
1

1

CHAPTER 2

DATA TYPES

Interlisp is a system for the manipulation of various kinds of data; it provides a large set of built- in data
types, which may be used to represent a variety of abstract objects, and the user can also de�ne new data
types which can be used exactly like built- in data types.

Each data type in Interlisp has an associated ‘‘type name,’’ a litatom. Some of the type names of built- in
data types are: , , , , , , , and . For user
data types (page 3.14), the type name is speci�ed when the data type is created.

[Function]
Returns a list of all type names currently de�ned.

[Function]
Returns the type name for the data type of .

[Function]
Returns if is an object with type name equal to , otherwise

.

Note: and distinguish the logical data types , and ,
even though they may be implemented as s in some Interlisp implementations.

2.1 DATA TYPE PREDICATES

Interlisp provides seperate functions for testing whether objects are of certain commonly- used types:

[Function]
Returns if is a litatom, otherwise. Note that a number is not a litatom.

[Function]
Returns if is a small integer; otherwise. (Note that the range of small
integers is implementation- dependent. See page 2.36.)

[Function]
Returns if is a small or large integer (between and);

otherwise.

[Function]
Returns if is a �oating point number; otherwise.

In Interlisp- 10, each data type also has an associated ‘‘type number.’’ See page 22.2.

2.1

LITATOM LISTP STRINGP ARRAYP STACKP SMALLP FIXP FLOATP

(DATATYPES)

(TYPENAME)

(TYPENAMEP)
T

NIL

TYPENAME TYPENAMEP ARRAYP CCODEP HARRAYP
ARRAYP

(LITATOM)
T NIL

(SMALLP)
NIL

(FIXP)
MIN.FIXP MAX.FIXP

NIL

(FLOATP)
NIL

_

DATUM

DATUM

DATUM TYPENAME

DATUM TYPENAME

X

X

X

X X

X

X X

X

X X

Data Type Equality

[Function]
Returns if is a number of any type (or), otherwise.

[Function]
Returns if is an atom (i.e. a litatom or a number); otherwise.

Warning: is if is an array, string, etc. In many dialects of Lisp,
the function is de�ned equivalent to the Interlisp function .

[Function]
Returns if is a list cell, e.g., something created by ; otherwise.

[Function]
. Returns if is not a list cell, otherwise.

[Function]
Returns if is a string, otherwise.

[Function]
Returns if is an array, otherwise.

Note: In some implementations of Interlisp, may also return if it is of
type or .

[Function]
Returns if is a hash array, otherwise.

Note: The empty list, or , is considered to be a litatom, rather than a list. Therefore,
= = and = . Care should be taken when using these functions

if the object may be the empty list .

2.2 DATA TYPE EQUALITY

A common operation when dealing with data objects is to test whether two objects are equal. In some
cases, such as when comparing two small integers, equality can be easily determined. However, sometimes
there is more than one type of equality. For instance, given two lists, one can ask whether they are
exactly the same object, or whether they are two distinct lists which contain the same elements. Confusion
between these two types of equality is often the source of program errors. Interlisp supplies an extensive
set of functions for testing equality:

[Function]
Returns if and are identical pointers; otherwise. should not be used
to compare two numbers, unless they are small integers; use instead.

[Function]

2.2

(NUMBERP)
FIXP FLOATP NIL

(ATOM)
T NIL

(ATOM) NIL
ATOM NLISTP

(LISTP)
CONS NIL

(NLISTP)
(NOT (LISTP X)) T NIL

(STRINGP)
NIL

(ARRAYP)
NIL

ARRAYP
CCODEP HARRAYP

(HARRAYP)
NIL

() NIL (LITATOM
NIL) (ATOM NIL) T (LISTP NIL) NIL

NIL

(EQ)
T NIL EQ

EQP

(NEQ)
(NOT (EQ))

X

X X

X

X

X X

X

X X

X

X

X

X X

X

X X

X

X

X X

X Y

X Y

X Y

X Y

DATA TYPES

[Function]
[Function]

[Function]
Returns if and are , or if and are numbers and are equal in value;

otherwise. For more discussion of and other number functions, see page
2.36.

Note: also can be used to compare stack pointers (page 7.3) and compiled
code (page 5.8).

[Function]
returns if and are (1) ; or (2) , i.e., numbers with equal value;

or (3) , i.e., strings containing the same sequence of characters; or (4)
lists and of is to of , and of is to of .

returns otherwise. Note that can be signi�cantly slower than
.

A loose description of might be to say that and are if they
print out the same way.

[Function]
Like , except it descends into the contents of arrays, hash arrays, user data
types, etc. Two non- arrays may be if their respective componants
are .

2.3 ‘‘FAST’’AND ‘‘DESTRUCTIVE’’ FUNCTIONS

Among the functions used for manipulating objects of various data types, there are a number of functions
which have ‘‘fast’’and ‘‘destructive’’ versions. The user should be aware of what these functions do, and
when they should be used.

‘‘Fast’’ functions: By convention, a function named by pre�xing an existing function name with indicates
that the new function is a ‘‘fast’’version of the old. These usually have the same de�nitions as the slower
versions, but they compile open and run without any ‘‘safety’’ error checks. For example, runs
faster than , however, it does not make as many checks (for lists ending with anything but ,
etc). If these functions are given arguments that are not in the form that they expect, their behavior is
unpredictable; they may run forever, or cause a system error. In general, the user should only use ‘‘fast’’
functions in code that has already been completely debugged, to speed it up.

‘‘Destructive’’ functions: By convention, a function named by pre�xing an existing function with
indicates the new function is a ‘‘destructive’’ version of the old one, which does not make any new
structure but cannibalizes its argument(s). For example, returns a copy of a list with a particular
element removed, but actually changes the list structure of the list. (Unfortunately, not all
destructive functions follow this naming convention: the destructive version of is .) The
user should be careful when using destructive functions that they do not inadvertantly change data
structures.

2.3

(NULL)
(NOT)

(EQ NIL)

(EQP)
T EQ

NIL EQP

EQP

(EQUAL)
EQUAL T EQ EQP

STREQUAL
CAR EQUAL CAR CDR EQUAL CDR

EQUAL NIL EQUAL
EQ

EQUAL EQUAL

(EQUALALL)
EQUAL

EQ EQUALALL
EQUALALL

F

FNTH
NTH NIL

D

REMOVE
DREMOVE

APPEND NCONC

X

X

X

X Y

X Y X Y

X Y

X Y

X Y X Y

X Y

X Y

Litatoms

2.4 LITATOMS

A ‘‘litatom’’ (for ‘‘literal atom’’) is an object which conceptually consists of a print name, a value, a
function de�nition, and a property list. In some Lisp dialects, litatoms are also known as ‘‘symbols.’’

A litatom is read as any string of non- delimiting characters that cannot be interpreted as a number.
The syntatic characters that delimit litatoms are called separator or break characters (see page 6.32) and
normally are space, end- of-line, line- feed, (left paren), (right paren), (double quote), (left bracket),
and (right bracket). However, any character may be included in a litatom by preceding it with the
escape character . Here are some examples of litatoms:

Litatoms are printed by and as a sequence of characters with ’s inserted before all
delimiting characters (so that the litatom will read back in properly). Litatoms are printed by as a
sequence of characters without these extra ’s. For example, the litatom consisting of the �ve characters

, , , , and will be printed as by and by .

Litatoms can also be constructed by , , , , and (which uses
).

Litatoms are unique. In other words, if two litatoms print the same, they will be . Note that
this is true for strings, large integers, �oating point numbers, and lists; they all can print the same
without being . Thus if or is given a list of characters corresponding to a litatom that
already exists, they return a pointer to that litatom, and do make a new litatom. Similarly, if the read
program is given as input a sequence of characters for which a litatom already exists, it returns a pointer
to that litatom. Note: Interlisp is di�erent from other Lisp dialects which allow ‘‘uninterned’’ litatoms.

Note: Litatoms are limited to 255 characters in Interlisp- D; 127 characters in Interlisp- 10. Attempting to
create a larger litatom either via or by typing one in (or reading from a �le) will cause an error,

.

2.4.1 Using Litatoms as Variables

Litatoms are commonly used as variables. Each litatom has a ‘‘top level’’ variable binding, which can
be an arbitrary Interlisp object. Litatoms may also be given special variable bindings within s or
function calls, which only exist for the duration of the function. When a litatom is evaluated, the ‘‘current’’
variable binding is returned. This is the most recent special variable binding, or the top level binding if
the litatom has not been rebound. is used to change the current binding. For more information
on variable bindings in Interlisp, see page 7.1.

Note: The compiler (page 12.1) treats variables somewhat di�erently than the interpreter, and the user
has to be aware of these di�erences when writing functions that will be compiled. For example, variable
references in compiled code are not checked for , so compiled code will not generate unbound
atom errors. In general, it is better to debug interpreted code, before compiling it for speed. The compiler
o�ers some facilities to increase the e�ciency of variable use in compiled functions. Global variables
(page 12.3) can be de�ned so that the entire stack is not searched at each variable reference. Local
variables (page 12.4) allow compiled functions to access variable bindings which are not on the stack,

2.4

() " [
]

%

A wxyz 23SKIDDOO %] 3.1415+17

Long% Litatom% With% Embedded% Spaces

PRINT PRIN2 %
PRIN1

%
A B C (D ABC%(D PRINT ABC(D PRIN1

PACK PACK* SUBATOM MKATOM GENSYM
MKATOM

always EQ
not

EQ PACK MKATOM
not

PACK
ATOM TOO LONG

PROG

SETQ

NOBIND

2

2

DATA TYPES

which reduces variable con�icts, and also makes variable lookup faster.

By convention, a litatom whose top level binding is to the litatom is considered to have no top
level binding. If a litatom has no local variable bindings, and its top level value is , attempting
to evaluate it will cause an unbound atom error.

The two litatoms and always evaluate to themselves. Attempting to change the binding of or
with the functions below will generate the error or .

The following functions (except) will also generate the error , if not given
a litatom.

[Function]
Returns if has a special variable binding (even if bound to), or
if has a top level value other than ; otherwise . In other words,
if is a litatom, will cause an error if and only if

returns .

[Function]
Sets the ‘‘current’’ variable binding of to , and returns .

Note that is a normal lambda spread function, so both and are
evaluated before it is called. Thus, if the value of is , and the value of is ,
then would result in being set to , and being returned as the
value of .

[NLambda NoSpread Function]
Nlambda version of ; is not evaluated, is. Thus if the value of
is and the value of is , would result in (not) being set to

, and being returned.

[NLambda Function]
Like except that neither argument is evaluated, e.g.,
sets to .

[Function]
Returns the top level value of (even if), regardless of any intervening
local bindings.

[Function]
Sets the top level value of to , regardless of any intervening bindings,
and returns .

A major di�erence between various Interlisp implementations is the way that variable bindings are
implemented. Interlisp- 10 and Interlisp- Jerico use what is called ‘‘shallow’’ binding. Interlisp- D and
Interlisp- VAX use what is called ‘‘deep’’ binding.

Since is an nlambda, argument is evaluated during the calling process. However, itself
calls on its second argument. Note that as a result, typing and

to the Interlisp executive is equivalent: in both cases is not evaluated, and is.

2.5

NOBIND
NOBIND

T NIL T
NIL ATTEMPT TO SET T ATTEMPT TO SET NIL

BOUNDP ARG NOT LITATOM

(BOUNDP)
T NOBIND

NOBIND NIL
(EVAL) UNBOUND ATOM

(BOUNDP) NIL

(SET)

SET
X B Y C

(SET X Y) B C C
SET

(SETQ)
SET X

B Y C (SETQ X Y) X B
C C

(SETQQ)
SETQ (SETQQ X (A B C))

X (A B C)

(GETTOPVAL)
NOBIND

(SETTOPVAL)

SETQ neither SETQ
EVAL (SETQ VAR FORM) SETQ(VAR

FORM) VAR FORM

VAR

VAR

VAR

X X

X

VAR VAL UE

VAR VAL UE VAL UE

VAR VAL UE

VAR VAL UE

VAR VAL UE

VAR VAL UE

VAR

VAR

VAR VAL UE

VAR VAL UE

VAL UE

Function De�nition Cells

In a deep binding system, a variable is bound by saving on the stack the variable’s new value. When a
variable is accessed, its value is found by searching the stack for the most recent binding. If the variable is
not found on the stack, the top level binding is retrieved from a ‘‘value cell’’ associated with the variable.

In a ‘‘shallow’’ binding system, a variable is bound by saving on the stack the variable name and the
variable’s old value and putting the new value in the variable’s value cell. When a variable is accessed,
its value is always found in its value cell.

and are less e�cient in a shallow binding system, because they have to search
the stack for rebindings; it is more economical to simply rebind variables. In a deep binding system,

and are very e�cient since they do not have to search the stack, but can simply
access the value cell directly.

and can be used to access a variable’s value cell, in either a shallow or deep
binding system.

[Function]
Returns the value in the value cell of . In a shallow binding system, this is the
same as , or simply . In a deep binding system, this is the same
as .

