Similar to _ but also erases the last MARK, i.e., performs (SETQ MARKLST (CDR
MARKLST)) .

Note that if the user has two chains marked, and wishes to return to the rst chain, he must perform _
which removes the second mark, and then _. However, the second mark isthen no longer accessible. If
the user wants to be able to return to either of two (or more) chains, he can use the following generalized
MARK:

(MARK LI TATOM) [Editor Command]
Sets LI TATOM to the current edit chain,

(\ LiTATOM) [Editor Command]
Makes the current edit chain become the value of LI TATOM .

If the user did not prepare in advance for returning to a particular edit chain, he may till be able to
return to that chain with a single command by using \ or \ P.

\ [Editor Command]
Makes the edit chain be the value of UNFI ND. Generates an error if UNFI ND= NI L.

UNFI ND is set to the current edit chain by each command that makes a ‘‘bigjump’’, i.e,, a command that
usually performs more than a single ascent or descent, namely ~, , , ! NX, all commands that involve
a search, eg.,, F, LC, .., BELON et a and \ and \ P themselves. One exception is that UNFI ND is not
reset when the current edit chain is the top level expression, since this could aways be returned to via
the ~ command.

For example, if the user types F COND, and then F CAR, \ would take him back to the COND. Ancther
\ would take him back to the CAR, etc.

\P [Editor Command]
Restores the edit chain to its state as of the last print operation, i.e, P, ?, or PP.
If the edit chain has not changed since the last printing, \ P restores it to its state
as of the printing before that one, i.e, two chains are aways saved.

For example, if the user types P followed by 3 2 1 P, \ P will return to the rst P, i.e, would be
equivalent to O O 0. Another \ P would then take him back to the second P, i.e, the user could use \ P
to ip back and forth between the two edit chains.

Note that if the user had typed P followed by F COND, he could use either \ or \ P to return to the P,

17.21

CommandsThat Modify Structure

i.e, the action of \ and \ P are independent.

S LITATOM @ [Editor Command]
Sets LI TATOM (using SETQ) to the current expression after performing (LC . @.
The edit chain is not changed.

Thus (S FOO will set FOO to the current expression, and (S FOO -1 1) will set FOO to the rst
element in the last element of the current expression.

17.6 COMMANDS THAT MODIFY STRUCTURE

The basic structure modi cation commands in the editor are:

(N) (N 1) [Editor Command]
Deletes the corresponding element from the current expression.

(N Eq Em) (N 1) [Editor Command]
Replaces the Nth element in the current expression with E; Ey.

(-N E Ep) (N 1) [Editor Command]
1 M
Inserts E; Ey before the Nth element in the current expression.

(N Eq Em) [Editor Command]
Attaches E; Ep; a the end of the current expression.

As mentioned earlier: all structure modi cation done by the editor is destructive, i.e., the editor uses
RPLACA and RPLACD to physically change the structure it was given. However, all structure modi cation
is undoable, see UNDO (page 17.50).

All of the above commands generate errors if the current expression isnot alist, or in the case of the rst
three commands, if the list contains fewer than N elements. In addition, the command (1), i.e, delete
the rst element, will cause an error if there is only one element, since deleting the rst element must
be done by replacing it with the second element, and then deleting the second element. Or, to look at it
another way, deleting the rst element when there is only one element would require changing a list to
an atom (i.e,, to NI L) which cannot be done. However, the command DELETE will work even if there is
only one element in the current expression, since it will ascend to a point where it can do the deletion.

If the value of CHANGESARRAY is a hash array, the editor will mark al structures that are changed
by doing (PUTHASH STRUCTURE FN CHANGESARRAY) , where FN is the name of the function. The
algorithm used for marking is as follows: (1) If the expression is inside of another expression aready
marked as being changed, do nothing. (2) If the change is an insertion of or replacement with a list,
mark the list as changed. (3) If the change is an insertion of or replacement with an atom, or a deletion,
mark the parent as changed.

CHANGESARRAY is primarily for use by PRETTYPRI NT (page 6.47). When the value of CHANGECHAR is
non-Nl L, PRETTYPRI NT, when printing to a le or display termina, prints CHANGECHAR in the right
margin while printing an expression marked as having been changed. CHANGECHAR is initidly | .

17.22

THE TELETYPE EDITOR

17.6.1 Implementation of Structure Modi cation Commands

Note: Snce all commands that insert, replace, delete or attach structure use the same low level editor
functions, the remarks made here are valid for all structure changing commands.

For al replacement, insertion, and attaching at the end of alist, unless the command was typed in directly
to the editor,® copies of the corresponding structure are used, because of the possibility that the exact
same command, (i.e., same list structure) might be used again. Thus if a program constructs the command
(1 (AB Q) eg,via(LIST 1 FOO, and gives this command to the editor, the (A B C) used for
the replacement will not be EQ to FOO.10

The rest of this section isincluded for applications wherein the editor is used to modify a data structure,
and pointers into that data structure are stored elsewhere. In these cases, the actua mechanics of structure
modi cation must be known in order to predict the eect that various commands may have on these
outside pointers. For example, if the value of FOO is CDR of the current expression, what will the
commands (2),(3),(2 XY 2),(-2 XY 2), etc. do to FOO?

Deletion of the rst element in the current expression is performed by replacing it with the second
element and deleting the second element by patching around it. Deletion of any other element is done by
patching around it, i.e., the previous tail is atered. Thus if FOO is EQ to the current expression which is
(A B C D), and FI Eis CDR of FOO, after executing the command (1), FOO will be (B C D) (which
is EQUAL but not EQto FI E). However, under the same initial conditions, after executing (2) FI E will
be unchanged, i.e, FI E will still be (B C D) even though the current expression and FQOO are now (A
cD .1

Both replacement and insertion are accomplished by smashing both CAR and CDR of the corresponding
tail. Thus, if FOO were EQ to the current expression, (A B C D), &fter (1 X Y Z), FOO would be (X
Y Z B C D). Similarly, if FOO were EQ to the current expression, (A B C D), then after (-1 X Y
Z), FOOwould be (X Y Z AB C D).

The N command is accomplished by smashing the last CDR of the current expression a la NCONC. Thus
if FOO were EQ to any tail of the current expression, after executing an N command, the corresponding
expressions would also appear at the end of FOO.

In summary, the only situation in which an edit operation will not change an external pointer occurs when
the external pointer is to a proper tail of the data structure, i.e, to CDR of some node in the structure,
and the operation is deletion. If all external pointers are to elements of the structure, i.e, to CAR of some

9Some editor commands take as arguments alist of edit commands, eg., (LP F FOO (1 (CAR FQOQ))) .
In this case, the command (1 (CAR FQO)) isnot considered to have been ‘‘typed in"’ even though the
LP command itself may have been typed in. Similarly, commands originating from macros, or commands
given to the editor as arguments to EDI TF, EDI TV, et a, eg., EDI TF(FOO F COND (N --)) are not
considered typed in.

10The user can circumvent this by using the | command (page 17.45), which computes the structure to
be used. In the above example, the form of the command would be (I 1 FOO), which would replace
the rst element with the value of FQO itself.

11IA general solution of the problem just isn't possible, as it would require being able to make two lists
EQ to each other that were originally di erent. Thus if FI E is CDR of the current expression, and FUMis
CDDR of the current expression, performing (2) would have to make Fl E be EQto FUMIf all subsequent
operations were to update both FI E and FUM correctly.

17.23

The A, B, and : Commands

node, or if only insertions, replacements, or attachments are performed, the edit operation will always
have the same eect on an external pointer as it does on the current expression.

17.6.2 The A, B, and : Commands

Inthe (N), (N E; Ev),and (-N Eq Ey) commands, the sign of the integer isused to indicate
the operation. As a result, there is no direct way to express insertion after a particular element, (hence
the necessity for a separate N command). Similarly, the user cannot specify deletion or replacement of
the Nth element from the end of a list without rst converting N to the corresponding positive integer.
Accordingly, we have:

(B E Ep) [Editor Command]
1 M
Inserts E; Ey, before the current expression. Equivalent to UP followed by (-1

Eq Em) -

For example, to insert FOO before the last element in the current expression, perform -1 and then (B
FQO) .

(A Eq Em) [Editor Command]
Inserts £4 Ey after the current expression. Equivalent to UP followed by (-2
Eq Epm) Or (N Eq Ep) » Whichever is appropriate.

(: B Em) [Editor Command]
Replaces the current expression by Eq Ey- Equivalent to UP followed by (1
Eq Em) -

DELETE [Editor Command]

(:) [Editor Command]

Deletes the current expression.

DELETE rst tries to delete the current expression by performing an UP and then a (1) . This works
in most cases. However, if after performing UP, the new current expression contains only one element,
the command (1) will not work. Therefore, DELETE starts over and performs a BK, followed by UP,
followed by (2). For example, if the current expression is (COND ((MEMB X Y)) (T Y)), and the
user performs - 1, and then DELETE, the BK- UP- (2) method is used, and the new current expression
willbe ... ((MEMB X VY))).

However, if the next higher expression contains only one element, BK will not work. So in this case,
DELETE performs UP, followed by (: NI L), i.e, it replaces the higher expression by NI L. For example,
if the current expression is (COND ((MEMB X Y)) (T Y)) and the user performs F MEMB and then
DELETE, the new current expression will be ... NL (T Y)) and the original expression would now
be (COND NIL (T Y)). The rationale behind this isthat deleting (MEMB X Y) from ((MEMB X Y))
changes a list of one element to a list of no elements, i.e, () or NI L.

If the current expression is a tail, then B, A, :, and DELETE al work exactly the same as though the

current expression were the rst element in that tail. Thus if the current expression were ... (PRI NT
Y) (PRINT 2)), (B (PRINT X)) would insert (PRI NT X) before (PRI NT Y), leaving the current
expression ... (PRINT X) (PRINT Y) (PRINT 2)).

17.24

THE TELETYPE EDITOR

The following forms of the A, B, and : commands incorporate a location speci cation:

(I NSERT E; Ey BEFORE . @ [Editor Command]
(@is (CDR (MEMBER ' BEFORE cowaND))) Similar to (LC . @ followed by
(B E; Em) -

Warning: If @causes an error, the location process does not continue as described
on page 17.17. For example if @ (COND 3) and the next COND does not have a
3rd element, the search stops and the | NSERT fails. Note that the user can aways
write (LC COND 3) if he intends the search to continue.

*P

(PROG (& & X) **COWMENT** (SELECTQ ATM & NIL) (OR & & (PRINL & T)
(PRINL & T) (SETQ X &

*(I NSERT LABEL BEFORE PRI N1)

*p
(PROG (& & X) **COMMENT** (SELECTQ ATM & NIL) (OR & & LABEL
(PRINL & T) (user typed control-E

*

Current edit chain is not changed, but UNFI ND is set to the edit chain after the B was performed, i.e, \
will make the edit chain be that chain where the insertion was performed.

(I NSERT E, Ew AFTER . @ [Editor Command]
Similar to | NSERT BEFORE except uses A instead of B.

(I NSERT E; Ey FOR . @ [Editor Command]
Similar to | NSERT BEFORE except uses : for B.

(REPLACE @BY E; Em) [Editor Command]

(REPLACE @W TH E; Em) [Editor Command]

Here @is the segment of the command between REPLACE and W TH. Same as
(I NSERT E4 Ey FOR. @.

Example: (REPLACE COND -1 WTH (T (RETURN L)))

(CHANGE @ TO Eq Em) [Editor Command)]
Same as REPLACE W TH.

(DELETE . @ [Editor Command]
Does a(LC . @ followed by DELETE.22 The current edit chain is not changed,
but UNFI ND is set to the edit chain after the DELETE was performed.

