
CHAPTER 12

THE COMPILER

The compiler is contained in the standard Interlisp system. It may be used to compile functions de�ned
in the user’s Interlisp system, or to compile de�nitions stored in a �le. The resulting compiled code may
be stored as it is compiled, so as to be available for immediate use, or it may be written onto a �le for
subsequent loading.

The most common way to use the compiler is to use one of the �le package functions, such as
(page 11.6), which automatically updates source �les, and produces compiled versions. However, it is
also possible to compile individual functions de�ned in the user’s Interlisp system, by directly calling
the compiler using functions such as (page 12.10). No matter how the compiler is called, the
function is called which asks the user certain questions concerning the compilation. (
sets the free variables , , , and which determine various modes of
operation.) Those that can be answered ‘‘yes’’or ‘‘no’’ can be answered with , , or for ‘‘yes’’; and

, , or for ‘‘no’’. The questions are:

This asks whether to generate a listing of the compiled code. The LAP and machine
code are usually not of interest but can be helpful in debugging macros. Possible
answers are:

Prints output of pass 1, the macro code.

Prints output of pass 2, the machine code.

Prints output of both passes.

Prints no listings.

The variable is set to the answer.

This question (which only appears if the answer to is a�rmative) ask
where the compiled code listing(s) should be written. Answering will print the
listings at the terminal. The variable is set to the answer.

This question asks whether the functions compiled should be rede�ned to their
compiled de�nitions. If this is answered , the compiled code is stored and the
function de�nition changed, otherwise the function de�nition remains unchanged.

The variable is set to (if this is answered) or .

This question asks whether the original de�ning s of functions should be
saved. If answered , then before rede�ning a function to its compiled de�nition,
the de�nition is saved on the property list of the function name. Otherwise
they are discarded.

It is very useful to save the de�nitions, just in case the compiled function
needs to be changed. The editing functions will retrieve this saved de�nition if it

12.1

MAKEFILE

COMPILE
COMPSET COMPSET

LAPFLG STRF SVFLG LCFIL LSTFIL
YES Y T

NO N NIL

LISTING?

1 LAP

2

YES

NO

LAPFLG

FILE: LISTING?
T

LSTFIL

REDEFINE?
YES

STRF T YES NIL

SAVE EXPRS? EXPR
YES

EXPR

EXPR

Compiler Printout

exists, rather than reading from a source �le.

The variable is set to (if this is answered) or .

This question asks whether (and where) the compiled de�nitions should be written
into a �le for later loading. If you answer with the name of a �le, that �le will be
used. If you answer or , you will be asked the name of the �le. If the �le
named is already open, it will continue to be used. If you answer or , the
output will be typed on the teletype (not particularly useful). If you answer , ,
or , output will be done.

The variable is set to the name of the �le.

In order to make answering these questions easier, there are four other possible answers to the
question, which specify common compiling modes:

ame as last setting. Uses the same answers to compiler questions as given for the
last compilation.

Compile to ile, without rede�ning functions.

ore new de�nitions, saving de�nitions.

ore new de�nitions; orget de�nitions.

Implicit in these answers are the answers to the questions on disposition of compiled code and
de�nitions, so the questions and would not be asked if these answers were
given. would still be asked, however. For example:

This process caused the functions , , and to be compiled, rede�ned, and the compiled
de�nitions also written on the �le for subsequent loading.

12.1 COMPILER PRINTOUT

In Interlisp- D, for each function compiled, whether by , , or , the
compiler prints:

12.2

SVFLG T YES NIL

OUTPUT FILE?

Y YES
T TTY:

N NO
NIL not

LCFIL

LISTING?

S S

F F

ST ST EXPR

STF ST F EXPR

EXPR
REDEFINE? SAVE EXPRS?

OUTPUT FILE?

_COMPILE((FACT FACT1 FACT2))
LISTING? ST
OUTPUT FILE? FACT.DCOM
(FACT COMPILING)
.
.
(FACT REDEFINED)
.
.
(FACT2 REDEFINED)
(FACT FACT1 FACT2)
_

FACT FACT1 FACT2
FACT.DCOM

TCOMPL RECOMPILE COMPILEFN

THE COMPILER

��� ��� ���

The message is printed at the beginning of the second pass of the compilation of . ���
is the list of arguments to ; following ‘‘ ’’ are the free variables referenced or set in (not
including global variables); following ‘‘ ’’ are the unde�ned functions called within .

In Interlisp- 10, for every function compiled, the compiler prints ��� ���
, where ��� are the free variables referenced or set in .

If the compilation of causes the generation of one or more auxilary functions (see page 12.8), a
compiler message will be printed for these functions before the message for , e.g.,

When compiling a block, the compiler �rst prints ��� . Then the normal
message is printed for the entire block. The names of the arguments to the block are generated
by su�xing ‘‘ ’’ and a number to the block name, e.g.,

. Then a message is printed for each to the block.

In addition to the above output, both and print the name of each function
that is being copied from the old compiled �le to the new compiled �le. The normal compiler message
is printed for each function that is actually compiled.

The compiler prints out error messages when it encounters problems compiling a function. For example:

The above error message indicates that an ‘‘ ’’ compiler error occurred while trying to
compile the function . Some compiler errors cause the compilation to terminate, producing nothing;
however, there are other compiler errors which do not stop compilation. The compiler error messages are
described on page 12.20.

Compiler printout and error messages go to the �le , initially . can also be set to
the name of a �le opened for output, in which case all compiler printout will go to , i.e. the
compiler will compile ‘‘silently.’’ However, any error messages will be printed to both as well
as .

12.2 GLOBAL VARIABLES

Variables that appear on the list , or have the property with value , or are
declared with the �le package command (page 11.25), are called global variables. Such
variables are always accessed through their top level value when they are used freely in a compiled
function. In other words, a reference to the value of this variable is equivalent to

, regardless of whether or not it is bound in the current access chain. Similarly,
will compile as .

12.3

(() (uses:) (calls:))

()
uses:

calls:

(() (
))

(FOOA0027 (X) (uses: XX))
(FOO (A B))

()

(FOOBLOCK (FOOBLOCK#0 FOOBLOCK#1)
) entry

RECOMPILE BRECOMPILE

----- In BAZ:
***** (BAZ - illegal RETURN)

illegal RETURN
BAZ

COUTFILE T COUTFILE
COUTFILE
COUTFILE

T

GLOBALVARS GLOBALVAR T
GLOBALVARS

(GETTOPVAL (QUOTE
)) (SETQ

) (SETTOPVAL (QUOTE))

FN AR G 1 AR G N VAR 1 VAR N FN 1 FN N

FN AR G 1 AR G N
FN FN

FN

FN AR G 1 AR G N FREE 1
FREE N FREE 1 FREE N FN

FN

FN

BLKNAME BLKFN 1 BLKFN 2

FREE- VARIABLES

VARIABLE

VARIABLE VAL UE VARIABLE VAL UE

LOCALVARS and SPECVARS

All system parameters, unless otherwise speci�ed, are declared as global variables. Thus, these
variables in a deep bound system (like Interlisp- D) will not a�ect the behavior of the system: instead, the
variables must be to their new values, and if they are to be restored to their original values, reset
again. For example, the user might write

Note that in this case, if an error occurred during the evaluation of , or a control- D was typed, the
global variable would not be restored to its original value. The function (page 9.20) provides
a convenient way of resetting global variables in such a way that their values are restored even if an error
occurred or control- D is typed.