[Function]
Sets the value cell of to . In a shallow binding system, this is the same
as ; in a deep binding system, this is the same as .

2.4.2 Function De�nition Cells

Each litatom has a function de�nition cell, which is accessed when a litatom is used as a function. The
mechanism for accessing and setting the function de�nition cell of a litatom is described on page 5.8.

2.4.3 Property Lists

Each litatom has a property list, which allows a set of named objects to be associated with the litatom. A
property list associates a name, known as a ‘‘property name’’ or ‘‘property’’, with an abitrary object, the
‘‘property value’’ or simply ‘‘value’’. Sometimes the phrase ‘‘to store on the property ’’ is used, meaning
to place the indicated information on a property list under the property name .

Property names are usually litatoms or numbers, although no checks are made. However, the standard
property list functions all use to search for property names, so they may not work with non- atomic
property names. Note that the same object can be used as both a property name and a property value.

Note: Many litatoms in the system already have property lists, with properties used by the compiler, the
break package, DWIM, etc. Be careful not to clobber such system properties. The variable is
a list of property names used by the system.

The functions below are used to manipulate the propert lists of litatoms. Except when indicated, they
generate the error , if given an object that is not a litatom.

2.6

GETTOPVAL SETTOPVAL

GETTOPVAL SETTOPVAL

GETATOMVAL SETATOMVAL

(GETATOMVAL)

(EVAL)
(GETTOPVAL)

(SETATOMVAL)

SET SETTOPVAL

EQ

SYSPROPS

ARG NOT LITATOM

VAR

VAR

ATM VAR

VAR

ATM VAL UE

VAR VAL UE

X

X

DATA TYPES

[Function]
Returns the property value for from the property list of . Returns if

is not a litatom, or is not found. Note that also returns
if there is an occurrence of but the corresponding property value is ;
this can be a source of program errors.

Note: used to be called .

[Function]
Puts the property with value on the property list of . replaces
any previous value for the property on this property list. Returns .

[Function]
Adds the value to the list which is the value of property on the property
list of . If is , is ed onto the front of the property value of

, otherwise it is ed on the end (using). If does not
have a property , or the value is not a list, then the e�ect is the same as

. returns the (new) property
value. Example:

[Function]
Removes all occurrences of the property (and its value) from the property
list of . Returns if any were found, otherwise .

[Function]
Removes all occurrences of all properties on the list (and their corresponding
property values) from the property list of . Returns .

[Function]
Changes the property name of property to on the property list of

, (but does not a�ect the value of the property). Returns , unless is not
found, in which case it returns .

[Function]
Returns a list of the property names on the property list of .

[Function]
Used to put values under the same property name on the property lists of several
litatoms. is a list of two-element lists. The �rst element of each is a litatom, and
the second element is the property value for the property . Returns . For
example,

puts on ’s property, on ’s property, and on ’s

2.7

(GETPROP)
NIL

GETPROP NIL
NIL

GETPROP GETP

(PUTPROP)

(ADDPROP)

T CONS
NCONC NCONC1

(PUTPROP (LIST)) ADDPROP

_ (PUTPROP ’POCKET ’CONTENTS NIL)
NIL
_ (ADDPROP ’POCKET ’CONTENTS ’COMB)
(COMB)
_ (ADDPROP ’POCKET ’CONTENTS ’WALLET)
(COMB WALLET)

(REMPROP)

NIL

(REMPROPLIST)

NIL

(CHANGEPROP)

NIL

(PROPNAMES)

(DEFLIST)

NIL

(DEFLIST ’((FOO MA) (BAR CA) (BAZ RI)) ’STATE)

MA FOO STATE CA BAR STATE RI BAZ

ATM PR OP

PR OP ATM

ATM PR OP

PR OP

ATM PR OP VAL

PR OP VAL ATM VAL

PR OP VAL

ATM PR OP NEW FL G

NEW PR OP

ATM FL G NEW

PR OP ATM

PR OP

ATM PR OP NEW

ATM PR OP

PR OP

ATM PR OP

ATM PR OPS

PR OPS

ATM

X PR OP1 PR OP2

PR OP1 PR OP2

X X PR OP1

ATM

ATM

L PR OP

L

PR OP

Print Names

property.

Property lists are conventionally implemented as lists of the form

���

although the user can store anything as the property list of a litatom. However, the functions which
manipulate property lists observe this convention by searching down the property lists two s at a time.
Most of these functions also generate an error, , if given an argument which is not a
litatom, so they cannot be used directly on lists. (, , , and are
functions similar to and that work directly on lists. See page 2.26.) The property
lists of litatoms can be directly accessed with the following functions:

[Function]
Returns the property list of .

[Function]
If is a non- litatom, sets the property list of to be , and returns
as its value. If is , generates the error, (unless

is also).

[Function]
Searches the property list of , and returns the property list as of the �rst property
on that it �nds. For example,

Returns if no element on is found. can also be a list itself, in which
case it is searched as described above. If is not a litatom or a list, returns .

2.4.4 Print Names

Each litatom has a print name, a string of characters that uniquely identi�es that litatom. The term
‘‘print name’’ has been extended, however, to refer to the characters that are output when any object is
printed. In Interlisp, all objects have print names, although only litatoms and strings have their print name
explicitly stored. This section describes a set of functions which can be used to access and manipulate the
print names of any object, though they are primarily used with the print names of litatoms.

The print name of an object is those characters that are output when the object is printed using ,
e.g., the print name of the litatom consists of the �ve characters . The print name of the
list consists of the seven characters (two of the characters are spaces).

Sometimes we will have occasion to refer to a ‘‘ -name.’’ The -name of an object is those
characters output when the object is printed using . Thus the -name of the litatom
is the characters . Note that the -name depends on what readtable is being used (see
page 6.32), since this determines where ’s will be inserted. Many of the functions below allow either
print names or -names to be used, as speci�ed by and arguments. If is , print
names are used. Otherwise, -names are used, computed with respect to the readtable (or

2.8

STATE

()

CDR
ARG NOT LITATOM

LISTPUT LISTPUT1 LISTGET LISTGET1
PUTPROP GETPROP

(GETPROPLIST)

(SETPROPLIST)
NIL

NIL ATTEMPT TO RPLAC NIL
NIL

(GETLIS)

_ (GETPROPLIST ’X)
(PROP1 A PROP3 B A C)
_ (GETLIS ’X ’(PROP2 PROP3))
(PROP3 B A C)

NIL
NIL

PRIN1
ABC%(D ABC(D

(A B C) (A B C)

PRIN2 PRIN2
PRIN2 PRIN2 ABC%(D

six ABC%(D PRIN2
%

PRIN2 NIL
PRIN2

NAME 1 VAL UE 1 NAME 2 VAL UE 2

ATM

ATM

ATM LST

ATM ATM LST LST

ATM

LST

X PR OPS

X

PR OPS

PR OPS X

X

FL G RDTBL FL G

RDTBL

DATA TYPES

the current readtable, if =).

Note: The print name of an integer depends on the setting of (page 6.19). The functions described
in this section (, , etc.) de�ne the print name of an integer as though the radix was 10,
so that will always be (and not sometimes) regardless of the setting
of . However, integers will still be by using the current radix. The user can force
these functions to use print names in the current radix by changing the setting of the variable
(see page 6.20).

[Function]
Creates and returns an atom whose print name is the same as that of the string
or, if isn’t a string, the same as that of . Examples:

Note that the last example returns a number, not a litatom. It is a deeply- ingrained
feature of Interlisp that no litatom can have the print name of a number.

[Function]
Equivalent to , but does not make a string
pointer (see page 2.29). Returns an atom made from the th through th characters
of the print name of . If or are negative, they specify positions counting
backwards from the end of the print name. Examples:

[Function]
If is a list of atoms, returns a single atom whose print name is the
concatenation of the print names of the atoms in . If the concatenated print name
is the same as that of a number, will return that number. For example,

Although is usually a list of atoms, it can be a list of arbitrary Interlisp objects.
The value of is still a single atom whose print name is the concatenation of
the print names of all the elements of , e.g.,

If is not a list or , generates an error, .

��� [NoSpread Function]
Nospread version of that takes an arbitrary number of arguments, instead of
a list. Examples:,

2.9

NIL

RADIX
UNPACK NCHARS

(PACK (UNPACK ’X9)) X9 X11
RADIX printed PRIN1

PRXFLG

(MKATOM)

(MKSTRING)

(MKATOM ’(A B C)) => %(A% B% C%)

(MKATOM "1.5") => 1.5

(SUBATOM)
(MKATOM (SUBSTRING))

(SUBATOM "FOO1.5BAR" 4 6) => 1.5

(SUBATOM ’(A B C) 2 -2) => A% B% C

(PACK)
PACK

PACK

(PACK ’(A BC DEF G)) => ABCDEFG

(PACK ’(1 3.4)) => 13.4

(PACK ’(1 E -2)) => .01

PACK

(PACK ’((A B) "CD")) => %(A% B%)CD

NIL PACK ILLEGAL ARG

(PACK*)
PACK

RDTBL

X

X

X X

X N M

X N M

N M

X N M

X

X

X

X

X

X

X 1 X 2 X N

Print Names

[Function]
Returns the print name of as a list of single-characters atoms, e.g.,

If = , the -name of is used (computed with respect to), e.g.,

Note: performs es, where is the number of characters in
the print name of .

[Function]
A destructive version of that does not perform any es but instead
reuses the list . If the print name is too long to �t in ,

will extend it. If is not a list, returns
.

[Function]
Returns the number of characters in the print name of . If = , the -
name is used. For example,

[Function]
Returns the th character of the print name of as an atom. can be negative,
in which case it counts from the end of the print name, e.g., -1 refers to the last
character, -2 next to last, etc. If is greater than the number of characters in
the print name, or less than minus that number, or 0, returns .
Examples:

Note: and work much faster on objects that actually have an internal representation
of their print name, i.e., litatoms and strings, than they do on numbers and lists, as they do not have to
simulate printing.

2.10

(PACK* ’A ’BC ’DEF ’G) => ABCDEFG

(PACK* 1 3.4) => 13.4

(UNPACK)

(UNPACK ’ABC5D) => (A B C 5 D)

(UNPACK "ABC(D") => (A B C %(D)

T PRIN2

(UNPACK "ABC(D" T) => (%" A B C %(D %")

(UNPACK ’ABC%(D" T) => (A B C %% %(D)

(UNPACK) CONS

(DUNPACK)
UNPACK CONS

DUNPACK DUNPACK (UNPACK
)

(NCHARS)
T PRIN2

(NCHARS "ABC") => 3

(NCHARS "ABC" T) => 5

(NTHCHAR)

NTHCHAR NIL

(NTHCHAR ’ABC 2) => B

(NTHCHAR 15.6 2) => 5

(NTHCHAR ’ABC%(D -3 T) => %%

(NTHCHAR "ABC" 2) => B

(NTHCHAR "ABC" 2 T) => A

NTHCHAR NCHARS

X FL G RDTBL

X

FL G X RDTBL

X N N

X

X SCRA TCHLIST FL G RDTBL

SCRA TCHLIST SCRA TCHLIST

SCRA TCHLIST

X FL G RDTBL

X FL G RDTBL

X FL G

X N FL G RDTBL

N X N

N

DATA TYPES

[Function]
Returns a lower case version of . If is , the �rst letter is capitalized. If is
a string, the value of is also a string. If is a list, returns a new
list in which is computed for each corresponding element and non-
tail of the original list. Examples:

[Function]
Similar to , except returns the upper case version of .

[Function]
Returns if contains no lower case letters; otherwise.

[Function]
Returns a litatom of the form , where = (or if is) and

is an integer. Thus, the �rst one generated is , the second , etc.
provides a way of generating litatoms for various uses within the system.

[Variable]
The value of , initially , determines the next , e.g., if

is set to 10023, = .

The term ‘‘gensym’’ is used to indicate a litatom that was produced by the function . Litatoms
generated by are the same as any other litatoms: they have property lists, and can be given
function de�nitions. Note that the litatoms are not guaranteed to be new. For example, if the user has
previously created , either by typing it in, or via or itself, when gets to

, the next litatom returned by will be the already in existence.

[Function]
Applies (a function or lambda expression) to every litatom in the system.
Returns

For example,

will print every litatom with a function de�nition.

Note: In some implementations of Interlisp, unused litatoms may be garbage
collected, which can e�ect the action of .

2.11

(L-CASE)
T

L-CASE L-CASE
L-CASE NIL

(L-CASE ’FOO) => foo

(L-CASE ’FOO T) => Foo

(L-CASE "FILE NOT FOUND" T) => "File not found"

(L-CASE ’(JANUARY FEBRUARY (MARCH "APRIL")) T)
=> ’(January February (March "April"))

(U-CASE)
L-CASE

(U-CASEP)
T NIL

(GENSYM)
Xnnnn X A NIL

nnnn A0001 A0002
GENSYM

GENNUM
GENNUM 10000 GENSYM

GENNUM (GENSYM) A0024

GENSYM
GENSYM

A0012 PACK GENSYM GENNUM
10011 GENSYM A0012

(MAPATOMS)

NIL

(MAPATOMS (FUNCTION (LAMBDA(X)
(if (GETD X) then (PRINT X)]

MAPATOMS

X FL G

X FL G X

X

X

X

X

X

CHAR

CHAR CHAR

FN

FN

3

3

Character Code Functions

2.4.5 Character Code Functions

Characters may be represented in two ways: as single-character atoms, or as integer character codes. In
many situations, it is more e�cient to use character codes, so Interlisp provides parallel functions for both
representations.

