
1 THE INTERLISP-D PROCESS MECHANISM

The Interlisp- D Process mechanism provides an environment in which multiple Lisp processes can run in
parallel. Each executes in its own stack space, but all share a global adress space. The current process
implementation is cooperative; i.e., process switches happen voluntarily, either when the process in control
has nothing to do or when it is in a convenient place to pause. There is no preemption or guaranteed
service, so you cannot run something demanding (e.g., Chat) at the same time as something that runs for
long periods without yielding control. Keyboard input and network operations block with great frequency,
so processes currently work best for highly interactive tasks (editing, making remote �les).

In Interlisp- D, the process mechanism is already turned on, and is expected to stay on during normal
operations, as some system facilities (in particular, most network operations) require it. However, under
exceptional conditions, the following function can be used to turn the world o� and on:

[Function]
Starts up the process world, or if = , kills all processes and turns it o�.
Normally does not return. The environment starts out with two processes: a top- level

(the initial ‘‘tty’’ process) and the ‘‘background’’ process, which runs the
window mouse handler and other system background tasks.

Note: is intended to be called at the top level of Interlisp, not from
within a program. It does not toggle some sort of switch; rather, it constructs some
new processes in a new part of the stack, leaving any callers of in
a now inaccessible part of the stack. Calling is the only
way the call to ever returns.

[Function]
Resets the whole world, and rebuilds the stack from scratch. This is ‘‘harder’’ than
doing to every process, because it also resets system internal processes (such
as the keyboard handler).

automatically turns the process world on (or resets it if it was on),
unless the variable is .

1.1 Creating and Destroying Processes

��� [NoSpread Function]
Creates a new process evaluating , and returns its process handle. The
process’s stack environment is the top level, i.e., the new process does not have
access to the environment in which was called; all such information
must be passed as arguments in . The process runs until returns or the
process is explicitly deleted. An untrapped error within the process also deletes the
process (unless its property is), in which case a message is printed
to that e�ect.

The remain ing arguments are alternately property names and values. Any property/value
pairs accept able to may be given, but the following two are directly
relevant to :

Value should be a litatom; if not given, the process name is taken from

1

(PROCESSWORLD)
OFF

EVALQT

PROCESSWORLD

PROCESSWORLD
(PROCESSWORLD ’OFF)

PROCESSWORLD

(HARDRESET)

RESET

HARDRESET
AUTOPROCESSFLG NIL

(ADD.PROCESS)

ADD.PROCESS

RESTARTABLE T

PROCESSPROP
ADD.PROCESS

NAME (CAR

FLG
FLG

FORM PR OP 1 VAL UE 1 PR OP N VAL UE N
FORM

FORM FORM

Creating and Destroying Processes

. may pack the name with a number to make it
unique. This name is solely for the convenience of manipulating processes
at Lisp typein; e.g., the name can be given as the argument to most
process functions, and the name appears in menus of processes. However,
programs should normally only deal in process handles, both for e�ciency
and to avoid the confusion that can result if two processes have the same
de�ning form.

If the value is non- , the new process is created but then immediately
suspended; i.e., the process does not actually run until woken by a

(below).

[NoSpread Function]
Used to get or set the values of certain properties of process , in a manner
analogous to . If is supplied (including if it is),
property is given that value. In all cases, returns the old value of the
property. The following properties have special meaning for processes; all others are
uninterpreted:

Value is a litatom used for identifying the process to the user.

Value is a �ag indicating the disposition of the process following errors or
hard resets:

or
(the default) If an untrapped error (or control- E or control- D) causes
its form to be exited, the process is deleted. The process is also
deleted if a (or control- D from) occurs, causing
the entire Process world to be reinitialized.

or
The process is automatically restarted on errors or . This
is the normal setting for persistent ‘‘background’’ processes, such as
the mouse process, that can safely restart themselves on errors.

The process is deleted as usual if an error causes its form to be exited,
but it restarted on a . This setting is preferred for
persistent processes for which an error is an unusual condition, one
that might repeat itself if the process were simply blindly restarted.

Value is the Lisp form used to start the process (readonly).