Note: Interlisp- 10 employs a shallow binding scheme as described on page 7.1. There is no distinction
between global variables and other types of variables: all variable references are to the variable’s value
cell. Thus, the cost of a variable is small and independent of the depth of computation, whereas
in a deep bound system, it can be expensive to search the stack for the most recent binding of a variable,
hence the need for a mechanism like global variables. Note however that in a shallow bound system, the
cost of rebinding a variable is somewhat higher than in a deep bound system (except when the variable
is a). For the purposes of compilation, global variables are treated the same as ,
i.e. their names are always visible on the stack when they are rebound.

12.3 LOCALVARS AND SPECVARS

In normal compiled and interpreted code, all variable bindings are accessible by lower level functions
because the variable’s name is associated with its value. We call such variables variables, or
specvars. As mentioned earlier, the block compiler normally does associate names with variable
values. Such unnamed variables are not accessible from outside the function which binds them and are
therefore to that function. We call such unnamed variables local variables, or localvars.

The time economies of local variables can be achieved without block compiling by use of declarations.
Using local variables will increase the speed of compiled code; the price is the work of writing the
necessary specvar declarations for those variables which need to be accessed from outside the block.

and are variables that a�ect compilation. During regular compilation,
is normally , and is or a list. This con�guration causes all variables bound in the
functions being compiled to be treated as special those that appear on . During block
compilation, is normally and is or a list. All variables are then treated as
local those that appear on .

Declarations to set and to other values, and therefore a�ect how variables are
treated, may be used at several levels in the compilation process with varying scope.

(1) The declarations may be included in the �lecoms of a �le, by using the and
�le package commands (page 11.25). The scope of the declaration is then the entire �le:

��� ���

12.4

rebinding

reset

(SETQ)

(SETQ)

RESETVAR

accessing

LOCALVAR SPECVARS

special
not

local

LOCALVARS SPECVARS SPECVARS
T LOCALVARS NIL

except LOCALVARS
LOCALVARS T SPECVARS NIL

except SPECVARS

LOCALVARS SPECVARS

LOCALVARS SPECVARS

(LOCALVARS . T) (SPECVARS X Y)

GL OBAL VARIABLE NEWV AL UE

FORM

GL OBAL VARIABLE OLD VAL UE

FORM

THE COMPILER

(2) The declarations may be included in block declarations; the scope is then the block, e.g.,

(3) The declarations may also appear in individual functions, or in ’s or ’s within a function,
using the function. In this case, the scope of the declaration is the function or the or

in which it appears. and declarations must appear immediately after the
variable list in the function, , or , but intervening comments are permitted. For example:

If the above function is compiled (non- block), the outer will be special, the bound in the will
be local, and both bindings of will be local.

Declarations for and can be used in two ways: either to cause variables to
be treated the same whether the function(s) are block compiled or compiled normally, or to a�ect one
compilation mode while not a�ecting the default in the other mode. For example:

will cause , , and to be specvars for both block and normal compilation while

will make a specvar when block compiling, but when regular compiling the declaration will have no
e�ect, because the default value of specvars would be , and therefore and will be specvars by
default.

Although and declarations have the same form as other components of block
declarations such as , their operation is somewhat di�erent because the two variables
are not independent. will cause to be set to , and to be
set to . will have e�ect if the value of is , but if it is a
list (or), will be set to the union of its prior value and . The operation
of is analogous. Thus, to a�ect both modes of compilation one of the two (or

) must be declared before specifying a list for the other.

12.4 CONSTANTS

The function enables the user to de�ne certain expressions as descriptions of their ‘‘constant’’
values. For example, if a user program needed a scratch list of length 30, the user could specify

12.5

(BLOCKS ((FOOBLOCK FOO FIE (SPECVARS . T) (LOCALVARS X)))

PROG LAMBDA
DECLARE PROG

LAMBDA LOCALVARS SPECVARS
PROG LAMBDA

(DEFINEQ ((FOO
(LAMBDA (X Y)

(DECLARE (LOCALVARS Y))
(PROG (X Y Z)

(DECLARE (LOCALVARS X))
...]

X X PROG
Y

LOCALVARS SPECVARS

(LAMBDA (X Y)
(DECLARE (SPECVARS . T))
(PROG (Z) ...]

X Y Z

(LAMBDA (X Y)
(DECLARE (SPECVARS X))
...]

X
T both X Y

LOCALVARS SPECVARS
(LINKFNS . T)

(SPECVARS . T) SPECVARS T LOCALVARS
NIL (SPECVARS V1 V2 ...) no SPECVARS T
NIL SPECVARS (V1 V2 ...)

LOCALVARS LOCALVARS
SPECVARS T

CONSTANT

Compiling Function Calls

instead of ��� . The former is more
concise and displays the important parameter much more directly than the latter. can also be
used to denote values that cannot be quoted directly, such as ,

. It is also useful to parameterize quantities that are constant at run time but may di�er at
compile time, e.g. in a program is exactly equivalent to 36, if the variable

is bound to 36 when the expression is evaluated at compile time.

When interpreted, the expression occuring as the argument to is evaluted each time it is
encountered. If the form is compiled, however, the expression will be evaluated only once:

If the value of the expression has a readable print- name, then it will be evaluated at compile- time, and the
value will be saved as a literal in the compiled function’s de�nition, as if
had appeared instead of .

If the value does not have a readable printname (e.g. the and examples above), then
the expression itself will be saved with the function, and it will be evaluated when the function is �rst
executed. The value will then be stored in the function’s literals, and will be retrieved on future references.

Whereas the function attempts to evaluate the expression as soon as possible (compile- time,
load- time, or �rst- run- time), the function will always defer the evaluation until �rst
running. This is useful when the storage for the constant is excessive so that it shouldn’t be allocated
until (unless) the function is actually invoked.

Note: The function (page 4.3) provides a mechanism for conparing a value to a number of
constants.

��� [NLambda NoSpread Function]
De�nes , ��� (unevaluated) to be compile- time constants. Whenever the
compiler encounters a (free) reference to one of these constants, it will compile the
form instead.

If is a list of the form , a free reference to the variable will
compile as .

Constants can be saved using the �le package command (page 11.27).

12.5 COMPILING FUNCTION CALLS

When compiling the call to a function, the compiler must know the type of the function, to determine how
the arguments should be prepared (evaluated/unevaluated, spread/nospread). There are three seperate
cases: lambda, nlambda spread, and nlambda nospread functions.

To determine which of these three cases is appropriate, the compiler will �rst look for a de�nition among
the functions in the �le that is being compiled. The function can be de�ned anywhere in any of the �les
given as arguments to , , or . If the function is not contained
in the �le, the compiler will look for other information in the variables , , and , which
can be set by the user:

12.6

(CONSTANT (to 30 collect NIL)) (QUOTE (NIL NIL))
CONSTANT

(CONSTANT (PACK NIL)) (CONSTANT
(ARRAY 10))

(CONSTANT BITSPERWORD)
BITSPERWORD CONSTANT

CONSTANT
CONSTANT

(QUOTE)
(CONSTANT)

PACK ARRAY

CONSTANT
DEFERREDCONSTANT

SELECTC

(CONSTANTS)

(CONSTANT)

()
(CONSTANT)

CONSTANTS

BCOMPL TCOMPL BRECOMPILE RECOMPILE
NLAMA NLAML LAMS

VAL UE-OF-EXPRESSION

EXPRESSION

VAR 1 VAR 2 VAR N
VAR 1 VAR N

VAR i

VAR i VAR FORM

FORM

THE COMPILER

[Variable]
(for bda toms) A list of functions to be treated as nlambda nospread functions
by the compiler.