[Function]
Similar to except is a list of character codes. For example,

[Function]
Like , except returns the print name of as a list of character codes. If

= , the -name is used. For example,

[Function]
Similar to .

[Function]
Similar to , except returns the character code of the th character of the
print name of . If is negative, it is interpreted as a count backwards from the
end of . If the absolute value of is greater than the number of characters in ,
or 0, then the value of is .

If is , then the -name of is used, computed with respect to the
readtable

[Function]
Returns the character code of the �rst character of the print name of ; equal to

.

[Function]
is a character code. Returns the atom having the corresponding single character

as its print name.

[Function]
Fast version of that compiles open.

The following function makes it possible to gain the e�ciency that comes from dealing with character
codes without losing the symbolic advantages of character atoms:

[NLambda Function]
Returns the character code structure speci�ed by (unevaluated). If is a
1-character atom or string, the corresponding character code is simply returned.

Interlisp- D uses an 8-bit character set, so the legal character codes range from 0 to 255. Interlisp- 10 uses
standard 7-bit ASCII, so the range is 0-127.

2.12

(PACKC)
PACK

(PACKC ’(70 79 79)) => FOO

(CHCON)
UNPACK
T PRIN2

(CHCON ’FOO) => (70 79 79)

(DCHCON)
DUNPACK

(NTHCHARCODE)
NTHCHAR

NTHCHARCODE NIL

T PRIN2

(CHCON1)

(NTHCHARCODE 1)

(CHARACTER)

(CHARACTER 70) => F

(FCHARACTER)
CHARACTER

(CHARCODE)

X

X

X FL G RDTBL

X

FL G

X SCRA TCHLIST FL G RDTBL

X N FL G RDTBL

N

X N

X N X

FL G X

RDTBL

X

X

X

N

N

N

C

C C

DATA TYPES

Thus, is 65, is 48. If is a list structure, the
value is a copy of with all the leaves replaced by the corresponding character
codes. For instance,

permits easy speci�cation of non- printable ASCII character codes: A
multi- character litatom or string whose �rst character is is interpreted as the
control- character corresponding to its second character. Thus, is
1, the code for control- A.

Also, if a multi- character litatom or string begins with , this signi�es a ‘‘meta-
character’’, with a code between 128 to 255. and may be combined, so

is 129. (Note: Interlisp- 10 cannot directly represent meta-
characters as character litatoms, because it only supports 7-bit characters.)

The following key litatoms are mapped into the indicated codes: (13), (10),
or (32), or (27), (7), (8), (9), (0), and

(127). The litatom maps into the appropriate End- Of-Line character code
in the di�erent Interlisp implementations (31 in Interlisp- 10, 13 in Interlisp- D, 10
in Interlisp- VAX).

Finally, maps into . This is included because some character-
code producing functions sometimes return (e.g.); a test for
that value can be included in a list along with true character- code
values.

Charcode of litatomic arguments can be used wherever a structure of character
codes would be appropriate. For example:

There is a macro for which causes the character- code structure to be
constructed at compile- time. Thus, the compiled code for these examples is exactly
as e�cient as the less readable:

��� [NLambda NoSpread Function]
Similar to (page 4.2), except that the selection keys are determined by
applying (instead of) to the key-expressions. If the value of is
a character code or and it is or to the result of applying
to the �rst element of a clause, the remaining forms of that clause are evaluated.
Otherwise, the default is evaluated.

Thus

2.13

(CHARCODE A) (CHARCODE 0)

(CHARCODE (A (B C))) => (65 (66 67))

CHARCODE
^

(CHARCODE ^A)

#
^

(CHARCODE #^A)

CR LF
SPACE SP ESCAPE ESC BELL BS TAB NULL
DEL EOL

CHARCODE NIL NIL
NIL NTHCHARCODE

CHARCODE

(FMEMB (NTHCHARCODE X 1) (CHARCODE (CR LF SPACE)))
(EQ (BIN FOO) (CHARCODE ^C))

CHARCODE

(FMEMB (NTHCHARCODE X 1) (QUOTE (13 10 32)))
(EQ (BIN FOO) 3)

(SELCHARQ)
SELECTQ

CHARCODE QUOTE
NIL EQ MEMB CHARCODE

(SELCHARQ (BIN FOO)
((SPACE TAB) (FUM))
((^D NIL) (BAR))
(a (BAZ))
(ZIP))

C

C

E CLA USE 1 CLA USE N DEF AUL T

E

Lists

is exactly equivalent to

Furthermore, has a macro such that it always compiles as an equivalent
.

2.5 LISTS

One of the most useful datatypes in Interlisp is the list cell, a data structure which contains pointers to
two other objects, known as the and the of the list cell (after the accessing functions). Very
complicated structures can be built out of list cells, including lattices and trees, but list cells are most
frequently used for representing simple linear lists of objects.

The following functions are used to manipulate list cells:

[Function]
is the primary list construction function. It creates and returns a new list

cell containing pointers to and . If is a list, this returns a list with added
at the beginning of .

[Function]
Returns the �rst element of the list . of is always . For all other
nonlists (e.g., litatoms, numbers, strings, arrays), the value is unde�ned (and in
some implementations may generate an error).

[Function]
Returns all but the �rst element of the list . of is always . The value
of is unde�ned for other nonlists.

Often, combinations of the and functions are used to extract various components of complex
list structures. Functions of the form ��� may be used for some of these combinations:

All 30 combinations of nested s and s up to 4 deep are included in the system.

[Function]
Replaces the of the list cell with . This physically changes the internal
structure of , as opposed to , which creates a new list cell. It is possible to
construct a circular list by using to place a pointer to the beginning of a
list in a spot at the end of the list.

2.14

(SELECTQ (BIN FOO)
((32 9) (FUM))
((4 NIL) (BAR))
(97 (BAZ))
(ZIP))

SELCHARQ
SELECTQ

CAR CDR

(CONS)
CONS

(CAR)
CAR NIL NIL

(CDR)
CDR NIL NIL

CDR

CAR CDR
C R

(CAAR X) ==> (CAR (CAR X))

(CADR X) ==> (CAR (CDR X))

(CDDDDR X) ==> (CDR (CDR (CDR (CDR X))))

CAR CDR

(RPLACD)
CDR

CONS
RPLACD

X Y

X Y Y X

Y

X

X

X

X

X Y

X Y

X

DATA TYPES

The value of is . An attempt to will cause an error,
(except for). An attempt to

any other non- list will cause an error, .

[Function]
Similar to , but replaces the of with . The value of is . An
attempt to will cause an error, , (except
for). An attempt to any other non- list will cause
an error, .

[Function]
Performs , , and returns .

[Function]
Performs , and returns .

[Function]
[Function]
[Function]
[Function]

Faster versions of , etc.

Warning: In Interlisp- 10 and Interlisp- VAX, these functions compile open with no
error checks on the type of , so a compiled can produce unpredictable
e�ects.

Usually, single list cells are not manipulated in isolation, but in structures known as ‘‘lists’’. By convention,
a list is represented by a list cell whose is the �rst element of the list, and whose is the rest of
the list (usually another list cell or the ‘‘empty list,’’). List elements may be any Interlisp objects,
including other lists.

The input syntax for a list is a sequence of Interlisp data objects (litatoms, numbers, other lists, etc.)
enclosed in parentheses or brackets. Note that is read as the litatom . A right bracket can be used
to match all left parenthesis back to the last left bracket, or terminate the lists, e.g. .

If there are two or more elements in a list, the �nal element can be preceded by a period delimited on
both sides, indicating that of the �nal list cell in the list is to be the element immediately following
the period, e.g. or , otherwise of the last list cell in a list will be .
Note that a list does not have to end in . It is simply a structure composed of one or more list cells.
The input sequence is equivalent to , and is equivalent to

. Note however that will create a list containing the �ve litatoms , , ,
, and .

Lists are printed by printing a left parenthesis, and then printing the �rst element of the list, then printing
a space, then printing the second element, etc. until the �nal list cell is reached. The individual elements
of a list are printed by if the list is being printed by , and by if the list is being
printed by or . Lists are considered to terminate when of some node is not a list. If

of this terminal node is (the usual case), of the terminal node is printed followed by a
right parenthesis. If of the terminal node is , of the terminal node is printed, followed
by a space, a period, another space, of the terminal node, and then the right parenthesis. Note that
a list input as will print as , and a list input as will print
as . Note also that a�ects the printing of lists (page 6.18), and that carriage

2.15

RPLACD RPLACD NIL
ATTEMPT TO RPLAC NIL (RPLACD NIL NIL)
RPLACD ARG NOT LIST

(RPLACA)
RPLACD CAR RPLACA
RPLACA NIL ATTEMPT TO RPLAC NIL

(RPLACA NIL NIL) RPLACA
ARG NOT LIST

(RPLNODE)
(RPLACA) (RPLACD)

(RPLNODE2)
(RPLACA (CAR)) (RPLACD (CDR))

(FRPLACD)
(FRPLACA)
(FRPLNODE)
(FRPLNODE2)

RPLACD

FRPLACD

CAR CDR
NIL

() NIL
(A (B (C]

CDR
(A . B) (A B C . D) CDR NIL

NIL
(A B C . NIL) (A B C) (A B . (C D))

(A B C D) (A B . C D) A B %.
C D

PRIN1 PRIN1 PRIN2
PRINT PRIN2 CDR

CDR NIL CAR
CDR not NIL CAR

CDR
(A B C . NIL) (A B C) (A B . (C D))

(A B C D) PRINTLEVEL

X

X Y

X Y X

X A D

X A X D X

X Y

X Y X Y X

X Y

X Y

X A D

X Y

X

Creating Lists

returns may be inserted where dictated by (page 6.8).

Note: One must be careful when testing the equality of list structures. will be true only when the two
lists are the same list. For example,

In the example above, the values of and are the exact same list, so they are . However, the value
of is a totally di�erent list, although it happens to have the same elements. should be used to
compare the elements of two lists. In general, one should notice whether list manipulation functions use

or for comparing lists. This is a frequent source of errors.

Interlisp provides an extensive set of list manipulation functions:

2.5.1 Creating Lists

[Function]
‘‘Make List.’’ If is a list or , returns ; Otherwise, returns .

��� [NoSpread Function]
Returns a list of its arguments, e.g.

��� [NoSpread Function]
Copies the top level of the list and appends this to a copy of the top level of
the list appended to ��� appended to , e.g.,

Note that only the �rst -1 lists are copied. However =1 is treated specially;
copies the top level of a single list. To copy a list to all levels, use

.

The following examples illustrate the treatment of non- lists:

2.16

LINELENGTH

EQ
exact

_ (SETQ A ’(1 2))
(1 2)
_ (SETQ B A)
(1 2)
_ (EQ A B)
T
_ (SETQ C ’(1 2))
(1 2)
_ (EQ A C)
NIL
_ (EQUAL A C)
T

A B EQ
C EQUAL

EQ EQUAL

(MKLIST)
NIL (LIST)

(LIST)

(LIST ’A ’B ’(C D)) => (A B (C D))

(APPEND)

(APPEND ’(A B) ’(C D E) ’(F G)) => (A B C D E F G)

(APPEND X)
COPY

(APPEND ’(A B C) ’D) => (A B C . D)

(APPEND ’A ’(B C D)) => (B C D)

X

X X X

X 1 X 2 X N

X 1 X 2 X N
X 1

X 2 X N

N N

DATA TYPES

��� [NoSpread Function]
Returns the same value as , but actually modi�es the list structure of
��� .

Note that cannot change to a list:

Although the value of the is , has been changed. The
‘‘problem’’ is that while it is possible to alter list structure with and

, there is no way to change the non- list to a list.

[Function]

[Function]
‘‘Attaches’’ to the front of by doing a and . The value is

to , but to , which it physically changes (except if is
). is the same as . Otherwise, if is not

a list, an error is generated, .