Note: the edit chain will be changed if the current expression is no longer a part
of the expression being edited, e.g., if the current expression is... C) and the
user performs (DELETE 1), the tail, (C), will have been cut o. Similarly, if the

123ee warning about | NSERT, page 17.25.

17.25

Form Oriented Editing and the Role of UP

current expression is (CDR Y) and the user performs (REPLACE W TH (CAR
X)) .

Example: (DELETE - 1), (DELETE COND 3)
Note: if @is NI L (i.e., empty), the corresponding operation is performed on the current edit chain.

For example, (REPLACE W TH (CAR X)) is equivaent to (: (CAR X)). For added readability,
HERE is also permitted, e.g., (I NSERT (PRI NT X) BEFORE HERE) will insert (PRI NT X) before the
current expression (but not change the edit chain).

Note: @does not have to specify a location within the current expression, i.e., it is perfectly legal to ascend
to | NSERT, REPLACE, or DELETE

For example, (I NSERT (RETURN) AFTER " PROG -1) will go to the top, nd the rst PROG, and
insert a (RETURN) at its end, and not change the current edit chain.

The A, B, and : commands, commands, (and consequently | NSERT, REPLACE, and CHANGE), all make
special checks in E; thru Ey, for expressions of the form (## . covs). In this case, the expression
used for inserting or replacing is a copy of the current expression after executing covs , a list of edit
commands (the execution of covs does not change the current edit chain). For example, (1 NSERT (##
F COND -1 -1) AFTER 3) will make a copy of the last form in the last clause of the next COND, and
insert it after the third element of the current expression. Note that this is not the same as (1 NSERT F
COND -1 (## -1) AFTER 3), which inserts four elements after the third element, namely F, COND,
-1, and a copy of the last element in the current expression.

17.6.3 Form Oriented Editing and the Role of UP

The UP that is performed before A, B, and : commands 13 makes these operations form-oriented. For
example, if the user types F SETQ, and then DELETE, or simply (DELETE SETQ , he will delete the
entire SETQ expression, whereas (DELETE X) if X is a variable, deletes just the variable X. In both
cases, the operation is performed on the corresponding form, and in both cases is probably what the
user intended. Similarly, if the user types (| NSERT (RETURN Y) BEFORE SETQ , he means before
the SETQ expression, not before the atom SETQ.* A consequent of this procedure is that a pattern of
the form (SETQ Y --) can be viewed as ssimply an elaboration and further renement of the pattern
SETQ. Thus (I NSERT (RETURN Y) BEFORE SETQ and (I NSERT (RETURN Y) BEFORE (SETQ
Y --)) peform the same operation 15 and, in fact, this is one of the motivations behind making the
current expression after F SETQ, and F (SETQ Y --) be the same.

Occasionally, however, a user may have a data structure in which no specia signi cance or meaning is
attached to the position of an atom in a list, as Interlisp attaches to atoms that appear as CAR of a list,

13and therefore in | NSERT, CHANGE, REPLACE, and DELETE commands after the location portion of
the operation has been performed.

14There is some ambiguity in (| NSERT ExPR AFTER FUNCTI ONNAME), as the user might mean make
EXPR be the function’s rst argument. Similarly, the user cannot write (REPLACE SETQ W TH SETQQ)
meaning change the name of the function. The user must in these cases write (| NSERT ExPR AFTER
FUNCTI ONNANE 1), and (REPLACE SETQ 1 WTH SETQQ .

15assuming the next SETQ s of the form (SETQ Y --).

17.26

THE TELETYPE EDITOR

versus those appearing elsewhere in alist. In genera, the user may not even know whether a particular
atom is at the head of alist or not. Thus, when he writes (1 NSERT ExPR BEFORE FQO), he means
before the atom FOO, whether or not it is CAR of a list. By setting the variable UPFI NDFLG to NI L
(initially T), the user can suppress the implicit UP that follows searches for atoms, and thus achieve the
desired eect. With UPFI NDFLG= NI L, following F FOO, for example, the current expression will be
the atom FQO. In this case, the A, B, and : operations will operate with respect to the atom FQO. If the
user intends the operation to refer to the list which FOO heads, he simply uses instead the pattern (FOO

--).

17.6.4 Extract and Embed

Extraction involves replacing the current expression with one of its subexpressions (from any depth).

(XTR . @ [Editor Command]
Replaces the original current expression with the expression that is current after
performing (LCL . @ .1 If the current expression after (LCL . @ is a tail of
a higher expression, its rst element is used.

If the extracted expression is a list, then after XTR has nished, the current
expression will be that list. If the extracted expression isnot a list, the new current
expression will be a tail whose rst element isthat non-list.

For example, if the current expression is(COND ((NULL X) (PRINT Y))), (XTR PRINT), or (XTR
2 2) will replace the COND by the PRI NT. The current expression after the XTR would be (PRI NT Y).

If the current expression is(COND ((NULL X) Y) (T 2)),then (XTR Y) will replace the COND with

Y, even though the current expression after performing (LCL Y) is... Y). The current expression
after the XTR would be ... Y followed by whatever followed the COND.

If the current expression initially is a tail, extraction works exactly the same as though the current
expression were the rst element in that tail. Thus if the current expression is... (COND ((NULL
X) (PRINT Y))) (RETURN Z)), then (XTR PRI NT) will replace the COND by the PRI NT, leaving
(PRINT Y) asthe current expression.

The extract command can also incorporate a location speci cation:

(EXTRACT @ FROM . @) [Editor Command]
(@ is the segment between EXTRACT and FROM) Performs (LC . @)’ and
then (XTR . @) . The current edit chain is not changed, but UNFI ND is set to
the edit chain after the XTR was performed.

For example: If the current expression is (PRINT (COND ((NULL X) Y) (T 2))) then following
(EXTRACT Y FROM COND), the current expression will be (PRINT Y). (EXTRACT 2 -1 FROM
COND) , (EXTRACT Y FROM 2), and (EXTRACT 2 -1 FROM 2) will al produce the same result.

16See warning about | NSERT, page 17.25.
17See warning about | NSERT, page 17.25.

17.27

Extract and Embed

While extracting replaces the current expression by a subexpression, embedding replaces the current
expression with one containing it as a subexpression.

(MBD E; Em) [Editor Command]
MBD substitutes the current expression for al instances of the atom &inE; Ey,
and replaces the current expression with the result of that substitution. As with
SUBST, a fresh copy is used for each substitution.

If & does not appear in E; Ey. the MBD is interpreted as (MBD (E; Em
&)).

MBD leaves the edit chain so that the larger expression isthe new current expression.
Examples:

If the current expression is (PRI NT Y), (MBD (COND ((NULL X) & ((NULL (CAR Y)) & (GO
LP)))) would replace (PRINT Y) with (COND ((NULL X) (PRINT Y)) ((NULL (CAR Y))
(PRINT Y) (GO LP))).

If the current expression is (RETURN X), (MBD (PRINT Y) (AND FLG &)) would replace it with
the two expressions (PRI NT Y) and (AND FLG (RETURN X)) i.e, if the (RETURN X) appeared in
the cond clause (T (RETURN X)), after the MBD, the clause would be (T (PRINT Y) (AND FLG
(RETURN X))) .

If the current expression is (PRI NT Y), then (MBD SETQ X) will replace it with (SETQ X (PRI NT
Y)) . If the current expression is (PRI NT Y), (MBD RETURN) will replace it with (RETURN (PRI NT

Y)).

If the current expression initially is a tail, embedding works exactly the same as though the current
expression were the rst element in that tail. Thus if the current expression were ... (PRINT Y)
(PRINT 2)), (MBD SETQ X) would replace (PRI NT Y) with (SETQ X (PRINT Y)).

The embed command can also incorporate a location speci cation:

(EMBED @IN . Xx) [Editor Command]
(@is the segment between EMBED and | N.) Does (LC . @18 and then (MBD .
X) . Edit chain is not changed, but UNFI ND is set to the edit chain after the MBD
was performed.

Examples: (EMBED PRINT I N SETQ X), (EMBED 3 2 IN RETURN), (EMBED COND 3 1 IN (OR
& (NULL X))).

W TH can be used for I N, and SURROUND can be used for EMBED, e.g., (SURROUND NUMBERP W TH
(AND & (M NUSP X))) .

EDI TEMBEDTOKEN [Variable]
The specia atom used in the MBD and EMBED commands is the value of this
variable, initidly &.

18See warning about | NSERT, page 17.25.

17.28

THE TELETYPE EDITOR

1765 The MOVE Command

The MOVE command alows the user to specify (1) the expression to be moved, (2) the place it isto be
moved to, and (3) the operation to be performed there, e.g., insert it before, insert it after, replace, etc.

(MVE @ TO com

@) [Editor Command]
(@ isthe segment between MOVE and TO.)) cov is BEFORE, AFTER, or the name
of alist command, eg., :, N, etc. Performs (LC . @) ,!° and obtains the current
expression there (or its rst element, if it is atail), which we will call ExPR ; MOVE
then goes back to the original edit chain, performs (LC . @) followed by (cov
EXPR) (setting an internal ag so EXPR is not copied), then goes back to @ and
deletes ExPR . The edit chain isnot changed. UNFI ND is set to the edit chain after
(coM EXPR) was performed.

If @ speci es alocation inside of the expression to be moved, a message is printed
and an error is generated, eg., (MOVE 2 TO AFTER X), where X is contained
inside of the second element.

For example, if the current expression is (A B C D), (MOVE 2 TO AFTER 4) will make the new
current expression be (A C D B). Note that 4 was executed as of the original edit chain, and that the
second element had not yet been removed.

As the following examples taken from actua editing will show, the MOVE command is an extremely
versatile and powerful feature of the editor.

* 9

(PROG ((L L)) (EDLOC (CDDR C)) (RETURN (CAR L)))
*(MOVE 3 TO : CAR)

*?

(PROG ((L L)) (RETURN (EDLCC (CDDR Q))))

*P

(SELECTQ OBJPR & & (RETURN & LP2 (COND & &))

*(MOVE 2 TO N 1)

*P

(SELECTQ OBJPR & & & LP2 (COND & &))

*P

(OR (EQ X LASTAIL) (NOT & (AND & & &))
*(MVE 4 TO AFTER (BELOW COND))

*p

(OR (EQ X LASTAIL) (NOT &)

s\ P

(& & (AND & & &) (T & &))

*

19See warning about | NSERT, page 17.25.

17.29

The MOVE Command

*p

((NULL X) **COMMVENT** (COND & &))

*(-3 (GO NXT]

*(MOVE 4 TO N (_ PROG))

*p

((NULL X) **COMMVENT** (GO NXT))

A >

(PROG (& **COMMVENT** (COND & & & (COND & & & (COND & &))
* (1 NSERT NXT BEFORE - 1)

*p

(PROG (& **COMMENT** (COND & & & (COND & & & NXT (COND & &))

Note that in the last example, the user could have added the PROG label NXT and moved the COND in one
operation by performing (MOVE 4 TO N (_ PROG (N NXT)). Similarly, in the next example, in
the course of specifying @, the location where the expression was to be moved to, the user aso performs
a structure modi cation, via (N (T)), thus creating the structure that will receive the expression being
moved.

