0.1 TIMERS AND DURATION FUNCTIONS

Often one needs to loop over some code, stopping when a certain interval of time has passed. Some
systems provide an ‘‘alarmclock’’ facility, which provides an asynchronous interrupt when a time interval
runs out. This isnot particularly feasible in the current Interlisp- D envirornment, so the following facilities
are supplied for eciently testing for the expiration of atime interval in aloop context.

Three functions are provided: SETUPTI MER, SETUPTI MER. DATE, and TI MEREXPI RED? . Also severd
new i.soprs have been dened: forDuration, during, untilDate, timerUnits, usingTiner,
and r esour ceNane (reasonable variations on upper/lower case are permissible).

These functions use an object called a Timer, which encodes a future clock time a which a signal is
desired. A Timer is constructed by the functions SETUPTI MER and SETUPTI MER. DATE, and is created
with a basic clock ‘‘unit’’ selected from among SECONDS, M LLI SECONDS, or Tl CKS. The rst two timer
units provide a machine/system independent interface, and the latter provides access to the ‘‘red’’, basic
strobe unit of the machine's clock on which the program isrunning. The default unit isM LLI SECONDS.

Currently, the Tl CKS unit is the same as the M LLI SECONDS unit for Interlisp- 10 and Interlisp/VAX.

In Interlisp- D, the Tl CKS unit is a function of the particular machine that Interlisp- D isrunning on: The
Xerox 1100 and 1132 have about 0.5952 microseconds per tick (1680 ticks per millisecond); The Xerox
1108 has about 28.78 microseconds per tick (34.746 ticks per millisecond). The advantage of using Tl CKS
rather than one of the uniform interfaces is primarily speed; e.g., on a Xerox 1100, it may take as much as
400 microseconds to interface the milliseconds clock (a software facility actually based over the real clock),
whereas reading the rea clock itself should take less than about ten microseconds. The disadvantage
of the TI CKS unit is its short roll-over interval (about 20 minutes) compared to the M LLI SECONDS
roll-over interval (about about two weeks), and also the dependency on particular machine parameters.

(SETUPTI MER |INTERVAL OLDTIMER? TIMER UNITS | NTERVAL UNITS) [Function]
SETUPTI MER returns a Timer that will ‘‘goo’’ (as tested by TI MEREXPI RED?)
after a speci ed time-interval measured from the current clock time. SETUPTI MER
has one required and three optional arguments:

I NTER VAL must be ainteger specifying how long an interval isdesired. TI MER UNI TS
speci es the units of measure for the interval (defaults to M LLI SECONDS).

If oDTIMvER? IS a Timer, it will be reused and returned, rather than allocating
a new Timer. |INTERVALUNITS species the units in which the o.DTIMER? IS
expressed (defaults to the value of TIMER UNITS.

(SETUPTI MER. DATE DTS OLDTI MER?) [Function]
SETUPTI MER. DATE returns a Timer (using the SECONDS time unit) that will ‘‘go
0’ at aspecied date and time. DTS isa Date/Time string such as | DATE accepts
(page X.XX). If a.briMeR? is a Timer, it will be reused and returned, rather than
alocating a new Timer.

SETUPTI MER. DATE operates by rst subtracting (| DATE) from (| DATE DTSs),
so there may be some large integer creation involved, even if oLDTI MER? IS given.

0.1

Timers and Duration Functions

(TI MEREXPI RED? TIMER CLOCKV AL UE. OR TIMER UNITS) [Function]
If TITMER isa Timer, and CL OCKV AL UE. OR TI MER UNI TS isthe time-unit of TI MER ,
TI MEREXPI RED? returns true if TIMER has ‘‘goneo’’.

CL OCKV AL UE. OR TI MER UNI TS can aso be a Timer, in which case TI MEREXPI RED?
compares the two timers (using the same time units). If X and Y are Timers, then
(TI MEREXPI RED? X Y) istrue if X is set for a later time than Y.

There are anumber of i.s.oprs that make it easier to use Timers in iterative statements (page X.XX). These
i.s.oprs are given below in the ‘‘canonical’’ form, with the second ‘‘word’ capitalized, but the all-caps and
all-lower- case versions are also acceptable.

forDuration INTERVAL [I.S. Operator]

during | NTER VAL [I.S. Operator]
INTERVAL is an integer specifying an interval of time during which the iterative
statement will loop.

timerUnits UNITS [I.S. Operator]
UNI TS speci es the time units of the I NTERVAL specied in forDuration.

until Date DTS [I.S. Operator]
Drs is a Date/Time string (such as | DATE accepts) specifying when the iterative
statement should stop looping.

usi ngTi mer TIMER [I.S. Operator]
If usingTi mer is given, TIMER is reused as the timer for forDuration or
unti | Dat e, rather than creating a new timer. This can reduce allocation if one
of these i.s.oprs is used within another loop.

resour ceName RESOUR CE [I.S. Operator]
RESOUR CE speci es a GLOBALRESOURCES name to be used as the timer storage.
If RESOUR CE= T, it will be converted to a common internal name.

Some examples:

(during 6MONTHS tinerUnits ' SECS
until (TENANT- VACATED? HouseHol der)
do (DI SM SS <for- about - a- day>)
(HARRASS HouseHol der)
finally (if (NOT (TENANT- VACATED? HouseHol der))
t hen (EVI CT- TENANT HouseHol der)))

This humorous little example shows that how isis possible to have two termination condition: (1) when the
time interval of 6MONTHS has elapsed, or (2) when the predicate (TENANT- VACATED? HouseHol der)
becomes true. Note that the ‘‘ nally’’ clause is executed regardless of which termination condition caused
it.

(do (forDuration (CONSTANT (ITIMES 10 24 60 60 1000))
do (CARRY. ON. AS. USUAL)
finally (PROWTPRINT "Have you had your 10-day check-up?")))

This innite loop breaks out with a warning message every 10 days. One could question whether the
millisecond clock, which is used by default, is appropriate for this loop, since it rolls-over about every

0.2

two weeks.

(SETQ \ Randonili ner (SETUPTI MER 0))

(until Date "31-DEC- 83 23:59:59" usingTiner \RandomTi ner
when (W NN NG?) do (RETURN)
finally (ERROR "You ve been losing this whole year!"))

Here we see a usage of an explicit date for the time interval; aso, the user has squirreled away some
storage (as the vaue of \ Randonili nmer) for use by the call to SETUPTI MER in this loop.

(forDuration SOVEI NTERVAL
resourcenanme '\ | NNERLOOPBOX
timerunits ' Tl CKS
do (CRITI CAL. | NNER LOOP))

For this loop, the user doesn’'t want any CONSing to take place, so \ | NNERLOOPBOX will be dened as
a GLOBALRESQURCES which ‘‘caches” a timer cell (if it isn't aready so dened), and wraps the entire
statement in a GLOBALRESOURCE call. Furthermore, he has speci ed a time unit of Tl CKS, for lower
overhead in this critical inner loop. In fact specifying ar esour cenane of T would have been the same as
specifying it to be \ For Dur at i onOf Box ; this isjust a smpler way to specify that a GLOBALRESOURCE
is wanted, without having to think up a name.

0.3

Timers and Duration Functions

0.4