2.5.2 Building Lists From Left to Right

[Function]
is similar to ; it is useful for building a list by adding elements one

at a time at the end. Unlike , does not have to search to the end
of the list each time it is called. Instead, it keeps a pointer to the end of the list
being assembled, and updates this pointer after each call. This can be considerably
faster for long lists. The cost is an extra list cell, . is the list being
assembled, is . returns , with its

and appropriately modi�ed.

can be initialized in two ways. If is , will create and return a
. In this case, the program must set some variable to the value of the �rst call

to . After that, it is unnecessary to reset the variable, since physically
changes its value. Example:

2.17

(APPEND ’(A B C . D) ’(E F G)) => (A B C E F G)

(APPEND ’(A B C . D)) => (A B C . D)

(NCONC)
APPEND

NCONC NIL

_(SETQ FOO NIL)
NIL
_(NCONC FOO ’(A B C))
(A B C)
_FOO
NIL

NCONC (A B C) FOO not
RPLACA

RPLACD NIL

(NCONC1)
(NCONC (LIST))

(ATTACH)
RPLACA RPLACD

EQUAL (CONS) EQ
NIL (ATTACH X NIL) (CONS X NIL)

ARG NOT LIST

(TCONC)
TCONC NCONC1

NCONC1 TCONC

(CAR)
(CDR) (LAST (CAR)) TCONC

CAR CDR

NIL TCONC

TCONC TCONC

_(SETQ FOO (TCONC NIL 1))
((1) 1)
_(for I from 2 to 5 do (TCONC FOO I))
NIL
_FOO

X 1 X 2 X N
X 1

X n-1

LST X

LST X

X L

X L

X L L L

L

PTR X

PTR PTR

PTR PTR PTR

PTR PTR

PTR

Building Lists From Left to Right

If is initially , the value of is the same as for = . but
changes . This method allows the program to initialize the

variable before adding any elements to the list. Example:

[Function]
Where is used to add at the end of a list, is used for
building a list by adding at the end, i.e., it is similar to instead of

. Example:

uses the same pointer conventions as for eliminating searching to
the end of the list, so that the same pointer can be given to and
interchangeably. Therefore, continuing from above,

The functions and also permit building up lists from left-to-right like ,
but without the overhead of an extra list cell. The list being maintained is kept as a circular list.

adds items; replaces the tail with its second argument, and returns the full
list.

[Function]
‘‘Adds’’ to the end of . Returns the new circular list. Note that is
modi�ed, but it is not to the new list. The new list should be stored and used
as to the next call to .

[Function]
Takes , a list returned by , and returns it as a non- circular list,
adding as the terminating .

Here is an example using and . is used to print the results because
they are circular lists. Notice that has to be set to the value of as each element is

2.18

((1 2 3 4 5) 5)

(NIL) TCONC NIL
TCONC TCONC

_(SETQ FOO (CONS))
(NIL)
_(for I from 1 to 5 do (TCONC FOO I))
NIL
_FOO
((1 2 3 4 5) 5)

(LCONC)
TCONC elements LCONC

lists NCONC
NCONC1

_(SETQ FOO (CONS))
(NIL)
_(LCONC FOO ’(1 2))
((1 2) 2)
_(LCONC FOO ’(3 4 5))
((1 2 3 4 5) 5)
_(LCONC FOO NIL)
((1 2 3 4 5) 5)

LCONC TCONC
TCONC LCONC

_(TCONC FOO NIL)
((1 2 3 4 5 NIL) NIL)
_(TCONC FOO ’(3 4 5))
((1 2 3 4 5 NIL (3 4 5)) (3 4 5))

DOCOLLECT ENDCOLLECT TCONC

DOCOLLECT ENDCOLLECT

(DOCOLLECT)

EQ
DOCOLLECT

(ENDCOLLECT)
DOCOLLECT
CDR

DOCOLLECT ENDCOLLECT HPRINT
FOO DOCOLLECT

PTR PTR

PTR

PTR X

ITEM LST

ITEM LST LST

LST

LST TAIL

LST

TAIL

DATA TYPES

added.

2.5.3 Copying Lists

[Function]
Creates and returns a copy of the list . All levels of are copied down to non- lists,
so that if contains arrays and strings, the copy of will contain the same arrays
and strings, not copies. is recursive in the direction only, so very long
lists can be copied.

Note: To copy just the of , do .

[Function]
Like except copies down to atoms. Arrays, hash- arrays, strings, user data
types, etc., are all copied. Analagous to (page 2.3). Note that this
will not work if given a data structure with circular pointers; in this case, use

.

[Function]
Similar to , except that it will work even if the data structure contains
circular pointers.

2.5.4 Extracting Tails of Lists

[Function]
Returns , if is a of the list ; otherwise . is a tail of if it is to
0 or more s of .

Note: If is to 1 or more s of , is called a ‘‘proper tail.’’

[Function]
Returns the tail of beginning with the th element. Returns if has fewer
than elements. Examples:

2.19

_(SETQ FOO NIL]
NIL
_(HPRINT (SETQ FOO (DOCOLLECT 1 FOO]
^(1 . {1})
_(HPRINT (SETQ FOO (DOCOLLECT 2 FOO]
^(2 1 . {1})
_(HPRINT (SETQ FOO (DOCOLLECT 3 FOO]
^(3 1 2 . {1})
_(HPRINT (SETQ FOO (DOCOLLECT 4 FOO]
^(4 1 2 3 . {1})
_(SETQ FOO (ENDCOLLECT FOO 5]
(1 2 3 4 . 5)

(COPY)

COPY CAR

top level (APPEND)

(COPYALL)
COPY

EQUALALL

HCOPYALL

(HCOPYALL)
COPYALL

(TAILP)
tail NIL EQ

CDR

EQ CDR

(NTH)
NIL

(NTH ’(A B C D) 1) => (A B C D)

X

X X

X X

X X

X

X

X Y

X X Y X Y

Y

X Y X

X N

X N X

N

Extracting Tails of Lists

For consistency, if =0, returns :

[Function]
Faster version of that terminates on a null- check.

(Interlisp- 10) Interpreted, generates an error, , if ends
in other than .

[Function]
Returns the last list cell in the list . Returns if is not a list. Examples:

[Function]
Faster version of that terminates on a null- check.

(Interlisp- 10) Interpreted, generates an error, , if ends
in other than .

[Function]
returns the tail of that contains more elements than . If does

not contain more elements than , returns . If is or not
a tail of , returns the last list cells in . can be used to work
backwards through a list. Example:

[Function]
Returns , where is the last elements of , and is the initial
segment, e.g.,

2.20

(NTH ’(A B C D) 3) => (C D)

(NTH ’(A B C D) 9) => NIL

(NTH ’(A . B) 2) => B

NTH (CONS NIL)

(NTH ’(A B) 0) => (NIL A B)

(FNTH)
NTH

BAD ARGUMENT - FNTH
NIL

(LAST)
NIL

(LAST ’(A B C)) => (C)

(LAST ’(A B . C)) => (B . C)

(LAST ’A) => NIL

(FLAST)
LAST

BAD ARGUMENT - FLAST
NIL

(NLEFT)
NLEFT

NLEFT NIL NIL
NLEFT NLEFT

_(SETQ FOO ’(A B C D E))
(A B C D E)
_(NLEFT FOO 2)
(D E)
_(NLEFT FOO 1 (CDDR FOO))
(B C D E)
_(NLEFT FOO 3 (CDDR FOO))
NIL

(LASTN)
(CONS X Y) Y X

(LASTN ’(A B C D E) 2) => ((A B C) D E)

(LASTN ’(A B) 2) => (NIL A B)

N X

X N

X

X

X X

X

X

L N TAIL

L N TAIL L

N TAIL TAIL

L N L

L N

N L

DATA TYPES

Returns if is not a list containing at least elements.

2.5.5 Counting List Cells

[Function]
Returns the length of the list , where ‘‘length’’ is de�ned as the number of s
required to reach a non- list. Examples:

[Function]
Faster version of that terminates on a null- check.

(Interlisp- 10) Interpreted, generates an error, , if
ends in other than .

[Function]
Equivalent to , but more e�cient, because
stops as soon as it knows that is longer than . Note that is safe to
use on (possibly) circular lists, since it is ‘‘bounded’’ by .

[Function]
Returns the number of list cells in the list . Thus, is like a that
goes to all levels. of a non- list is 0. Examples:

In this last example, the value is 4 because the list uses 3 list cells for
any object , and uses another list cell.

[Function]
Counts the number of list cells in , decrementing for each one. Stops and
returns when it �nishes counting, or when reaches 0. can be
used on circular structures since it is ‘‘bounded’’ by . Examples:

2.21

NIL

(LENGTH)
CDR

(LENGTH ’(A B C)) => 3

(LENGTH ’(A B C . D)) => 3

(LENGTH ’A) => 0

(FLENGTH)
LENGTH

BAD ARGUMENT - FLENGTH
NIL

(EQLENGTH)
(EQUAL (LENGTH)) EQLENGTH

EQLENGTH

(COUNT)
COUNT LENGTH

COUNT

(COUNT ’(A)) => 1

(COUNT ’(A . B)) => 1

(COUNT ’(A (B) C)) => 4

(A C)
(B)

(COUNTDOWN)

COUNTDOWN

(COUNTDOWN ’(A) 100) => 99

(COUNTDOWN ’(A . B) 100) => 99

(COUNTDOWN ’(A (B) C) 100) => 96

(COUNTDOWN ’(DOCOLLECT 1 NIL) 100) => 0

L N

X

X

X

X

X N

X N

X N

N

X

X

X

X

X N

X N

N N

N

Logical Operations

[Function]
Similar to , for use with (possibly) circular structures. Whenever the depth
of recursion plus the depth of recursion exceeds , does
not search further along that chain, and returns the litatom . If recursion never
exceeds , returns if the expressions and are ; otherwise

.

2.5.6 Logical Operations

[Function]
must be a tail of , i.e., to the result of applying some number of s to

. returns a list of all elements in up to .

If is not , the value of is e�ectively ,
i.e., the list di�erence is added at the end of .

If is not a tail of , generates an error, .
terminates on a null- check, so it will go into an in�nite loop if is a circular list
and is not a tail.

Example:

Note that the value of is always new list structure unless = , in which
case the value is itself.

[Function]
‘‘List Di�erence.’’ Returns a list of those elements in that are not members of

.

[Function]
Returns a list whose elements are members of both lists and . Note that

gives a list of all members of without any duplications.

2.22

(EQUALN)
EQUAL

CAR CDR EQUALN
?

EQUALN T EQUAL
NIL

(EQUALN ’(((A)) B) ’(((Z)) B) 2) => ?

(EQUALN ’(((A)) B) ’(((Z)) B) 3) => NIL

(EQUALN ’(((A)) B) ’(((A)) B) 3) => T

(LDIFF)
EQ CDR

(LDIFF)

NIL LDIFF (NCONC (LDIFF))

LDIFF LDIFF: NOT A TAIL LDIFF

_(SETQ FOO ’(A B C D E F))
(A B C D E F)
_(CDDR FOO)
(C D E F)
_(LDIFF FOO (CDDR FOO))
(A B)
_(LDIFF FOO (CDDR FOO) ’(1 2))
(1 2 A B)
_(LDIFF FOO ’(C D E F))
LDIFF: not a tail
(C D E F)

LDIFF NIL

(LDIFFERENCE)

(INTERSECTION)

(INTERSECTION X X) X

X Y DEPTH

DEPTH

DEPTH X Y

X Y Z

Y X

X X Y X Y

Z Z X Y

Z

Y X

X

Y

Y

X

X Y

X

Y

X Y

X Y

DATA TYPES

[Function]
Returns a (new) list consisting of all elements included on either of the two original
lists. It is more e�cient to make be the shorter list.

The value of is with all elements of not in ed on the front of
it. Therefore, if an element appears twice in , it will appear twice in

. Since = , while
= , is non- commutative.

2.5.7 Searching Lists

[Function]
Determines if is a member of the list . If there is an element of to ,
returns the tail of starting with that element. Otherwise, returns . Examples:

[Function]
Faster version of that terminates on a null- check.

(Interlisp- 10) Interpreted, gives an error, , if
ends in a non- list other than .

[Function]
Identical to except that it uses instead of to check membership
of in . Examples:

[Function]
Returns if either is to , or else is a list and is an of .

2.5.8 Substitution Functions

[Function]
Returns the result of substituting for all occurrences of in the expression

. Substitution occurs whenever is to of some subexpression
of , or when is atomic and to a non- of some subexpression
of . For example:

2.23

(UNION)

UNION CONS
(UNION

) (UNION ’(A) ’(A A)) (A A) (UNION ’(A A) ’(A))
(A) UNION

(MEMB)
EQ

NIL

(MEMB ’A ’(A (W) C D)) => (A (W) C D)

(MEMB ’C ’(A (W) C D)) => (C D)

(MEMB ’W ’(A (W) C D)) => NIL

(MEMB ’(W) ’(A (W) C D)) => NIL

(FMEMB)
MEMB

FMEMB BAD ARGUMENT - FMEMB
NIL

(MEMBER)
MEMB EQUAL EQ

(MEMBER ’C ’(A (W) C D)) => (C D)

(MEMBER ’W ’(A (W) C D)) => NIL

(MEMBER ’(W) ’(A (W) C D)) => ((W) C D)

(EQMEMB)
T EQ FMEMB

(SUBST)

EQUAL CAR
EQ NIL CDR

X Y

X

Y X Y

Y X

Y

X Y

X Y Y X

Y

X Y

Y

X Y

X Y

X Y

X Y Y X Y

NEW OLD EXPR

NEW OLD

EXPR OLD

EXPR OLD

EXPR

Substitution Functions

returns a copy of with the appropriate changes. Furthermore, if
is a list, it is copied at each substitution.

[Function]
Similar to , except it does not copy , but changes the list structure

itself. Like , substitutes with a copy of . More e�cient
than .