Value indicates the disposition of the process following a resumption of Lisp
after some exit (, ,). Possible values are:

Delete the process.

2

) ADD.PROCESS

SUSPEND
NIL

WAKE.PROCESS

(PROCESSPROP)

WINDOWPROP NIL

NAME

RESTARTABLE

NIL NO

HARDRESET RAID

T YES
HARDRESET

HARDRESET

is HARDRESET

FORM

AFTEREXIT

LOGOUT SYSOUT MAKESYS

DELETE

FORM

PR OC

PR OC PR OP NEWV AL UE
PR OC

NEWV AL UE
PR OP

Suspend the process; i.e., do not let it run until it is explicitly woken.

<an event>
Cause the process to be suspended waiting for the event (page X.XX).

Value is a function or form used to provide information about the process,
in conjunction with the process status window (page X.XX).

Value is a window associated with the process, the process’s ‘‘main’’ window.
Used in conjunction with switching the tty process (page X.XX).

Value is a function that is applied to the process when the process is made
the tty process (page X.XX).

Value is a function that is applied to the process when the process ceases to
be the tty process (page X.XX).

[Function]
Returns the handle of the currently running process, or if the Process world is
turned o�.

[Function]
Deletes process . may be a process handle (returned by),
or its name. Note that if is the currently running process,
does not return!

[Function]
Terminates the currently running process, causing it to ‘‘return’’ . There is an
implicit around the argument given to ,
so that normally a process can �nish by simply returning; is
supplied for earlier termination.

[Function]
If has terminated, returns the value, if any, that it returned. This is either
the value of a or the value returned from the form given to

. If the process was aborted, the value is . If
is true, blocks until �nishes, if necessary; otherwise,
it returns immediately if is still running. Note that must
be the actual process handle returned from , not a process name, as
the association between handle and name disappears when the process �nishes (and
the process handle itself is then garbage collected if no one else has a pointer to it).

[Function]
True if has terminated. The value returned is an indication of how it
�nished: or .

3

SUSPEND

INFOHOOK

WINDOW

TTYENTRYFN

TTYEXITFN

(THIS.PROCESS)
NIL

(DEL.PROCESS)
ADD.PROCESS

DEL.PROCESS

(PROCESS.RETURN)

PROCESS.RETURN ADD.PROCESS
PROCESS.RETURN

(PROCESS.RESULT)

PROCESS.RETURN
ADD.PROCESS NIL

PROCESS.RESULT
NIL

ADD.PROCESS

(PROCESS.FINISHEDP)

NORMAL ERROR

PR OC _
PR OC PR OC

PR OC

VAL UE
VAL UE

FORM

PR OCESS W AITFORRESUL T
PR OCESS

W AITFORRESUL T
PR OCESS

PR OCESS PR OCESS

PR OCESS
PR OCESS

Process Control Constructs

[Function]
True if is the handle of an active process, i.e., one that has not yet �nished.

[Function]
True if is the handle of a deleted process. This is analogous to

. It di�ers from in that it never causes an error,
while can cause an error if its argument is not a
process at all.

[Function]
Unwinds to its top level and reevaluates its form. This is e�ectively a

followed by the original .

[Function]
Maps over all processes, calling with three arguments: the process handle,
its name, and its form.

[Function]
If is a process handle or the name of a process, returns the process handle
for it, else . If is , generates an error if is not, and does
not name, a live process.

1.2 Process Control Constructs

[Function]
Yields control to the next waiting process, assuming any is ready to run. If

is speci�ed, it is a number of milliseconds to wait before returning (in
which case is very much like), or , meaning wait forever (until
explicitly woken). Alternatively, can be given as a millisecond timer (as
returned by) of an absolute time at which to wake up. In any of those
cases, the process enters the state until the time limit is up. with no
arguments leaves the process in the state, i.e., it returns as soon as every
other runnable process of the same priority has had a chance.

[Function]
Explicitly wakes process , i.e., makes it , and causes its call to
(or other waiting function) to return . This is one simple way to notify a
process of some happening; however, note that if is applied to a
process more than once before the process actually gets its turn to run, it sees only
the latest .