*p

((CDR & **COMMENT** (SETQ CL & (EDITSMASH CL & &))
*MWVE 4 TON O (N (T)) -1]

*p

((CDR & **COMMENT** (SETQ CL &))

x\ P

*(T (EDITSMASH CL & &))

If @ isNIL, or (HERE) , the current position speci es where the operation is to take place. In this case,
UNFI ND is set to where the expression that was moved was originaly located, i.e, @ . For example:

*p
(TENEX)

*(MVE ~ F APPLY TO N HERE)
*p

(TENEX (APPLY & &))

*

*p

(PROG (& & & ATM IND VAL) (OR & &) ** COMVENT* * (R & &)
(PRINL & T) (

PRINL & T) (SETQ IND user typed control-E

*(MOVE * TO BEFORE HERE)
*p
(PROG (& & & ATM IND VAL) (OR & & (OR & & (PRINL &

*p
(T (PRINL CGEXP T))

*(MOVE A~ BF PRINL TO N HERE)
*p

(T (PRINL GEXP T) (PRINL & T))

17.30

THE TELETYPE EDITOR

Finaly, if @ is NI L, the MOVE command allows the user to specify where the current expression is to
be moved to. In this case, the edit chain is changed, and is the chain where the current expression was
moved to; UNFI ND is set to where it was.

*P
(SELECTQ OBJPR (& (PROGN & &))
*(MOVE TO BEFORE LOOP)
*P
(SELECTQ OBJPR & &) LOOP (FRPLACA DFPRP &) (FRPLACD DFPRP
&) (SELECTQ user typed control-E

*

17.6.6 CommandsThat Move Parentheses

The commands presented in this section permit modi cation of the list structure itself, as opposed to
modifying components thereof. Their eect can be described as inserting or removing a single left or
right parenthesis, or pair of left and right parentheses. Of course, there will aways be the same number
of left parentheses as right parentheses in any list structure, since the parentheses are just a notational
guide to the structure provided by PRI NT. Thus, no command can insert or remove just one parenthesis,
but this is suggestive of what actualy happens.

In al six commands, N and M are used to specify an element of a list, usualy of the current expression.
In practice, N and M are usualy positive or negative integers with the obvious interpretation. However,
all six commands use the generalized NTH command (NTH cov) to nd their element(s), so that Nth
element means the rst element of the tail found by performing (NTH N). In other words, if the
current expression is (LI ST (CAR X) (SETQ Y (CONS WZ))),then (Bl 2 CONS), (Bl X -1),
and (Bl X Z) al specify the exact same operation.

All six commands generate an error if the element is not found, i.e., the NTH fails. All are undoable.

(Bl N M) [Editor Command]
““Both In"’. Inserts a left parentheses before the Nth element and after the mth
element in the current expression. Generates an error if the mth element is not
contained in the Nth tail, i.e, the mth element must be ‘‘to the right’’ of the Nth
element.

Example: If the current expression is(A B (C D E) F G, then (Bl 2 4) will modify it to be (A
(B(CDE F ©.

(Bl N) [Editor Command]
Same as (Bl N N).

Example: If the current expression is(A B (C D E) F G, then (Bl -2) will modify it to be (A B
(CDE (F O.

(BO N) [Editor Command]

“‘Both Out’’. Removes both parentheses from the Nth element. Generates an error
if Nth element is not a list.

1731

TO and THRU

Example: If the current expression is(A B (C D E) F G, then (BO D) will modify it to be (A B
CDEFOQ.

(LI N) [Editor Command]
“Left In"’. Inserts a left parenthesis before the Nth element (and a matching right
parenthesis at the end of the current expression), i.e. equivaent to (Bl N -1).

Example: if the current expression is(A B (C D E) F @, then (LI 2) will modify it to be (A (B
(CDE F Q).

(LO N) [Editor Command]
“Left Out’”. Removes a left parenthesis from the Nth element. All elements
following the Nth element are deleted. Generates an error if Nth element is not a
list.

Example: If the current expression is(A B (C D E) F G, then (LO 3) will modify it to be (A B
CDE.

(Rl N M) [Editor Command]
“Right In”’. Inserts a right parenthesis after the mth element of the Nth element.
The rest of the Nth element is brought up to the level of the current expression.

Example: If the current expression is(A (B CDE) F G, (Rl 2 2) will modify it to be (A (B
C DEF Q. Ancther way of thinking about Rl isto read it as ‘‘move the right parenthesis at the
end of the Nth element in to after its Nth element.”

(RO N) [Editor Command]
““Right Out’’. Removes the right parenthesis from the Nth element, moving it to
the end of the current expression. All elements following the Nth element are
moved inside of the Nth element. Generates an error if Nth element is not a list.

Example: If the current expression is(A B (C D E) F G, (RO 3) will modify it to be (A B (C D
E F Q). Another way of thinking about RO isto read it as ‘‘move the right parenthesis at the end of
the Nth element out to the end of the current expression.”

176.7 TO and THRU

EXTRACT, EMBED, DELETE, REPLACE, and MOVE can be made to operate on several contiguous elements,
i.e, asegment of alist, by using in their respective location speci cations the TO or THRU command.

(@ THRU @) [Editor Command]
Doesa(LC . @), followed by an UP, and then a(Bl 1 @), thereby grouping
the segment into a single element, and nally does a 1, making the na current
expression be that element.

For example, if the current expression is(A (B (C D (E) (F GH 1) J K), falowing (C THRU
G, the current expression will be ((C D) (E) (F G H)).

(@ TO @) [Editor Command]
Same as THRU except the last element not included, i.e, after the Bl , an (Rl 1
- 2) is performed.

17.32

THE TELETYPE EDITOR

If both @ and @ are numbers, and @ is greater than @, then @ counts from the beginning of the
current expression, the same as @ . In other words, if the current expression is(A B CDE F G, (3
THRU 5) means (C THRU E) not (C THRU @ . In this case, the corresponding Bl command is (Bl

1 @-Q@+1).

THRU and TO are not very useful commands by themselves; they are intended to be used in conjunction
with EXTRACT, EMBED, DELETE, REPLACE, and MOVE. After THRU and TO have operated, they set an
internal editor ag informing the above commands that the element they are operating on is actualy a
segment, and that the extra pair of parentheses should be removed when the operation is complete. Thus:

*p

(PROG (& & ATM IND VAL WORD) (PRIN1 & T) (PRINL & T) (SETQ IND &)
(SETQ VAL &) **COMMENT** (SETQQ user typed control-E

*(MOVE (3 THRU 4) TO BEFORE 7)

*p

(PROG (& & ATM IND VAL WORD) (SETQ IND & (SETQ VAL & (PRIN1 & T)
(PRINL & T) **COVMENT** user typed control-E

*

*p

(* FAIL RETURN FROM EDI TOR USER SHOULD NOTE THE VALUES OF SOURCEXPR
AND CURRENTFORM CURRENTFORM |'S THE LAST FORM | N SOURCEXPR WHI CH W LL
HAVE BEEN TRANSLATED, AND | T CAUSED THE ERROR)

*(DELETE (USER THRU CURRS))

=CURRENTFORM

*p

(* FAIL RETURN FROM EDI TOR CURRENTFORM IS user typed control-E

*

*p
LP (SELECTO & & & & NIL) (SETQ Y & OUT (SETQ FLG & (RETURN Y))
*(MOVE (1 TO OUT) TO N HERE]
*p
OUT (SETQ FLG & (RETURN Y) LP (SELECTQ & & & & NIL) (SETQ Y &))

*

*pp
[PROG (RF TEMP1 TEMP2)
(COND
((NOT (MEMB REMARG LI STING))
(SETQ TEMP1 (ASSOC REMARG NANMEDREMARKS)) ** COMVENT* *
(SETQ TEMP2 (CADR TEMP1))
(GO SKIP))
(T **COMVENT**
(SETQ TEMPL REMARG)))
(NCONCL LI STING REMARG)
(COND
((NOT (SETQ TEMP2 (SASSOC

17.33

TO and THRU

*(EXTRACT (SETQ THRU CADR) FROM COND)

*P

(PROG (RF TEMP1 TEMP2) (SETQ TEMP1 &) **COMMENT** (SETQ TEMP2 & (NCONCLl LI STING
REMARG) (COND & & user typed control-E

*

TO and THRU can also be used directly with XTR, because XTR involves a location speci cation while A,
B, :, and MBD do not. Thus in the previous example, if the current expression had been the COND, eg.,
the user had rst performed F COND, he could have used (XTR (SETQ THRU CADR)) to perform the
extraction.

(@ TO [Editor Command]

(@ THRY [Editor Command]
Both are the same as (@ THRU -1), i.e, from @ through the end of the list.

Examples:

*P

(VALUE (RPLACA DEPRP & (RPLACD & (RPLACA VARSWORD &) (RETURN))
*(MOVE (2 TO) TO N (_ PROG))

*(N (GO VAR))

*p

(VALUE (GO VAR))

*p

(T **COWMENT** (COND & **COMVENT** (EDI TSMASH CL & & (COND &))

*(-3 (GO REPLACE))

*(MOVE (COND TO) TO N A PROG (N REPLACE))

*p

(T **COWENT** (GO REPLACE))

*\ P

(PROG (& **COMMENT** (COND & & & (COND & & & DELETE (COND & & REPLACE
(COND & **COMMENT** (EDITSMASH CL & & (COND &))

* PP
[LAVBDA (CLAUSALA X)
(PROG (A D)
(SETQ A CLAUSALA)
LP (COND
((NULL A)
(RETURN)))
(SERCH X A)
(RUMARK (CDR A))
(NOTI CECL (CAR A))
(SETQ A (CDR A))
(GO LP]
* (EXTRACT (SERCH THRU NOT$) FROM PROG)
=NOT| CECL
*p

17.34

THE TELETYPE EDITOR

(LAVBDA (CLAUSALA X) (SERCH X A) (RUMARK &) (NOTICECL &))
*(EMBED (SERCH TO) IN (MAP CLAUSALA (FUNCTI ON (LANMBDA (A) *]
* PP
[LAVBDA (CLAUSALA X)
(MAP CLAUSALA
(FUNCTI ON (LAVBDA (A)
(SERCH X A)
(RUMARK (CDR A))
(NOTI CECL (CAR A]

176.8 The R Command

(R X Y) [Editor Command]
Replaces all instances of x by Y in the current expression, e.g., (R CAADR CADAR) .
Generates an error if there is not at least one instance.

The R command operates in conjunction with the search mechanism of the editor. The search proceeds
as described on page 17.15, and X can employ any of the patterns on page 17.13. Each time x matches
an element of the structure, the element is replaced by (a copy of) Y; each time X matches a tail of the
structure, the tail is replaced by (a copy of) v.

For example, if the current expression is(A (B C (B . Q)),

(R C D) will change itto (A (B D) (B . D)),

(R(... . © D) will change itto (A (B C (B . D),

(R C (D E)) will change itto (A (B (D E)) (B D E)), and
(R(... . NIL) D) will change itto (A (B C. D) (B. © . D).

If X is an atom or string containing $s (<esc>s), $s appearing in Y stand for the characters matched
by the corresponding $ in x. For example, (R FOO$ FI E$) means for al atoms or strings that
begin with FOO, replace the characters ‘‘FOO’ by ‘‘FI E'’20 Applied to the list (FOO FOO2 XFQOOL) ,
(R FOO FIE) would produce (FIE FIE2 XFOOL), and (R FOO $FI E$S) would produce (FIE
FIE2 XFIE1). Similarly, (R D A) will change (LI ST (CADR X) (CADDR Y)) to (LIST
(CAAR X) (CAADR)). Note that CADDR was not changed to CAAAR, i.e, (R D AS) does not
mean replace every D with A, but replace the rst Din every atom or string by A. If the user wanted to
replace every D by A, he could perform (LP (R D AS)) .

The user will be informed of all such $ replacements by a message of the form x- >v, e.g., CADR- >CAAR.