[Function]
Like except is substituted as a segment of the list rather than
as an element. For instance,

Note that if is not a list, returns a copy of with all ’s
deleted:

[Function]
is a list of pairs:

���

Each is an atom. returns the result of substituting each for
the corresponding in , e.g.,

If = , new structure is created only if needed, so if there are no substitutions,
the value is to . If = , the value is always a copy of .

[Function]
Similar to , except it does not copy , but changes the list structure

itself.

[Function]
Similar to , except that elements of are substituted for corresponding
atoms of in , e.g.,

As with , new structure is created only if needed, or if = , e.g., if
= and there are no substitutions, the value is to .

If ends in an atom other than , the rest of the elements on are
substituted for that atom. For example, if = and =

, is substituted for , for , and for . Similarly, if itself

2.24

(SUBST ’A ’B ’(C B (X . B))) => (C A (X . A))

(SUBST ’A ’(B C) ’((B C) D B C))
=> (A D B C) not (A D . A)

SUBST

(DSUBST)
SUBST

SUBST DSUBST
SUBST

(LSUBST)
SUBST

(LSUBST ’(A B) ’Y ’(X Y Z)) => (X A B Z)

LSUBST

(LSUBST NIL ’Y ’(X Y Z)) => (X Z)

(SUBLIS)

((.) (.) (.))

SUBLIS

(SUBLIS ’((A . X) (C . Y)) ’(A B C D)) => (X B Y D)

NIL
EQ T

(DSUBLIS)
SUBLIS

(SUBPAIR)
SUBLIS

(SUBPAIR ’(A C) ’(X Y) ’(A B C D)) => (X B Y D)

SUBLIS T
NIL EQ

NIL
(A B . C) (U V X

Y Z) U A V B (X Y Z) C

EXPR NEW

NEW OLD EXPR

EXPR

EXPR NEW

NEW OLD EXPR

NEW EXPR

NEW EXPR OLD

ALST EXPR FL G

ALST

OLD 1 NEW 1 OLD 2 NEW 2 OLD N NEW N

OLD i NEW i
OLD i EXPR

FL G

EXPR FL G EXPR

ALST EXPR FL G

EXPR

EXPR

OLD NEW EXPR FL G

NEW

OLD EXPR

FL G

FL G EXPR

OLD NEW

OLD NEW

OLD

DATA TYPES

is an atom (other than), the entire list is substituted for it. Examples:

Note that , , and all substitute copies of the appropriate expression, whereas
, and , and substitute the identical structure (unless =). For example:

2.5.9 Association Lists and Property Lists

[Function]
is a list of lists. returns the �rst sublist of whose is to

. If such a list is not found, returns . Example:

[Function]
Faster version of that terminates on a null- check.

(Interlisp- 10) Interpreted, gives an error if ends in a non- list other
than , .

[Function]
Same as but uses instead of when searching for .

[Function]
Searches for a sublist of which is to . If one is found, the is
replaced (using) with . If no such sublist is found,
is added at the end of . Returns . If is not a list, generates an error,

.

Note that the argument order for , , etc. is di�erent from that of , ,
etc.

[Function]
Similar to (page 2.7) but works on lists using property list format.
Searches two elements at a time, by , looking for an element to

. If one is found, returns the next element of , otherwise . Returns

2.25

NIL

(SUBPAIR ’(A B . C) ’(W X Y Z) ’(C A B B Y)) => ((Y Z) W X
X Y)

SUBST DSUBST LSUBST
SUBLIS DSUBLIS SUBPAIR T

_ (SETQ FOO ’(A B))
(A B)
_ (SETQ BAR ’(X Y Z))
(X Y Z)
_ (DSUBLIS (LIST (CONS ’X FOO)) BAR)
((A B) Y Z)
_ (DSUBLIS (LIST (CONS ’Y FOO)) BAR T)
((A B) (A B) Z)
_ (EQ (CAR BAR) FOO)
T
_ (EQ (CADR BAR) FOO)
NIL

(ASSOC)
ASSOC CAR EQ

ASSOC NIL

(ASSOC ’B ’((A . 1) (B . 2) (C . 3))) => (B . 2)

(FASSOC)
ASSOC

FASSOC
NIL BAD ARGUMENT - FASSOC

(SASSOC)
ASSOC EQUAL EQ

(PUTASSOC)
CAR EQ CDR

RPLACD (CONS)

ARG NOT LIST

ASSOC PUTASSOC LISTGET LISTPUT

(LISTGET)
GETPROP

CDDR EQ
NIL

NEW

FL G

KEY ALST

ALST ALST

KEY

KEY ALST

ALST

KEY ALST

KEY

KEY VAL ALST

ALST KEY

VAL KEY VAL

ALST VAL ALST

LST PR OP

LST

PR OP LST

Association Lists and Property Lists

if is not a list. Example:

[Function]
Similar to . Searches two elements at a time, by , looking for
an element to . If is found, replaces the next element of with

. Otherwise, and are added to the end of . If is a list with
an odd number of elements, or ends in a non- list other than , and
are added at its beginning. Returns . If is not a list, generates an error,

.

[Function]
Like , but searches one at a time, i.e., looks at each element.
Returns the next element after . Examples:

Note: used to be called .

[Function]
Like , except searches one at a time. Returns the modi�ed .
Example:

Note that if is not a list, no error is generated. However, since a non- list
cannot be changed into a list, is not modi�ed. In this case, the value of

should be saved. Example:

2.26

NIL

(LISTGET ’(A 1 B 2 C 3) ’B) => 2

(LISTGET ’(A 1 B 2 C 3) ’W) => NIL

(LISTPUT)
PUTPROP CDDR
EQ

NIL

ARG NOT LIST

(LISTGET1)
LISTGET CDR

(LISTGET1 ’(A 1 B 2 C 3) ’B) => 2

(LISTGET1 ’(A 1 B 2 C 3) ’1) => B

(LISTGET1 ’(A 1 B 2 C 3) ’W) => NIL

LISTGET1 GET

(LISTPUT1)
LISTPUT CDR

_(SETQ FOO ’(A 1 B 2))
(A 1 B 2)
_(LISTPUT FOO ’B 3)
(A 1 B 3)
_(LISTPUT FOO ’C 4)
(A 1 B 3 C 4)
_(LISTPUT FOO 1 ’W)
(A 1 W 3 C 4)
_FOO
(A 1 W 3 C 4)

LISTPUT1

_(SETQ FOO NIL)
NIL
_(LISTPUT FOO ’A 5)
(A 5)
_FOO
NIL

LST

LST PR OP VAL

LST

PR OP PR OP LST

VAL PR OP VAL LST LST

PR OP VAL

VAL LST

LST PR OP

LST

PR OP

LST PR OP VAL

LST LST

LST

LST

DATA TYPES

2.5.10 Other List Functions

[Function]
Removes all top- level occurrences of from list , returning a copy of with all
elements to removed. Example:

[Function]
Similar to , but uses instead of , and actually modi�es the list

when removing , and thus does not use any additional storage. More e�cient
than .

Note that cannot a list to :

The above returns , and does not perform any es, but the value
of is , because there is no way to change a list to a non- list. See

.

[Function]
Reverses (and copies) the top level of a list, e.g.,

If is not a list, just returns .

[Function]
Value is the same as that of , but destroys the original list

and thus does not use any additional storage. More e�cient than .

2.6 STRINGS

A string is an object which represents a sequence of characters. Interlisp provides functions for creating
strings, concatenating strings, and creating sub- strings of a string.

The input syntax for a string is a double quote (), followed by a sequence of any characters except
double quote and , terminated by a double quote. The and double quote characters may be included
in a string by preceding them with the escape character .

Strings are printed by and with initial and �nal double quotes, and s inserted where

2.27

(REMOVE)

EQUAL

(REMOVE ’A ’(A B C (A) A)) => (B C (A))

(REMOVE ’(A) ’(A B C (A) A)) => (A B C A)

(DREMOVE)
REMOVE EQ EQUAL

REMOVE

DREMOVE change NIL

_(SETQ FOO ’(A))
(A)
_(DREMOVE ’A FOO)
NIL
_FOO
(A)

DREMOVE NIL CONS
FOO still (A)

NCONC

(REVERSE)

(REVERSE ’(A B (C D))) => ((C D) B A)

REVERSE

(DREVERSE)
REVERSE DREVERSE

REVERSE

"
% %

%

PRINT PRIN2 %

X L

X L L

X

X L

L X

L

L L

L

L

Strings

necessary for it to read back in properly. Strings are printed by without the delimiting double
quotes and extra s.

A ‘‘null string’’ containing no characters is input as . The null string is printed by and
as . doesn’t print anything.

Strings are created by , , , and .

Internally a string is stored in two parts; a ‘‘string pointer’’ and the sequence of characters. Several string
pointers may reference the same character sequence, so a substring can be made by creating a new string
pointer, without copying any characters. It is not possible to directly access a character sequence, so
functions that refer to ‘‘strings’’ actually manipulate string pointers. In most cases, the user does not have
to be aware of string pointers, but there are some situations where it is important to understand them.
For example, suppose that is a string pointer to a sequence of characters, and is another string pointer
to a substring of ’s characters. If the characters of are modi�ed (with or),
the corresponding characters of will be modi�ed too.

[Function]
Returns if and are both strings and they contain the same sequence of
characters, otherwise . uses . Note that strings may be

without being . For instance,

returns if and are the same string pointer, or two di�erent string
pointers which point to the same character sequence, or two string pointers which
point to di�erent character sequences which contain the same characters. Only in
the �rst case would and be .

[Function]
Creates a string of length charaters of (which can be either a character
code or something coercible to a character). If is , it defaults to
character code 0. if is supplied, it must be a string pointer, which is re-used.

[Function]
If is a string, returns . Otherwise, creates and returns a string containing the
print name of . Examples:

Note that the last example returns the string , not the atom .

If is , then the -name of is used, computed with respect to the
readtable . For example,

2.28

PRIN1
%

"" PRINT PRIN2
"" (PRIN1 "")

MKSTRING ALLOCSTRING SUBSTRING CONCAT

RPLSTRING RPLCHARCODE

(STREQUAL)
T

NIL EQUAL STREQUAL
STREQUAL EQ

(STREQUAL "ABC" "ABC") => T

(EQ "ABC" "ABC") => NIL

STREQUAL T

EQ

(ALLOCSTRING)

NIL

(MKSTRING)

(MKSTRING "ABC") => "ABC"

(MKSTRING ’(A B C)) => "(A B C)"

(MKSTRING NIL) => "NIL"

"NIL" NIL

T PRIN2

(MKSTRING "ABC" T) => "%"ABC%""

X Y

X Y

X

X Y

X Y

X Y

X Y

N INITCHAR OLD

N INITCHAR

INITCHAR

OLD

X FL G RDTBL

X X

X

FL G X

RDTBL

DATA TYPES

[Function]
Returns the substring of consisting of the th through th characters of . If
is , the substring contains the th character thru the end of . and can be
negative numbers, which are interpreted as counts back from the end of the string,
as with (page 2.10). returns if the substring is not well
de�ned, e.g., or specify character positions outside of , or corresponds to
a character in to the right of the character indicated by). Examples:

If is not a string, it is converted to one. For example,

does not actually copy any characters, but simply creates a new string
pointer to the characters in . If is a string pointer, it is modi�ed and
returned.

[Function]
‘‘Get Next Character.’’ Returns the next character of the string (as an atom);
also removes the character from the string, by changing the string pointer. Returns

if is the null string. If isn’t a string, a string is made. Used for sequential
access to characters of a string. Example:

Note that if is a substring of , does not remove the character from
. doesn’t physically change the string of characters, just the string pointer.

[Function]
‘‘Get Last Character.’’ Returns the last character of the string (as an atom); also
removes the character from the string. Similar to . Example:

2.29

(SUBSTRING)

NIL

NTHCHAR SUBSTRING NIL

(SUBSTRING "ABCDEFG" 4 6) => "DEF"

(SUBSTRING "ABCDEFG" 3 3) => "C"

(SUBSTRING "ABCDEFG" 3 NIL) => "CDEFG"

(SUBSTRING "ABCDEFG" 4 -2) => "DEF"

(SUBSTRING "ABCDEFG" 6 4) => NIL

(SUBSTRING "ABCDEFG" 4 9) => NIL

(SUBSTRING ’(A B C) 4 6) => "B C"

SUBSTRING

(GNC)

NIL

_(SETQ FOO "ABCDEFG")
"ABCDEFG"
_(GNC FOO)
A
_(GNC FOO)
B
_FOO
"CDEFG"

B (GNC A)
B GNC

(GLC)

GNC

_(SETQ FOO "ABCDEFG")
"ABCDEFG"
_(GLC FOO)

X N M OLDPTR

X N M X M

N X N M

N M X N

X M

X

X OLDPTR

X

X

X X

A

X

X

Strings

��� [NoSpread Function]
Returns a new string which is the concatenation of (copies of) its arguments. Any
arguments which are not strings are transformed to strings. Examples:

returns the null string, .