[Function]
Blocks process inde�nitely, i.e., will not run until it is woken by a

.

The following three functions allow access to the stack context of some other process. They require a little
bit of care, and are computationally non- trivial, but they do provide a more powerful way of manipulating
another process than allows.

[Function]
Performs in the stack context of .

4

(PROCESSP)

(RELPROCESSP)

RELSTKP PROCESS.FINISHEDP
PROCESS.FINISHEDP

(RESTART.PROCESS)

DEL.PROCESS ADD.PROCESS

(MAP.PROCESSES)

(FIND.PROCESS)

NIL T

(BLOCK)

BLOCK DISMISS T

SETUPTIMER
waiting BLOCK

runnable

(WAKE.PROCESS)
runnable BLOCK

WAKE.PROCESS

(SUSPEND.PROCESS)

WAKE.PROCESS

WAKE.PROCESS

(PROCESS.EVALV)
(EVALV)

PR OC
PR OC

PR OCHANDLE
PR OCHANDLE

PR OC

PR OC
PR OC

MAPFN
MAPFN

PR OC ERR ORFL G
PR OC

ERR ORFL G PR OC

MSECSW AIT TIMER

MSECSW AIT

TIMER

PR OC STATUS
PR OC

STATUS

STATUS

PR OC
PR OC PR OC

PR OC VAR
VAR PR OC

[Function]
Evaluates in the stack context of . If is true,
blocks until the evaluation returns a result, else allows the current process to run in
parallel with the evaluation. Any errors that occur will be in the context of ,
so be careful. In particular, note that

and

behave quite di�erently if causes an error. And it is quite permissible to
intentionally cause an error in proc by performing

If errors are possible and is true, the caller should almost
certainly make sure that traps the errors; otherwise the caller could end up
waiting forever if unwinds back into the pre- existing stack context of .

[Function]
Performs in the stack context of . Note same warnings
as with .

1.3 Events

An ‘‘event’’ is a synchronizing primitive used to coordinate related processes, typically producers and
consumers. Consumer processes can ‘‘wait’’on events, and producers ‘‘notify’’ events.

[Function]
Returns an instance of the datatype, to be used as the event argument to
functions listed below. is arbitrary, and is used for debugging or status
information.

[Function]
Suspends the current process until is noti�ed, or until a timeout occurs. If

is , there is no timeout. Otherwise, timeout is either a number of
milliseconds to wait, or, if is , a millisecond timer set to expire at the
desired time using (see page X.XX).

[Function]
If there are processes waiting for to occur, causes those processes to be placed
in the running state, with returned as the value from . If

is true, only runs the �rst process waiting for the event (this should
only be done if the programmer knows that there can only be one process capable
of responding to the event at once).

The meaning of an event is up to the programmer. In general, however, the noti�cation of an event
is merely a hint that something of interest to the waiting process has happened; the process should still
verify that the conceptual event actually occurred. That is,

5

(PROCESS.EVAL)

(PROCESS.EVAL ’(NLSETQ (FOO)))

(NLSETQ (PROCESS.EVAL ’(FOO)))

FOO

(PROCESS.EVAL ’(ERROR!))

(PROCESS.APPLY)
(APPLY)

PROCESS.EVAL

(CREATE.EVENT)
EVENT

(AWAIT.EVENT)

NIL
T

SETUPTIMER

(NOTIFY.EVENT)

AWAIT.EVENT

the process should be written so that it operates

PR OC FORM W AITFORRESUL T
FORM PR OC W AITFORRESUL T

PR OC

PR OC

PR OC

PR OC

W AITFORRESUL T
FORM

FORM PR OC

PR OC FN AR GS W AITFORRESUL T
FN AR GS PR OC

NAME

NAME

EVENT TIMEOUT TIMERP
EVENT

TIMEOUT
TIMERP

EVENT ONCEONL Y
EVENT

EVENT
ONCEONL Y

Monitors

In particular, the
completion of and related operations in e�ect wakes up the process in which they were
performed, since there is no secure way of knowing whether the event of interest occurred while the
process was busy performing the .

There is currently one class of system-de�ned events, used with the network code. Each Pup and NS
socket has associated with it an event that is noti�ed when a packet arrives on the socket; the event
can be obtained by calling or ,
respectively.

