
0.1 CHAT

is a ‘‘remote terminal’’ facility, that allows one to communicate with other machines while inside
Interlisp- D. The function sets up a ‘‘Chat connection’’ to a remote machine, so that everything you
type is sent to the a remote machine, and everything the remote machine prints is displayed in a ‘‘Chat
window’’. The remote machine must support the Pup Telnet protocol.

Multiple simultaneous Chat connections are possible. To switch between typing to di�erent Chat
connections, simply button within the Chat window you want to use. prompts for a new window
for each new connection, except that it saves the �rst window to reuse once the connection in that window
is closed (other windows just go away when their connections are closed).

behaves as if its Chat window is a Datamedia- 2500 terminal of the dimensions determined by the
size of the window. Hence, you can talk to hosts that supply Datamedia service and expect something
reasonable to happen. If the host does not pay attention to the terminal speci�cation protocol, or
you go through that host to another host, you may need to inform the host of the dimensions of your
‘‘screen’’; these are given in the title bar of the chat window. The font should be Gacha10 or other
�xed- width font for proper Datamedia emulation.

[Function]
Opens a Chat connection to , or to the value of . If

requires login, as determined by whether it responds to the ‘‘where is user’’
protocol, supplies a login sequence, or if it determines that you have a single
detached job, an attach sequence. If you have more than one detached job, it
simply performs a command for you and allows you to select the job.
You may alternatively specify one of the following values for :

Always perform a login.

Always perform an attach. This will fail if you do not have
exactly one detached job.

Login as user GUEST, password GUEST.

Do not attempt to login or attach.

If is supplied, it is either a string or the name of a �le whose contents
will be read as typein. When the string/�le is exhausted, input is taken from .

If is supplied, it is a window to use for the connection; otherwise, the
user is prompted for a window.

While is in control, all Lisp interrupts are turned o�, so that control characters can be transmitted
to the remote host.

Commands can be given to an active Chat connection by bugging the button in the Chat window
to get a command menu. Current commands are:

Close Close this connection. Once the connection is closed, control is handed over to the
main tty window. Closes the window unless this is the primary Chat window.

0.1

CHAT
CHAT

CHAT

CHAT

CHAT

(CHAT )
DEFAULTCHATHOST

CHAT

WHEREIS

LOGIN

ATTACH

GUEST

NONE

T

CHAT

MIDDLE

HOST LOGOPTION INITSTREAM WINDO W _

HOST

HOST

LOGOPTION

INITSTREAM

WINDO W



CHAT

Suspend Same as Close, but always leaves the window open.

New Closes the current connection and prompts for a new host to which to open a
connection in the same window.

Freeze Hold typeout from this Chat window. Bugging the window in any way releases the
hold. This is most useful if you want to switch to another, overlapping window
and there is typeout in this window that would compete for screen space.

Dribble Open a typescript �le for this Chat connection (closing any previous dribble �le
for the window). The user is prompted for a �le name; a name of just closes
the old dribble �le.

Input Prompts for a �le to take input from. When the end of the �le is reached, input
reverts to .

Clear Clears the window and resets the simulated terminal to its default state. This is
useful if undesired terminal commands have been received from the remote host
that place the simulated terminal into a funny state.

In an inactive Chat window, the button brings up a menu of one item, , whose
selection reopens a connection to the same host as was last in the window. This is the primary motivation
for the Suspend menu command. A new Chat connection can also be opened from the Background
menu.

The mouse button , when inside , holds output as long as the button is down. Holding down
coincidentally does this, too, but not on purpose: since the menu handler does not yield control

to other processes, it is possible to kill the connection by keeping the menu up too long.

Chat windows are a little bit knowledgable about window operations. If you reshape a Chat window,
Chat informs your partner of the new dimensions. And if you close the window, the connection is also
closed.

The following variables control aspects of Chat’s behavior:

[Variable]
The type of display (a number) that Chat should tell the remote host the user is
on. If Datamedia emulation is desired, this variable should be set to the number
corresponding to the terminal type Datamedia for the remote host. If the remote
host does not respond to the terminal type protocol in Pup Telnet, this variable is
irrelevant.

[Variable]
A list of host names, as uppercase litatoms, that the user desires to Chat to.
Chatting to a host not on the list adds it to the list. These names are placed in the
menu that the background Chat command prompts with.

[Variable]
If true, every Chat window is closed on exit. If , the initial setting, then the
primary Chat window is not closed.

[Variable]
The host to which connects when it is called with no argument.

0.2

NIL

T

MIDDLE ReConnect

LEFT CHAT
MIDDLE

CHAT.DISPLAYTYPE

CHAT.ALLHOSTS

CLOSECHATWINDOWFLG
NIL

DEFAULTCHATHOST
CHAT HOST



[Variable]
If non- , the font that Chat windows are created with. If is ,
Chat windows are created with .

0.3

CHAT.FONT
NIL CHAT.FONT NIL

(DEFAULTFONT ’DISPLAY)



CHAT

0.4


