CHAPTER 12

THE COMPILER

The compiler is contained in the standard Interlisp system. It may be used to compile functions dened
in the user's Interlisp system, or to compile denitions stored in a le. The resulting compiled code may
be stored as it is compiled, so as to be available for immediate use, or it may be written onto a le for
subsequent loading.

The most common way to use the compiler isto use one of the le package functions, such as MAKEFI LE
(page 11.6), which automatically updates source les, and produces compiled versions. However, it is
also possible to compile individual functions dened in the user's Interlisp system, by directly calling
the compiler using functions such as COVPI LE (page 12.10). No matter how the compiler is called, the
function COMPSET is called which asks the user certain questions concerning the compilation. (COMPSET
sets the free variables LAPFLG, STRF, SVFLG, LCFI L and LSTFI L which determine various modes of
operation.) Those that can be answered ‘‘yes’or ‘‘no’’ can be answered with YES, Y, or T for ‘‘yes’;and
NO, N, or NI L for ‘“*no’’. The questions are:

LI STI NG? This asks whether to generate alisting of the compiled code. The LAP and machine
code are usually not of interest but can be helpful in debugging macros. Possible
answers are:

1 Prints output of pass 1, the LAP macro code.
2 Prints output of pass 2, the machine code.
YES Prints output of both passes.

NO Prints no listings.

The variable LAPFLG is set to the answer.

FI LE: This question (which only appears if the answer to LI STI NG? is armative) ask
where the compiled code listing(s) should be written. Answering T will print the
listings at the terminal. The variable LSTFI L is set to the answer.

REDEFI NE? This question asks whether the functions compiled should be redened to their
compiled denitions. If this is answered YES, the compiled code is stored and the
function denition changed, otherwise the function denition remains unchanged.

The variable STRF is set to T (if this is answered YES) or NI L.

SAVE EXPRS? This question asks whether the origina dening EXPRs of functions should be
saved. If answered YES, then before redening afunction to its compiled de nition,
the EXPR denition is saved on the property list of the function name. Otherwise
they are discarded.

It is very useful to save the EXPR denitions, just in case the compiled function
needs to be changed. The editing functions will retrieve this saved denition if it

12.1

QUTPUT FI LE?

Compiler Printout

exists, rather than reading from a source le.
The variable SVFLG is set to T (if this is answered YES) or NI L.

This question asks whether (and where) the compiled denitions should be written
into a le for later loading. If you answer with the name of a le, that le will be
used. If you answer Y or YES, you will be asked the name of the le. If the le
named is already open, it will continue to be used. If you answer T or TTY: , the
output will be typed on the teletype (not particularly useful). If you answer N, NO,
or NI L, output will not be done.

The variable LCFI L is set to the name of the le.

In order to make answering these questions easier, there are four other possible answers to the LI STI NG?
question, which specify common compiling modes:

S

F

ST

STF

Same as last setting. Uses the same answers to compiler questions as given for the
last compilation.

Compile to File, without redening functions.
STore new denitions, saving EXPR denitions.

STore new denitions, Forget EXPR de nitions.

Implicit in these answers are the answers to the questions on disposition of compiled code and EXPR
denitions, so the questions REDEFI NE? and SAVE EXPRS? would not be asked if these answers were
given. QUTPUT FI LE? would still be asked, however. For example:

COVPI LE((FACT FACT1 FACT2))

LI STING? ST

QUTPUT FI LE? FACT. DCOM

(FACT COWPI LI NG
(FACT REDEFI NED)

(FACT2 REDEFI NED)

(FACT FACT1 FACT2)

This process caused the functions FACT, FACT1, and FACT2 to be compiled, redened, and the compiled

denitions aso written

on the le FACT. DCOM for subsequent loading.

121 COMPILER PRINTOUT

In Interlisp- D, for each function FN compiled, whether by TCOMPL, RECOWPI LE, or COWPI LE, the

compiler prints:

12.2

THE COMPILER

(FN (ARG, ARGy) (uses: VAR VARN) (calls: FNg FNn))

The message is printed at the beginning of the second pass of the compilation of FN. (ARG, AR Gy)
is the list of arguments to FN; following ‘‘uses:’’ are the free variables referenced or set in FN (not
including global variables); following ‘‘cal | s: " are the undened functions called within FN.

In Interlisp- 10, for every function compiled, the compiler prints (FN (ARG, ARGpN) (FREE 4
FREE y)), Where FREE ; FREE \ are the free variables referenced or set in FN.

If the compilation of FN causes the generation of one or more auxilary functions (see page 12.8), a
compiler message will be printed for these functions before the message for FN, eg.,

(FOOA0027 (X) (uses: XX))
(FOO (A B))

When compiling a block, the compiler rst prints (BLKNAVE ~ BLKFN ; BLKFN ,). Then the normal
message is printed for the entire block. The names of the arguments to the block are generated
by suxing ‘# and a number to the block name, eg., (FOOBLOCK (FOOBLOCK#0 FOOBLOCK#1)
FREE- VARI ABLES). Then a message is printed for each entry to the block.

In addition to the above output, both RECOWVPI LE and BRECOWPI LE print the name of each function
that is being copied from the old compiled le to the new compiled le. The norma compiler message
is printed for each function that is actually compiled.

The compiler prints out error messages when it encounters problems compiling a function. For example:

----- I n BAZ:
*xx%% (BAZ - illegal RETURN)
The above error message indicates that an i | | egal RETURN' compiler error occurred while trying to

compile the function BAZ. Some compiler errors cause the compilation to terminate, producing nothing;
however, there are other compiler errors which do not stop compilation. The compiler error messages are
described on page 12.20.

Compiler printout and error messages go to the le COUTFI LE, initially T. COUTFI LE can also be set to
the name of a le opened for output, in which case all compiler printout will go to COUTFI LE, i.e. the
compiler will compile ‘‘silently.”” However, any error messages will be printed to both COUTFI LE as well
aT.

122 GLOBAL VARIABLES

Variables that appear on the lisst GLOBALVARS, or have the property GLOBALVAR with value T, or are
declared with the GLOBALVARS le package command (page 11.25), are called global variables. Such
variables are aways accessed through their top level value when they are used freely in a compiled
function. In other words, a reference to the value of this variable is equivalent to (GETTOPVAL (QUOTE
VAR ABLE)), regardless of whether or not it is bound in the current access chain. Similarly, (SETQ
VAR ABLE VAL UE) will compile as (SETTOPVAL (QUOTE VAR ABLE) VAL UE).

12.3

LOCALVARS and SPECVARS

All system parameters, unless otherwise speci ed, are declared as global variables. Thus, rebinding these
variables in a deep bound system (like Interlisp- D) will not aect the behavior of the system: instead, the
variables must be reset to their new values, and if they are to be restored to their original values, reset
again. For example, the user might write

(SETQ GL OBAL VARI ABLE NEW AL UE)
FORM
(SETQ GL OBAL VARIABLE QLD VAL UE)

Note that in this case, if an error occurred during the evaluation of FORM , or a control- D was typed, the
global variable would not be restored to its origina value. The function RESETVAR (page 9.20) provides
a convenient way of resetting global variables in such a way that their values are restored even if an error
occurred or control- D is typed.