1.4 Monitors

It is often the case that cooperating processes perform operations on shared structures, and some mechanism
is needed to prevent more than one process from altering the structure at the same time. Some languages
have a construct called a monitor, a collection of functions that access a common structure with mutual
exclusion provided and enforced by the compiler via the use of monitor locks. Interlisp- D has taken this
implementation notion as the basis for a mutual exclusion capability suitable for a dynamically- scoped
environment.

A monitorlock is an object created by the user and associated with (e.g., stored in) some shared structure
that is to be protected from simultaneous access. To access the structure, a program waits for the lock
to be free, then takes ownership of the lock, accesses the structure, then releases the lock. The functions
and macros below are used:

[Function]
Returns an instance of the datatype, to be used as the lock argument
to functions listed below. is arbitrary, and is used for debugging or status
information.

[Macro]
Evaluates while owning . Value is the last of .
This construct is implemented so that the lock is released even if the form is exited via
error (currently implemented with). Ownership of a lock is dynamically
scoped: if the current process already owns the lock (e.g., if the caller was itself
inside a for this lock), is a noop.

[Macro]
Like , but implemented without the . User interrupts
(e.g., control- E) are inhibited during the evaluation of .

Programming restriction: the evaluation of must not error (the lock would
not be released). This construct is mainly useful when is a small, safe
computation that never errors and need never be interrupted.

[Function]
For use in block ing inside a monitor. Performs

, but releases �rst, and reob tains the lock (possibly wait-
ing) on wakeup.

Typical use for : A function wants to perform some operation on , but only
if it is in a certain state. It has to obtain the lock on the structure to make sure that the state of the

6

correctly even if woken up before the timeout and in the absence of the noti�ed event.
PROCESS.EVAL

PROCESS.EVAL

(PUPSOCKETEVENT) (NSOCKETEVENT)

(CREATE.MONITORLOCK)
MONITORLOCK

(WITH.MONITOR .)
(PROGN .)

RESETLST

WITH.MONITOR WITH.MONITOR

(WITH.FAST.MONITOR .)
WITH.MONITOR RESETLST

(MONITOR.AWAIT.EVENT)
(AWAIT.EVENT

)

MONITOR.AWAIT.EVENT

PUPSOCKET NSOCKET

NAME _

NAME

LOCK FORMS
FORMS LOCK FORMS

LOCK FORMS

FORMS

FORMS
FORMS

RELEASEL OCK EVENT TIMEOUT TIMERP
EVENT TIMEOUT

TIMERP RELEASEL OCK

Foo

structure does not change between the time it tests the state and performs the operation. If the state turns
out to be bad, it then waits for some other process to make the state good, meanwhile releasing the lock
so that the other process can alter the structure.

It is sometimes convenient for a process to have at its top level and then do all its
interesting waiting using . Not only is this often cleaner, but in the present
implementation in cases where the lock is frequently accessed, it saves the overhead of

.

Programming restriction: there must not be an between the enclosing and
the call to such that the would catch an and continue
inside the monitor, for the lock would not have been reobtained. (The reason for this restriction is
that, although won’t itself error, the user could have caused an error with an
interrupt, or a in the context of the waiting process that produced an error.)

On rare occasions it may be useful to manipulate monitor locks directly. The following two functions are
used in the implementation of :

[Function]
Takes possession of , waiting if necessary until it is free, unless is
true, in which case it returns immediately. If is true, performs
a to be unwound when the enclosing exits. Returns
if was successfully obtained, if the current process already owned .

[Function]
Releases if it is owned by the current process, and wakes up the next process,
if any, waiting to obtain the lock.

When a process is deleted, any locks it owns are released.

1.5 Global Resources

The biggest source of problems in the multi- processing environment is the matter of global resources.
Two processes cannot both use the same global resource if there can be a process switch in the middle
of their use (currently this means calls to , but ultimately with a preemptive scheduler means
anytime). Thus, user code should be wary of its own use of global variables, if it ever makes sense for
the code to be run in more than one process at a time. ‘‘State’’ variables private to a process should
generally be bound in that process; structures that are shared among processes (or resources used privately
but expensive to duplicate per process) should be protected with monitor locks or some other form of
synchronization.

