
0.1 TIMERS AND DURATION FUNCTIONS

Often one needs to loop over some code, stopping when a certain interval of time has passed. Some
systems provide an ‘‘alarmclock’’ facility, which provides an asynchronous interrupt when a time interval
runs out. This is not particularly feasible in the current Interlisp- D envirornment, so the following facilities
are supplied for e�ciently testing for the expiration of a time interval in a loop context.

Three functions are provided: , , and . Also several
new i.s.oprs have been de�ned: , , , , ,
and (reasonable variations on upper/lower case are permissible).

These functions use an object called a Timer, which encodes a future clock time at which a signal is
desired. A Timer is constructed by the functions and , and is created
with a basic clock ‘‘unit’’ selected from among , , or . The �rst two timer
units provide a machine/system independent interface, and the latter provides access to the ‘‘real’’, basic
strobe unit of the machine’s clock on which the program is running. The default unit is .

Currently, the unit is the same as the unit for Interlisp- 10 and Interlisp/VAX.
In Interlisp- D, the unit is a function of the particular machine that Interlisp- D is running on: The
Xerox 1100 and 1132 have about 0.5952 microseconds per tick (1680 ticks per millisecond); The Xerox
1108 has about 28.78 microseconds per tick (34.746 ticks per millisecond). The advantage of using
rather than one of the uniform interfaces is primarily speed; e.g., on a Xerox 1100, it may take as much as
400 microseconds to interface the milliseconds clock (a software facility actually based over the real clock),
whereas reading the real clock itself should take less than about ten microseconds. The disadvantage
of the unit is its short roll-over interval (about 20 minutes) compared to the
roll-over interval (about about two weeks), and also the dependency on particular machine parameters.

[Function]
returns a Timer that will ‘‘go o�’’ (as tested by )

after a speci�ed time- interval measured from the current clock time.
has one required and three optional arguments:

must be a integer specifying how long an interval is desired.
speci�es the units of measure for the interval (defaults to ).

If is a Timer, it will be reused and returned, rather than allocating
a new Timer. speci�es the units in which the is
expressed (defaults to the value of .

[Function]
returns a Timer (using the time unit) that will ‘‘go

o�’’ at a speci�ed date and time. is a Date/Time string such as accepts
(page X.XX). If is a Timer, it will be reused and returned, rather than
allocating a new Timer.

operates by �rst subtracting from ,
so there may be some large integer creation involved, even if is given.

0.1

SETUPTIMER SETUPTIMER.DATE TIMEREXPIRED?
forDuration during untilDate timerUnits usingTimer

resourceName

SETUPTIMER SETUPTIMER.DATE
SECONDS MILLISECONDS TICKS

MILLISECONDS

TICKS MILLISECONDS
TICKS

TICKS

TICKS MILLISECONDS

(SETUPTIMER )
SETUPTIMER TIMEREXPIRED?

SETUPTIMER

MILLISECONDS

(SETUPTIMER.DATE )
SETUPTIMER.DATE SECONDS

IDATE

SETUPTIMER.DATE (IDATE) (IDATE )

INTER VAL OLDTIMER? TIMER UNITS INTER VAL UNITS

INTER VAL TIMER UNITS

OLDTIMER?

INTER VAL UNITS OLDTIMER?

TIMER UNITS

DTS OLDTIMER?

DTS

OLDTIMER?

DTS

OLDTIMER?



Timers and Duration Functions

[Function]
If is a Timer, and is the time- unit of ,

returns true if has ‘‘gone o�’’.

can also be a Timer, in which case
compares the two timers (using the same time units). If and are Timers, then

is true if is set for a time than .

There are a number of i.s.oprs that make it easier to use Timers in iterative statements (page X.XX). These
i.s.oprs are given below in the ‘‘canonical’’ form, with the second ‘‘word’’ capitalized, but the all-caps and
all-lower-case versions are also acceptable.

[I.S. Operator]
[I.S. Operator]

is an integer specifying an interval of time during which the iterative
statement will loop.

[I.S. Operator]
speci�es the time units of the speci�ed in .

[I.S. Operator]
is a Date/Time string (such as accepts) specifying when the iterative

statement should stop looping.

[I.S. Operator]
If is given, is reused as the timer for or

, rather than creating a new timer. This can reduce allocation if one
of these i.s.oprs is used within another loop.

[I.S. Operator]
speci�es a name to be used as the timer storage.

If = , it will be converted to a common internal name.

Some examples:

This humorous little example shows that how is is possible to have two termination condition: (1) when the
time interval of has elapsed, or (2) when the predicate
becomes true. Note that the ‘‘�nally’’ clause is executed regardless of which termination condition caused
it.

This in�nite loop breaks out with a warning message every 10 days. One could question whether the
millisecond clock, which is used by default, is appropriate for this loop, since it rolls-over about every

0.2

(TIMEREXPIRED? )

TIMEREXPIRED?

TIMEREXPIRED?
X Y

(TIMEREXPIRED? X Y) X later Y

forDuration
during

timerUnits
forDuration

untilDate
IDATE

usingTimer
usingTimer forDuration

untilDate

resourceName
GLOBALRESOURCES

T

(during 6MONTHS timerUnits ’SECS
until (TENANT-VACATED? HouseHolder)
do (DISMISS <for-about-a-day>)

(HARRASS HouseHolder)
finally (if (NOT (TENANT-VACATED? HouseHolder))

then (EVICT-TENANT HouseHolder)))

6MONTHS (TENANT-VACATED? HouseHolder)

(do (forDuration (CONSTANT (ITIMES 10 24 60 60 1000))
do (CARRY.ON.AS.USUAL)
finally (PROMPTPRINT "Have you had your 10-day check-up?")))

TIMER CL OCKV AL UE.OR.TIMER UNITS

TIMER CL OCKV AL UE.OR.TIMER UNITS TIMER

TIMER

CL OCKV AL UE.OR.TIMER UNITS

INTER VAL

INTER VAL

INTER VAL

UNITS

UNITS INTER VAL

DTS

DTS

TIMER

TIMER

RESOUR CE

RESOUR CE

RESOUR CE



two weeks.

Here we see a usage of an explicit date for the time interval; also, the user has squirreled away some
storage (as the value of ) for use by the call to in this loop.

For this loop, the user doesn’t want any ing to take place, so will be de�ned as
a which ‘‘caches’’ a timer cell (if it isn’t already so de�ned), and wraps the entire
statement in a call. Furthermore, he has speci�ed a time unit of , for lower
overhead in this critical inner loop. In fact specifying a of would have been the same as
specifying it to be ; this is just a simpler way to specify that a
is wanted, without having to think up a name.

0.3

(SETQ \RandomTimer (SETUPTIMER 0))
(untilDate "31-DEC-83 23:59:59" usingTimer \RandomTimer

when (WINNING?) do (RETURN)
finally (ERROR "You’ve been losing this whole year!"))

\RandomTimer SETUPTIMER

(forDuration SOMEINTERVAL
resourcename ’\INNERLOOPBOX
timerunits ’TICKS
do (CRITICAL.INNER.LOOP))

CONS \INNERLOOPBOX
GLOBALRESOURCES

GLOBALRESOURCE TICKS
resourcename T

\ForDurationOfBox GLOBALRESOURCE



Timers and Duration Functions

0.4