Note: Interlisp- 10 employs a shallow binding scheme as described on page 7.1. There is no distinction
between globa variables and other types of variables. al variable references are to the variable's value
cell. Thus, the cost of accessing a variable is small and independent of the depth of computation, whereas
in a deep bound system, it can be expensive to search the stack for the most recent binding of a variable,
hence the need for a mechanism like globa variables. Note however that in a shallow bound system, the
cost of rebinding a variable is somewhat higher than in a deep bound system (except when the variable
is a LOCALVAR). For the purposes of compilation, globa variables are treated the same as SPECVARS,
i.e. their names are always visible on the stack when they are rebound.

12.3 LOCALVARS AND SPECVARS

In normal compiled and interpreted code, all variable bindings are accessible by lower level functions
because the variable’'s name is associated with its value. We cal such variables special variables, or
specvars. As mentioned earlier, the block compiler normally does not associate names with variable
values. Such unnamed variables are not accessible from outside the function which binds them and are
therefore local to that function. We call such unnamed variables local variables, or localvars.

The time economies of local variables can be achieved without block compiling by use of declarations.
Using local variables will increase the speed of compiled code; the price is the work of writing the
necessary specvar declarations for those variables which need to be accessed from outside the block.

LOCALVARS and SPECVARS are variables that aect compilation. During regular compilation, SPECVARS
is normally T, and LOCALVARS is NI L or a list. This conguration causes al variables bound in the
functions being compiled to be treated as special except those that appear on LOCALVARS. During block
compilation, LOCALVARS isnormally T and SPECVARS isNI L or alist. All variables are then treated as
local except those that appear on SPECVARS.

Declarations to set LOCALVARS and SPECVARS to other values, and therefore aect how variables are
treated, may be used at several levels in the compilation process with varying scope.

(1) The declarations may be included in the lecoms of a le, by using the LOCALVARS and SPECVARS
le package commands (page 11.25). The scope of the declaration isthen the entire le:

(LOCALVARS . T) (SPECVARS X Y)

124

THE COMPILER

(2) The declarations may be included in block declarations; the scope is then the block, eg.,
(BLOCKS ((FOOBLOCK FOO FIE (SPECVARS . T) (LOCALVARS X)))

(3) The declarations may also appear in individual functions, or in PROG sor LAMBDA’swithin a function,
using the DECLARE function. In this case, the scope of the declaration is the function or the PROG or
LAMBDA in which it appears. LOCALVARS and SPECVARS declarations must appear immediately after the
variable list in the function, PROG, or LAVBDA, but intervening comments are permitted. For example:

(DEFI NEQ ((FOO
(LAVBDA (X V)
(DECLARE (LOCALVARS Y))
(PROG (X Y 2)
(DECLARE (LOCALVARS X))
o]

If the above function is compiled (non-block), the outer X will be specia, the X bound in the PROG will
be local, and both bindings of Y will be local.

Declarations for LOCALVARS and SPECVARS can be used in two ways: either to cause variables to
be treated the same whether the function(s) are block compiled or compiled normally, or to aect one
compilation mode while not aecting the default in the other mode. For example:

(LAVBDA (X V)
(DECLARE (SPECVARS . T))
(PROG (2) ...]

will cause X, Y, and Z to be specvars for both block and norma compilation while

(LAVBDA (X V)
(DECLARE (SPECVARS X))
o]

will make X a specvar when block compiling, but when regular compiling the declaration will have no
eect, because the default value of specvars would be T, and therefore both X and Y will be specvars by
defauilt.

Although LOCALVARS and SPECVARS declarations have the same form as other components of block
declarations such as (LI NKFNS . T), their operation is somewhat di erent because the two variables
are not independent. (SPECVARS . T) will cause SPECVARS to be set to T, and LOCALVARS to be
set to NI L. (SPECVARS V1 V2 ...) will have no eect if the value of SPECVARS is T, but if it isa
list (or NI L), SPECVARS will be set to the union of its prior value and (V1 V2 ...). The operation
of LOCALVARS is analogous. Thus, to aect both modes of compilation one of the two (LOCALVARS or
SPECVARS) must be declared T before specifying a list for the other.

124 CONSTANTS

The function CONSTANT enables the user to dene certain expressions as descriptions of their *‘constant’’
values. For example, if a user program needed a scratch list of length 30, the user could specify

125

Compiling Function Calls

(CONSTANT (to 30 collect NL)) instead of (QUOTE (NIL N L)). The former is more
concise and displays the important parameter much more directly than the latter. CONSTANT can also be
used to denote values that cannot be quoted directly, such as (CONSTANT (PACK NI L)), (CONSTANT
(ARRAY 10)) . It isaso useful to parameterize quantities that are constant at run time but may dier at
compile time, eg. (CONSTANT BI TSPERWORD) in a program is exactly equivalent to 36, if the variable
Bl TSPERWORD is bound to 36 when the CONSTANT expression is evaluated at compile time.

When interpreted, the expression occuring as the argument to CONSTANT is evaluted each time it is
encountered. If the CONSTANT form is compiled, however, the expression will be evaluated only once:

If the value of the expression has a readable print- name, then it will be evaluated at compile-time, and the
value will be saved as aliteral in the compiled function’s de nition, asif (QUOTE VAL UE- OF- EXPRESSI ON)
had appeared instead of (CONSTANT EXPRESSI ON).

If the value does not have a readable printhame (e.g. the PACK and ARRAY examples above), then
the expression itself will be saved with the function, and it will be evaluated when the function is rst
executed. The value will then be stored in the function’s literals, and will be retrieved on future references.

Whereas the function CONSTANT attempts to evaluate the expression as soon as possible (compile- time,
load-time, or rst- run-time), the function DEFERREDCONSTANT will always defer the evaluation until rst
running. This is useful when the storage for the constant is excessive so that it shouldn't be allocated
until (unless) the function is actually invoked.

Note: The function SELECTC (page 4.3) provides a mechanism for conparing a value to a number of
constants.

(CONSTANTS VAR ; VAR, VAR) [NLambda NoSpread Function]
Denes VAR q, VAR (unevaluated) to be compile-time constants. Whenever the
compiler encounters a (free) reference to one of these constants, it will compile the
form (CONSTANT VAR;) instead.

If vAR; is a list of the form (VAR FORM), a free reference to the variable will
compile as (CONSTANT FORM) .

Constants can be saved using the CONSTANTS le package command (page 11.27).

125 COMPILING FUNCTION CALLS

When compiling the call to a function, the compiler must know the type of the function, to determine how
the arguments should be prepared (evaluated/unevaluated, spread/nospread). There are three seperate
cases. lambda, nlambda spread, and nlambda nospread functions.

To determine which of these three cases is appropriate, the compiler will rst look for a denition among
the functions in the le that is being compiled. The function can be dened anywhere in any of the les
given as arguments to BCOVPL, TCOWMPL, BRECOWPI LE or RECOWPI LE. If the function is not contained
in the le, the compiler will look for other information in the variables NLAMA, NLAM_, and LAMS, which
can be set by the user:

12.6

THE COMPILER

NLANMA [Variable]
(for NLAMbda Atoms) A list of functions to be treated as nlambda nospread functions
by the compiler.