Note that the $ feature can be used to delete or add characters, as well as replace them. For example,
(R $1 $) will delete the terminating 1’sfrom all literal atoms and strings. Similarly, if an $ in X does

201f x matches a string, it will be replaced by a string. Note that it does not matter whether x or
Yy themselves are strings, i.e. (R D A), (R "D" $A%), (R D "A"), and (R "D"
"$A3$") are equivaent. Note aso that x will never match with a number, i.e, (R $1 $2) will not
change 11 to 12.

17.35

The R Command

not have a mate in v, the characters matched by the $ are eectively deleted. For example, (R $/$ $)
will change ANDY OR to AND.21 v can also be a list containing $s, eg., (R $1 (CAR $)) will change
FOOL to (CAR FQO), FI El to (CAR FIE).

If x does not contain $s, $ appearing in Y refers to the entire expression matched by x, eg., (R
LONGATOM ' $) changes LONGATOM to ' LONGATOM, (R (SETQ X & (PRINT $)) changes every
(SETQ X &) to (PRINT (SETQ X &)) .22

Since (R x v) isa frequently used operation for Replacing Characters, the following command is
provided:

(RC x Y) [Editor Command]
Equivdent to (R x v)

R and RC change all instances of x to Y. The commands R1 and RC1 are available for changing just one,
(i.e,, the rst) instance of X to v.

(RL x Y) [Editor Command]
Find the rst instance of x and replace it by Y.

(RCL x V) [Editor Command]
(RL x $v9$).

In addition, while R and RC only operate within the current expression, R1 and RC1 will continue
searching, a la the F command, until they nd an instance of x, even if the search carries them beyond
the current expression.

(SWN ™M) [Editor Command]
Switches the Nth and mth elements of the current expression.

For example, if the current expression is(LI ST (CONS (CAR X) (CAR Y)) (CONS (CDR X) (CDR
Y))), (SW 2 3) will modify it to be (LI ST (CONS (CDR X) (CDR Y)) (CONS (CAR X) (CAR
Y))) . The relative order of N and M is not important, i.e, (SW 3 2) and (SW 2 3) are equivaent.

SWuses the generalized NTH command (NTH cov) to nd the Nth and mth elements, a la the Bl -BO
commands.

Thus in the previous example, (SW CAR CDR) would produce the same result.

(SWAP @ @) [Editor Command]
Like SW except switches the expressions specied by @ and @, not the
corresponding elements of the current expression, i.e. @ and @ can be at di erent
levels in current expression, or one or both be outside of current expression.

21There is no similar operation for changing AND/ OR to OR, since the rst $ in Y adways corresponds to
the rst $ in X, the second $ in vy to the second in X, etc.

22|f x is a pattern containing an $ pattern somewhere within it, the characters matched by the $s are not
available, and for the purposes of replacement, the eect is the same as though x did not contain any
$s. For example, if the user types (R (CAR F$) (PRINT $)), the second $ will refer to the entire
expression matched by (CAR F$).

17.36

THE TELETYPE EDITOR

Thus, using the previous example, (SWAP CAR CDR) would result in (LI ST (CONS (CDR X) (CAR
Y)) (CONS (CAR X) (CDR Y))).

17.7 COMMANDS THAT PRINT

PP [Editor Command]
Prettyprints the current expression.

P [Editor Command]
Prints the current expression as though PRI NTLEVEL (page 6.18) were set to 2.

(P ™) [Editor Command]
Prints the mth element of the current expression as though PRI NTLEVEL were set
to 2.

(P 0) [Editor Command]
Same as P.

(P ™M N) [Editor Command]
Prints the mth element of the current expression as though PRI NTLEVEL were set
to N.

(P 0 N) [Editor Command]

Prints the current expression as though PRI NTLEVEL were set to N.

? [Editor Command]
Same as (P 0 100).

Both (P M) and (P M N) use the generalized NTH command (NTH com) to obtain the corresponding
element, so that M does not have to be a number, e.g., (P COND 3) will work. PP causes al comments
to be printed as ** COMVENT** (see page 6.50). P and ? print as ** COMMENT** only those comments
that are (top level) elements of the current expression. Lower expressions are not readly seen by the
editor; the printing command simply sets PRI NTLEVEL and calls PRI NT.

PP* [Editor Command]
Prettyprints current expression, including comments.

PP* is equivalent to PP except that it rst resets ** COMWENT**FLG to NI L (see
page 6.50).

PPV [Editor Command]
Prettyprints the current expression as a variable, i.e, no specia treatment for
LAMBDA, COND, SETQ, etc., or for CLISP.

PPT [Editor Command]
Prettyprints the current expression, printing CLISP trandations, if any.

?= [Editor Command]
Prints the argument names and corresponding values for the current expression.
Analagous to the ?= break command (page 9.5). For example,

17.37

Commandsfor Leaving the Editor

*p
(STRPCS "A0?2?" X N (QUOTE ?) T)
* =

X "A0???"

Y =X

START = N

SKIP = (QUOTE ?)

ANCHOR = T

TAIL =

The command MAKE (page 17.44) is an imperative form of ?=. It alows the user to specify a change to
the element of the current expression that corresponds to a particular argument name.

All printing functions print to the terminal, regardless of the primary output le. All use the readtable T.
No printing function ever changes the edit chain. All record the current edit chain for use by \ P (page
17.21). All can be aborted with control- E.

17.8 COMMANDS FOR LEAVING THE EDITOR

XK [Editor Command]
Exits from the editor.

STOP [Editor Command)]
Exits from the editor with an error. Mainly for use in conjunction with TTY:
commands (page 17.40) that the user wants to abort.

Since all of the commands in the editor are errorset protected, the user must exit from the editor via a
command. STOP provides a way of distinguishing between a successful and unsuccessful (from the user's
standpoint) editing session. For example, if the user is executing (MOVE 3 TO AFTER COND TTY:),
and he exits from the lower editor with an OK, the MOVE command will then complete its operation. If
the user wants to abort the MOVE command, he must make the TTY: command generate an error. He
does this by exiting from the lower editor with a STOP command. In this case, the higher editor's edit
chain will not be changed by the TTY: command.

Actually, it is also possible to exit the editor by typing control- D. STOP is preferred even if the user is
editing at the EVALQT level, as it will perform the necessary ‘‘wrapup’’ to insure that the changes made
while editing will be undoable.

SAVE [Editor Command]
Exits from the editor and saves the ‘‘state of the edit’”” on the property list of the
function or variable being edited under the property EDI T- SAVE. If the editor is
caled again on the same structure, the editing is eectively ‘‘continued,”’ i.e., the
edit chain, mark list, value of UNFI ND and UNDOLST are restored.

For example:
*p

(NULL X)
*F COND P

17.38

THE TELETYPE EDITOR

(COND (& & (T &)
* SAVE
FOO

_EDI TF(FOO)

EDIT

*p

(COND (& & (T &)
x\ P

(NULL X)

SAVE is necessary only if the user is editing many di erent expressions; an exit from the editor via OK
always saves the state of the edit of that call to the editor on the property list of the atom EDI T, under
the property name LASTVALUE. OK also remprops EDI T- SAVE from the property list of the function or
variable being edited.

Whenever the editor is entered, it checks to see if it is editing the same expression as the last one edited.
In this case, it restores the mark list and UNDOLST, and sets UNFI ND to be the edit chain as of the
previous exit from the editor. For example:

_EDI TF(FOO)

EDIT

*p

(LAVBDA (X) (PROG & & LP & & & &))

*p

(COND & &)

* K

FOO

B any number of LI SPX inputs
. except for calls to the editor
_EDI TF(FOO)
EDI T

*p

(LAMBDA (X) (PROG & & LP & & & &)
*\ P

(COND & &)

*

Furthermore, as a result of the history feature, if the editor is called on the same expression within a
certain number of LI SPX inputs, 23 the state of the edit of that expression is restored, regardless of how
many other expressions may have been edited in the meantime. For example:

23Namely, the size of the history list, which can be changed with CHANGESLI CE, (page 8.18).

17.39

Nested Calls to Editor

_EDI TRF(FOO)
EDIT

*

*p

(COND (& & (& &) (& (T &)

*OK

FOO
a small number of LI SPX inputs,
including editing

_EDI TF(FOO)

EDI T

*\ P

(COND (& & (& & (& (T &)

Thus the user can always continue editing, including undoing changes from a previous editing session,
if (1) No other expressions have been edited since that session (since saving takes place at exit time,
intervening calls that were aborted via control- D or exited via STOP will not aect the editor's memory);
or (2) That session was ‘‘suciently’’ recent; or (3) It was ended with a SAVE command.

17.9 NESTED CALLSTO EDITOR

TTY: [Editor Command]
Cdlls the editor recursively. The user can then type in commands, and have them
executed. The TTY: command is completed when the user exits from the lower
editor. (see OK and STOP abhove).

The TTY: command is extremely useful. It enables the user to set up a complex operation, and perform
interactive attention- changing commands part way through it. For example the command (MOVE 3 TO
AFTER COND 3 P TTY:) alows the user to interact, in eect, within the MOVE command. Thus he can
verify for himself that the correct location has been found, or complete the speci cation ‘‘by hand.”” In
eect, TTY: says‘‘I'lltell you what you should do when you get there.”

The TTY: command operates by printing TTY: and then calling the editor. The initia edit chain in the
lower editor isthe one that existed in the higher editor at the time the TTY: command was entered. Until
the user exits from the lower editor, any attention changing commands he executes only aect the lower
editor's edit chain. Of course, if the user performs any structure modi cation commands while under a
TTY: command, these will modify the structure in both editors, since it isthe same structure. When the
TTY: command nishes, the lower editor's edit chain becomes the edit chain of the higher editor.

EF [Editor Command]
EV [Editor Command]
EP [Editor Command]

Cdlls EDI TF or EDI TV or EDI TP on CAR of current expression.

17.40

THE TELETYPE EDITOR

1710 MANIPULATING THE CHARACTERS OF AN ATOM OR STRING

RAI SE [Editor Command]
An edit macro dened as UP followed by (I 1 (U CASE (## 1))), i.e, it
raises to upper- case the current expression, or if a tail, the rst element of the
current expression.

LONER [Editor Command]
Similar to RAI SE, except uses L- CASE.

CAP [Editor Command]
First does a RAI SE, and then lowers all but the rst character, i.e, the rst character
is left capitalized.

Note: RAI SE, LOAER, and CAP are all no-ops if the corresponding atom or string is already in that state.

(RAI SE x) [Editor Command]
Equivalent to (I R (L- CASE X) Xx), i.e, changes every lower-case X to upper-
case in the current expression.

(LOVER Xx) [Editor Command]
Similar to RAI SE, except performs (I R X (L- CASE X)) .

Note that in both (RAI SE x) and (LOAER Xx), x should be typed in upper case.

REPACK [Editor Command]
Permits the ‘‘editing’’ of an atom or string.

REPACK operates by calling the editor recursively on UNPACK of the current
expression, or if it is alist, on UNPACK of its rst element. If the lower editor is
exited successfully, i.e., via OK as opposed to STOP, the list of atoms is made into
a single atom or string, which replaces the atom or string being ‘‘repacked.”” The
new atom or string is aways printed.

Example:

*p
"THIS IS A LOGN STRING')
* REPACK
*EDI T
P
(THI S% | S% A% LOGN% STRI NGO
*(SWG N)
* OK
"TH'S IS A LONG STRING'

*

Note that this could also have been accomplished by (R GN $NGS) or simply (RC GN NG) .

(REPACK @ [Editor Command]
Does (LC . @ followed by REPACK, eg. (REPACK THI S$) .

17.41

Manipulating Predicates and Conditional Expressions

1711 MANIPULATING PREDICATES AND CONDITIONAL EXPRESSIONS

JO NC [Editor Command]
Used to join two neighboring COND's together, e.g. (COND CLA USE; CLA USE,)
followed by (COND CLA USE 3 CLA USE,) becomes (COND CLAUSE; CLAUSE, CLA USEgj
CLAUSE,) . JO NC does an (F COND T) rst so that you don't have to be at the
rst COND.