Aside from user code, however, there are many global variables and resources. Most of these arise
historically from the single-process Interlisp- 10 environment, and will eventually be changed in Interlisp- D
to behave appropriately in a multi- processing environment. Some have already been changed, and are
described below. Two other resources not generally thought of as global variables� the keyboard and the
mouse� are particularly idosyncratic, and are discussed in the next section.

7

(WITH.MONITOR
(until

do (MONITOR.AWAIT.EVENT))
)

WITH.MONITOR
MONITOR.AWAIT.EVENT

RESETLST
WITH.MONITOR

ERRORSET WITH.MONITOR
MONITOR.AWAIT.EVENT ERRORSET ERROR!

MONITOR.AWAIT.EVENT
PROCESS.EVAL

WITH.MONITOR

(OBTAIN.MONITORLOCK)

NIL
RESETSAVE RESETLST

T

(RELEASE.MONITORLOCK)

BLOCK

system

FooLock
condition-of-Foo

FooLock EventFooChanged timeout
operate-on-Foo

LOCK DONTW AIT UNWINDSA VE
LOCK DONTW AIT

UNWINDSA VE
LOCK

LOCK LOCK

LOCK
LOCK

Typein and the TTY Process

The following resources, which are global in Interlisp- 10, are allocated per process in Interlisp- D: primary
input and output (the streams a�ected by and), terminal input and output (the streams
designated by the name), the primary read table and primary terminal table, and dribble �les. Thus,
each process can print to its own primary output, print to the terminal, read from a di�erent primary
input, all without interfering with another process’s reading and printing.

Each process begins life with its primary and terminal input/output streams set to a dummy stream. If
the process attempts input or output using any of those dummy streams, e.g., by calling ,
or , a tty window is automatically created for the process, and that window becomes the
primary input/output and terminal input/output for the process. The default tty window is created at or
near the region speci�ed in the variable .

A process can, of course, call explicitly to give itself a tty window of its own
choosing, in which case the automatic mechanism never comes into play. Calling
when a process has no tty window not only sets the terminal streams, but also sets the primary input and
output streams to be that window, assuming they were still set to the dummy streams.

[Function]
Returns if the process has a tty window; otherwise. If is ,
it defaults to the current process.

Other system resources that are typically changed by , , are all global
entities. In the multiprocessing environment, these constructs are suspect, as there is no provision for
‘‘undoing’’ them when a process switch occurs. For example, in the current release of Interlisp- D, it is
not possible to set the print radix to 8 inside only one process, as the print radix is a global entity.

Note that and similar expressions are perfectly valid in the process world, and even quite
useful, when they manipulate things strictly within one process. The process world is arranged so that
deleting a process also unwinds any expressions that were performed in the process and are
still waiting to be unwound, exactly as if a control- D had reset the process to the top. Additionally,
there is an implicit at the top of each process, so that can be used as a way
of providing ‘‘cleanup’’ functions for when a process is deleted. For these, the value of
(page X.XX) is if the process �nished normally, if it was aborted by an error, if the
process was explicitly deleted, and if the process is being restarted (after a or
a).

1.6 Typein and the TTY Process

There is one global resource, the keyboard, that is particularly problematic to share among processes.
Consider, for example, having two processes both performing . Since the keyboard input
routines block while there is no input, both processes would spend most of their time blocking, and it
would simply be a matter of chance which process received each character of typein.

To resolve such dilemmas, the system designates a distinguished process, termed the , that is
assumed to be the process that is involved in terminal interaction. Any typein from the keyboard goes to
that process. If a process other than the tty process requests keyboard input, it blocks until it becomes the
tty process. When the tty process is switched (in any of the ways described further below), any typeahead
that occurred before the switch is saved and associated with the current tty process. Thus, it is always the
case that keystrokes are sent to the process that is the tty process at the time of the keystrokes, regardless
of when that process actually gets around to reading them.