[Variable]
(for bda ist) A list of functions to be treated as nlambda spread functions
by the compiler.

[Variable]
A list of functions to be treated as lambda functions by the compiler. Note
that including functions on is only necessary to override in-core nlambda
de�nitions, since in the absence of other information, the compiler assumes the
function is a lambda.

If the function is not contained in a �le, or on the lists , , or , the compiler will look
for a current de�nition in the Interlisp system, and use its type. If there is no current de�nition, next

is called:

[Variable]
When compiling a function call, if the function type cannot be found by looking
in �les, the variables , , or , or at a current de�nition, then
if the value of is not , the compiler calls (the value of)

giving it as arguments of the form and the form itself,
i.e., the compiler does . If a
non- value is returned, it is compiled instead of . If is returned, the
compiler compiles the original expression as a call to a lambda spread that is not
yet de�ned.

Note that is only called when the compiler encounters a
of which is not the name of a de�ned function. The user can instruct the compiler
about how to compile other data types via , page 12.9.

CLISP uses to tell the compiler how to compile iterative
statements, statements, and pattern match constructs (See page
12.9).

If the compiler cannot determine the function type by any of the means above, it assumes that the
function is a lambda function, and its arguments are to be evaluated. The function is also added to the
value of :

[Variable]
(for ssumed bda) A list of functions to that the compiler has assumed to
be lambda functions. is not used by the compiler; it is maintained for the
user’s bene�t so that the user can check to see whether any incorrect assumptions
were made.

If there are nlambda functions called from the functions being compiled, and they are only de�ned in
a separate �le, they must be included on or , or the compiler will incorrectly assume that
their arguments are to be evaluated, and compile the calling function correspondingly. Note that this is
only necessary if the compiler does not ‘‘know’’ about the function. If the function is de�ned at compile
time, or is handled via a macro, or is contained in the same group of �les as the functions that call it, the

12.7

NLAMA
NLAM A

NLAML
NLAM L

LAMS

LAMS

NLAMA NLAML LAMS

COMPILEUSERFN

COMPILEUSERFN

NLAMA NLAML LAMS
COMPILEUSERFN NIL

COMPILEUSERFN CDR
(APPLY* COMPILEUSERFN (CDR))

NIL NIL

COMPILEUSERFN list CAR

COMPILETYPELST

COMPILEUSERFN
IF-THEN-ELSE

ALAMS

ALAMS
A LAM S

ALAMS

NLAMA NLAML

FORM FORM

FORM

FUNCTION and Functional Arguments

compiler will automatically handle calls to that function correctly.

12.6 FUNCTION AND FUNCTIONAL ARGUMENTS

Compiling the function (page 5.15) may involve creating and compiling a seperate ‘‘auxiliary
function’’, which will be called at run time. An auxiliary function is named by attaching a
(page 2.11) to the end of the name of the function in which they appear, e.g., . For example,
suppose is de�ned as ��� ��� ��� and compiled. When

is run, will be called with two arguments, , and and will call
each time it uses its functional argument.

Compiling will create an auxiliary function if it is a functional argument to a function that
compiles open, such as most of the mapping functions (, , etc.). Note that a considerable
savings in time could be achieved by making compile open via a computed macro (page 5.17), e.g.

is the de�nition of as a function of just its �rst argument, and is the name used for its
functional argument in its de�nition. In this case, ��� would compile as an
expression, containing the argument to as an open expression. Thus you save not
only the function call to , but also each of the function calls to its functional argument. For example,
if operates on a list of length ten, eleven function calls will be saved. Of course, this savings in
time costs space, and the user must decide which is more important.

12.7 OPEN FUNCTIONS

When a function is called from a compiled function, a system routine is invoked that sets up the parameter
and control push lists as necessary for variable bindings and return information. If the amount of time
spent the function is small, this function calling time will be a signi�cant percentage of the total
time required to use the function. Therefore, many ‘‘small’’functions, e.g., , , , , are
always compiled ‘‘open’’, i.e., they do not result in a function call. Other larger functions such as ,

, , etc. are compiled open because they are frequently used. The user can make other
functions compile open via de�nitions (see page 5.17). The user can also a�ect the compiled code
via (page 12.7) and (page 12.9).

12.8 COMPILETYPELST

Most of the compiler’s mechanism deals with how to handle forms (lists) and variables (literal atoms).
The user can a�ect the compiler’s behaviour with respect to lists and literal atoms in a number of ways,

12.8

FUNCTION
GENSYM

FOOA0003
FOO (LAMBDA (X) (FOO1 X (FUNCTION)))

FOO FOO1 X FOOA000 FOO1 FOOA000

FUNCTION not
MAPCAR MAPLIST

FOO1

(Z (LIST (SUBST (CADADR Z)
(QUOTE FN)

)
(CAR Z)))

FOO1 FN
(FOO1 X (FUNCTION))

FUNCTION LAMBDA
FOO1

FOO1

inside
CAR CDR EQ NOT CONS

PROG
SELECTQ MAPC

MACRO
COMPILEUSERFN COMPILETYPELST

N N

DEF

DEF

8

8

THE COMPILER

e.g. macros, declarations, (page 12.7), etc. allows the user to tell
the compiler what to do when it encounters a data type than a list or an atom. It is the facility in
the compiler that corresponds to (page 5.11) for the interpreter.

[Variable]
A list of elements of the form . Whenever the compiler
encounters a datum that is not a list and not an atom (or a number) in a context
where the datum is being evaluated, the type name of the datum is looked up on

. If an entry appears of which is equal to the type name,
of that entry is applied to the datum. If the value returned by this application

is to the datum, then that value is compiled instead. If the value to
the datum, or if there is no entry on for this type name, the
compiler simply compiles the datum as .

12.9 COMPILING CLISP

Since the compiler does not know about CLISP, in order to compile functions containing CLISP constructs,
the de�nitions must �rst be ed (page 16.14). The user can automate this process in several ways:

(1) If the variable is , the compiler will always expressions before compiling
them. is initially .

(2) If a �le has the property with value on its property list, , ,
, and will operate as though is and all

expressions before compiling.

(3) If the function de�nition has a local declaration (see page 16.10), including a null declaration,
i.e., just , the de�nition will be automatically ed before compiling.

Note: (page 12.7) is de�ned to call on iterative statements, -
statements, and , , and expressions, i.e., any CLISP construct which can be
recognized by its of form. Thus, if the only CLISP constructs in a function appear inside of iterative
statements, statements, etc., the function does not have to be dwimi�ed before compiling.

If is ever unsuccessful in processing a expression, it will print the error message
followed by the expression, and go into a break. The user can exit the break in several

di�erent ways: (1) type to the break, which will cause the compiler to try again, e.g. the user could
de�ne some missing records while in the break, and then continue; or (2) type , which will cause the
compiler to simply compile the expression as is, i.e. as though CLISP had not been enabled in the �rst
place; or (3) return an expression to be compiled in its place by using the break command (page
9.3).