(SPLITC x) [Editor Command]
Splits one COND into two. X speci es the last clause in the rst COND, e.g. (SPLI TC
3) splits (COND CLAUSE; CLAUSE, CLAUSE3 CLAUSE,) into (COND CLA USE,
CLA USE,) (COND CLA USEg3 CLA USE,) . Uses the generalized NTH command (NTH
CoM), so that x does not have to be a number, eg., the user can say (SPLI TC
RETURN) , meaning split after the clause containing RETURN. SPLI TC also does
an (F COND T) rst.

NEGATE [Editor Command]
Negates the current expression, i.e. performs (MBD NOT), except that is smart
about simplifying. For example, if the current expression is. (OR (NULL X)
(LI STP X)), NEGATE would change it to (AND X (NLI STP X)).

NEGATE is implemented via the function NEGATE (page 14.2).

SWAPC [Editor Command]
Takes a conditional expression of the form (COND (A B) (T C)) and rearranges
it to an equivalent (COND ((NOT A) O (T B)), or (COND (A B) (C D))
to (COND ((NOT A) (COND (C D)) (T B)).

SWAPC is smart about negations (uses NEGATE) and simplifying CONDs. It always produces an equivalent
expression. It is useful for those cases where one wants to insert extra clauses or tests.

1712 HISTORY COMMANDS IN THE EDITOR

As described on page 8.35, al of the user's inputs to the editor are stored on EDI THI STORY, the editor’s
history list, and all of the programmer's assistant commands for manipulating the history list, e.g. REDO,
USE, FI X, NANVE, etc., are available for use on events on EDI THI STORY. In addition, the following four
history commands are recognized specialy by the editor. They aways operate on the last, i.e. most
recent, event.

DO cov [Editor Command]
Allows the user to supply the command name when it was omitted.

USE is useful when a command name is incorrect.

For example, suppose the user wants to perform (-2 (SETQ X (LIST Y 2Z))) but instead types just
(SETQ X (LIST Y Z)). The editor will type SETQ ?, whereupon the user can type DO -2. The
eect is the same as though the user had typed FI X, followed by (LI 1), (-1 -2), and K i.e,
the command (-2 (SETQ X (LIST Y Z))) is executed. DO aso works if the command is a line

17.42

THE TELETYPE EDITOR

command.

I'F [Editor Command]
Same as DO F.

In the case of ! F, the previous command is always treated as though it were a line command, e.g., if the
user types (SETQ X &) and then ! F, the eect isthe same as though he had typed F (SETQ X &),
not (F (SETQ X &)).

lE [Editor Command]
Same as DO E.

I'N [Editor Command]
Same as DO N.

1713 MISCELLANEOUS COMMANDS

NI L [Editor Command]
Unless preceded by F or BF, is dways a no-op. Thus extra right parentheses or
square brackets at the ends of commands are ignored.

CL [Editor Command]
Clispi es the current expression (see page 16.17).

DwW [Editor Command]
Dwimi es the current expression (see page 16.14).

CET* [Editor Command]
If the current expression is a comment pointer (see page 6.51), reads in the full
text of the comment, and replaces the current expression by it.

(* . Xx) [Editor Command]
X is the text of a comment. * ascends the edit chain looking for a ‘‘safe’’ place
to insert the comment, eg., in a COND clause, after a PROG statement, etc., and
inserts (* . X) after that point, if possible, otherwise before. For example, if the
current expression is (FACT (SUB1 N)) in

[COND
((ZEROP N) 1)
(T (ITIMES N (FACT (SUBL N|

(* CALL FACT RECURSI VELY) would insert (* CALL FACT RECURSI VELY)
before the | TI MES expression.24

241f inserted after the | TI MES, the comment would then be (incorrectly) returned as the value of the
COND. However, if the COND was itself a PROG statement, and hence its value was not being used, the
comment could be (and would be) inserted after the | TI MES expression.

17.43

Miscellaneous Commands

* does not change the edit chain, but UNFI ND is set to where the comment was
actualy inserted.

GETD [Editor Command]
Essentially ‘‘expands’ the current expression in line: (1) if (CAR of) the current
expression isthe name of a macro, expands the macro in line; (2) if a CLISP word,
trandates the current expression and replaces it with the trandation; (3) if CAR is
the name of a function for which the editor can obtain a symbolic denition, either
in-core or from a le, substitutes the argument expressions for the corresponding
argument names in the body of the denition and replaces the current expression
with the result; (4) if CAR of the current expression is an open lambda, substitutes
the arguments for the corresponding argument names in the body of the lambda,
and then removes the lambda and argument list.

(MAKEFN (FN . ACTUALAR GS) ARGLIST Ny Ny) [Editor Command]
The inverse of GETD: makes the current expression into a function. FN is the
function name, ARGLI ST its arguments. The argument names are substituted for
the corresponding argument values in ACTUALAR GS, and the result becomes the
body of the function denition for FN. The current expression is then replaced
with (FN . ACTUALAR GS).

If Ny and N, are supplied, (N; THRU N,) is used rather than the current
expression; if just N4 is supplied, (N; THRU - 1) is used.

If ARGLIST is omitted, MAKEFN will make up some arguments, using elements of
ACTUALAR GS, if they are litera atoms, otherwise arguments selected from (X Y
Z AB C...),avoiding duplicate argument names.

Example If the current expression is (COND ((CAR X) (PRINT Y T)) (T (HELP))), then
(MAKEFN (FOO (CAR X) Y) (A B)) will dene FOO as (LAVMBDA (A B) (COND (A (PRINT B
T)) (T (HELP)))) and then replace the current expression with (FOO (CAR X) Y).

(MAKE ARGNAME EXP) [Editor Command]
Makes the value of ARGNAVE be ExP in the call which isthe current expression,
i.e. a ?= command following a MAKE will always print ARGNAME = EXP . For
example:

*p

(JSYS)

* D=

JSYS[N; AC1, AC2, AC3, RESULTAC]
*(MAKE N 10)

*(MAKE RESULTAC 3)

*p

(JSYS 10 NIL NIL NIL 3)

Q [Editor Command]
Quotes the current expression, i.e. MBD QUOTE.

D [Editor Command]
Deletes the current expression, then prints new current expression, i.e. (:) | P.

17.44

THE TELETYPE EDITOR

1714 COMMANDS THAT EVALUATE

E [Editor Command]
Causes the editor to call the Interlisp executive LI SPX giving it the next input as
argument. Example:

*E BREAK(FI E FUV)
(FIE FUM
*E (FOO)

(FI E BROKEN)

Note: E only works when when typed in, eg, (1 NSERT D BEFORE E) will treat
E as a pattern, and search for E.

(E x) [Editor Command]
Evaluates X, i.e., performs (EVAL X), and prints the result on the terminal.

(Ex T [Editor Command]
Same as (E x) but does not print.

The (E X) and (E X T) commands are mainly intended for use by macros and subroutine calls to the
editor; the user would probably type in a form for evaluation using the more convenient format of the
(atomic) E command.

(I ¢ x4 XN) [Editor Command]
Executes the editor command (C Y Yn) where v; = (EVAL X;). If cisnot
an atom, c is evaluated also.

Examples:

(I 3 (GETD ' FOO)) will replace the 3rd element of the current expression with
the denition of FOO.

(I N FOO (CAR FI E)) will attach the value of FOO and CAR of the value of
FI E to the end of the current expression.

(I F= FOO T) will search for an expression EQ to the value of FOO.

(I (COND ((NULL FLG '-1) (T 1)) FOO, if FLG is NI'L, inserts the
value of FOO before the rst element of the current expression, otherwise replaces
the rst element by the value of FOO.

The | command sets an internal ag to indicate to the structure modi cation
commands not to copy expression(s) when inserting, replacing, or attaching.

EVAL [Editor Command]
Does an EVAL of the current expression.

Note that EVAL, line-feed, and the GO command together eectively alow the user to ‘‘singlestep’’ a
program through its symbolic de nition.

17.45

CommandsThat Test

GETVAL [Editor Command]
Replaces the current expression by the result of evaluating it.

(## com ; COM 5 coM) [NLambda NoSpread Function]
An nlambda, nospread function (not a command). Its value is what the current
expresson would be after executing the edit commands com ; com \ Starting
from the present edit chain. Generates an error if any of cov 4 thru COM cause
errors. The current edit chain is never changed. 25

Example: (I R 'X (## (CONS .. Z))) replaces al X'sin the current expression by the rst CONS
containing a Z.

The | command is not very convenient for computing an entire edit command for execution, since it
computes the command name and its arguments separately. Also, the | command cannot be used to
compute an atomic command. The following two commands provide more general ways of computing
commands.

(COMB X Xm) [Editor Command]
1 M
Each X; is evaluated and its value is executed as a command.

For example, (COVS (COND (X (LIST 1 X)))) will replace the rst element of the current expression
with the value of X if non-NI L, otherwise do nothing. 26

(COvBQ com 4 caM) [Editor Command)]
Executes com ; COM .

COVBQ is mainly useful in conjunction with the COVS command. For example, suppose the user wishes
to compute an entire list of commands for evaluation, as opposed to computing each command one a a
time as does the COMS command. He would then write (COVS (CONS ' COVBQ X)) where X computed
the list of commands, e.g., (COMS (CONS ' COVBQ (GETP FOO ' COMVANDS))) .

1715 COMMANDS THAT TEST

(IF x) [Editor Command]
Generates an error unless the value of (EVAL x) istrue. In other words, if (EVAL
X) causes an error or (EVAL x)= NI L, | F will cause an error.

For some editor commands, the occurrence of an error has awell dened meaning, i.e., they use errors to
branch on, as COND uses NI L and non- NI L. For example, an error condition in alocation speci cation may
simply mean ‘‘not this one, try the next.”” Thus the location speci cation (| PLUS (E (OR (NUMBERP
(## 3)) (ERROR)) T)) species the rst | PLUS whose second argument is a number. The | F
command, by equating NI L to error, provides a more natural way of accomplishing the same result. Thus,
an equivalent location speci cation is (1 PLUS (I F (NUVMBERP (## 3)))).

25The A, B, :, | NSERT, REPLACE, and CHANGE commands make specia checks for ## forms in the
expressions used for inserting or replacing, and use a copy of ## form instead (see page 17.26). Thus,
(INSERT (## 3 2) AFTER 1) isequivaent to (1 | NSERT (COPY (## 3 2)) 'AFTER 1).

26The editor command NI L is a no-op, see page 17.43.

17.46

THE TELETYPE EDITOR

The | F command can aso be used to select between two alternate lists of commands for execution.

(IF x covs | COMB) [Editor Command]
If (EVAL X) istrue, execute covs q; if (EVAL X) causes an error or is equal to
NI L, execute COVB ».

Thus | F is equivalent to

(COMVB (CONS * COMVBQ
(COND
((CAR (NLSETQ (EVAL X)))
CI]\/Sl)
(T ocovs y))))

For example, the command (I F (READP T) N L (P)) will print the current expression provided the
input buer isempty.

IF X covs Editor Command
1
If (EVAL X) istrue, execute covs q; otherwise generate an error.

(LP covs 4 coVB) [Editor Command]
Repeatedly executes covs ; covs p until an error occurs.

For example, (LP F PRINT (N T)) will attach a T at the end of every PRI NT
expression. (LP F PRINT (IF (## 3) NIL ((N T)))) will attach a T a
the end of each print expression which does not already have a second argument. 27

When an error occurs, LP prints N OCCURRENCES where N is the number of
times the commands were successfully executed. The edit chain is left as of the
last complete successful execution of coMs ; COMB .