NLAM. [Variable]
(for NLAMbda List) A list of functions to be treated as nlambda spread functions
by the compiler.

LAMS [Variable]
A list of functions to be treated as lambda functions by the compiler. Note
that including functions on LAMS is only necessary to override in-core nlambda
denitions, since in the absence of other information, the compiler assumes the
function is a lambda.

If the function is not contained in a le, or on the lists NLAMA, NLAM., or LAMS, the compiler will look
for a current denition in the Interlisp system, and use its type. If there is no current denition, next
COVPI LEUSERFN is called:

COWPI LEUSERFN [Variable]
When compiling a function call, if the function type cannot be found by looking
in les, the variables NLAMA, NLAM., or LAMS, or a a current denition, then
if the value of COVPI LEUSERFN is not NI L, the compiler calls (the value of)
COWPI LEUSERFN giving it as arguments CDR of the form and the form itself,
i.e.,, the compiler does (APPLY* COWPI LEUSERFN (CDR ForRM) FORM). If a
non- NI L value is returned, it is compiled instead of FOrRM . If NI L isreturned, the
compiler compiles the origina expression as a cal to a lambda spread that is not
yet de ned.

Note that COVPI LEUSERFN isonly called when the compiler encounters alist CAR
of which is not the name of adened function. The user can instruct the compiler
about how to compile other data types via COVPI LETYPELST, page 12.9.

CLISP uses COVPlI LEUSERFN to tell the compiler how to compile iterative
statements, | F- THEN- ELSE statements, and pattern match constructs (See page
12.9).

If the compiler cannot determine the function type by any of the means above, it assumes that the
function is a lambda function, and its arguments are to be evaluated. The function is also added to the
value of ALANES:

ALANVS [Variable]
(for Assumed LAMbdaS) A list of functions to that the compiler has assumed to
be lambda functions. ALAMS is not used by the compiler; it is maintained for the
user's benet so that the user can check to see whether any incorrect assumptions
were made.

If there are nlambda functions caled from the functions being compiled, and they are only dened in
a separate le, they must be included on NLAMA or NLAML, or the compiler will incorrectly assume that
their arguments are to be evaluated, and compile the calling function correspondingly. Note that this is
only necessary if the compiler does not ‘‘know’’ about the function. If the function isdened at compile
time, or is handled via a macro, or is contained in the same group of les asthe functions that cal it, the

12.7

FUNCTION and Functional Arguments

compiler will automatically handle calls to that function correctly.

12.6 FUNCTION AND FUNCTIONAL ARGUMENTS

Compiling the function FUNCTI ON (page 5.15) may involve creating and compiling a seperate ‘‘auxiliary
function”’, which will be called a run time. An auxiliary function is named by attaching a GENSYM
(page 2.11) to the end of the name of the function in which they appear, e.g., FOOA0003. For example,
suppose FOOisdened as (LAMBDA (X) (FOOL X (FUNCTION 1))) and compiled. When
FQO is run, FOOL will be called with two arguments, X, and FOOAOOON and FOOL will call FOOAOOON
each time it uses its functional argument.

Compiling FUNCTI ON will not create an auxiliary function if it isafunctional argument to a function that
compiles open, such as most of the mapping functions (MAPCAR, MAPLI ST, etc.). Note that a considerable
savings in time could be achieved by making FOOL compile open via a computed macro (page 5.17), eg.

(Z (LIST (SUBST (CADADR Z)
(QUATE FN)
DEF)
(CAR 2)))

DEF is the denition of FOOL as a function of just its rst argument, and FN is the name used for its
functional argument in its denition. In this case, (FOOL X (FUNCTION)) would compile as an
expression, containing the argument to FUNCTI ON as an open LAMBDA expression. Thus you save not
only the function call to FOOL, but also each of the function calls to its functional argument. For example,
if FOOL operates on a list of length ten, eleven function calls will be saved. Of course, this savings in
time costs space, and the user must decide which is more important.

127 OPEN FUNCTIONS

When a function iscaled from a compiled function, a system routine isinvoked that sets up the parameter
and control push lists as necessary for variable bindings and return information. If the amount of time
spent inside the function is small, this function calling time will be a signi cant percentage of the total
time required to use the function. Therefore, many ‘‘small’’ functions, e.g., CAR, CDR, EQ, NOT, CONS are
always compiled ‘‘open’’,i.e, they do not result in a function call. Other larger functions such as PROG,
SELECTQ, MAPC, etc. are compiled open because they are frequently used. The user can make other
functions compile open via MACRO denitions (see page 5.17). The user can aso aect the compiled code
via COVP| LEUSERFN (page 12.7) and COWPI LETYPELST (page 12.9).

12.8 COMPILETYPELST

Most of the compiler's mechanism deas with how to handle forms (lists) and variables (literal atoms).
The user can aect the compiler's behaviour with respect to lists and literal atoms in a number of ways,

12.8

THE COMPILER

e.g. macros, declarations, COVPI LEUSERFN (page 12.7), etc. COVPI LETYPELST dlows the user to tell
the compiler what to do when it encounters a data type other than a list or an atom. It is the facility in
the compiler that corresponds to DEFEVAL (page 5.11) for the interpreter.

COWPI LETYPELST [Variable]
A list of elements of the form (TYPENAME . FUNCTION). Whenever the compiler
encounters a datum that is not alist and not an atom (or a number) in a context
where the datum is being evauated, the type name of the datum islooked up on
COWPI LETYPELST . If an entry appears CAR of which is equal to the type name,
CDR of that entry isapplied to the datum. If the value returned by this application
is not EQ to the datum, then that value is compiled instead. If the value is EQ to
the datum, or if there is no entry on COVPI LETYPELST for this type name, the
compiler simply compiles the datum as (QUOTE DATUM) .

129 COMPILING CLISP

Since the compiler does not know about CLISP, in order to compile functions containing CLISP constructs,
the denitions must rst be DW M FYed (page 16.14). The user can automate this process in several ways:

() If the variable DW M FYCOMPFLG isT, the compiler will aways DW M FY expressions before compiling
them. DW M FYCOWPFLG is initially NI L.

(2) If a le has the property FI LETYPE with value CLI SP on its property list, TCOVPL, BCOVPL,
RECOWP| LE, and BRECOWPI LE will operate as though DW M FYCOWPFLG is T and DW M FY dl
expressions before compiling.

(3) If the function denition has alocal CLI SP declaration (see page 16.10), including a null declaration,
i.e, just (CLI SP:) , the denition will be automaticaly DW M FYed before compiling.

Note: COWPI LEUSERFN (page 12.7) is dened to cal DWM FY on iterative statements, | F-THEN
statements, and fetch, replace, and match expressions, i.e, any CLISP construct which can be
recognized by its CAR of form. Thus, if the only CLISP constructs in a function appear inside of iterative
statements, | F statements, etc., the function does not have to be dwimi ed before compiling.