Note: , , , and all scan the entire �le before doing any
compiling, and take note of the names of all functions that are de�ned in the �le as well as the names
of all variables that are set by adding them to and , respectively. Thus,

unless = . In this case, the expression is just compiled as is, i.e. as though clisp had not
been enabled.

12.9

COMPILEUSERFN COMPILETYPELST
other

DEFEVAL

COMPILETYPELST
(.)

COMPILETYPELST CAR
CDR

not EQ is EQ
COMPILETYPELST

(QUOTE)

DWIMIFY

DWIMIFYCOMPFLG T DWIMIFY
DWIMIFYCOMPFLG NIL

FILETYPE CLISP TCOMPL BCOMPL
RECOMPILE BRECOMPILE DWIMIFYCOMPFLG T DWIMIFY

CLISP
(CLISP:) DWIMIFY

COMPILEUSERFN DWIMIFY IF THEN
fetch replace match
CAR

IF

DWIMIFY CLISP UNABLE
TO DWIMIFY

OK
^

RETURN

TCOMPL BCOMPL RECOMPILE BRECOMPILE

NOFIXFNSLST NOFIXVARSLST

DWIMESSGAG T

TYPENAME FUNCTION

D ATUM

9

10

9

10

Compiler Functions

if a function is not currently de�ned, but de�ned in the �le being compiled, when is called
before compiling, it will not attempt to interpret the function name as CLISP when it appears as
of a form. also takes into account variables that have been declared to be , or

, either via block declarations or expressions in the function being compiled, and
does not attempt spelling correction on these variables. The declaration may also be used to
declare variables simply used freely in a function. These variables will also be left alone by .
Finally, (page 15.12) is reset to when compiling functions from a �le (as opposed to from
their in-core de�nition) so as to suppress spelling correction.

12.10 COMPILER FUNCTIONS

Normally, the compiler is envoked through �le package commands that keep track of the state of functions,
and manage a set of �les, such as (page 11.6). However, it is also possible to explicitly call the
compiler using one of a number of functions. Functions may be compiled from in-core de�nitions (via

), or from de�nitions in �les (), or from a combination of in-core and �le de�nitions
().

and produce ‘‘compiled’’ �les. Compiled �les usually have the same name as the
symbolic �le they were made from, su�xed with (Interlisp- D) or (Interlisp- 10). The �le name
is constructed from the name �eld only, e.g., produces
on the connected directory. The version number will be the standard default.

A ‘‘compiled �le’’ contains the same expressions as the original symbolic �le, except that (1) a special
expression appears at the front of the �le which contains information used by the �le

package, and which causes the message to be printed when the �le is loaded; (2)
every in the symbolic �le is replaced by the corresponding compiled de�nitions in the compiled
�le; and (3) expressions following a tag inside of a (page 11.26) that appears in
the symbolic �le are not copied to the compiled �le. The compiled de�nitions appear at the front of the
compiled �le, i.e., before the other expressions in the symbolic �le,

The only exceptions are expressions that follow a tag inside of a (page
11.26). This ‘‘compiled’’ �le can be loaded into any Interlisp system with (page 11.4).

Note: When a function is compiled from its in-core de�nition (as opposed to being compiled from a
de�nition in a �le), and the function has been modi�ed by , , , or , it is
�rst restored to its original state, and a message is printed out, e.g., . If the function is
not de�ned as an , the value of the function’s property is used for the compilation, if there is
one. If there is no property, and the compilation is being performed by , the de�nition
of the function is obtained from the �le (using). Otherwise, the compiler prints

, and goes on to the next function.

[Function]
is a list of functions (if atomic, is used). �rst asks the

standard compiler questions, and then compiles each function on , using its in-core
de�nition. Returns .

The compiled �le su�x is stored as the value of the variable .

The actual string printed is the value of , initially .

12.10

is DWIMIFY
CAR

DWIMIFY LOCALVARS
SPECVARS DECLARE

USEDFREE
DWIMIFY

NOSPELLFLG T

MAKEFILE

COMPILE TCOMPL
RECOMPILE

TCOMPL RECOMPILE
DCOM COM

(TCOMPL ’<BOBROW>FOO.TEM;3) FOO.DCOM

FILECREATED
COMPILED ON

DEFINEQ
DONTCOPY DECLARE:

regardless of where they appear in the
symbolic �le. FIRST DECLARE:

LOAD

BREAK TRACE BREAKIN ADVISE
FOO UNBROKEN

EXPR EXPR
EXPR RECOMPILE

LOADFNS (NOT
COMPILEABLE)

(COMPILE)
(LIST) COMPILE

COMPILE.EXT

COMPILEHEADER "compiled on"

DATE

FN

X FL G

X X

X

X

11

12

11

12

THE COMPILER

If compiled de�nitions are being written to a �le, the �le is closed unless = .

[Function]
Compiles , rede�ning if = (is one of the variables set by

, page 12.1). is used by , , and .

If is , or contains a CLISP declaration, is dwimi�ed
before compiling. See page 12.9.

[Function]
is used to ‘‘compile �les’’; given a symbolic �le (e.g., one created

by), it produces a ‘‘compiled �le’’. is a list of symbolic �les to be
compiled (if atomic, is used). asks the standard compiler
questions, except for ‘‘ ’’. The output from the compilation of
each symbolic �le is written on a �le of the same name su�xed with , e.g.,

produces two �les, and .

processes the �les one at a time, reading in the entire �le. For each
expression, the list of functions that were marked as changed by

the �le package is noted, and the expression is written onto the
output �le. For each expression, adds any nlambda functions
de�ned in the to or , and adds lambda functions to

, so that calls to these functions will be compiled correctly (see page 12.7).
Expressions beginning with are processed specially (see page 11.26).
All other expressions are collected to be subsequently written onto the output �le.

After processing the �le in this fashion, compiles each function, except
for those functions which appear on the list , and writes the
compiled de�nition onto the output �le. then writes onto the output �le
the other expressions found in the symbolic �le.

Note: If the rootname of a �le has the property with value ,
or value a list containing , rebinds to while
compiling the functions on , so the compiler will all expressions
before compiling them. See page 12.9.

returns a list of the names of the output �les. All �les are properly
terminated and closed. If the compilation of any �le is aborted via an error or
control- D, all �les are properly closed, and the (partially complete) compiled �le
is deleted.

[Function]
The purpose of is to allow the user to update a compiled �le without
recompiling every function in the �le. does this by using the results of

, , and are rebound to their top level values (using) by ,
, , , , and , so that any additions to these

lists while inside of these functions will not propagate outside.

Initially . might be used for functions that compile open, since their de�nitions
would be super�uous when operating with the compiled �le. Note that can be set
via block declarations (see page 12.14).