LPQ covs covs Editor Command
1 N
Same as LP but does not print the message N OCCURRENCES.

In order to prevent non-terminating loops, both LP and LPQ terminate when the number of iterations
reaches MAXLOOP, initially set to 30. MAXLOOP can be set to NI L, which is equivalent to setting it to
innity. Since the edit chain is left as of the last successful completion of the loop, the user can simply
continue the LP command with REDO (page 8.7).

(SHOW x) [Editor Command]
X is a list of patterns. SHOW does a LPQ printing all instances of the indicated
expression(s), e.g. (SHOW FOO (SETQ FIE &)) will print al FOOs and al
(SETQ FIE &) 's. Generates an error if there aren't any instances of the
expression(s).

27The form (## 3) will cause an error if the edit command 3 causes an error, thereby selecting ((N
T)) asthe list of commands to be executed. The | F could also be written as (I F (CDDR (##)) N L

((NT))).

17.47

Edit Macros

(EXAM Xx) [Editor Command]
Like SHOW except calls the editor recursively (via the TTY: command, see page
17.40) on each instance of the indicated espression(s) so that the user can examine
and/or change them.

(ORR covs 4 covB) [Editor Command]
ORR begins by executing covs 4, a list of commands. If no error occurs, ORR is
nished. Otherwise, ORR restores the edit chain to its origina value, and continues
by executing covs ,, etc. If none of the command lists execute without errors, i.e.,
the ORR ‘‘drops 0 the end’, ORR generates an error. Otherwise, the edit chain is
left as of the completion of the rst command list which executes without an error.

NI L as a command list is perfectly legal, and will always execute successfully.
Thus, making the last ‘‘argument’’ to ORR be NI L will insure that the ORR never
causes an error. Any other atom is treated as (ATOM), i.e, the above example
could be written as (ORR NX !' NX NIL).

For example, (ORR (NX) (! NX) NI L) will perfform a NX, if possible, otherwise a ! NX, if possible,
otherwise do nothing. Similarly, DELETE could be written as (ORR (UP (1)) (BK UP (2)) (UP
(: NL))).

1716 EDIT MACROS

Many of the more sophisticated branching commands in the editor, such as ORR, | F, etc., are most often
used in conjunction with edit macros. The macro feature permits the user to dene new commands and
thereby expand the editor’s repertoire, or redene existing commands. 28 Macros are dened by using the
M command:

(Mc covs 4 cove) [Editor Command]
For c an atom, Mdenes cC as an atomic command. |f a macro is redened, its
new denition replaces its old. Executing C is then the same as executing the list
of commands covs ; COMB .

For example, (M BP BK UP P) will dene BP as an atomic command which does three things, a BK,
and UP, and a P. Macros can use commands dened by macros as well as built in commands in their
denitions. For example, suppose Zisdened by (M Z -1 (IF (READP T) NIL (P))),i.e, Z does
a-1, and then if nothing has been typed, a P. Now we can dene ZZ by (M ZZ -1 Z), and ZZZ by
(Mzzz -1 -1 2) or (M 222 -1 Z7).

Macros can also dene list commands, i.e.,, commands that take arguments.

(M (c) (ARGy ARGy) COMB 4 CcoVB) [Editor Command]
Cc an aom. Mdenes c as a list command. Executing (C E; En) is then
performed by substituting E; for ARGy, Ey for ARGy throughout covs 4

covs . and then executing covs ; COMB .

28To refer to the origind denition of a built-in command when redening it via a macro, use the
ORI G NAL command (page 17.50).

17.48

THE TELETYPE EDITOR

For example, we could dene a more general BP by (M (BP) (N) (BK N) UP P). Thus, (BP 3)
would perform (BK 3), followed by an UP, followed by a P.

A list command can be dened via a macro so as to take a xed or indenite number of ‘‘arguments’,
as with spread vs. nospread functions. The form given above specied a macro with a xed number
of arguments, as indicated by its argument list. If the ‘‘argument list’’ is atomic, the command takes an
indenite number of arguments.

(M(c) ARG cavs 4 covs) [Editor Command]
If c, ARG are both atoms, this denes c as a list command. Executing (C E;
En) is performed by substituting (Eq Eyn) » i-e, CDR of the command, for

ARG throughout covs ; covs 4, and then executing covs | COMB .

For example, the command 2ND (page 17.18), could be dened asamacro by (M (2ND) X (ORR ((LC
X) (LC . X)))).

Note that for all editor commands, ‘‘built in”’ commands as well as commands dened by macros as
atomic commands and list denitions are completely independent. In other words, the existence of an
atomic denition for c in no way aects the treatment of ¢ when it appears as CAR of a list command,
and the existence of a list denition for C in no way aects the treatment of c when it appears as an
atom. In particular, Cc can be used as the name of either an atomic command, or a list command, or
both. In the latter case, two entirely di erent denitions can be used.

Note also that once C isdened as an atomic command via a macro denition, it will not be searched for
when used in a location speci cation, unless it is preceded by an F. Thus (I NSERT -- BEFORE BP)
would not search for BP, but instead perform a BK, and UP, and a P, and then do the insertion. The
corresponding also holds true for list commands.

Occasionaly, the user will want to employ the S command in a macro to save some temporary result.
For example, the SWcommand could be dened as:

(M(SW (N M
(NTH N)
(S FOO 1)
MARK
0
(NTH M
(S FIE 1)
(I 1 FOO

(1 1 FIE)

Since this version of SWsets FOO and FI E, using SWmay have undesirable side eects, especialy when
the editor was called from deep in a computation, we would have to be careful to make up unique names
for dummy variables used in edit macros, which is bothersome. Furthermore, it would be impossible to
dene a command that called itself recursively while setting free variables. The Bl ND command solves
both problems.

(BIND covs 4 covs) [Editor Command]
Binds three dummy variables #1, #2, #3, (initialized to NI L), and then executes
the edit commands covs ; covs . Note that these bindings are only in eect
while the commands are being executed, and that Bl ND can be used recursively;

17.49

Undo

it will rebind #1, #2, and #3 each time it is invoked.

BI ND is implemented by (PROG (#1 #2 #3) (EDI TCOMS (CDR coMm)))
where cov corresponds to the entire BI ND command, and EDI TCOVS is an
internal editor function which executes a list of commands.

Thus we could now write SWsafely as:

(M(SW (NM
(BIND (NTH N)

(S #1 1)
MARK
0
(NTH M
(S #2 1)
(I 1 #1)
(11 #2)))

(ORIG NAL covs 4 covs) [Editor Command]

Executes covs ;| covs Wwithout regard to macro denitions. Useful for
redening a built in command in terms of itsdlf., i.e. eectively alows user to
“‘advise’’ edit commands.

User macros are stored on a list USERMACROS. The le package command USERMACROS (page 11.24), is
available for dumping all or selected user macros.

17.17 UNDO

Each command that causes structure modi cation automatically adds an entry to the front of UNDOLST
that contains the information required to restore all pointers that were changed by that command.

UNDO [Editor Command]
Undoes the last, i.e, most recent, structure modi cation command that has not
yet been undone, and prints the name of that command, e.g., MBD UNDONE. The
edit chain is then exactly what it was before the ‘‘undone’’ command had been
performed. If there are no commands to undo, UNDO types NOTHI NG SAVED.

I' UNDO [Editor Command]
Undoes al modi cations performed during this editing session, i.e. this call to the
editor. As each command is undone, its name is printed a la UNDO. If there is
nothing to be undone, ! UNDO prints NOTHI NG SAVED.

Undoing an event containing an |, E, or S command will aso undo the side eects of the evaluation(s),
e.g., undoing (I 3 (/NCONC FOO FIE)) will not only restore the 3rd element but aso restore FOO.
Similarly, undoing an S command will undo the set. See the discussion of UNDO in page 8.11. (Note
that if the I command was typed directly to the editor, / NCONC would automatically be substituted for
NCONC as described in page 8.22.)

17.50

THE TELETYPE EDITOR

Since UNDO and ! UNDO cause structure modi cation, they also add an entry to UNDOLST. However, UNDO
and ! UNDO entries are skipped by UNDO, eg., if the user performs an | NSERT, and then an MBD, the
rst UNDO will undo the MBD, and the second will undo the | NSERT. However, the user can also specify
precisely which commands he wants undone by identifying the corresponding entry on the history list. In
this case, he can undo an UNDO command, e.g., by typing UNDO UNDO, or undo a ! UNDO command, or
undo a command other than that most recently performed.

Whenever the user continues an editing session, the undo information of the previous session is protected
by inserting a special blip, called an undo- block, on the front of UNDOLST. This undo- block will terminate
the operation of a! UNDO, thereby conning itseect to the current session, and will similarly prevent an
UNDO command from operating on commands executed in the previous session.

Thus, if the user enters the editor continuing a session, and immediately executes an UNDO or ! UNDO, the
editor will type BLOCKED instead of NOTHI NG SAVED. Similarly, if the user executes several commands
and then undoes them all, another UNDO or ! UNDO will also cause BLOCKED to be typed.

UNBLOCK [Editor Command]
Removes an undo- block. If executed at a non- blocked state, i.e., if UNDO or ! UNDO
could operate, types NOT BLOCKED.

TEST [Editor Command]
Adds an undo- block at the front of UNDOLST.

Note that TEST together with ! UNDO provide a ‘‘tentative’” mode for editing, i.e., the user can perform
a number of changes, and then undo all of them with a single ! UNDO command.

(UNDO Evert Speg [Editor Command]
Evert SpeciS an event speci cation (see page 8.5). Undoes the indicated event on
the history list. In this case, the event does not have to be in the current editing
session, even if the previous session has not been unblocked as described above.
However, the user does have to be editing the same expression as was being edited
in the indicated event.

If the expressions dier, the editor types the warning message ‘‘di f f er ent
expression’,and does not undo the event. The editor enforces this to avoid
the user accidentally undoing a random command by giving the wrong event
Speci cation.

17.18 EDITDEFAULT

Whenever a command is not recognized, i.e., isnot ‘‘built in"” or dened as a macro, the editor calls an
interna function, EDI TDEFAULT, to determine what action to take.2? If a location speci cation is being

29Gince EDI TDEFAULT is part of the edit block, the user cannot advise or redene it as a means of
augmenting or extending the editor. However, the user can accomplish this via EDI TUSERFN. If the
value of the variable EDI TUSERFN is T, EDI TDEFAULT cals the function EDI TUSERFN giving it the
command as an argument. If EDI TUSERFN returns a non-NI L value, its value is interpreted as a single
command and executed. Otherwise, the error correction procedure described below is performed.

1751

EDITDEFAULT

executed, an interna ag informs EDI TDEFAULT to treat the command as though it had been preceded
by an F.

If the command is a ligt, an attempt is made to perform spelling correction on CAR of the command 30
using EDI TCOVBL, a list of al list edit commands. 31 If spelling correction is successful, the correct
command name is RPLACAed into the command, and the editor continues by executing the command. In
other words, if the user types (LP F PRINT (MBBD AND (NULL FLG))), only one spelling correction
will be necessary to change MBBD to MBD. If spelling correction is not successful, an error is generated.

If the command is atomic, the procedure followed is a little more elaborate.

1) If the command is one of the list commands, i.e, a member of EDI TCOVSL, and there is
additional input on the same termina line, treat the entire line as a single list command. 32
Thus, the user may omit parentheses for any list command typed in at the top level (provided
the command is not aso an atomic command, e.g. NX, BK. For example,

*p
(COND (& & (T &)
*XTR 3 2]

*MOVE TO AFTER LP

*

If the command is on the list EDI TCOMSL but no additional input is on the termina line, an
error is generated, eg.