If DW M FY isever unsuccessful in processing a CLI SP expression, it will print the error message UNABLE
TO DW M FY followed by the expression, and go into a break.8 The user can exit the break in severa
di erent ways: (1) type OK to the break, which will cause the compiler to try again, eg. the user could
dene some missing records while in the break, and then continue; or (2) type ”~, which will cause the
compiler to simply compile the expression as is, i.e. as though CLISP had not been enabled in the rst
place; or (3) return an expression to be compiled in its place by using the RETURN break command (page
9.3).

Note: TCOWPL, BCOVPL, RECOWPI LE, and BRECOWPI LE al scan the entire le before doing any
compiling, and take note of the names of al functions that are dened in the le as well as the names
of al variables that are set by adding them to NOFI XFNSLST and NOFI XVARSLST, respectively. Thus,

8unless DW MESSGAG= T. In this case, the expression is just compiled asis, i.e. as though clisp had not
been enabled.

129

Compiler Functions

if a function is not currently dened, but isdened in the le being compiled, when DW M FY is called
before compiling, it will not attempt to interpret the function name as CLISP when it appears as CAR
of a foom. DW M FY aso takes into account variables that have been declared to be LOCALVARS, or
SPECVARS, either via block declarations or DECLARE expressions in the function being compiled, and
does not attempt spelling correction on these variables. The declaration USEDFREE may also be used to
declare variables simply used freely in a function. These variables will aso be left adone by DW M FY.
Finally, NOSPELLFLG (page 15.12) isreset to T when compiling functions from a le (as opposed to from
their in-core denition) so as to suppress spelling correction.

1210 COMPILER FUNCTIONS

Normally, the compiler isenvoked through le package commands that keep track of the state of functions,
and manage a set of les, such as MAKEFI LE (page 11.6). However, it is also possible to explicitly call the
compiler using one of a number of functions. Functions may be compiled from in-core denitions (via
COWPI LE), or from denitions in les (TCOWPL), or from a combination of in-core and le denitions

(RECOVPI LE).

TCOWPL and RECOWPI LE produce ‘‘compiled’’ les. Compiled les usualy have the same name as the
symbolic le they were made from, suxed with DCOM (Interlisp- D) or COM (Interlisp- 10).° The le name
is constructed from the name eld only, e.g., (TCOVPL ' <BOBROMFOO. TEM 3) produces FOO. DCOM
on the connected directory. The version number will be the standard default.

A ‘“‘compiled e’ contains the same expressions as the originad symbolic le, except that (1) a specia
FI LECREATED expression appears at the front of the le which contains information used by the le
package, and which causes the message COVPI LED ON DATE to be printed when the le isloaded; 10 (2)
every DEFI NEQ in the symbolic le isreplaced by the corresponding compiled denitions in the compiled
le; and (3) expressions following a DONTCOPY tag inside of a DECLARE: (page 11.26) that appears in
the symbolic le are not copied to the compiled le. The compiled denitions appear at the front of the
compiled le, i.e, before the other expressions in the symbolic le, regardless of where they appear in the
symbolic le. The only exceptions are expressions that follow a FI RST tag inside of a DECLARE: (page
11.26). This *‘compiled”’ le can be loaded into any Interlisp system with LOAD (page 11.4).

Note: When a function is compiled from its in-core denition (as opposed to being compiled from a
denition in a le), and the function has been modi ed by BREAK, TRACE, BREAKI N, or ADVI SE, it is
rst restored to its origina state, and a message is printed out, e.g., FOO UNBROKEN. If the function is
not dened asan EXPR, the value of the function's EXPR property isused for the compilation, if there is
one. If there isno EXPR property, and the compilation is being performed by RECOVPI LE, the de nition
of the function is obtained from the le (using LOADFNS). Otherwise, the compiler prints (FN NOT
COWVPI LEABLE) , and goes on to the next function.

(COWPI LE X FLG) [Function]
X is a list of functions (if atomic, (LI ST X) is used). COWPILE rst asks the
standard compiler questions, and then compiles each function on X, using its in-core
denition. Returns Xx.

9The compiled le sux isstored asthe value of the variable COVPI LE. EXT.
10The actual string printed is the value of COVPI LEHEADER, initially "conpil ed on".

12.10

(COWPI LE1 FN DEF

(TCOVPL FILES)

THE COMPILER

If compiled denitions are being written to a le, the le isclosed unless FLG= T.

=) [Function]
Compiles DEF, redening FN if STRF=T (STRF is one of the variables set by
COVPSET, page 12.1). COVPI LE1 isused by COVPI LE, TCOVPL, and RECOWPI LE.

If DWM FYCOWPFLG is T, or DEF contains a CLISP declaration, DEF is dwimi ed
before compiling. See page 12.9.

[Function]
TCOWPL is used to ‘‘compile les’; given a symbolic LOAD le (e.g., one created
by MAKEFI LE), it produces a ‘‘compiled le'’. FILES isalist of symbolic les to be
compiled (if atomic, (LI ST FILES) isused). TCOVPL asks the standard compiler
questions, except for “‘OUTPUT FI LE: . The output from the compilation of
each symbolic le is written on a le of the same name suxed with DCOM eg.,
(TCOWPL ' (SYML SYM2)) produces two les, SYML. DCOM and SYM2. DCOM.

TCOWPL processes the les one at a time, reading in the entire le. For each
FI LECREATED expression, the list of functions that were marked as changed by
the le package is noted, and the FI LECREATED expression is written onto the
output le. For each DEFI NEQ expression, TCOVPL adds any nlambda functions
dened in the DEFI NEQ to NLAMA or NLAM., and adds lambda functions to
LAMS, so that calls to these functions will be compiled correctly (see page 12.7).11
Expressions beginning with DECLARE: are processed specially (see page 11.26).
All other expressions are collected to be subsequently written onto the output le.

After processing the le in this fashion, TCOMPL compiles each function, except
for those functions which appear on the list DONTCOMPI LEFNS,12 and writes the
compiled denition onto the output le. TCOWPL then writes onto the output le
the other expressions found in the symbolic le.

Note: If the roothame of a le has the property FI LETYPE with value CLI SP,
or value a list containing CLI SP, TCOVPL rebinds DW M FYCOVWPFLG to T while
compiling the functions on FiLE, so the compiler will DW M FY al expressions
before compiling them. See page 12.9.

TCOWPL returns a list of the names of the output les. All les are properly
terminated and closed. If the compilation of any le is aborted via an error or
control- D, al les are properly closed, and the (partially complete) compiled le
is deleted.

(RECOVPI LE PFILE CFILE FNS) [Function]

The purpose of RECOWPI LE isto alow the user to update a compiled le without
recompiling every function in the le. RECOMPI LE does this by using the results of

1INLAMA, NLAML, and LAMS are rebound to their top level values (using RESETVAR) by TCOWPL,
RECOWPI LE, BCOWPL, BRECOVPI LE, COWPI LE, and BLOCKCOWPI LE, so that any additions to these
lists while inside of these functions will not propagate outside.