12.11

T

(COMPILE1)
STRF T STRF

COMPSET COMPILE1 COMPILE TCOMPL RECOMPILE

DWIMIFYCOMPFLG T

(TCOMPL)
TCOMPL LOAD

MAKEFILE
(LIST) TCOMPL

OUTPUT FILE:
DCOM

(TCOMPL ’(SYM1 SYM2)) SYM1.DCOM SYM2.DCOM

TCOMPL
FILECREATED

FILECREATED
DEFINEQ TCOMPL

DEFINEQ NLAMA NLAML
LAMS

DECLARE:

TCOMPL
DONTCOMPILEFNS

TCOMPL

FILETYPE CLISP
CLISP TCOMPL DWIMIFYCOMPFLG T

DWIMIFY

TCOMPL

(RECOMPILE)
RECOMPILE

RECOMPILE

NLAMA NLAML LAMS RESETVAR TCOMPL
RECOMPILE BCOMPL BRECOMPILE COMPILE BLOCKCOMPILE

NIL DONTCOMPILEFNS
DONTCOMPILEFNS

FL G

FN DEF _

DEF FN

DEF DEF

FILES

FILES

FILES

FILE

PFILE CFILE FNS

13

13

Compiler Functions

a previous compilation. It produces a compiled �le similar to one that would have
been produced by , but at a considerable savings in time by only compiling
selected functions, and copying the compiled de�nitions for the remainder of the
functions in the �le from an earlier or �le.

is the name of the retty �le (source �le) to be compiled; is the name
of the ompiled �le containing compiled de�nitions that may be copied.
indicates which functions in are to be recompiled, e.g., have been changed
or de�ned for the �rst time since was made. Note that , not ,
drives .

asks the standard compiler questions, except for ‘‘ ’’.
As with , the output automatically goes to .
processes the same as does except that expressions are
not actually read into core. Instead, uses the �lemap (see page
11.38) to obtain a list of the functions contained in . The �lemap enables

to skip over the s in the �le by simply resetting the �le
pointer, so that in most cases the scan of the symbolic �le is very fast (the only
processing required is the reading of the non- s and the processing of the

expressions as with). A map is built if the symbolic �le does
not already contain one, for example if it was written in an earlier system, or with

= (page 11.39).

After this initial scan of , then processes the functions de�ned
in the �le. For each function in , determines whether
or not the function is to be (re)compiled. Functions that are members of

are simply ignored. Otherwise, a function is recompiled if
(1) is a list and the function is a member of that list; or (2) = or

and the function is an ; or (3) = and the function is
marked as having been changed in the expression in ; or (4)

= . If a function is not to be recompiled, obtains its compiled
de�nition from , and copies it (and all generated subfunctions) to the output
�le, . If the function does not appear on , simply
recompiles it. Finally, after processing all functions, writes out all
other expressions that were collected in the prescan of .

If = , (the old version of the output �le) is used for
copying . If both and are , is set to the value of

, which is initially . This is the most common usage.
Typically, the functions the user has changed will have been ed by the
editor, and therefore will be s. Thus the user can perform his edits, dump
the �le, and then simply to update the compiled �le.

The value of is the new compiled �le, . If
is aborted due to an error or control- D, the new (partially complete) compiled �le
will be closed and deleted.

If = , is super�uous, and does not have to be speci�ed. This option may be used to
compile a symbolic �le that has never been compiled before, but which has already been loaded (since
using would require reading the �le in a second time).

12.12

TCOMPL

TCOMPL RECOMPILE

P
C

RECOMPILE

RECOMPILE OUTPUT FILE:
TCOMPL .DCOM RECOMPILE

TCOMPL DEFINEQ
RECOMPILE

RECOMPILE DEFINEQ

DEFINEQ
DECLARE: TCOMPL

BUILDMAPFLG NIL

RECOMPILE
RECOMPILE

DONTCOMPILEFNS
T

EXPRS EXPR CHANGES
FILECREATED

ALL RECOMPILE

.DCOM RECOMPILE
RECOMPILE

NIL .DCOM
from NIL

RECOMPILEDEFAULT EXPRS
UNSAVEDEF

EXPR
(RECOMPILE ’)

RECOMPILE .DCOM RECOMPILE

ALL

TCOMPL

PFILE CFILE

FNS

PFILE

CFILE PFILE FNS

PFILE

PFILE

PFILE

PFILE

PFILE

FNS FNS

FNS

PFILE

FNS

CFILE

PFILE CFILE

PFILE

CFILE PFILE

FNS CFILE FNS

FILE

PFILE

FNS CFILE

14

14

THE COMPILER

is designed to allow the user to conveniently and update a compiled �le, even
when the corresponding symbolic �le has not been (completely) loaded. For example, the user can
perform a (page 11.6) to ‘‘notice’’ a symbolic �le, edit the functions he wants to change (the
editor will automatically load those functions not already loaded), call (page 11.6) to update
the symbolic �le (will copy the unchanged functions from the old symbolic �le), and then
perform .

Note: Since automatically outputs a suitable expression to indicate which
functions in the �le (if any) are de�ned as s, calls to these functions will be handled correctly,
even though the functions themselves may never be loaded, or even looked at, by .

12.11 BLOCK COMPILING

Block compiling provides a way of compiling several functions into a single block. Function calls between
the component functions of the block are very fast. Thus, compiling a block consisting of just a single
recursive function may be yield great savings if the function calls itself many times, e.g., , ,
and are block compiled in Interlisp- 10.

The output of a block compilation is a single, usually large, function. Calls from within the block to
functions outside of the block look like regular function calls, except that they are usually linked (see page
12.18). A block can be entered via several di�erent functions, called entries. These must be speci�ed
when the block is compiled. For example, the error block has three entries, , , and

. Similarly, the compiler block has nine entries.

Note: In Interlisp- D, block compiling is handled somewhat di�erently; block compiling provides a
mechanism for hiding function names internal to a block, but it does not provide a performance
improvement. Block compiling in Interlisp- D works by automatically renaming the block functions with
special names, and calling these functions with the normal function- calling mechanisms. Speci�cally, a
function is renamed to . For example, function in block is renamed to
‘‘ ’’. Note that it is possible with this scheme to break functions internal to a block.

12.11.1 RETFNS

Another savings in block compilation arises from omitting most of the information on the stack about
internal calls between functions in the block. However, if a function’s name must be visible on the stack,
e.g., if the function is to be returned from , , , etc., it must be included on the
list .

Actually the block is entered the same as every other function, i.e., at the top. However, the entry
functions call the main block with their name as one of its arguments, and the block dispatches on the
name, and jumps to the portion of the block corresponding to that entry point. The e�ect is thus the
same as though there were several di�erent entry points.

12.13

RECOMPILE e�ciently

LOADFROM
MAKEFILE

MAKEFILE
(RECOMPILE)

PRETTYDEF DECLARE:
NLAMBDA

NLAMBDA RECOMPILE

EQUAL COPY
COUNT

ERRORX INTERRUPT
FAULT1

\ / FOO BAR
\BAR/FOO

RETFROM RETTO RETEVAL
RETFNS

PFILE

FN BL OCK- NAME FN

BLKAPPLYFNS

12.11.2 BLKAPPLYFNS

Normally, a call to from inside a block would be the same as a call to any other function outside
of the block. If the �rst argument to turned out to be one of the entries to the block, the block
would have to be reentered. enables a program to compute the name of a function in
the block to be called next, without the overhead of leaving the block and reentering it. This is done by
including on the list those functions which will be called in this fashion, and by using

in place of , and in place of . If or
is given a function not on , the e�ect is the same as a call to or and
no error is generated. Note however, that must be set at time, not run time,
and furthermore, that all functions on must be in the block, or an error is generated (at
compile time), .

12.11.3 BLKLIBRARY

Compiling a function open via a macro provides a way of eliminating a function call. For block compiling,
the same e�ect can be achieved by including the function in the block. A further advantage is that the
code for this function will appear only once in the block, whereas when a function is compiled open, its
code appears at each place where it is called.