8

INPUT OUTPUT
T

(READ T)
(PRINT & T)

DEFAULTTTYREGION

TTYDISPLAYSTREAM
TTYDISPLAYSTREAM

(HASTTYWINDOWP)
T NIL NIL

RESETFORM RESETLST RESETVARS

RESETFORM

RESETxxx

RESETLST RESETSAVE
RESETSTATE

NIL ERROR RESET
HARDRESET HARDRESET

RESTART.PROCESS

(READ T)

tty process

PR OC
PR OC PR OC

It is less immediately obvious how to handle keyboard interrupt characters, as their action is asynchronous
and not always tied to typein. Interrupt handling is described on page X.XX.

1.6.1 Switching the TTY Process

Any process can make itself be the tty process by calling .

[Function]
Returns the handle of the current tty process. In addition, if is non- ,
makes it be the tty process. The special case of = is interpreted to mean
the executive process; this is sometimes useful when a process wants to explicitly
give up being the tty process.

[Function]
True if is the tty process; defaults to the running process. Thus,

is true if the caller is the tty process.

[Function]
E�ciently waits until is true. is called internally
by the system functions that read from the terminal; user code thus need only call
it in special cases.

In some cases, such as in functions invoked as a result of mouse action or a user’s typed- in call, it is
reasonable for the function to invoke itself so that it can take subsequent user type in.
In other cases, however, this is too undisciplined; it is desirable to let the user designate which process
typein should be directed to. This is most conveniently done by mouse action.

The system supports the model that ‘‘to type to a process, you click in its window.’’ To cooperate with
this model, any process desiring keyboard input should put its process handle as the property
of its window(s). To handle the common case, the function does this automatically
when the ttydisplaystream is switched to a new window. A process can own any number of windows;
clicking in any of those windows gives the process the tty.

This mechanism su�ces for most casual process writers. For example, if a process wants all its input/output
interaction to occur in a particular window that it has created, it should just make that window be its
tty window by calling . Thereafter, it can or to/from the stream; if
the process is not the tty process at the time that it calls , it will block until the user clicks in the
window.

For those needing tighter control over the tty, the default behavior can be overridden or supplemented.
The remainder of this section describes the mechanisms involved.

There is a window property that controls whether and how to switch the tty to the
process owning a window. The mouse handler, before invoking any normal , speci�cally
notices the case of a button going down in a window that belongs to a process (i.e., has a
window property) that is not the tty process. In this case, it invokes the window’s of
one argument (). defaults to :

[Function]
If has a property, performs

and then invokes ’s function

9

TTY.PROCESS

(TTY.PROCESS)
NIL

T

(TTY.PROCESSP)

(TTY.PROCESSP)

(WAIT.FOR.TTY)
(TTY.PROCESSP) WAIT.FOR.TTY

TTY.PROCESS

PROCESS
TTYDISPLAYSTREAM

TTYDISPLAYSTREAM PRINT READ T
READ

WINDOWENTRYFN
BUTTONEVENTFN

PROCESS
WINDOWENTRYFN

WINDOWENTRYFN GIVE.TTY.PROCESS

(GIVE.TTY.PROCESS)
PROCESS (TTY.PROCESS (WINDOWPROP

’PROCESS)) BUTTONEVENTFN

PR OC
PR OC

PR OC

PR OC
PR OC PR OC

WINDO W

WINDO W
WINDO W

WINDO W WINDO W

Handling of Interrupts

(or if the right button is down).

There are some cases where clicking in a window does not always imply that the user wants to talk
to that window. For example, clicking in a text editor window with a shift key held down means to
‘‘shift-select’’ some piece of text into the input bu�er of the tty process. The editor supports this
by supplying a that performs if no shift key is down, but goes
into its shift- select mode, without changing the tty process, if a shift key is down. The shift- select mode
performs a of the selected text when the shift key is let up, the feeding input to
the current tty process.