12|njtially NI L. DONTCOVPI LEFNS might be used for functions that compile open, since their de nitions
would be super uous when operating with the compiled le. Note that DONTCOVPI LEFNS can be set
via block declarations (see page 12.14).

1211

Compiler Functions

a previous compilation. It produces a compiled le similar to one that would have
been produced by TCOWPL, but at a considerable savings in time by only compiling
selected functions, and copying the compiled denitions for the remainder of the
functions in the le from an earlier TCOMPL or RECOVPI LE le.

PFI LE isthe name of the Pretty le (source le) to be compiled; cFiLE isthe name
of the Compiled le containing compiled denitions that may be copied. FNS
indicates which functions in PFI LE are to be recompiled, eg., have been changed
or dened for the rst time since CFILE was made. Note that PFILE, not FNS,
drives RECOWPI LE.

RECOWPI LE asks the standard compiler questions, except for “‘OUTPUT FI LE: .
As with TCOVPL, the output automatically goes to PFILE. DCOM. RECOWPI LE
processes PFILE the same as does TCOVPL except that DEFI NEQ expressions are
not actually read into core. Instead, RECOMPI LE uses the lemap (see page
11.38) to obtain a list of the functions contained in PFILE. The lemap enables
RECOWPI LE to skip over the DEFI NEQs in the le by simply resetting the le
pointer, so that in most cases the scan of the symbolic le is very fast (the only
processing required is the reading of the non- DEFI NEQs and the processing of the
DECLARE: expressions as with TCOMPL). A map is built if the symbolic le does
not aready contain one, for example if it was written in an earlier system, or with
BU LDVMAPFLG= NI L (page 11.39).

After this initial scan of PFILE, RECOVPI LE then processes the functions de ned

in the le. For each function in PFILE, RECOWPI LE determines whether
or not the function is to be (re)compiled. Functions that are members of
DONTCOWPI LEFNS are simply ignored. Otherwise, a function is recompiled if
(1) FNs is a list and the function is a member of that list; or (2) FNs= T or
EXPRS and the function is an EXPR; or (3) FNs= CHANGES and the function is
marked as having been changed in the FI LECREATED expression in PFI LE; or (4)
FNS = ALL.13 If afunction isnot to be recompiled, RECOVPI LE obtains its compiled
denition from cFiLE, and copies it (and all generated subfunctions) to the output
le, PFILE. DCOM If the function does not appear on cFi LE, RECOVPI LE simply
recompiles it. Finally, after processing al functions, RECOWPI LE writes out all
other expressions that were collected in the prescan of PFILE.

If criLE= NIL, PFILE. DCOM (the old version of the output le) is used for
copying from. If both FNs and criLE are NIL, FNS is set to the value of
RECOWPI LEDEFAULT , which is initially EXPRS. This is the most common usage.
Typically, the functions the user has changed will have been UNSAVEDEFed by the
editor, and therefore will be EXPRs. Thus the user can perform his edits, dump
the le, and then simply (RECOVPI LE ' FILE) to update the compiled le.

The value of RECOVPI LE is the new compiled le, PFiLE. DCOM If RECOWPI LE
is aborted due to an error or control- D, the new (partially complete) compiled le
will be closed and deleted.

131f FNs= ALL, CFILE is super uous, and does not have to be specied. This option may be used to
compile a symbolic le that has never been compiled before, but which has aready been loaded (since
using TCOVPL would require reading the le in a second time).

12.12

THE COMPILER

RECOWPI LE is designed to alow the user to conveniently and eciently update a compiled le, even
when the corresponding symbolic le has not been (completely) loaded. For example, the user can
perform a LOADFROM (page 11.6) to ‘‘notice’’ a symbolic le, edit the functions he wants to change (the
editor will automatically load those functions not aready loaded), call MAKEFI LE (page 11.6) to update
the symbolic le (MAKEFI LE will copy the unchanged functions from the old symbolic le), and then
perform (RECOVPI LE PFILE) .

Note: Since PRETTYDEF automatically outputs a suitable DECLARE: expression to indicate which
functions in the le (if any) are dened as NLAMBDAS, calls to these functions will be handled correctly,
even though the NLAMBDA functions themselves may never be loaded, or even looked at, by RECOVPI LE.

1211 BLOCK COMPILING

Block compiling provides a way of compiling several functions into a single block. Function calls between
the component functions of the block are very fast. Thus, compiling a block consisting of just a single
recursive function may be yield great savings if the function calls itself many times, e.g.,, EQUAL, COPY,
and COUNT are block compiled in Interlisp- 10.

The output of a block compilation is a single, usually large, function. Calls from within the block to
functions outside of the block look like regular function calls, except that they are usualy linked (see page
12.18). A block can be entered via severa di erent functions, called entries.14 These must be speci ed
when the block is compiled. For example, the error block has three entries, ERRORX, | NTERRUPT, and
FAULT1. Similarly, the compiler block has nine entries.

Note: In Interlisp- D, block compiling is handled somewhat di erently; block compiling provides a
mechanism for hiding function names interna to a block, but it does not provide a performance
improvement. Block compiling in Interlisp- D works by automatically renaming the block functions with
special names, and calling these functions with the normal function- calling mechanisms. Speci caly, a
function FN is renamed to \ BLock- NAMVE / FN. For example, function FOO in block BAR is renamed to
“\ BAR/ FOO''. Note that it is possible with this scheme to break functions internal to a block.

12111 RETFNS

Another savings in block compilation arises from omitting most of the information on the stack about
internal calls between functions in the block. However, if a function's name must be visible on the stack,
e.g., if the function isto be returned from RETFROM, RETTO, RETEVAL, etc., it must be included on the
list RETFNS.

14Actually the block is entered the same as every other function, i.e, at the top. However, the entry
functions call the main block with their name as one of its arguments, and the block dispatches on the
name, and jumps to the portion of the block corresponding to that entry point. The eect is thus the
same as though there were several di erent entry points.

1213

BLKAPPLYFENS

12.11.2 BLKAPPLYFNS

Normally, a call to APPLY from inside a block would be the same as a call to any other function outside
of the block. If the rst argument to APPLY turned out to be one of the entries to the block, the block
would have to be reentered. BLKAPPLYFNS enables a program to compute the name of a function in
the block to be called next, without the overhead of leaving the block and reentering it. This is done by
including on the list BLKAPPLYFNS those functions which will be called in this fashion, and by using
BLKAPPLY in place of APPLY, and BLKAPPLY* in place of APPLY*. If BLKAPPLY or BLKAPPLY*
is given a function not on BLKAPPLYFNS, the eect is the same as a cal to APPLY or APPLY* and
no error is generated. Note however, that BLKAPPLYFNS must be set a compile time, not run time,
and furthermore, that all functions on BLKAPPLYFNS must be in the block, or an error is generated (at
compile time), NOT ON BLKFNS.

12.11.3 BLKLIBRARY

Compiling afunction open via a macro provides away of eliminating a function call. For block compiling,
the same eect can be achieved by including the function in the block. A further advantage is that the
code for this function will appear only once in the block, whereas when a function is compiled open, its
code appears at each place where it is called.