The block library feature provides a convenient way of including functions in a block. It is just a
convenience since the user can always achieve the same e�ect by specifying the function(s) in question as
one of the block functions, provided it has an de�nition at compile time. The block library feature
simply eliminates the burden of supplying this de�nition.

To use the block library feature, place the names of the functions of interest on the list ,
and their de�nitions on the property list of the functions under the property .
When the block compiler compiles a form, it �rst checks to see if the function being called is one of the
block functions. If not, and the function is on , its de�nition is obtained from the property
value of , and it is automatically included as part of the block. The functions ,

, , , , , , , , , , ,
and already have properties.

12.11.4 Block Declarations

Block compiling a �le frequently involves giving the compiler a lot of information about the nature and
structure of the compilation, e.g., block functions, entries, specvars, linking, etc. To help with this, there
is the �le package command (page 11.25), which has the form:

���

where each is a block declaration. The command outputs a expression, which
is noticed by and . and are sensitive to these declarations
and take the appropriate action.

Note: Masterscope includes a facility for checking the block declarations of a �le or �les for various
anomalous conditions, e.g. functions in block declarations which aren’t on the �le(s), functions in

not in the block, variables that may not need to be because they are not used freely

12.14

APPLY
APPLY

BLKAPPLYFNS

BLKAPPLYFNS
BLKAPPLY APPLY BLKAPPLY* APPLY* BLKAPPLY BLKAPPLY*

BLKAPPLYFNS APPLY APPLY*
BLKAPPLYFNS compile

BLKAPPLYFNS
NOT ON BLKFNS

EXPR

BLKLIBRARY
EXPR BLKLIBRARYDEF

BLKLIBRARY
BLKLIBRARYDEF ASSOC

EQUAL GETPROP LAST LENGTH LISPXWATCH MEMB MEMBER NCONC1 NLEFT NTH /RPLNODE
TAILP BLKLIBRARYDEF

BLOCKS

(BLOCKS)

BLOCKS DECLARE:
BCOMPL BRECOMPILE BCOMPL BRECOMPILE

ENTRIES SPECVARS

BL OCK 1 BL OCK 2 BL OCK N

BL OCK i

THE COMPILER

below the places they are bound, etc. See page 13.1

The form of a block declaration is:

��� ���

is the name of a block. ��� are the functions in the block and correspond to
in the call to . The (.) expressions indicate the settings for variables

a�ecting the compilation of that block. If is atomic, then is set to (e.g.
), otherwise is set to the of and the current value of the variable . Also,

expressions of the form will cause to be evaluated and the resulting list used as
described above (e.g.).

As an example, one of the block de�nitions for the editor is shown below. The block name is ,
it includes a number of functions (, , ���), and it sets the variables ,

, , , , , and :

Whenever or encounter a block declaration, they rebind , ,
, , , , and to their top level values,

bind and to , and bind to the �rst element of the declaration.
They then scan the rest of the declaration, setting these variables as described above. When the declaration
is exhausted, the block compiler is called and given , the list of block functions, and .

If a function appears in a block declaration, but is not de�ned in one of the �les, then if it has
an in-core de�nition, this de�nition is used and a message printed

. Otherwise, the message , is printed and the block declaration
processed as though the function were not on it, i.e. calls to the function will be compiled as external
function calls.

Note that since all compiler variables are rebound for each block declaration, the declaration only has to
set those variables it wants . Furthermore, setting a variable in one declaration has no e�ect on
the variable’s value for another declaration.

12.15

((.) (.))

BLOCKCOMPILE
(LINKFNS

. T) UNION
(*)

(GLOBALVARS * MYGLOBALVARS)

EDITBLOCK
EDITL0 EDITL1 EDITH ENTRIES

SPECVARS RETFNS GLOBALVARS BLKAPPLYFNS BLKLIBRARY NOLINKFNS

(EDITBLOCK
EDITL0 EDITL1 UNDOEDITL EDITCOM EDITCOMA EDITCOML
EDITMAC EDITCOMS EDIT]UNDO UNDOEDITCOM UNDOEDITCOM1
EDITSMASH EDITNCONC EDIT1F EDIT2F EDITNTH BPNT BPNT0
BPNT1 RI RO LI LO BI BO EDITDEFAULT ## EDUP EDIT* EDOR
EDRPT EDLOC EDLOCL EDIT: EDITMBD EDITXTR EDITELT
EDITCONT EDITSW EDITMV EDITTO EDITBELOW EDITRAN TAILP
EDITSAVE EDITH
(ENTRIES EDITL0 ## UNDOEDITL)
(SPECVARS L COM LCFLG #1 #2 #3 LISPXBUFS **COMMENT**FLG

PRETTYFLG UNDOLST UNDOLST1)
(RETFNS EDITL0)
(GLOBALVARS EDITCOMSA EDITCOMSL EDITOPS HISTORYCOMS

EDITRACEFN)
(BLKAPPLYFNS RI RO LI LO BI BO EDIT: EDITMBD EDITMV

EDITXTR)
(BLKLIBRARY LENGTH NTH LAST)
(NOLINKFNS EDITRACEFN))

BCOMPL BRECOMPILE RETFNS SPECVARS
GLOBALVARS BLKLIBRARY NOLINKFNS LINKFNS DONTCOMPILEFNS

BLKAPPLYFNS ENTRIES NIL BLKNAME

BLKNAME ENTRIES

NOT ON FILE, COMPILING IN
CORE DEFINITION NOT COMPILEABLE

changed

BLKNAME BLKFN 1 BLKFN M VAR 1 VAL UE 1 VAR N VAL UE N

BLKNAME BLKFN 1 BLKFN M
BLKFNS VAR i VAL UE i

VAL UE i VAR i VAL UE i
VAR i VAL UE i VAR i

VAR FORM FORM

Block Compiling Functions

After �nishing all blocks, and treat any functions in the �le that did not appear
in a block declaration in the same way as do and . If the user wishes a function
compiled separately as well as in a block, or if he wishes to compile some functions (not blockcompile),
with some compiler variables changed, he can use a special pseudo- block declaration of the form

��� ���

which means that ��� should be compiled after �rst setting ��� as described
above. For example,

appearing as a ‘‘block declaration’’ will cause the six indicated functions to be compiled while =
so that all of their calls will be linked (except for those functions on).

12.11.5 Block Compiling Functions

There are three user level functions for block compiling, , , and ,
corresponding to , , and . All of them ultimately call the same low level
functions in the compiler, i.e., there is no ‘‘block compiler’’ per se. Instead, when block compiling, a �ag
is set to enable special treatment for , , , and for determining whether
or not to link a function call. Note that all of the remarks on macros, globalvars, compiler messages,
etc., all apply equally for block compiling. Using block declarations, the user can intermix in a single
�le functions compiled normally, functions compiled normally with linked calls, and block compiled
functions.

[Function]
is the name of a block, is a list of the functions comprising the

block, and a list of entries to the block.

Each of the entries must also be on or an error is generated,
. If only one entry is speci�ed, the block name can also be one of the
, e.g., . However,

if more than one entry is speci�ed, an error will be generated,
.

If is , is used, e.g.,

If is , is used, e.g.,

asks the standard compiler questions and then begins compiling.
As with , if the compiled code is being written to a �le, the �le is
closed unless = . The value of is a list of the entries, or if

= , the value is .