*p
(COND (& & (T &))
* MOVE

MOVE ?

*

If the command is on EDI TCOMSL, and not typed in directly, eg., it appears as one of the
commands in a LP command, the procedure is similar, with the rest of the command stream
at that level being treated as ‘‘the termina line’,eg. (LP F (COND (T &) XTR 2 2) .33

(2 If the command was typed in and the rst character in the command is an 8, treat the 8 as a
mistyped left parenthesis, and and the rest of the line as the arguments to the command, e.g.,

*P
(COND (& &) (T &))

30unless DW MFLG= NI L.

31When a macro is dened via the M command, the command name is added to EDI TCOVBA or
EDI TCOVSL, depending on whether it is an atomic or list command. The USERMACROS le package
command is aware of this, and provides for restoring EDI TCOVBA and EDI TCOVSL.

32The line is read using READLI NE (page 8.30). Thus the line can be terminated by a square bracket, or
by a carriage return not preceded by a space.

33Note that if the command is being executed in location context, EDI TDEFAULT does not get this
far, eg., (MOVE TO AFTER COND XTR 3) will search for XTR, not execute it. However, (MOVE TO
AFTER COND (XTR 3)) will work.

17.52

THE TELETYPE EDITOR

*8-2 (Y (RETURN 2)))
:(-2

*p

(COND (Y & (& & (T &)

€©)] If the command was typed in, is the name of a function, and is followed by NI L or a list
CAR of which is not an edit command, assume the user forgot to type E and means to apply
the function to its arguments, type =E and the function name, and perform the indicated
computation, e.g.

* BREAK(FOO)
=E BREAK
(FGO

4 If the last character in the command is P, and the rst N-1 characters comprise a number,
assume that the user intended two commands, e.g.,

*p
(COND (& &) (T &))
*0P
=0 P
(SETQ X (COND & &))
5) Attempt spelling correction using EDI TCOVBA, and if successful, execute the corrected
command.
(6) If there is additional input on the same line, or command stream, spelling correct using

EDI TCOVSL as a spelling list, e.g.,
*MBBD SETQ X
=MBD

*

(6) Otherwise, generate an error.

1719 EDITOR FUNCTIONS

(EDITF NavE ©OM 4 COM o coM) [NLambda NoSpread Function]
Nlambda, nospread function for EDI Ting a Function. Nave is the name of the
function, com 4, com ,, , cov |, are (optional) edit commands.

The value of EDI TF is NAME .

The action of EDI TF is somewhat complicated:

Q In the most common case, if the denition of Nave is an EXPR (not as a result of its being
broken or advised), and EDI TF simply performs (PUTD nave (EDI TE (GETD ' NAME)
(LIST "com 4 oM » oM) NavE ' ENS)) .

17.53

2

3

(4)

©)

(6)

(7

(8)

Editor Functions

If NaME isan EXPR by virtue of its being broken or advised, and the origina denition isalso
an EXPR, then the broken/advised denition isgiven to EDI TE to be edited (since any changes
there will also aect the original denition because all changes are destructive). However, a
warning message is printed to alert the user that he must rst position himself correctly before
he can begin typing commands such as (-3 --), (N --), etc.

If Nave is an EXPR by virtue of its being broken or advised, the origina denition is not an
EXPR, there is no EXPR property, and the le package ‘‘knows’ which le NaMvE is contained
in (see EDI TLOADFNS?, page 17.58), then the EXPR denition of NaMvE is loaded onto its
property list as described below, and the EDI TF proceeds to the next possibility. Otherwise, a
warning message is printed, and the edit proceeds, eg., the user may have called the editor to
examine the advice on a SUBR.

If NavE is an EXPR by virtue of its being broken or advised, the original denition is not an
EXPR, and there is an EXPR property, then the function is unbroken/unadvised (latter only
with user's approval, since the user may really want to edit the advice) and EDI TF proceeds to
the next possihility.

If NavE is not an EXPR, but has an EXPR property, EDI TF prints PROP, and per-
forms (EDI TE (GETPROP 'Nave 'EXPR) (LIST "covm 4 ' com 5 "coM) | NAME

" PROP) . In this case, if the edit completes and no changes have been made, EDI TE prints
NOT CHANGED, SO NOT UNSAVED. If changes were made, but the value of DFNFLG (page
5.9) is PROP, EDI TE prints CHANGED, BUT NOT UNSAVED. Otherwise if changes were made,
EDI TE prints UNSAVED and does an UNSAVEDEF.

If NAVME is neither an EXPR nor has an EXPR property, and the le package ‘‘knows’ which
le NavE is contained in (see EDI TLOADFNS?, page 17.58), the EXPR denition of NaMVE

is automatically loaded (using LOADFNS) onto the EXPR property, and EDI TE proceeds as
described above.34 In addition, if NaVE isa member of a block, the user will be asked whether
he wishes the rest of the functions in the block to be loaded at the same time.35

If NaVE s neither an EXPR nor has an EXPR property, but it does have a denition, EDI TF
generates an Nave NOT EDI TABLE error.

If NaVE is neither dened, nor has an EXPR property, but its top level value is alist, EDI TF
assumes the user meant to call EDI TV, prints =EDI TV, calls EDI TV and returns. Similarly, if
NAME has a non-NI L property list, EDI TF prints =EDI TP, calls EDI TP and returns.

34Because of the existence of the le map (see page 11.38), this operation is extremely fast, essentialy
requiring only the time to perform the READ to obtain the actua de nition.

35The editor’'s behaviour in this case is controlled by the value of EDI TLOADFNSFLG, which is a dotted
pair of two ags. The CAR of EDI TLOADFNSFLG controls the loading of the function, and the CDR
controls the loading of the block. A value of NI L for either ag means ‘‘load but ask rst,”” a value of
T means ‘‘don’'t ask, just do it'"” and anything else means ‘‘don’t ask, don’t do it.’”” The initia value of
EDI TLOADFNSFLG is (T . N L), meaning to load the function without asking, and ask about loading

the block.

1754

THE TELETYPE EDITOR

(9 If NAVME is neither a function, nor has an EXPR property, nor a top level value that is a
list, nor a non-NI L property list, EDI TF attempts spelling correction using the spelling list
USERWORDS,36 and, if successful, goes back to the beginning.

(20 Otherwise, EDI TF generates an NaME NOT EDI TABLE error.

In al cases, if a function is edited, and changes were made, the function is time-stamped (by EDI TE),
which consists of inserting a comment of the form (* USERS- INITIALS DATE) (see page 17.60). If the
function was already time-stamped, then only the date is changed.

(EDI TENS NaVE COM ; COM 5 oM) [NLambda NoSpread Function]
An nlambda, nospread function, used to perform the same editing operations
on severa functions. NAME is evaluated to obtain a list of functions. 3’ cov 4,
coM 5, , CoM p are (optional) edit commands. EDI TENS maps down the list of
functions, prints the name of each function, and calls the editor (via EDI TF) on
that function. The value of EDI TENS is NI L.

For example, (EDI TFNS FOOFNS (R FI E FUM) will change every FI E to FUM
in each of the functions on FOOFNS.

The call to the editor is ERRORSET protected, so that if the editing of one function
causes an error, EDI TENS will proceed to the next function. In particular, if an
error occurred while editing a function via its EXPR property, the function would
not be unsaved. Thus in the above example, if one of the functions did not contain
a FI E, the R command would cause an error, it would not be unsaved, and editing
would continue with the next function.

(EDITV NavE ©OM 4 COM , coM) [NLambda NoSpread Function]
Similar to EDI TF, for editing values of variables.

The value of EDI TV is the name of the variable whose value was edited.

If NaVE s a lidt, it is evaluated and its value given to EDI TE, eg., (EDI TV (CDR (ASSOC ' FOO
DI CTI ONARY))) . In this case, the value of EDI TV is T.

However, for most applications, NAMVE is a variable name, i.e.,, atomic, as in EDI TV(FOO) . If the vaue
of this variable is NOBI ND, EDI TV checks to see if it is the name of a function, and if so, assumes the
user meant to call EDI TF, prints =EDI TF, calls EDI TF and returns. Otherwise, EDI TV attempts spelling
correction using the list USERWORDS.38 Then EDI TV will call EDI TE on the value of Nave (or the
corrected spelling thereof), and TYPE = VARS. Thus, if the value of FOO is NI L, and the user performs
(EDI TV FQOO) , no spelling correction will occur, since FOO isthe name of a variable in the user’s system,
i.e, it has a value. However, EDI TE will generate an error, since FOO's value is not a list, and hence

36Unless DW MFLG= NI L. Spelling correction is performed using the function M SSPELLED? (page
15.18). If Nave = NI L, M SSPELLED? returns the last ‘‘word’’ referenced, e.g., by DEFI NEQ, EDI TF,
PRETTYPRI NT etc. Thus if the user denes FOO and then types (EDI TF) , the editor will assume he
meant FOO, type =FQO, and then type EDI T.

37If NaME is atomic, and its value is not alist, and it isthe name of a le, (FI LEFNSLST
be used as the list of functions to be edited.

38Unless DW MFLG= NI L. M SSPELLED? is aso caled if NaME is NIL, so that (EDI TV) will edit
LASTWORD.

NAVE) will

17.55

Editor Functions

not editable. If the user performs (EDI TV FOQOO) , where the value of FOOO is NOBI ND, and FQOO is on
the user’'s spelling list, the spelling corrector will correct FOOO to FOO. Then EDI TE will be caled on the
value of FOO. Note that this may till result in an error if the value of FOO is not a list.

(EDI TP NAME COM

(EDI TE EXPR COMB

1 COM , coM) [NLambda NoSpread Function]

Similar to EDI TF for editing property lists. If the property list of NaMvE IS
NI L, EDI TP attempts spelling correction using USERWORDS. Then EDI TP calls
EDI TE on the property list of Nave , (or the corrected spelling thereof), with
TYPE = PROPLST. When (if) EDI TE returns, EDI TP calls SETPROPLI ST on NAME
with the value returned.

The value of EDI TP is the atom whose property list was edited.

ATM TYPE | FCHANGEDFN) [Function]
Edits the expression, EXPR , by calling EDI TL on (LI ST EXPR) and returning the
last element of the value returned by EDI TL. Generates an error if EXPR is not a
list.

ATM and TYPE are for use in conjunction with the le package. If supplied, AT™m
is the name of the object that ExPR is associated with, and TYPE describes the
association (i.e., TYPE corresponds to the TyPE argument of MARKASCHANGED,
page 11.11.) For example, if ExPR is the denition of FOO, ATM= FOO and
TYPE = FNS. When EDI TE is called from EDI TP, EXPR isthe property list of AT™,
and TYPE = PROPLST, etc..

EDI TE calls EDI TL to do the editing (described below). Upon return, if both AT™M
and TYPE are non-NI L, ADDSPELL iscalled to add ATM to the appropriate spelling
list. Then, if EXPR was changed, 3° and the value of | FCHANGEDFN isnot NI L, the
value of | FCHANGEDFN is applied to the arguments ATM, EXPR , TYPE , and a ag
which isT for normal edits from editor, NI L for callsthat were aborted via control- D
or STOP. Otherwise, if EXPR was changed, and the value of | FCHANGEDFN isNI L,
and TYPE isnot NI L, MARKASCHANGED (page 11.11) is called on ATM and TYPE .
EDI TE uses RESETSAVE to insure that | FCHANGEDFN and MARKASCHANCED are
caled if any change was made even if editing is subsequently aborted via control- D.
(In this case, the fourth argument to | FCHANGEDFN wil be NI L.)