Sometimes a process wants to be noti�ed when it becomes the tty process, or stops being the tty process.
For example, Chat (page X.XX) turns o� all keyboard interrupt characters while it is the tty process,
so that they can be passed transparently to the remote host. To support this, there are two process
properties, and . The actions taken by when it switches the
tty to a new process are as follows: the former tty process’s is called with two arguments
(); the new process is made the tty process; �nally, the new
tty process’s is called with two arguments ().
Normally the and need only their �rst argument, but the other process
involved in the switch is supplied for completeness. In the present system, most processes want to
interpret the keyboard in the same way, so it is considered the responsibility of any process that changes
the keyboard interpretation to restore it to the normal state by its .

A window is ‘‘owned’’ by the last process that anyone gave as the window’s property. Ordinarily
there is no con�ict here, as processes tend to own disjoint sets of windows (though, of course, cooperating
processes can certainly try to confuse each other). The only likely problem arises with that most global
of windows, . Programs should not be tempted to read from . This
is not usually necessary anyway, as the �rst attempt to read from in a process that has not set its

to its own window causes a tty window to be created for the process (see page
X.XX).

1.6.2 Handling of Interrupts

At the time that a keyboard interrupt character (page X.XX) is struck, any process could be running,
and some decision must be made as to which process to actually interrupt. To the extent that keyboard
interrupts are related to typein, most interrupts are taken in the tty process; however, the following are
handled specially:

,
(normally control- D and control- E) These interrupts are taken in the mouse process, if the
mouse is not in its idle state; otherwise they are taken in the tty process. Thus, control- E
can be used to abort some mouse- invoked window action, such as the Shape command.
As a consequence, note that if the mouse invokes some lengthy computation that the user
thinks of as ‘‘background’’, control- E still aborts it, even though that may not have been
what the user intended. Such lengthy computations, for various reasons, should generally
be performed by spawning a separate process to perform them.

The interrupt in a process other than the executive is interpreted exactly as if an
error unwound the process to its top level: if the process was designated
= , it is restarted; otherwise it is killed.

10

RIGHTBUTTONFN

current
WINDOWENTRYFN GIVE.TTY.PROCESS

BKSYSBUF BKSYSBUF

TTYEXITFN TTYENTRYFN TTY.PROCESS
TTYEXITFN

TTYENTRYFN
TTYENTRYFN TTYEXITFN

TTYEXITFN

PROCESS

PROMPTWINDOW PROMPTWINDOW
T

TTYDISPLAYSTREAM

RESET ERROR

RESET
RESTARTABLE

T

OLDTTYPR OCESS NEWTTYPR OCESS
NEWTTYPR OCESS OLDTTYPR OCESS

(Initially control- H) A menu of processes is presented to the user, who is asked to select
which one the interrupt should occur in. The current tty process appears with a * next
to its name at the top of the menu. The menu also includes an entry ‘‘[Spawn Mouse]’’,
for the common case of needing a mouse because the mouse process is currently tied up
running someone’s ; selecting this entry spawns a new mouse process,
and no break occurs.

(Initially control- B) Performs the interrupt always in the tty process.

(Initially) This interrupt clears typeahead in processes.

, ,
These interrupts always occur in whatever process was running at the time the interrupt
struck. In the cases of and , this means that the
interrupt is more likely to strike in the o�ending process (especially if it is a ‘‘runaway’’
process that is not blocking). Note, however, that this process is still not necessarily the
guilty party; it could be an innocent bystander that just happened to use up the last of a
resource prodigiously consumed by some other process.

1.7 Keeping the Mouse Alive

Since the window mouse handler runs in its own process, it is not available while a window’s
function (or any of the other window functions invoked by mouse action) is running.

This leads to two sorts of problems: (1) a long computation underneath a deprives the
user of the mouse for other purposes, and (2) code that runs as a cannot rely on other

s running, which means that there some pieces of code that run di�erently from normal
when run under the mouse process. These problems are addressed by the following functions:

[Function]
Spawns another mouse process, allowing the mouse to run even if it is currently
‘‘tied up’’ under the current mouse process. This function is intended mainly to be
typed in at the Lisp executive when the user notices the mouse is busy.

[Function]
Performs a only when called underneath the mouse process. This
should be called (once, on entry) by any function that relies on s
for completion, if there is any possibility that the function will itself be invoked by
a mouse function.