The output of a call to is one function de�nition for ,
plus de�nitions for each of the functions on if any. These entry functions

12.16

BCOMPL BRECOMPILE
TCOMPL RECOMPILE

(NIL (.) (.))

(NIL CGETD FNTYP ARGLIST NARGS NCONC1 GENSYM (LINKFNS . T))

LINKFNS T
NOLINKFNS

BLOCKCOMPILE BCOMPL BRECOMPILE
COMPILE TCOMPL RECOMPILE

SPECVARS RETFNS BLKAPPLYFNS

(BLOCKCOMPILE)

NOT ON
BLKFNS

(BLOCKCOMPILE ’FOO ’(FOO FIE FUM) ’(FOO))
CAN’T BE BOTH

AN ENTRY AND THE BLOCK NAME

NIL (LIST) (BLOCKCOMPILE ’COUNT
’(COUNT COUNT1))

NIL (LIST) (BLOCKCOMPILE ’EQUAL)

BLOCKCOMPILE
COMPILE

T BLOCKCOMPILE
NIL

BLOCKCOMPILE

BLKFN 1 BLKFN M VAR 1 VAL UE 1 VAR N VAL UE N

BLKFN 1 BLKFN M VAR 1 VAR N

BLKNAME BLKFNS ENTRIES FL G

BLKNAME BLKFNS

ENTRIES

BLKFNS

BLKFNS

ENTRIES BLKNAME

BLKFNS BLKNAME

FL G

ENTRIES BLKNAME

BLKNAME

ENTRIES

THE COMPILER

are very short functions which immediately call .

[Function]
is a list of symbolic �les (if atomic, is used).

di�ers from in that it compiles all of the �les at once, instead of one
at a time, in order to permit one block to contain functions in several �les. (If
you have several �les to be ed , you must make several calls to

.) Output is to if given, otherwise to a �le whose name is
su�xed with . For example, produces

one �le, .

asks the standard compiler questions, except for ‘‘ ’’, then
processes each �le exactly the same as (page 12.11). next
processes the block declarations as described above. Finally, it compiles those
functions not mentioned in one of the block declarations, and then writes out all
other expressions.

If of the �les have property with value , or a list containing
, then is rebound to for of the �les. See page 12.9.

The value of is the output �le (the new compiled �le). If the compilation
is aborted due to an error or control- D, all �les are closed and the (partially
complete) output �le is deleted.

Note that it is permissible to �les set up for ; the block declarations
will simply have no e�ect. Similarly, you can a �le that does not contain
any block declarations and the result will be the same as having ed it.

[Function]
plays the same role for that plays for .

Its purpose is to allow the user to update a compiled �le without requiring an
entire .

is a list of symbolic �les (if atomic, is used). is
the compiled �le produced by or a previous that contains
compiled de�nitions that may be copied. The interpretation of is the same as
with .

asks the standard compiler questions except for ‘‘ ’’.
As with , output automatically goes to , where is the �rst
�le in .

processes each �le the same as (page 12.11), then
processes each block declaration. If of the functions in the block are to be
recompiled, the entire block must be (is) recompiled. Otherwise, the block is copied
from as with . For pseudo- block declarations of the form

��� , all variable assignments are made, but only those functions indicated by
are recompiled.

After completing the block declarations, processes all functions that
do not appear in a block declaration, recompiling those dictated by , and
copying the compiled de�nitions of the remaining from .

12.17

(BCOMPL)
(LIST) BCOMPL

TCOMPL

BCOMPL separately
BCOMPL (CAR

) DCOM (BCOMPL ’(EDIT WEDIT))
EDIT.DCOM

BCOMPL OUTPUT FILE:
TCOMPL BCOMPL

any FILETYPE CLISP
CLISP DWIMIFYCOMPFLG T all

BCOMPL

TCOMPL BCOMPL
BCOMPL

TCOMPL

(BRECOMPILE)
BRECOMPILE BCOMPL RECOMPILE TCOMPL

BCOMPL

(LIST)
BCOMPL BRECOMPILE

RECOMPILE

BRECOMPILE OUTPUT FILE:
BCOMPL .DCOM

BRECOMPILE RECOMPILE
any

RECOMPILE (NIL
)

BRECOMPILE

BLKNAME

FILES CFILE _ _

FILES FILES

CFILE

FILES

FILES CFILE FNS _

FILES FILES CFILE

FNS

FILE FILE

FILES

CFILE

FN1

FNS

FNS

CFILE

15

15

Linked Function Calls

Finally, writes onto the output �le the ‘‘other expressions’’ collected
in the initial scan of .

The value of is the output �le (the new compiled �le). If the
compilation is aborted due to an error or control- D, all �les are closed and the
(partially complete) output �le is deleted.

If = , the old version of is used, as with .
In addition, if and are both , is set to the value of

, initially .

12.12 LINKED FUNCTION CALLS

Conventional (non- linked) function calls from a compiled function go through the function de�nition cell,
i.e., the de�nition of the called function is obtained from its function de�nition cell at call time. Thus,
when the user breaks, advises, or otherwise modi�es the de�nition of the function , every function
that subsequently calls it instead calls the modi�ed function. For calls from the system functions, this
is clearly a desirable feature. For example, suppose that the user wishes to break on basic functions
such as , , , etc., which are used by the break package. We would like to guarantee
that the system packages will survive through user modi�cation (or destruction) of basic functions (unless
the user speci�cally requests that the system packages also be modi�ed). This protection is achieved by
linked function calls.

For linked function calls, the de�nition of the called function is obtained at time, i.e., when the calling
function is de�ned, and stored in the literal table of the calling function. At time, this de�nition is
retrieved from where it was stored in the literal table, from the function de�nition cell of the called
function as it is for non- linked calls.

Note that while function calls from block compiled functions are linked (i.e. the default for
blocks is to link), and those from standardly compiled functions are non- linked, linking function
calls and blockcompiling are independent features of the Interlisp compiler, i.e., linked function calls are
possible, and frequently employed, from standardly compiled functions.

Note that normal function calls require only the called function’s name in the literals of the compiled code,
whereas a function call uses two literals and hence produces slightly larger compiled functions.

The compiler’s decision as to whether to link a particular function call is determined by the variables
and as follows:

(1) If the function appears on , the call is not linked;

In Interlisp- 10, linked function calls are actually a little slower and take more space than non- linked
calls, so that the user might want to include in block declarations to override the
default.

12.18

BRECOMPILE

BRECOMPILE

NIL .DCOM RECOMPILE
NIL

RECOMPILEDEFAULT EXPRS

Note: Linked function calls are not implemented in Interlisp- D.

FOO

not
PRINT EVAL RPLACA

link
call

not

usually
usually

linked

LINKFNS NOLINKFNS

NOLINKFNS

(NOLINKFNS . T)

FILES

CFILE FILE

FNS CFILE FNS

THE COMPILER

(2) If block compiling and the function is one of the block functions, the call is internal as described
earlier;

(3) If the function appears on , the call is linked;

(4) If = , the call is not linked;

(5) If block compiling, the call is linked;

(6) If = , the call is linked;

(7) Otherwise the call is not linked.

Note that (1) takes precedence over (2), i.e., if a function appears on , the call to it is
linked, even if it is one of the functions in the block, i.e., the call will go outside of the block.

is initialized to various system functions such as , , etc. is
initialized to . Thus if the user does not specify otherwise, all calls from a block compiled function
(except for those to functions on) will be linked; all calls from standardly compiled functions
will not be linked. However, when compiling system functions such as , , , ,

, et al, is set to so that even though these functions are not block compiled, all of
their calls will be linked.