[Function]
is a list of strings and/or other objects. The objects are transformed to strings if

they aren’t strings. Returns a new string which is the concatenation of the strings.
Example:

[Function]
Replaces the characters of string beginning at character position with string

. and are converted to strings if they aren’t already. may be positive or
negative, as with . Characters are smashed into (converted) . Returns
the string . Examples:

Generates an error if there is not enough room in for , i.e., the new string
would be longer than the original. If was not a string, will already have been
modi�ed since does not know whether will ‘‘�t’’ without actually
attempting the transfer.

Note that if is a substring of , will also be modi�ed by the action of
. Example:

[Function]
Replaces the th character of the string with the character code .
may be positive or negative. Returns the new . Similar to . Example:

2.30

G
_(GLC FOO)
F
_FOO
"ABCDE"

(CONCAT)

(CONCAT "ABC" ’DEF "GHI") => "ABCDEFGHI"

(CONCAT ’(A B C) "ABC") => "(A B C)ABC"

(CONCAT) ""

(CONCATLIST)

(CONCATLIST ’(A B (C D) "EF")) => "AB(C D)EF"

(RPLSTRING)

SUBSTRING

(RPLSTRING "ABCDEF" -3 "END") => "ABCEND"

(RPLSTRING "ABCDEFGHIJK" 4 ’(A B C)) => "ABC(A B C)K"

RPLSTRING

Z Z
RPLSTRING

_ (SETQ FOO "ABCDEFG")
"ABCDEFG"
_ (SETQ BAR (SUBSTRING FOO 4 6)
"DEF"
_ (RPLSTRING BAR 2 "XY")
"DXY"
_ FOO
"ABCDXYG"

(RPLCHARCODE)

RPLSTRING

X 1 X 2 X N

X

X

X N Y

X N

Y X Y N

X

X

X Y

Y X

Y

X

X N CHAR CODE

N X CHAR CODE N

X

DATA TYPES

[Function]
is a function for searching one string looking for another. and

are both strings (or else they are converted automatically).
searches beginning at character number , (or 1 if is)
and looks for a sequence of characters equal to . If a match is found, the
character position of the �rst matching character in is returned, otherwise

. Examples:

can be used to specify a character in that matches any character in
. Examples:

If is , compares with the characters beginning at position
(or 1 if is). If that comparison fails, returns

without searching any further down . Thus it can be used to compare one
string with some of another string. Examples:

Finally, if is , the value returned by if successful is not the starting
position of the sequence of characters corresponding to , but the position of the
�rst character after that, i.e., the starting position plus . Examples:

If = , returns , or a character position within which
can be passed to . In particular, .
However, if = , may return a character position outside of .
For instance, note that the second example above returns 2, even though has
only one character.

[Function]
is a string (or else it is converted automatically to a string), is a list

of characters or character codes. searches beginning at character
number (or else 1 if =) for one of the characters in . If one is
found, returns as its value the corresponding character position, otherwise

. Example:

2.31

(RPLCHARCODE "ABCDE" 3 (CHARCODE F)) => "ABFDE"

(STRPOS)
STRPOS

STRPOS
NIL

NIL

(STRPOS "ABC" "XYZABCDEF") => 4

(STRPOS "ABC" "XYZABCDEF" 5) => NIL

(STRPOS "ABC" "XYZABCDEFABC" 5) => 10

(STRPOS "A&C&" "XYZABCDEF" NIL ’&) => 4

(STRPOS "DEF&" "XYZABCDEF" NIL ’&) => NIL

T STRPOS
NIL STRPOS NIL

portion

(STRPOS "ABC" "XYZABCDEF" NIL NIL T) => NIL

(STRPOS "ABC" "XYZABCDEF" 4 NIL T) => 4

T STRPOS

(NCHARS)

(STRPOS "ABC" "XYZABCDEFABC" NIL NIL NIL T) => 7

(STRPOS "A" "A" NIL NIL NIL T) => 2

NIL STRPOS NIL
SUBSTRING (STRPOS "" "") => NIL

T STRPOS
"A"

(STRPOSL)

STRPOSL
NIL

STRPOSL
NIL

PAT STRING STAR T SKIP ANCHOR TAIL

PAT

STRING

STRING STAR T STAR T

PAT

STRING

SKIP PAT

STRING

ANCHOR PAT

STAR T STAR T

STRING

TAIL

PAT

PAT

TAIL STRING

TAIL STRING

A STR STAR T NEG

STR A

STR

STAR T STAR T A

4

4

Arrays

If = , searches for a character on . Example:

If any element of is a number, it is assumed to be a character code. Otherwise,
it is converted to a character code via . Therefore, it is more e�cient to
call with a list of character

If is a bit table, it is used to specify the characters (see below)

uses a ‘‘bit table’’ data structure to search e�ciently. If is not a bit table, it is converted it to
a bit table using . If is to be called frequently with the same list of characters,
a considerable savings can be achieved by converting the list to a bit table , and then passing the bit
table to as its �rst argument.

[Function]
Returns a bit table suitable for use by . is a list of characters or
character codes, is the same as described for . If is a bit table,

modi�es and returns it. Otherwise, it will create a new bit table.

Note: if = , must call whether is a list a bit table. To obtain bit
table e�ciency with = , should be called with = , and the resulting ‘‘inverted’’
bit table should be given to with = .

2.7 ARRAYS

An array in Interlisp is an object representing a one-dimensional vector of objects. Arrays do not have
input syntax; they can only be created by the function . Arrays are printed by , ,
and as followed by an integer.

Note: Interlisp- 10 and Interlisp- Vax provide a much more primitive version of arrays than other
implementations of Interlisp. See page 2.33.

[Function]
Creates and returns a new array capable of containing objects of type

. may be one of , , , , , , or
. also accepts any ‘‘type’’ which is legal in

records (such as , , see page 3.7). (Note: types are
coerced into the next ‘‘enclosing’’ array type. Therefore, users should not rely on
truncation of values stored in arrays of these types.)

For backward compatibility with Interlisp- 10 arrays, can be or 0 (meaning to create an array of
type) or (meaning an array of type). For arrays of type ,
the functions and are de�ned the same as in Interlisp- 10 (page 2.34). For arrays of any
other type, and are the same as and . Combined / arrays are not
supported. Interlisp- D users should avoid using Interlisp- 10 arrays.

2.32

(STRPOSL ’(A B C) "XYZBCD") => 4

T STRPOSL not

(STRPOSL ’(A B C) "ABCDEF" NIL T) => 4

CHCON1
STRPOSL codes.

MAKEBITTABLE

STRPOSL
MAKEBITTABLE STRPOSL

once
STRPOSL

(MAKEBITTABLE)
STRPOSL

STRPOSL
MAKEBITTABLE

T STRPOSL MAKEBITTABLE or
T MAKEBITTABLE T

STRPOSL NIL

ARRAY PRINT PRIN2
PRIN1 #

(ARRAY)

BIT BYTE WORD FIXP FLOATP POINTER
DOUBLEPOINTER ARRAY DATATYPE

(BITS 7) FLAG DATATYPE

NIL
DOUBLEPOINTER FIXP DOUBLEPOINTER

ELTD SETD
ELTD SETD ELT SETD POINTER FIXP

NEG A

A

A

A

A

L NEG A

L

NEG A

NEG A

NEG NEG

NEG

SIZE TYPE INIT ORIG

SIZE

TYPE TYPE

TYPE

SIZE

DATA TYPES

is the initial value in each element of the new array. If not speci�ed, the array
elements will be initialized with 0 (for number arrays) or (all other types).

Arrays can have either 0-origin or 1-origin indexing, as speci�ed by the
argument; if is not speci�ed, the default is 1.

[Function]
Returns the th element of the array .

[Function]
Sets the th element of the array to . returns .

[Function]
Returns a value corresponding to the second argument to .

Note: If coerced the array type as described above, will return
the type.

[Function]
Returns the size of array . Generates the error, , if is not an
array.

[Function]
Returns the origin of array , which may be 0 or 1. Generates an error,

, if is not an array.

[Function]
Returns a new array of the same size and type as , and with the same contents
as . Generates an error, if is not an array.

2.7.1 Interlisp-10 Arrays

Interlisp- 10 and Interlisp- Vax have a more primitive array facility than the other implementations of
Interlisp. In Interlisp- 10, arrays are partitioned into four sections: a header, a section containing unboxed
numbers, a section containing list cells (each with a and), and a section containing relocation
information. The last three sections can each be of arbitrary length (including 0); the header is two words
long and contains the length of the other sections. The unboxed number region of an array is used to
store 36 bit quantities that are not Interlisp pointers, and therefore are not to be chased during garbage
collections, e.g. machine instructions. The relocation informaion is used when the array contains the
de�nition of a compiled function, and speci�es which locations in the region of the array must
be changed if the array is moved during a garbage collection.

returns an ‘‘array pointer’’ to the beginning of the array, but it is also possible to create a pointer
into the middle of an array. will accept a pointer into the middle of an array, but , ,

, and generate an error, , if is not an array pointer to the beginning of
an array.

Array- pointers print as , where is the octal representation of the pointer. Note that
will be read as a literal atom, and not an array pointer.

The following functions are used to manipulate Interlisp- 10 arrays:

2.33

NIL

(ELT)

(SETA)
SETA

(ARRAYTYP)
ARRAY

ARRAY ARRAYTYP
new

(ARRAYSIZE)
ARG NOT ARRAY

(ARRAYORIG)
ARG NOT

ARRAY

(COPYARRAY)

ARG NOT ARRAY

CAR CDR

unboxed

ARRAY
ARRAYP ELT SETA

ELTD SETD ARG NOT ARRAY

#

INIT

ORIG

ORIG

A N

N A

A N V

N A V V

A

A

A A

A

A

A

A

A

A A

A

NNNN NNNN NNNN

Interlisp-10 Arrays

[Function]
Allocates a block of +2 words, of which the �rst two are header information.
The next (�) words contain unboxed numbers, and are initialized to unboxed
0. The last - (� 0) words are list cells; both and are available for
storing information, and each is initialized to . If is , 0 is used (i.e., an array
containing all Interlisp pointers). returns an ‘‘array pointer’’ to the array.

If su�cient space is not available for the array, a garbage collection of array space is
initiated. If this is unsuccessful in obtaining su�cient space, an error is generated,

.

[Function]
Returns the th element of the array . is the �rst element of the
array (actually corresponds to the 3rd cell because of the 2 word header).

If corresponds to the unboxed number region of , returns the full 36 bit
word as a boxed integer. If corresponds to the list cell region of , returns
the of the corresponding element.

[Function]
Sets the th element of the array to . If corresponds to the unboxed number
region of , must be a number, and is unboxed and stored as a full 36 bit word
into the th element of . If corresponds to the list cell region of , replaces
the of the th element. returns .

[Function]
Same as for the unboxed number region of , but returns the of the th
element, if corresponds to the list cell region of .

[Function]
Same as for the unboxed number region of , but sets the half of the

th element, if corresponds to the list cell region of . returns .

[Function]
Returns the number of unboxed number words of array . This value corresponds
to the second argument to .

[Function]
Returns if is an array pointer, otherwise . No check is made to ensure that

actually addresses the of an array.

[Function]
If is a pointer into the middle of an array, returns the pointer to its beginning.
Otherwise returns .

[Function]
Returns 1. A dummy function provided for compatibility with other Interlisp
arrays.

2.34

(ARRAY)

CAR CDR
NIL

ARRAY

ARRAYS FULL

(ELT)
(ELT 1)

ELT
ELT

CAR

(SETA)

CAR SETA

(ELTD)
ELT CDR

(SETD)
SETA CDR

SETD

(ARRAYTYP)

ARRAY

(ARRAYP)
NIL

beginning

(ARRAYBEG)

NIL

(ARRAYORIG)

N P V

N

P N

N P

V P

A N

N A A

N A

N A

A N V

N A V N

A V

N A N A V

N V

A N

A N

N A

A N V

A

N N A V

A

A

X

X X

X

A

A

A

DATA TYPES

2.8 HASH ARRAYS

Hash arrays provide a mechanism for associating arbitrary lisp objects (‘‘hash keys’’) with other objects
(‘‘hash values’’), such that the hash value associated with a particular hash key can be quickly obtained.
A set of associations could be represented as a list or array of pairs, but these schemes are very ine�cient
when the number of associations is large. There are functions for creating hash arrays, putting a hash
key/value pair in a hash array, and quickly retrieving the hash value associated with a given hash key.

Hash keys can be any lisp object, but is should be noted that the hash array functions use for
comparing hash keys. Therefore, if non- atoms are used as hash keys, the exact same object (not a copy)
must be used to retrieve the hash value.

In the description of the functions below, the argument has one of three forms: , in which
case a hash array provided by the system, , is used; a hash- array created by the function

; or a list, of which is a hash array. The latter form is used for specifying what is to be
done on over�ow, as described below.

[Function]
Creates a hash array containing at least hash keys.

[Function]
Returns the size of ; the number of hash keys it can hold before becoming
‘‘full’’.

[Function]
Clears all hash keys/values from . Returns .

[Function]
Associates the hash value with the hash key in . Replaces the
previous hash value, if any. If is , any old association is removed (hence
a hash value of is not allowed). If is full when is called
with a key not already in the hash array, the function is called,
and the is done to the value returned (see below). Returns .