(EDITL L covs ATM MESS EDI TCHANGES) [Function]

EDI TL is the editor. Its rst argument is the edit chain, and its value is an edit
chain, namely the value of L at the time EDI TL is exited.40

covs isan optional list of commands. For interactive editing, coms isNI L. In this
case, EDI TL types EDI T (or MeSS, if it not NI L) and then waits for input from
terminal. All input is done with EDI TRDTBL as the readtable. Exit occurs only
via an OK, STOP, or SAVE command.

3%For TYPE = FNS or TYrE = PROP, i.e, cdls from EDI TF, EDI TE performs some additional operations
as described earlier under EDI TF.

40_ js a SPECVAR, and so can be examined or set by edit commands. For example, » is equivalent to (E
(SETQ L (LAST L)) T). However, the user should only manipulate or examine L directly as a last
resort, and then with caution.

17.56

THE TELETYPE EDITOR

If cos isnot NI L, no message is typed, and each member of covs s treated
as a command and executed. If an error occurs in the execution of one of the
commands, no error message is printed, the rest of the commands are ignored, and
EDI TL exits with an error, i.e, the eect isthe same as though a STOP command
had been executed. If all commands execute successfully, EDI TL returns the
current value of L.

ATM isoptiona. On cals from EDI TF, it is the name of the function being edited;
on cals from EDI TV, the name of the variable, and calls from EDI TP, the atom
whose property list is being edited. The property list of ATM is used by the SAVE
command for saving the state of the edit. Thus SAVE will not save anything if
ATM = NI L, i.e,, when editing arbitrary expressions via EDI TE or EDI TL directly.

EDI TCHANGES is used for communicating with EDI TE.

(EDITLO L covs MESS _) [Function]
Like EDI TL, except it does not rebind or initidlize the editor's various state
variables, such as LASTAI L, UNFI ND, UNDOLST, MARKLST, etc. Should only be
caled when already under a call to EDI TL.

(EDI T4E PAT X _) [Function]
The editor’'s pattern match routine. Returns T, if PAT matches X. See page 17.13
for denition of ‘‘match’’.

Note: Before each search operation in the editor begins, the entire pattern is scanned for atoms or strings
containing $s (<esc>s). Atoms or strings containing $s are replaced by lists of the foom ($), and
atoms or strings ending in double $sare replaced by lists of the form ($$). Thus from the standpoint
of EDI T4E, single and double $ patterns are detected by (CAR PAT) being the atom $ (<esc>) or the
atom $$ (<esc><esc>). Therefore, if the user wishes to call EDI T4E directly, he must rst convert any
patterns which contain atoms or strings containing $s to the form recognized by EDI T4E. This is done
with the function EDI TFPAT:

(EDI TFPAT PAT _) [Function]
Makes a copy of PAT with all atoms or strings containing $s (<esc>s) converted to
the form expected by EDI T4E.

(EDI TFI NDP X PAT FLG) [Function]
Allows a program to use the edit nd command as a pure predicate from outside
the editor. X isan expression, PAT a pattern. The value of EDI TFI NDP is T if the
command F PAT would succeed, NI L otherwise. EDI TFI NDP calls EDI TFPAT to
convert PAT to the form expected by EDI T4E, unless FLG= T. Thus, if the program
is applying EDI TFI NDP to several di erent expressions using the same pattern, it
will be more ecient to call EDI TFPAT once, and then call EDI TFI NDP with the
converted pattern and FLG= T.

(ESUBST NEW OD EXPR ERR ORFL G CHARFL G) [Function]
Equivalent to performing (R oD New) with EXPR as the current expression,
i.e, the order of arguments isthe same as for SUBST. Note that a.b and/or New
can employ $s (<esc>s). The value of ESUBST isthe modi ed EXPR . Generates an
error if oD not found in EXPR . If ERR ORFL G= T, aso prints an error message of
the form a.p 2.

17.57

Editor Functions

If cHARFL G= T and no $s (<esc>s) are specied in NEW or OLD, it is equivalent
to (RC a.b New). In other words, if cHARFL G= T, and no $s appear, ESUBST
will supply them.

ESUBST is aways undoable.

(EDI TLOADFNS? FN STR ASKFL G FILES) [Function]
FN is the name of a function. EDI TLOADFNS? returns the name of le FN is
contained in, or NI L.

EDI TLOADFNS? performs (WHEREI'S FN FNS FILES) to obtain the name of
the le(s) containing FN, if any (see page 11.10). If there is more than one
le, EDI TLOADFNS? asks the user to indicate which le. It then checks the
FI LEDATES property for each le to see if the version that was originally loaded
still exists.4! If the le that was originally loaded no longer exists, but there is a
di erent version of the le on that directory, EDI TLOADFNS? prints ‘“****can’ t
find FILENAVE ', and then uses the version that it could nd. Similarly, if the
origina version isfound, but a newer version isaso found, EDI TLOADFNS? prints
"****Note: FILENAME is not the newest version" and then usesthe
newest version.

Having decided which le the function is on, if AskFrL G= NI L, EDI TLOADFNS?
prints the value of sTR followed by the name of the le, and returns the name
of the le. If AskFL G= T, EDI TLOADFNS? calls ASKUSER giving (LI ST FN
STR FILENAME) as MESS, the message to be printed. If ASKUSER returns Y,
EDI TLOADFNS? returns the lename. If sSTR= NI L, "l oadi ng fronl is used.

EDI TLOADFNS? is used by the editor, LOADFNS (when the le name isnot supplied), by PRETTYPRI NT,
and by DW M

(CHANGENAME FN FROM TO) [Function]
Replaces all occurrences of FRov by TO in the denition of FN. If FN isan EXPR,
CHANGENAME performs (NLSETQ (ESUBST 170 FRoM (GETD FN))). If FN
is compiled, CHANGENAME searches the literals of FN (and all of its compiler
generated subfunctions), replacing each occurrence of FRom with TO. This will
succeed even if FRov is caled from FN via alinked call. In this case, the cal will
also be relinked to call TO instead.

The value of CHANGENAME is FN if at least one instance of FROM was found,
otherwise NI L.

CHANGENAME is used by BREAK and ADVI SE for changing calls to FN to calls to FN - I N- FN ,.

The function EDI TCALLERS provides a way of rapidly searching a le or entire set of les, even les
not loaded into Interlisp or ‘‘noticed’’ by the le package, for the appearance of one or more key words
(atoms) anywhere in the le.

41n the case that FILES= T and the WHEREIS package has been loaded (page 23.40), les(s) may be
found that have not been loaded or otherwise noticed, and thus will not have FI LEDATES property. In
this case, EDI TLOADFNS? does not do any version checks, but simply uses the latest version.

17.58

THE TELETYPE EDITOR

(EDI TCALLERS ATOMB FILES COVS) [Function]
Uses FFI LEPGS to search the le(s) FILES for occurrences of the atom(s) ATOMVS .
It then calls EDI TE on each of those objects,42 performing the edit commands
covs . If cos = NI L, then (EXAM . ATOMS) is used. Both AToMs and FILES
may be single atoms. If FILES iSNI L, FI LELST isused. Elements on ATOMS may
contain $s (<esc>s).

EDI TCALLERS prints the name of each le as it searches it, and when it nds
an occurrence of one of ATOMS , it prints out either the name of the containing
function or, if the atom occurred outside a function denition, it prints out the
byte position that the atom was found.

EDI TCALLERS will read in and use the lemap of the le. In the case that the
editor is actually called, EDI TCALLERS will LOADFROM the le if the le has not
previously been noticed.

(FI NDCALLERS ATOMB FI LES) [Function]
Like EDI TCALLERS, except does not call the editor, but instead simply returns
the list of les that contain one of ATOVE .

(EDI TRACEFN com) [Function]
Is available to help the user debug complex edit macros, or subroutine calls to the
editor. If EDI TRACEFN is set to T, the function EDI TRACEFN is called whenever
a command that was not typed in by the user is about to be executed, giving it
that command as its argument. However, the TRACE and BREAK options described
below are probably sucient for most applications.

If EDI TRACEFN is set to TRACE, the name of the command and the current
expression are printed. |If EDI TRACEFN= BREAK, the same information is printed,
and the editor goesinto a break. The user can then examine the state of the editor.

EDI TRACEFN isinitially NI L.

(SETTERMCHARS NEXTCHAR BKCHAR LASTCHAR UNQUOTECHAR 2CHAR PPCHAR) [Function]
Used to set up the immediate read macros used by the editor, as well as the
control- Y read macro (page 6.39). NEXTCHAR , BKCHAR , LASTCHAR , 2CHAR and
PPCHAR specify which control character should perform the edit commands NXP,
BKP, - 1P, 2P and PP*, respectively; UNQUOTECHAR corresponds to control- Y.
For each non-NI L argument, SETTERMCHARS makes the corresponding control
character have the indicated function. The arguments to SETTERMCHARS can
be character codes, the control characters themselves, or the aphabetic letters
corresponding to the control characters.

If an argument to SETTERMCHARS is currently assigned as an interrupt character, it cannot be a read
macro (since the reader will never see it); SETTERMCHARS prints a message to that eect and makes no
change to the control character. However, if SETTERMCHARS is given a list as one of its arguments, it
uses CAR of the list even if the character is an interrupt. In this case, if CADR of the list is non-NI L,
SETTERMCHARS reassigns the interrupt function to CADR. For example, if control- X is an interrupt,

42EDI TCALLERS uses GETDEF (page 11.17) to obtain the ‘‘denition” for each object. When EDI TE
returns, if a change was made, PUTDEF is called to store the changed object.

17.59

Time Stamps

(SETTERMCHARS * (X W) assigns control- W the interrupt control- X had, and makes control- X be the
NEXTCHAR operator.

As part of the greeting operation, SETTERMCHARS is applied to the value of EDI TCHARACTERS, which
isinitidly (J X Z Y N) in Interlisp- D and in Interlisp- 10 under Tenex, (J A L Y K) under Tops 20
(control- J is line-feed). SETTERMCHARS is cadled after the user's init le isloaded, so it works to reset
EDI TCHARACTERS in the init le; alternatively, SETTERMCHARS can be called explicitly.

1720 TIME STAMPS

Whenever a function is edited, and changes were made, the function is time-stamped (by EDI TE), which
consists of inserting a comment of the form (* USERS- I NI TIALS DATE). USERS- I NITIALS is the value
of the variable | NI TI ALS. After greeting, or following a SYSI N, the function SETI NI Tl ALS is called.
SETI NI TI ALS searches | NI TI ALSLST, a list of elements of the form (USERNAME . INITIALS) or
(USERNAME ~ FIRSTNAME INITIALS) . If the user's name is found, | NI TI ALS is set accordingly. If the
user's name is not found on I NI TI ALSLST, I NI TI ALS is set to the value of DEFAULTI NI TI ALS,
initially edi t ed: . Thus, the default is to always time stamp. To suppress time stamping, the user must
either include an entry of the form (USERNAME) on | NI TI ALSLST, or set DEFAULTI NI TI ALS to NI L
before greeting, i.e. in his user prole, or else, after greeting, explicitly set | NI TI ALS to NI L.

If the user wishes his functions to be time stamped with his initials when edited, he should include a le
package command command of the form (ADDVARS (I NI TI ALSLST (USERNAME . INITIALS))) in
the user's I NI T. LI SP le (see page 14.5).

The following three functions may be of use for speciaized applications with respect to time- stamping:
(FI XEDI TDATE EXPR) which, given a lambda expression, inserts or smashes a time-stamp comment;
(EDI TDATE? cowent) which returns T if comeNT is a time stamp; and (EDI TDATE OLD ATE
INITLS) which returns a new time-stamp comment. If OLD ATE is atime-stamp comment, it will be reused.

17.60