It never hurts, at least logically, to call or needlessly, as the
mouse process arranges to quietly kill itself if it returns from the user’s and �nds that
another mouse process has sprung up in the meantime. (There is, of course, some computational expense.)

1.8 Debugging Processes

[Function]
Puts up a window that provides several debugging commands for manipulating
running processes. If the window is already up,
refreshes it. If is a position, the window is placed in that position; otherwise,

11

HELP

BUTTONEVENTFN

BREAK HELP

RUBOUT all

RAID STACK OVERFLOW STORAGE FULL

STACK OVERFLOW STORAGE FULL

BUTTONEVENTFN
BUTTONEVENTFN

BUTTONEVENTFN
BUTTONEVENTFN

(SPAWN.MOUSE)

(ALLOW.BUTTON.EVENTS)
(SPAWN.MOUSE)

BUTTONEVENTFN

SPAWN.MOUSE ALLOW.BUTTON.EVENTS
BUTTONEVENTFN

(PROCESS.STATUS.WINDOW)

PROCESS.STATUS.WINDOW

_

WHERE

WHERE

Non-Process Compatibility

the user is prompted for a position.

The window consists of two menus. The �rst is a menu of all the processes at the
moment. Commands in the second menu operate on the process selected in the �rst
menu. The commands are:

, , ,
Performs a backtrace of the selected process. The �rst time, it prompts for
a window in which to display the backtrace.

Changes the selection to the tty process, i.e., the one currently in control of
the keyboard.

Associates the keyboard with the selected process; i.e., makes the selected
process be the tty process.

If the selected process has an , calls it. The hook may be a
function, which is then applied to two arguments, the process and the
button (or) used to invoke , or a form, which is simply

’ed. The or happens in the context of the selected
process, using or . The info hook can be
set using .

Deletes the selected process.

Restarts the selected process.

Wakes the selected process. Prompts for a value to wake it with (see
).

Suspends the selected process; i.e., causes it to block inde�nitely (until
explicitly woken).

Enter a break under the selected process. This has the side e�ect of waking
the process with the value returned from the break.

Currently, the process status window runs under the mouse process, like other menus, so if the mouse is
unavailable (e.g., a mouse function is performing an extensive computation), you may be unable to use
the process status window (you can try , of course).

1.9 Non-Process Compatibility

This section describes some considerations for authors of programs that ran in the old single-process
Interlisp- D environment, and now want to make sure they run properly in the Multi- processing world.
The biggest problem to watch out for is code that runs underneath the mouse handler. Writers of mouse
handler functions should remember that in the process world the mouse handler runs in its own process,
and hence (a) you cannot depend on �nding information on the stack (stash it in the window instead), and
(b) while your function is running, the mouse is not available (if you have any non- trivial computation
to do, spawn a process to do it, notify one of your existing processes to do it, or use to

12

BT BTV BTV* BTV!

WHO?

KBD_

INFO INFOHOOK

LEFT MIDDLE INFO
EVAL APPLY EVAL

PROCESS.APPLY PROCESS.EVAL
PROCESSPROP

KILL

RESTART

WAKE
WAKE.PROCESS

SUSPEND

BREAK

SPAWN.MOUSE

PROCESS.EVAL

run it under some other process).

The following functions are meaningful even if the process world is not on: (invokes the system
background routine, which includes handling the mouse); , (both return

); and (returns , i.e., anyone is allowed to take tty input). In addition, the following
two functions exist in both worlds:

[Function]
Same as , when processes are
running, when not. This is highly recommended for mouse functions that
perform any non- trivial activity.

[Function]
Same as , when
processes are running, when not.

Most of the process functions that do not take a process argument can be called even if processes aren’t
running. creates, but does not run, a new process (it runs when is
called).

13

BLOCK
TTY.PROCESS THIS.PROCESS

NIL TTY.PROCESSP T

(EVAL.AS.PROCESS)
(ADD.PROCESS ’RESTARTABLE ’NO)

EVAL

(EVAL.IN.TTY.PROCESS)
(PROCESS.EVAL (TTY.PROCESS))

EVAL

ADD.PROCESS PROCESSWORLD

FORM
FORM

FORM W AITFORRESUL T
FORM W AITFORRESUL T