[Function]
Returns the hash value associated with the hash key in . Returns ,
if is not found.

[Function]
Hashes all hash keys and values in into . The two hash
arrays do not have to be (and usually aren’t) the same size. Returns .

[Function]
is a function of two arguments. For each hash key in ,

will be applied to (1) the hash value, and (2) the hash key. For example,

will print the hash value for all hash keys that are lists. returns .

2.35

EQ

NIL
SYSHASHARRAY

HARRAY CAR

(HARRAY)

(HARRAYSIZE)

(CLRHASH)

(PUTHASH)

NIL
NIL PUTHASH

HASHOVERFLOW
PUTHASH

(GETHASH)
NIL

(REHASH)

(MAPHASH)

[MAPHASH A
(FUNCTION (LAMBDA (VAL KEY)

(if (LISTP KEY) then (PRINT VAL)]

MAPHASH

HARRA Y

LEN

LEN

HARRA Y

HARRA Y

HARRA Y

HARRA Y HARRA Y

KEY VAL HARRA Y

VAL KEY HARRA Y

VAL

HARRA Y

VAL

KEY HARRA Y

KEY HARRA Y

KEY

OLDHARRA Y NEWHARRA Y

OLDHARRA Y NEWHARRA Y

NEWHARRA Y

HARRA Y MAPHFN

MAPHFN HARRA Y MAPHFN

HARRA Y

Hash Over�ow

��� [NLambda NoSpread Function]
Prints on the primary output �le able forms which will restore the hash- arrays
contained as the values of the atoms , , ��� . Example:

will dump the system hash- array.

Note: all identities except atoms and small integers are lost by dumping
and loading because will create new structure for each item. Thus if two
lists contain an substructure, when they are dumped and loaded back in, the
corresponding substructures while are no longer . The
�le package command (page 11.25) provides a way of dumping hash tables such
that these identities are preserved.

2.8.1 Hash Over�ow

When a hash array becomes full, attempting to add another hash key will cause the function
to be called. This will either automatically enlarge the hash array, or cause the error

. How hash over�ow is handled is determined by the form that was passed to
:

If a plain hash array is passed to a hash function, and it over�ows, the error
is generated.

If a hash function is passed as its argument, the system hash array
is used. This array is not used by the system, but is provided for

the user. If over�ows, it is automatically enlarged by 1.5.

is a positive integer. This form speci�es that upon hash over�ow, a new
hash- array is created with more cells than the current hash- array.

is a �oating point number. This form speci�es that upon hash over�ow, the new
hash array will be times the size of the current hash- array.

is a function name or a lambda expression. This form speci�es that upon hash
over�ow, is called with as its argument. If returns a
number, the number will be the size of the new hash array. Otherwise, the new
size defaults to 1.5 times the size of the old hash array. could be used to print
a message, or perform some monitor function.

Equivalent to .

If a list form is used, upon hash over�ow the new hash- array is ed into the dotted pair, and
returns it.

2.9 NUMBERS AND ARITHMETIC FUNCTIONS

Numerical atoms, or simply numbers, do not have value cells, function de�nition cells, property lists,
or explicit print names. There are three di�erent types of numbers in Interlisp: small integers, large
integers, and �oating point numbers. Small integers are those integers that can be directly stored within a

2.36

(DMPHASH)
LOAD

(DMPHASH SYSHASHARRAY)

EQ
READ

EQ
EQUAL EQ HORRIBLEVARS

HASHOVERFLOW
HASH TABLE FULL
PUTHASH

HASH
ARRAY FULL

NIL NIL
SYSHASHARRAY

SYSHASHARRAY

(.)

(.)

(.)
(.)

() (. 1.5)

RPLACA
HASHOVERFLOW

HARRA Y 1 HARRA Y 2 HARRA Y N

HARRA Y 1 HARRA Y 2 HARRA Y N

HARRA Y

HARRA Y

HARRA Y N N

N

HARRA Y F F

F

HARRA Y FN FN

FN HARRA Y FN FN

FN

HARRA Y HARRA Y

DATA TYPES

pointer value. The range of small integers is implementation- dependent. Since a large integer or �oating
point number can be (in value) any full word quantity (and vice versa), it is necessary to distinguish
between those full word quantities that represent large integers or �oating point numbers, and other
Interlisp pointers. We do this by ‘‘boxing’’ the number: When a large integer or �oating point number is
created (via an arithmetic operation or by), Interlisp gets a new word from ‘‘number storage’’ and
puts the large integer or �oating point number into that word. Interlisp then passes around the pointer to
that word, i.e., the ‘‘boxed number’’, rather than the actual quantity itself. Then when a numeric function
needs the actual numeric quantity, it performs the extra level of addressing to obtain the ‘‘value’’ of the
number. This latter process is called ‘‘unboxing’’. Note that unboxing does not use any storage, but that
each boxing operation uses one new word of number storage. Thus, if a computation creates many large
integers or �oating point numbers, i.e., does lots of boxes, it may cause a garbage collection of large
integer space, or of �oating point number space. Di�erent implementations of Interlisp may use di�erent
boxing strategies. Thus, while lots of arithmetic operations lead to garbage collections, this is not
necessarily always the case.

The following functions can be used to distinguish the di�erent types of numbers:

[Function]
Returns , if is a small integer; otherwise. Does generate an error if
is not a number.

[Function]
Returns , if is an integer (between and); otherwise.
Note that is true for both large and small integers. Does generate an
error if is not a number.

[Function]
Returns if is a �oating point number; otherwise. Does give an error
if is not a number.

[Function]
Returns , if is a number of any type (or); otherwise. Does

generate an error if is not a number.

Note that if is true, then either or is
true.

Each small integer has a unique representation, so may be used to check equality. Note that
should not be used for large integers or �oating point numbers, , , or must be used
instead.

[Function]
Returns , if and are , or equal numbers; otherwise. Note that
may be used if and are known to be integers. does not convert

and to integers, e.g., , but it can be used
to compare an integer and a �oating point number, e.g.,

. does generate an error if or are not numbers.

Note: can also be used to compare stack pointers (page 7.3) and compiled
code objects (page 5.8).

2.37

READ

may

(SMALLP)
NIL not

(FIXP)
MIN.FIXP MAX.FIXP NIL

FIXP not

(FLOATP)
NIL not

(NUMBERP)
FIXP FLOATP NIL

not

(NUMBERP) (FIXP) (FLOATP)

EQ EQ
EQP IEQP EQUAL

(EQP)
T EQ NIL EQ

small EQP
(EQP 2000 2000.3) => NIL

(EQP 2000 2000.0)
=> T EQP not

EQP

X

X X X

X

X X

X

X

X X

X

X

X X

X

X X X

X Y

X Y

X Y

X Y

X Y

Integer Arithmetic

2.9.1 Integer Arithmetic

The input syntax for an integer is an optional sign (or) followed by a sequence of digits, followed
by an optional , and terminated by a delimiting character. If the is present, the digits are interpreted
in octal, otherwise in decimal, e.g. and both correspond to the same integers, and in fact are
indistinguishable internally since no record is kept of how integers were created.

The setting of (page 6.19), determines how integers are printed: signed or unsigned, octal or
decimal.

Integers are created by and when given a sequence of characters observing the above
syntax, e.g. . Integers are also created as a result of arithmetic operations.

The range of integers of various types is implementation- dependent. This information is accessable to the
user through the following variables:

[Variable]
[Variable]

The smallest/largest possible small integer.

[Variable]
[Variable]

The smallest/largest possible large integer.

[Variable]
[Variable]

The smallest/largest possible integer representable. Currently, these variables
are equal to and ; they may be di�erent in future
implementations with other methods for representing integers.

In Interlisp- D, the action taken on integer over�ow is determined with the following function:

[Function]
Sets a �ag that determines the system response to integer over�ow; returns the
previous setting. If = , an error occurs on integer over�ow. If = , the
largest (or smallest) integer is returned as the result of the over�owed computation.
If = , the result is returned modulo 2^32 (the default action).

All of the functions described below work on integers. Unless speci�ed otherwise, if given a �oating point
number, they �rst convert the number to an integer by truncating the fractional bits, e.g.,

= ; if given a non- numeric argument, they generate an error, .

��� [NoSpread Function]
Returns the sum + + ��� + . = .

[Function]
-

[Function]
-

2.38

+ -
Q Q

77Q 63

RADIX

PACK MKATOM
(PACK ’(1 2 Q)) => 10

MIN.SMALLP
MAX.SMALLP

MIN.FIXP
MAX.FIXP

MIN.INTEGER
MAX.INTEGER

MIN.FIXP MAX.FIXP

(OVERFLOW)

T NIL

0

(IPLUS 2.3
3.8) 5 NON-NUMERIC ARG

(IPLUS)
(IPLUS) 0

(IMINUS)

(IDIFFERENCE)

FL G

FL G FL G

FL G

X 1 X 2 X N
X 1 X 2 X N

X

X

X Y

X Y

DATA TYPES

[Function]
+ 1

[Function]
- 1

��� [NoSpread Function]
Returns the product * * ��� * . = .

[Function]
/ truncated. Examples:

[Function]
Returns the remainder when is divided by . Example:

[Function]
Computes the integer modulus; this di�ers from in that the result
is always a non- negative integer in the range .

[Function]
, if > ; otherwise.

[Function]
, if < ; otherwise.

[Function]
, if � ; otherwise.

[Function]
, if � ; otherwise.

��� [NoSpread Function]
Returns the minimum of , , ��� , . returns the largest possible large
integer, the value of .

[NoSpread Function]
Returns the maximum of , , ��� , . returns the smallest possible
large integer, the value of .

[Function]
Returns if and are or equal integers; otherwise. Note that
may be used if and are known to be integers. converts and
to integers, e.g., . Causes
error if either or are not numbers.

[Function]
.

2.39

(ADD1)

(SUB1)

(ITIMES)
(ITIMES) 1

(IQUOTIENT)

(IQUOTIENT 3 2) => 1

(IQUOTIENT -3 2) => -1

(IREMAINDER)

(IREMAINDER 3 2) => 1

(IMOD)
IREMAINDER

[0,)

(IGREATERP)
T NIL

(ILESSP)
T NIL

(IGEQ)
T NIL

(ILEQ)
T NIL

(IMIN)
(IMIN)

MAX.FIXP

(IMAX)
(IMAX)

MIN.FIXP

(IEQP)
T EQ NIL EQ

small IEQP
(IEQP 2000 2000.3) => T NON-NUMERIC ARG

(ZEROP)
(EQ 0)

X

X

X

X

X 1 X 2 X N
X 1 X 2 X N

X Y

X Y

X Y

X Y

X Y

Y

X Y

X Y

X Y

X Y

X Y

X Y

X Y

X Y

X 1 X 2 X N
X 1 X 2 X N

X 1 X 2 ...X N
X 1 X 2 X N

N M

N M

N M N M

N M

X

X

Logical Arithmetic Functions

Note: should not be used for �oating point numbers because it uses .
Use instead.

[Function]
Returns if is negative; otherwise. Does not convert to an integer, but
simply checks the sign bit.

[Function]
If is an integer, returns . Otherwise, converts to an integer by truncating
fractional bits, e.g., , .

Since is also a programmer’s assistant command (page 8.10), typing
directly to Interlisp will not cause the function to be called.

[Function]
Returns the greatest common divisor of and , e.g., = .

2.9.2 Logical Arithmetic Functions

��� [NoSpread Function]
Returns the logical AND of all its arguments, as an integer. Example:

��� [NoSpread Function]
Returns the logical OR of all its arguments, as an integer. Example:

��� [NoSpread Function]
Returns the logical exclusive OR of its arguments, as an integer. Example:

[Function]
(arithmetic) ‘‘Left Shift.’’ Returns shifted left places, with the sign bit
una�ected. can be positive or negative. If is negative, is shifted
places.

[Function]
(arithmetic) ‘‘Right Shift.’’ Returns shifted right places, with the sign bit
una�ected, and copies of the sign bit shifted into the leftmost bit. can be
positive or negative. If is negative, is shifted places.

Warning: Be careful if using to simulate division; ing a negative number
is not generally equivalent to deviding by a power of two.

[Function]
‘‘Logical Left Shift.’’

2.40

ZEROP EQ
(EQP 0)

(MINUSP)
T NIL

(FIX)

(FIX 2.3) => 2 (FIX -1.7) => -1

FIX FIX
FIX

(GCD)
(GCD 72 64) 8

(LOGAND)

(LOGAND 7 5 6) => 4

(LOGOR)

(LOGOR 1 3 9) => 11

(LOGXOR)

(LOGXOR 11 5) => 14

(LOGXOR 11 5 9) <=> (LOGXOR 14 9) => 7

(LSH)

right

(RSH)

left

RSH RSH

(LLSH)

X

X

X X

X

X X X

X Y

X Y

X 1 X 2 X N

X 1 X 2 X N

X 1 X 2 X N

X N

X N

X N X -N

X N

X N

X

N X -N

X N

DATA TYPES

[Function]
‘‘Logical Right Shift.’’