The block library feature provides a convenient way of including functions in a block. It is just a
convenience since the user can always achieve the same eect by specifying the function(s) in question as
one of the block functions, provided it has an EXPR denition a compile time. The block library feature
simply eliminates the burden of supplying this de nition.

To use the block library feature, place the names of the functions of interest on the list BLKLI BRARY,
and their EXPR denitions on the property list of the functions under the property BLKLI BRARYDEF.
When the block compiler compiles a form, it rst checks to see if the function being called is one of the
block functions. If not, and the function is on BLKLI BRARY, its denition is obtained from the property
value of BLKLI BRARYDEF, and it is automatically included as part of the block. The functions ASSCC,
EQUAL, GETPROP, LAST, LENGTH, LI SPXWATCH, MEMB, MEMBER, NCONC1, NLEFT, NTH, / RPLNODE,
and TAI LP aready have BLKLI BRARYDEF properties.

12.11.4 Block Declarations

Block compiling a le frequently involves giving the compiler a lot of information about the nature and
structure of the compilation, e.g., block functions, entries, specvars, linking, etc. To help with this, there
is the BLOCKS le package command (page 11.25), which has the form:

(BLOCKS BLOCK 1 BLOCK , BL OCK)

where each BLOCK ; isablock declaration. The BLOCKS command outputs a DECLARE: expression, which
is noticed by BCOWL and BRECOWPI LE. BCOWPL and BRECOWPI LE are sensitive to these declarations
and take the appropriate action.

Note: Masterscope includes a facility for checking the block declarations of a le or les for various
anomalous conditions, e.g. functions in block declarations which aren’t on the le(s), functions in
ENTRI ES not in the block, variables that may not need to be SPECVARS because they are not used freely

12.14

THE COMPILER

below the places they are bound, etc. See page 13.1
The form of a block declaration is:
(BLKNAME ~ BLKFN 4 BLKFN y (VAR . VAL UE,) (VAR . VALUEY))

BLKNAME isthe name of a block. BLKFN BLKFN \, are the functions in the block and correspond to
BLKFNS in the call to BLOCKCOWPI LE. The (VAR; . VAL UE;) expressions indicate the settings for variables
aecting the compilation of that block. If VAL UE; is atomic, then VAR; is set to VAL UE; (e.0. (LI NKFNS

T)), otherwise VAR; is set to the UNI ON of VAL UE; and the current value of the variable vAR;. Also,
expressions of the form (varR * FoOrRM) will cause FORM to be evaluated and the resulting list used as
described above (e.g. (GLOBALVARS * MYGLOBALVARS)).

As an example, one of the block denitions for the editor is shown below. The block name is EDI TBLOCK,
it includes a number of functions (EDI TLO, EDI TL1, EDI TH), and it sets the variables ENTRI ES,
SPECVARS, RETFNS, GLOBALVARS, BLKAPPLYFNS, BLKLI BRARY, and NOLI NKFNS:

(EDI TBLOCK

EDI TLO EDI TL1 UNDOCEDI TL EDI TCOM EDI TCOVA EDI TCOM

EDI TMAC EDI TCOVB EDI T] UNDO UNDOEDI TCOM UNDOEDI TCOML

EDI TSMASH EDI TNCONC EDI T1F EDI T2F EDI TNTH BPNT BPNTO

BPNTL Rl RO LI LO Bl BO EDI TDEFAULT ## EDUP EDI T* EDOR

EDRPT EDLOC EDLOCL EDIT: EDI TMBD EDI TXTR EDI TELT

EDI TCONT EDI TSW EDI TW EDI TTO EDI TBELOW EDI TRAN TAI LP

EDI TSAVE EDI TH

(ENTRI ES EDI TLO ## UNDOEDI TL)

(SPECVARS L COM LCFLG #1 #2 #3 LI SPXBUFS ** COMVENT**FLG
PRETTYFLG UNDOLST UNDOLST1)

(RETFNS EDI TLO)

(GLOBALVARS EDI TCOMBA EDI TCOVBL EDI TOPS HI STORYCOVS
EDI TRACEFN)

(BLKAPPLYFNS RI RO LI LO Bl BO EDIT: EDI TMBD EDI TW
EDI TXTR)

(BLKLI BRARY LENGTH NTH LAST)

(NOLI NKFNS EDI TRACEFN))

Whenever BCOMPL or BRECOWPI LE encounter a block declaration, they rebind RETFNS, SPECVARS,
GLOBALVARS, BLKLI BRARY, NCOLI NKFNS, LI NKFNS, and DONTCOWPI LEFNS to their top level values,
bind BLKAPPLYFNS and ENTRI ES to NI L, and bind BLKNAME to the rst element of the declaration.
They then scan the rest of the declaration, setting these variables as described above. When the declaration
is exhausted, the block compiler is caled and given BLKNAME, the list of block functions, and ENTRI ES.

If a function appears in a block declaration, but is not dened in one of the les, then if it has
an in-core denition, this denition is used and a message printed NOT ON FI LE, COWPI LING I N
CORE DEFI NI TI ON. Otherwise, the message NOT COWPI LEABLE, is printed and the block declaration
processed as though the function were not on it, i.e. calls to the function will be compiled as external
function calls.

Note that since all compiler variables are rebound for each block declaration, the declaration only has to
set those variables it wants changed. Furthermore, setting a variable in one declaration has no eect on
the variable's value for another declaration.

12.15

Block Compiling Functions

After nishing all blocks, BCOVPL and BRECOWPI LE treat any functions in the le that did not appear
in a block declaration in the same way as do TCOVWPL and RECOWPI LE. If the user wishes a function
compiled separately as well as in a block, or if he wishes to compile some functions (not blockcompile),
with some compiler variables changed, he can use a specia pseudo- block declaration of the form

(NI'L BLKFN 4 BLKFN y (VAR . VAL UE,) (VAR . VALUEY))

which means that BLKFN ; BLKFN ,; should be compiled after rst setting VAR, VAR as described
above. For example,

(NIL CGETD FNTYP ARGLI ST NARGS NCONC1 GENSYM (LINKFNS . T))

appearing as a‘‘block declaration’” will cause the six indicated functions to be compiled while LI NKFNS= T
so that al of their calls will be linked (except for those functions on NOLI NKFNS).

12.11.5 Block Compiling Functions

There are three user level functions for block compiling, BLOCKCOWPI LE, BCOVPL, and BRECOWPI LE,
corresponding to COVPI LE, TCOVPL, and RECOWPI LE. All of them ultimately cal the same low level
functions in the compiler, i.e, there isno ‘‘block compiler’” per se. Instead, when block compiling, a ag
is set to enable special treatment for SPECVARS, RETFNS, BLKAPPLYFNS, and for determining whether
or not to link a function cal. Note that al of the remarks on macros, globalvars, compiler messages,
etc., dl apply equally for block compiling. Using block declarations, the user can intermix in a single
le functions compiled normaly, functions compiled normally with linked calls, and block compiled
functions.