If a function is not de�ned at link time, i.e., when an attempt is made to link to it, it is linked instead to
the function . When the function is later de�ned, the link can be completed by relinking the
calling function using described below. Otherwise, if a function is run which attempts a linked
call that was not completed, is called. If the function is now de�ned, i.e., it was de�ned
at some point after the attempt was made to link to it, will quietly perform the link and
continue the call. Otherwise, it will call and proceed as described in page 15.6.

, on and all work correctly for linked function calls,
e.g., , where is called from via a linked function call. Note that
control- H will interrupt at linked function calls.

12.12.1 Relinking

The function is available for relinking a compiled function, i.e., updating all of its linked calls
so that they use the de�nition extant at the time of the relink operation.

[Function]
is either the name of a function, a list of functions, an atom whose value is a list

of functions, or the atom . performs the corresponding relinking
operations. returns .

is possible because the compiled code reader maintains on
a list of all user functions containing any linked calls.

is a list of all functions that have any linked calls.
performs both and .

12.19

LINKFNS

NOLINKFNS T

LINKFNS T

NOLINKFNS not

NOLINKFNS ERRORSET BREAK1 LINKFNS
NIL

NOLINKFNS
HELP ERROR ARGLIST FNTYP

BREAK1 LINKFNS T

NOLINKDEF
RELINK

NOLINKDEF
NOLINKDEF

FAULTAPPLY

CALLS BREAK -IN- ADVISE -IN-
(BREAK ’(FOO IN FIE)) FOO FIE

not

RELINK

(RELINK)

WORLD RELINK
RELINK

(RELINK ’WORLD)
LINKEDFNS SYSLINKEDFNS

system (RELINK ’WORLD)
(RELINK LINKEDFNS) (RELINK SYSLINKEDFNS)

FN1 FN2 FN1 FN2

FN

FN

FN

Compiler Error Messages

Note: To relink a function in a block, one should relink the block, not the function.

It is important to stress that linking takes place when a function is . Thus, if calls via a
linked call, and a bug is found in , changing is not su�cient; must be relinked. Similarly, if

, , and are de�ned (in that order) in a �le, and each call the others via linked calls, when
a new version of the �le is loaded, will be linked to the and , since those de�nitions
will be extant at the time it is read and de�ned. Similarly, will link to the new and .
Only will link to the new and . The user would have to perform

following the .

12.13 COMPILER ERROR MESSAGES

Messages describing errors in the function being compiled are also printed on the teletype. These messages
are always preceded by . Unless otherwise indicated below, the compilation will continue.

From calls to and .

An de�nition for could not be found. In this case, no code is produced
for , and the compiler proceeds to the next function to be compiled, if any.

Occurs when or try to copy the compiled de�nition of
from , and cannot �nd it. In this case, no code is copied and the compiler

proceeds to the next function to be compiled, if any.

was speci�ed as an entry to a block, or else was on , but did
not appear on the . In this case, no code is produced for the entire block
and the compiler proceeds to the next function to be compiled, if any.

In this case, no code is produced for the entire block and the compiler proceeds
to the next function to be compiled, if any.

is used in the block , but there are no or
declared for the block.

)
In Interlisp- 10, while compiling a block, the compiler has already generated code
to bind as a , but now discovers that uses freely.
should be declared a and the block recompiled.

A comment appears in a context where its value is being used, e.g.
. The compiled function will run, but the value at the point where the

comment was used is ‘‘unde�ned.’’

12.20

de�ned FOO FIE
FIE FIE FOO

FOO1 FOO2 FOO3
FOO1 old FOO2 FOO3

FOO2 FOO1 old FOO3
FOO3 FOO1 FOO2 (RELINK ’(FOO1

FOO2 FOO3)) LOAD

(NOT ON FILE, COMPILING IN CORE DEFINITION)
BCOMPL BRECOMPILE

(NOT COMPILEABLE)
EXPR

(NOT FOUND) RECOMPILE BRECOMPILE

(NOT ON BLKFNS)
BLKAPPLYFNS

(CAN’T BE BOTH AN ENTRY AND THE BLOCK NAME)

(- USED BLKAPPLY WHEN NOT APPLICABLE)
BLKAPPLY BLKAPPLYFNS
ENTRIES

(SHOULD BE A SPECVAR - USED FREELY BY

LOCALVAR
SPECVAR

((* --) COMMENT USED FOR VALUE)
(LIST X (*

--) Y)

FN

FN

FN

FN

FN

FN CFILE

FN

FN

BLKFNS

FN

BLKNAME

BLKNAME

VAR FN

VAR FN VAR VAR

THE COMPILER

If user intended to treat the value of as a function, he should use
(page 5.12). is compiled as if had been used.

of more than two arguments.

The value of a predicate, such as or , is used as an argument to a
function that expects numbers, such as .

The compiler has assumed is the name of a function. If the user intended to
treat the of as a function, he must use (page 5.12).

This message is printed when is not de�ned, and is also a local variable of the
function being compiled. Note that earlier versions of the Interlisp- 10 compiler
did treat as a functional argument, and compiled code to evaluate it.

encountered when not in .

encountered when not in a .

is a label that is de�ned more than once in a single . The second
de�nition is ignored.

is a label that is referenced but not de�ned in a .

is , , or else not a literal atom.

Occurs when there is a prog binding of the form ��� .

is a label that is de�ned more than once in an assemble form.

is a label that is referenced but not de�ned in an form.

is a label that was encountered twice during the second pass of the compilation.
If this error occurs with no indication of a multiply de�ned tag during pass one,
the tag is in a LAP macro.

is a label that is referenced during the second pass of compilation and is
not de�ned. LAP treats as though it were a , and continues the
compilation.

12.21

(() - NON-ATOMIC CAR OF FORM)
APPLY*

APPLY*

((SETQ --) BAD SETQ)
SETQ

(- USED AS ARG TO NUMBER FN?)
GREATERP EQ

IPLUS

(- NO LONGER INTERPRETED AS FUNCTIONAL ARGUMENT)

value APPLY*

(- ILLEGAL RETURN)
RETURN PROG

(- ILLEGAL GO)
GO PROG

(- MULTIPLY DEFINED TAG)
PROG PROG

(- UNDEFINED TAG)
PROG PROG

(- NOT A BINDABLE VARIABLE)
NIL T

(-- BAD PROG BINDING)
()

(- MULTIPLY DEFINED TAG, ASSEMBLE)

(- UNDEFINED TAG, ASSEMBLE)
ASSEMBLE

(- MULTIPLY DEFINED TAG, LAP)

(- UNDEFINED TAG, LAP)

COREVAL

FORM

FORM

FORM

VAR EXPR

FN

FN

FN

FN

FN

FN

FN

TG

TG

TG

TG

TG

VAR

VAR

VAR VAL

VAR VAL 1 VAL N

TG

TG

TG

TG

TG

TG

TG

TG

TG

Compiler Error Messages

appears as of an assemble statement, and is illegal. See page 22.12 for
legal assemble statements.

A previous error condition was su�ciently serious that binary code for cannot
be loaded without causing an error.

12.22

(- OPCODE? - ASSEMBLE)
CAR

(NO BINARY CODE GENERATED OR LOADED FOR)

OP

OP

FN

FN