[Function]
Returns the number of bits needed to represent (coerced to a). This is
equivalent to: 1+�oor[log2[abs[]]]. = 0.

[Function]
Returns non- if (coerced to a) is a power of two.

[NoSpread Function]
If is not given, equivalent to ; otherwise equivalent to

.

[NoSpread Function]
Equivalent to .

The di�erence between a logical and arithmetic right shift lies in the treatment of the sign bit. Logical
shifting treats it just like any other bit; arithmetic shifting will not change it, and will ‘‘propagate’’
rightward when actually shifting rightwards. Note that shifting (arithmetic) a negative number ‘‘all the
way’’ to the right yields -1, not 0.

The following ‘‘logical’’ arithmetic functions are derived from Common Lisp, and have both macro
and function de�nitions (the macros are for speed in running of compiled code). The following code
equivalences are primarily for de�nitional purposes, and should not be considered an implementation
(especially since the real implementation tends to be faster and less ‘‘consy’’than would be apparent from
the code here).

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

2.41

(LRSH)

(INTEGERLENGTH)
FIXP

(INTEGERLENGTH 0)

(POWEROFTWOP)
NIL FIXP

(EVENP)
(ZEROP (IMOD 2))

(ZEROP (IMOD))

(ODDP)
(NOT (EVENP))

Note: The following logical functions are currently only implemented in Interlisp- D.

(LOGNOT)
(LOGXOR -1)

(BITTEST)
(NOT (ZEROP (LOGAND)))

(BITCLEAR)
(LOGAND (LOGNOT))

(BITSET)
(LOGOR)

(MASK.1’S)

(LLSH (SUB1 (EXPT 2))
)

(MASK.0’S)
(LOGNOT (MASK.1’S))

(LOADBYTE)

(LOGAND (LRSH)

X N

N

N

N

N

N

X Y

Y X

X Y

X Y

X Y

N

N

N MASK

N MASK

N MASK

N MASK

N MASK

N MASK

POSITION SIZE

SIZE

POSITION

POSITION SIZE

POSITION SIZE

N POSITION SIZE

N POSITION

Floating Point Arithmetic

[Function]

[Function]
‘‘Rotate bits in �eld’’. This is a slight extension of the CommonLisp function.
It performs a bitwise left-rotation of the integer , by places, within a �eld of

bits wide. Bits being shifted out of the position selected by
will �ow into the ‘‘units’’ position.

The optional argument defaults to the ‘‘cell’’ size (the integerlength of
the current maximum), and must either be a positive integer, or else be one
of the litatoms or . In the latter two cases the appropriate numerical
values are respectively substituted. A macro optimizes the case where is

and is 1.

The notions of position and size can be combined to make up a ‘‘byte speci�er’’, which is constructed by
the macro [note reversal of arguments as compare with above functions]:

[Macro]
Constructs and returns a ‘‘byte speci�er’’ containing and .

[Macro]
Returns the componant of the ‘‘byte speci�er’’ .

[Macro]
Returns the componant of the ‘‘byte speci�er’’ .

[Macro]

[Macro]

2.9.3 Floating Point Arithmetic

A �oating point number is input as a signed integer, followed by a decimal point, followed by another
sequence of digits called the fraction, followed by an exponent (represented by followed by a signed
integer) and terminated by a delimiter.

2.42

(MASK.1’S 0))

(DEPOSITBYTE)

(LOGOR (BITCLEAR (MASK.1’S))
(LLSH (LOGAND (MASK.1’S 0))

))

(ROT)
ROT

(EXPT 2
(SUB1))

FIXP
CELL WORD

WORD

BYTE

(BYTE)

(BYTESIZE)

(BYTEPOSITION)

(LDB)

(LOADBYTE
(BYTEPOSITION)
(BYTESIZE))

(DPB)

(DEPOSITBYTE
(BYTEPOSITION)
(BYTESIZE)

)

E

SIZE

N POSITION SIZE BYTE

N POSITION SIZE

BYTE SIZE

POSITION

X N FIELDSIZE

X N

FIELDSIZE

FIELDSIZE

FIELDSIZE

FIELDSIZE

N

SIZE POSITION

SIZE POSITION

BYTESPEC

SIZE BYTESPEC

BYTESPEC

POSITION BYTESPEC

BYTESPEC VAL

VAL

BYTESPEC

BYTESPEC

N BYTESPEC VAL

VAL

BYTESPEC

BYTESPEC

N

DATA TYPES

Both signs are optional, and either the fraction following the decimal point, or the integer preceding the
decimal point may be omitted. One or the other of the decimal point or exponent may also be omitted,
but at least one of them must be present to distinguish a �oating point number from an integer. For
example, the following will be recognized as �oating point numbers:

Floating point numbers are printed using the format control speci�ed by the function (page
6.20). is initialized to , or free format. For example, the above �oating point numbers would
be printed free format as:

Floating point numbers are created by the read program when a ‘‘ ’’ or an appears in a number,
e.g., is an integer, a �oating point number, as are and . Note that ,

, and are perfectly legal literal atoms. Floating point numbers are also created by and
, and as a result of arithmetic operations.

(page 6.21) permits greater controls on the printed appearance of �oating point numbers,
allowing such things as left-justi�cation, suppression of trailing decimals, etc.

The �oating point number range is stored in the following variables:

[Variable]
The smallest possible �oating point number.

[Variable]
The largest possible �oating point number.

All of the functions described below work on �oating point numbers. Unless speci�ed otherwise, if given an
integer, they �rst convert the number to a �oating point number, e.g.,

; if given a non- numeric argument, they generate an error,

��� [NoSpread Function]
+ + ��� +

[Function]
-

[Function]
-

��� [NoSpread Function]
* * ��� *

[Function]
/

[Function]
Returns the remainder when is divided by . Equivalent to:

2.43

5. 5.00 5.01 .3
5E2 5.1E2 5E-3 -5.2E+6

FLTFMT
FLTFMT T

5.0 5.0 5.01 .3
500.0 510.0 .005 -5.2E6

. E
1000 1000. 1E3 1.E3 1000D

1000F 1E3D PACK
MKATOM

PRINTNUM

MIN.FLOAT

MAX.FLOAT

(FPLUS 1 2.3) <=> (FPLUS
1.0 2.3) => 3.3 NON-NUMERIC ARG.

(FPLUS)

(FMINUS)

(FDIFFERENCE)

(FTIMES)

(FQUOTIENT)

(FREMAINDER)

X 1 X 2 X N
X 1 X 2 X N

X

X

X Y

X Y

X 1 X 2 X N
X 1 X 2 X N

X Y

X Y

X Y

X Y

Mixed Arithmetic

Example:

[Function]
, if is negative; otherwise. Works for both integers and �oating point

numbers.

[Function]
, if > , otherwise.

[Function]
, if < , otherwise.

[Function]
Returns if and are equal �oating point numbers; otherwise.
converts and to �oating point numbers.Causes error if
either or are not numbers.

��� [NoSpread Function]
Returns the minimum of , , ��� , . returns the largest possible
�oating point number, the value of .

[NoSpread Function]
Returns the maximum of , , ��� , . returns the smallest possible
�oating point number, the value of .

[Function]
Converts to a �oating point number. Example:

2.9.4 Mixed Arithmetic

The functions in this section are ‘‘generic’’ �oating point arithmetic functions. If any of the arguments
are �oating point numbers, they act exactly like �oating point functions, and �oat all arguments, and
return a �oating point number as their value. Otherwise, they act like the integer functions. If given a
non- numeric argument, they generate an error, .

��� [NoSpread Function]
+ + ��� + .

[Function]
-

[Function]
-

2.44

(FDIFFERENCE (FTIMES (FIX (FQUOTIENT))))

(FREMAINDER 7.5 2.3) => 0.6

(MINUSP)
T NIL

(FGREATERP)
T NIL

(FLESSP)
T NIL

(FEQP)
T NIL FEQP

NON-NUMERIC ARG

(FMIN)
(FMIN)

MAX.FLOAT

(FMAX)
(FMAX)

MIN.FLOAT

(FLOAT)

(FLOAT 0) => 0.0

NON-NUMERIC ARG

(PLUS)

(MINUS)

(DIFFERENCE)

X Y X Y

X

X

X Y

X Y

X Y

X Y

X Y

N M

N M

N M

X 1 X 2 X N
X 1 X 2 X N

X 1 X 2 ...X N
X 1 X 2 X N

X

X

X 1 X 2 X N
X 1 X 2 X N

X

X

X Y

X Y

DATA TYPES

��� [NoSpread Function]
* * ��� *

[Function]
If and are both integers, returns , otherwise

.

[Function]
If and are both integers, returns , other wise

.

[Function]
, if > , otherwise.

[Function]
if < , otherwise.

[Function]
, if � , otherwise.

[Function]
, if � , otherwise.

��� [NoSpread Function]
Returns the minimum of , , ��� , . returns the value of

.

��� [NoSpread Function]
Returns the maximum of , , ��� , . returns the value of

.

[Function]
if > 0, otherwise - . uses and , (not and

).

2.9.5 Special Functions

[Function]
Returns ^ . If is an integer and is a positive integer, returns an integer,
e.g, , otherwise returns a �oating point number. If is
negative and fractional, an error is generated, . If

is �oating and either too large or too small, an error is generated,
.

[Function]
Returns the square root of as a �oating point number. may be �xed or �oating
point. Generates an error if is negative.

[Function]
Returns the natural logarithm of as a �oating point number. can be integer
or �oating point.

2.45

(TIMES)

(QUOTIENT)
(IQUOTIENT) (FQUOTIENT

)

(REMAINDER)
(IREMAINDER) (FREMAINDER

)

(GREATERP)
T NIL

(LESSP)
T NIL

(GEQ)
T NIL

(LEQ)
T NIL

(MIN)
(MIN)

MAX.INTEGER

(MAX)
(MAX)

MIN.INTEGER

(ABS)
ABS GREATERP MINUS IGREATERP

IMINUS

(EXPT)

(EXPT 3 4) => 81
ILLEGAL EXPONENTIATION

VALUE OUT
OF RANGE EXPT

(SQRT)

(LOG)

X 1 X 2 X N
X 1 X 2 X N

X Y

X Y X Y

X Y

X Y

X Y X Y

X Y

X Y

X Y

X Y

X Y

X Y

X Y

X Y

X Y

X 1 X 2 X N
X 1 X 2 X N

X 1 X 2 X N
X 1 X 2 X N

X

X X X

M N

M N M N

M

N

N

N

N N

N

X

X X

Special Functions

[Function]
Returns the �oating point number whose logarithm is . can be integer or �oating
point. Example:

[Function]
Returns the sine of as a �oating point number. is in degrees unless

= .

[Function]
Similar to .

[Function]
Similar to .

[Function]
is a number between -1 and 1 (or an error is generated). The value of is

a �oating point number, and is in degrees unless = . In other words,
if = then = . The range of
the value of is -90 to +90 for degrees, - /2 to /2 for radians.

[Function]
Similar to . Range is 0 to 180, 0 to .

[Function]
Similar to . Range is 0 to 180, 0 to .

[Function]
Computes , and returns a correspond-
ing value in the range -180 to 180 (or - to), i.e. the result is in the proper
quad rant as deter mined by the signs of and .

[Function]
Returns a pseudo- random number between and inclusive, i.e.,

can be used to generate a sequence of random numbers. If both limits are
integers, the value of is an integer, otherwise it is a �oating point number.
The algorithm is completely deterministic, i.e., given the same initial state,
produces the same sequence of values. The internal state of is initialized
using the function described below.

[Function]
Returns the internal state of . If = , just returns the current state. If

= , is initialized using the clocks, and returns the new state.
Otherwise, is interpreted as a previous internal state, i.e., a value of ,
and is used to reset . For example,

2.46

(ANTILOG)

(ANTILOG 1) = e => 2.71828...

(SIN)

T

(COS)
SIN

(TAN)
SIN

(ARCSIN)
ARCSIN

T
(ARCSIN) (SIN)

ARCSIN

(ARCCOS)
ARCSIN

(ARCTAN)
ARCSIN

(ARCTAN2)
(ARCTAN (FQUOTIENT))

(RAND)

RAND
RAND

RAND
RAND

RANDSET

(RANDSET)
RAND NIL

T RAND RANDSET
RANDSET

RAND

_ (SETQ OLDSTATE (RANDSET))
...
_ (for X from 1 to 10 do (PRIN1 (RAND 1 10)))
2847592748NIL
_ (RANDSET OLDSTATE)

X

X X

X RADIANSFL G

X X

RADIANSFL G

X RADIANSFL G

X RADIANSFL G

X RADIANSFL G

X

RADIANSFL G

X RADIANSFL G Z Z RADIANSFL G X

� �

X RADIANSFL G

�

X RADIANSFL G

�

Y X RADIANSFL G

Y X RADIANSFL G

� �
X Y

LO WER UPPER

LO WER UPPER

X

X

X

X

DATA TYPES

2.47

...
_ (for X from 1 to 10 do (PRIN1 (RAND 1 10)))
2847592748NIL

Special Functions

2.48