(BLOCKCOWPI LE BLKNAME BLKFNS ENTRIES FLG) [Function]
BLKNAVE isthe name of a block, BLKFNS is a list of the functions comprising the
block, and ENTRIES a list of entries to the block.

Each of the entries must also be on BLKFNS or an error is generated, NOT ON
BLKFNS. If only one entry is speci ed, the block name can also be one of the
BLKFNS , eg., (BLOCKCOWPI LE ' FOO ' (FOO FIE FUM ' (FOO)) . However,
if more than one entry is speci ed, an error will be generated, CAN T BE BOTH
AN ENTRY AND THE BLOCK NAME.

If ENTRES iSNL, (LI ST BLKNAME) is used, eg., (BLOCKCOWPI LE ' COUNT
" (COUNT COUNT1))

If BLKFNS iSNIL, (LI ST BLKNAVE) isused, eg., (BLOCKCOWPI LE ' EQUAL)

BLOCKCOWPI LE asks the standard compiler questions and then begins compiling.
As with COWPI LE, if the compiled code is being written to a le, the le is
closed unless FLG= T. The value of BLOCKCOWPI LE is a list of the entries, or if
ENTRIES = NI L, the value is BLKNAMVE

The output of a call to BLOCKCOWPI LE is one function denition for BLKNAME
plus denitions for each of the functions on ENTRI ES if any. These entry functions

12.16

THE COMPILER

are very short functions which immediately call BLKNAVE

(BCOWL FILES CFILE _ _) [Function]
FILES is a list of symbolic les (if atomic, (LI ST FILES) is used). BCOWVPL
diers from TCOWPL in that it compiles al of the les a once, instead of one
at atime, in order to permit one block to contain functions in several les. (If
you have severa les to be BCOVPLed separately, you must make severa calls to
BCOWPL.) Output is to crILE if given, otherwise to a le whose name is (CAR
FILES) suxed with DCOM For example, (BCOWPL ' (EDI T WEDI T)) produces
one le, EDI T. DCOM.

BCOWPL asks the standard compiler questions, except for “‘OUTPUT FI LE: ', then
processes each le exactly the same as TCOVPL (page 12.11). BCOWPL next
processes the block declarations as described above. Findly, it compiles those
functions not mentioned in one of the block declarations, and then writes out all
other expressions.

If any of the les have property FI LETYPE with value CLI SP, or alist containing
CLI SP, then DW M FYCOWPFLG isrebound to T for all of the les. See page 12.9.

The value of BCOVPL isthe output le (the new compiled le). If the compilation
is aborted due to an error or control-D, al les are closed and the (partialy
complete) output le is deleted.

Note that it ispermissible to TCOMPL les set up for BCOVPL ; the block declarations
will simply have no eect. Similarly, you can BCOWPL a le that does not contain
any block declarations and the result will be the same as having TCOVPLed it.

(BRECOWPI LE FILES CFILE FNS _) [Function]
BRECOWPI LE plays the same role for BCOVPL that RECOWPI LE plays for TCOVPL.
Its purpose is to alow the user to update a compiled le without requiring an
entire BCOVPL.

FILES is a list of symbolic les (if atomic, (LI ST FILES) is used). CFILE is
the compiled le produced by BCOVPL or a previous BRECOWPI LE that contains
compiled denitions that may be copied. The interpretation of FNS is the same as
with RECOWPI LE.

BRECOWPI LE asks the standard compiler questions except for ‘‘OUTPUT FI LE: ".
As with BCOVPL, output automatically goes to FI LE. DCOM, where FI LE isthe rst
le in FILES.

BRECOWPI LE processes each le the same as RECOWPI LE (page 12.11), then
processes each block declaration. If any of the functions in the block are to be
recompiled, the entire block must be (is) recompiled. Otherwise, the block is copied
from crl LE as with RECOVPI LE. For pseudo- block declarations of the form (NI L
FNL), al variable assignments are made, but only those functions indicated by
FNS are recompiled.

After completing the block declarations, BRECOWPI LE processes al functions that
do not appear in a block declaration, recompiling those dictated by FNs, and
copying the compiled denitions of the remaining from CriLE.

12.17

Linked Function Calls

Finally, BRECOWPI LE writes onto the output le the ‘‘other expressions'’ collected
in the initial scan of FI LES.

The value of BRECOWPI LE is the output le (the new compiled le). If the
compilation is aborted due to an error or control-D, al les are closed and the
(partially complete) output le is deleted.

If criLE= NI L, the old version of FILE. DCOM is used, as with RECOWVPI LE.
In addition, if FNS and CcrILE are both NI L, FNS is set to the vaue of
RECOWPI LEDEFAULT , initialy EXPRS.

1212 LINKED FUNCTION CALLS

Note: Linked function calls are not implemented in Interlisp-D.

Conventional (non- linked) function calls from a compiled function go through the function denition cell,
i.e, the denition of the called function is obtained from its function denition cell at call time. Thus,
when the user breaks, advises, or otherwise modi es the denition of the function FQOO, every function
that subsequently calls it instead calls the modi ed function. For calls from the system functions, this
is clearly not a desirable feature. For example, suppose that the user wishes to break on basic functions
such as PRI NT, EVAL, RPLACA, etc., which are used by the break package. We would like to guarantee
that the system packages will survive through user modi cation (or destruction) of basic functions (unless
the user speci cally reguests that the system packages aso be modi ed). This protection is achieved by
linked function calls.

For linked function calls, the denition of the called function isobtained at link time, i.e., when the calling
function is dened, and stored in the literal table of the calling function. At call time, this denition is
retrieved from where it was stored in the literal table, not from the function denition cell of the called
function as it is for non-linked calls.

Note that while function calls from block compiled functions are usually linked (i.e. the default for
blocks isto link),15 and those from standardly compiled functions are usually non-linked, linking function
calls and blockcompiling are independent features of the Interlisp compiler, i.e, linked function calls are
possible, and frequently employed, from standardly compiled functions.

Note that norma function calls require only the called function’'s name in the literals of the compiled code,
whereas a linked function call uses two literals and hence produces slightly larger compiled functions.

The compiler’s decision as to whether to link a particular function cal is determined by the variables
LI NKFNS and NOLI NKFNS as follows:

(1) If the function appears on NOLI NKFNS, the call is not linked;

15In Interlisp- 10, linked function calls are actualy a little Sower and take more space than non- linked
cals, so that the user might want to include (NOLI NKFNS . T) in block declarations to override the
default.

12.18

THE COMPILER

(2) If block compiling and the function is one of the block functions, the cal is internal as described
earlier;

(3) If the function appears on LI NKFNS, the call is linked;
(4) If NOLI NKFNS= T, the call is not linked;

(5) If block compiling, the call is linked;

(6) If LI NKFNS= T, the call is linked;

(7) Otherwise the call is not linked.

Note that (1) takes precedence over (2), i.e, if a function appears on NCLI NKFNS, the call to it is not
linked, even if it is one of the functions in the block, i.e, the call will go outside of the block.

NCOLI NKFNS is initialized to various system functions such as ERRORSET, BREAK1, etc. LI NKFNS is
initialized to NI L. Thus if the user does not specify otherwise, all calls from a block compiled function
(except for those to functions on NOLI NKFNS) will be linked; all calls from standardly compiled functions
will not be linked. However, when compiling system functions such as HELP, ERROR, ARGLI ST, FNTYP,
BREAKL, et a, LI NKFNS is set to T so that even though these functions are not block compiled, all of
their calls will be linked.

If afunction isnot dened at link time, i.e,, when an attempt is made to link to it, it islinked instead to
the function NOLI NKDEF. When the function islater dened, the link can be completed by relinking the
calling function using RELI NK described below. Otherwise, if a function is run which attempts a linked
cal that was not completed, NOLI NKDEF is caled. If the function is now dened, i.e, it was dened
at some point after the attempt was made to link to it, NOLI NKDEF will quietly perform the link and
continue the call. Otherwise, it will call FAULTAPPLY and proceed as described in page 15.6.

CALLS, BREAK on FN1- | N-FN2 and ADVI SE FNL- | N-FN2 all work correctly for linked function calls,
eg., (BREAK ' (FOO I N FIE)), where FOO is called from FI E via a linked function call. Note that
control- H will not interrupt at linked function cals.

12.12.1 Relinking

The function RELI NK is available for relinking a compiled function, i.e., updating al of its linked calls
so that they use the denition extant at the time of the relink operation.

(RELI NK FN) [Function]
FN is either the name of afunction, alist of functions, an atom whose vaue isalist
of functions, or the atom WORLD. RELI NK performs the corresponding relinking
operations. RELI NK returns FN.

(RELI NK " WORLD) is possible because the compiled code reader maintains on
LI NKEDFNS alist of all user functions containing any linked calls. SYSLI NKEDFNS
is a list of al system functions that have any linked calls. (RELI NK ' WORLD)
performs both (RELI NK LI NKEDFNS) and (RELI NK SYSLI NKEDFNS) .

12.19

Compiler Error Messages

Note: To relink afunction in ablock, one should relink the block, not the function.

It is important to stress that linking takes place when a function isdened. Thus, if FOO calls FI E via a
linked call, and a bug isfound in FI E, changing FI E isnot sucient; FOO must be relinked. Similarly, if
FOOL, FOO2, and FOO3 are dened (in that order) in a le, and each cal the others vialinked calls, when
anew version of the le isloaded, FOOL will be linked to the old FOO2 and FOCB, since those de nitions

will be extant at the time it isread and dened. Similarly, FOO2 will link to the new FOOL and old FOO3.
Only FOO33 will link to the new FOOL and FOO2. The user would have to perform (RELI NK ’ (FOOL
FOO2 FOOB)) following the LOAD.

1213 COMPILER ERROR MESSAGES

Messages describing errors in the function being compiled are also printed on the teletype. These messages
are always preceded by ***** Unless otherwise indicated below, the compilation will continue.

(FN NOT ON FILE, COWPILING IN CORE DEFI NI TIQON)
From cals to BCOVPL and BRECOWPI LE.

(FN NOT COWVPI LEABLE)
An EXPR denition for FN could not be found. In this case, no code is produced
for FN, and the compiler proceeds to the next function to be compiled, if any.

(FN NOT FOUND) Occurs when RECOVPI LE or BRECOWPI LE try to copy the compiled denition of
FN from cFILE, and cannot nd it. In this case, no code is copied and the compiler
proceeds to the next function to be compiled, if any.

(FN NOT ON BLKFNS)
FN was speci ed as an entry to a block, or else was on BLKAPPLYFNS, but did
not appear on the BLKFNS . In this case, no code is produced for the entire block
and the compiler proceeds to the next function to be compiled, if any.

(FN CAN' T BE BOTH AN ENTRY AND THE BLOCK NAME)
In this case, no code is produced for the entire block and the compiler proceeds
to the next function to be compiled, if any.

(BLKNAME - USED BLKAPPLY WHEN NOT APPLI CABLE)
BLKAPPLY is used in the block BLKNAME , but there are no BLKAPPLYFNS or
ENTRI ES declared for the block.

(VAR SHOULD BE A SPECVAR - USED FREELY BY FN)
In Interlisp- 10, while compiling a block, the compiler has already generated code
to bind vAR as a LOCALVAR, but now discovers that FN uses VAR freely. VAR
should be declared a SPECVAR and the block recompiled.

((* --) COWENT USED FOR VALUE)
A comment appears in a context where its value is being used, eg. (LI ST X (*
--) Y). The compiled function will run, but the value at the point where the
comment was used is ‘‘unde ned.”

12.20

THE COMPILER

((ForM) - NON- ATOM C CAR OF FORM
If user intended to treat the value of FORM as a function, he should use APPLY*
(page 5.12). ForRM is compiled as if APPLY* had been used.

((SETQ VAR EXPR --) BAD SETQ
SETQ of more than two arguments.

(FN - USED AS ARG TO NUMBER FN?)
The value of a predicate, such as GREATERP or EQ, is used as an argument to a
function that expects numbers, such as | PLUS.

(FN - NO LONGER | NTERPRETED AS FUNCTI ONAL ARGUMENT)
The compiler has assumed FN is the name of a function. If the user intended to
treat the value of FN as a function, he must use APPLY* (page 5.12).

This message is printed when FN isnot dened, and is aso alocal variable of the
function being compiled. Note that earlier versions of the Interlisp- 10 compiler
did treat FN as a functiona argument, and compiled code to evauate it.

(FN - 1 LLEGAL RETURN)
RETURN encountered when not in PROG.

(T - ILLEGAL &O
GO encountered when not in a PROG.

(T - MULTIPLY DEFI NED TAG
TG is a PROG label that is dened more than once in a single PROG. The second
denition is ignored.

(TG - UNDEFINED TAG
TG is a PROG label that is referenced but not dened in a PROG.

(VAR - NOT A BI NDABLE VARI ABLE)
VAR isNI L, T, or else not a literal atom.

(VAR VAL -- BAD PROG BI NDI NG
Occurs when there is a prog binding of the form (VAR VAL ; VAL) -

(TG - MULTIPLY DEFI NED TAG ASSEMBLE)
TG is alabel that isdened more than once in an assemble form.

(TG UNDEFI NED TAG, ASSEMBLE)

TG is alabel that isreferenced but not dened in an ASSEMBLE form.

(TG MULTI PLY DEFI NED TAG, LAP)
TG isalabel that was encountered twice during the second pass of the compilation.
If this error occurs with no indication of a multiply dened tag during pass one,

the tag isin a LAP macro.

(Te

UNDEFI NED TAG LAP)
TG is a label that is referenced during the second pass of compilation and is
not dened. LAP treats TG as though it were a COREVAL, and continues the
compilation.

1221

Compiler Error Messages

(P - OPCODE? - ASSEMBLE)

orp appears as CAR of an assemble statement, and is illegal. See page 22.12 for
lega assemble statements.

(NO BI NARY CODE GENERATED OR LOADED FOR FN)

A previous error condition was suciently serious that binary code for FN cannot
be loaded without causing an error.

12.22

