CHAPTER 19

INTERLISP-D DISPLAY FACILITIES

This chapter describes the functions that support the display and the interaction with programs that use
the display. First, a brief introductory view of using the Interlisp- D display and how some of the other
Interlisp facilities have been extended to include display interfaces. The two screen images at left show
some of the display features as used by exploratory programming tools of the Interlisp- D environment.
The screen is divided into several rectangular areas or windows, each of which provides a view onto some
data or process and which can be reshaped and repositioned at will by the user. When they overlap,
the occluded portion of the lower window is automatically saved, so that it can be restored when the
overlapping window is removed. Since the display is bitmapped, each window can contain an arbitrary
mixture of text, lines, curves, and half-tone and solid area images.

The typescript window is in the upper left corner of the screen. It corresponds to the output channel
T. In it, the user has dened a program F (factoria) and has then immediately run it, giving an input
of 4 and getting a result of 24. Next, he queries the state of his les using the le package function
FI LES?, nding that one le has been changed (previously) and one function (F) has been dened but
not associated with any le yet. The user sets the value of DRAWBETWEEN to O in command 74, and the
system notes that this is a change and adds DRAWBETWEEN to the set of ‘‘changed objects’’ that might
need to be saved.

Then, the user runs his program EDI TTREE, giving it a parse tree for the sentence ‘‘My uncl€'s story
about the war will bore you to tears’. This opens up the big window on the right in which the sentence
diagram is drawn. Using the mouse, the user starts to move the NP node on the left (which is inverted
to show that it is being moved). While the move is taking place, the user interrupts the tree editor using
Control- H, which suspends the computation and causes three ‘‘break’’ windows to appear on top of the
lower edge of the typescript. These are part of the window break package. The smallest window shows the
dynamic state of the computation, which has been broken inside a subprogram called FOLLOW CURSOR.
The " FOLLOW CURSOR Frane" window to the right shows the value of the local variables bound by
FOLLOW CURSOR. One of them has been selected (and so appears inverted) and in response, its value
has been shown in more detail in the window at the lower left of the screen. The user has marked one of
the component values as suspicious by drawing on it using the window command PAI NT. In addition, he
has asked to examine the contents of the Bl TMAP component, which used the function EDI TBM to open
a bitmap edit window to the right. This shows an enlarged copy of the actua NP image that is being
moved by the tree editor.

Inside the largest break window, the user has asked some questions about FOLLOW CURSOR, and queried
the value of DRAVWBETWEEN (now 66). Using the BROASER lispusers package, the Masterscope SHOW
PATHS command brought up the horizontal tree diagram on the left, which shows which subprograms
call each other, starting at FOLLOW CURSOR. Each node in the call tree produced by the SHOW PATHS
command is an active element which will respond to the user’'s selecting it with the mouse. In the second
image, the user has selected the SHOANCDE subprogram, which has caused its code to be retrieved from
the le (<LI SP>DEMO>LATTI CER) on the remote le server (PHYLUM) where it was stored and displayed
in the ‘‘Browser printout window’’ which has been opened at middle right. User programs and extended
Lisp forms (like for and do) are highlighted by system generated font changes. By selecting nodes in the
SHOW PATHS window, the user could also have edited or obtained a summary description of any of the

191

POSITION

subprograms.

Instead, the user told Masterscope (in the break typescript window) to edit wherever anyone calls
the DRAVBETWEEN program (a line drawing function). This request causes the system to consult
its (dynamically maintained) database of information about user programs, wherein it nds that the
subprogram SHOWLI NK calls DRAWBETWEEN. It therefore loads the code for SHOALI NK into an edit
window which appears under the ‘‘Browser print out window''. The system then automatically nds and
underlines the rst (and only) cal on DRAWBETWEEN. On the previous line, DRAVBETWEEN is used as
a variable (the one the user set and interrogated earlier). The system, however, knows that this is not a
subprogram call, so it has been skipped. If the user makes any change to SHOALI NK in the editor, not
only will the change take eect immediately, but SHOALI NK will be marked as needing to be updated
in its le and the information about it in the program database will be updated. This, in turn, will cause
the SHOW PATHS window to be repainted, as its display may no longer be valid.

The Interlisp- D display facility has several layers. At the lowest level are routines which view the display
as a collection of bits and provides primitives for moving blocks of bits around (BI TBLT). The concepts
important to this level are positions, regions and bitmaps. The next level is the display stream, an
abstraction that implements clipping to rectangular areas of the screen, line and curve drawing, and
printing to the screen in dierent fonts. The concepts important to this level are fonts and display
streams. On the input side, there is a low level interface for reading the display input devices, the cursor
location and the mouse buttons. The input and output come together at the next level, the window system
which allows areas of the screen used by di erent programs to overlap by keeping track of information
covered and providing control primitives for mouse interaction. This chapter is organized according to
these levels.

191 POSITION

A position denotes a point in an XY coordinate system. A POSI Tl ON is an instance of a record with
elds XCOORD and YCOORD and is manipulated with the standard record package facilities. For example,
(create POSI TION XCOORD _ 10 YCOORD _ 20) creates a position representing the point (10,20).

(PCSI TI ONP X) [Function]
Returns X if X isa POSI TI ON; NI L otherwise.

19.2 REGION

A Region denotes a rectangular area in a coordinate system. Regions are characterized by the coordinates
of their bottom left corner and their width and height. A REA ON is a record with elds LEFT, BOTTOM,
W DTH, and HEI GHT. It can be manipulated with the standard record package facilities. There are access
functions for the REA ON record that returns the TOP and RI GHT of the region.

The following functions are provided for manipulating regions:

(CREATEREGQ ON LEFT BOTTOM WDTH HEI GHT) [Function]
Returns an instance of the REG ON record which has LEFT , BOoTTOM , WDTH and

19.2

INTERLISP-D DISPLAY FACILITIES

HEl GHT as respectively its LEFT, BOTTOM, W DTH, and HEI GHT.

Example (CREATEREG ON 10 -20 100 200) will create aregion that denotes
a rectangle whose width is 100, whose height is 200, and whose lower left corner
is (10,-20).

(I NTERSECTREG ONS REG ON ; REGON REG ON) [NoSpread Function]
Returns a region which is the intersection of a number of regions. Returns NI L
if the intersection is empty. If there are no regions given, it returns a very large
region.

(UNI ONREG ONS REG ON ; REGON , REG ON) [NoSpread Function]
Returns aregion which isthe union of a number of regions, i.e. the smallest region
that contains all of them. Returns NI L if there are no regions given.

(REG ONSI NTERSECTP REG ON1 REG O\N2) [Function]
Returns T if REG ON1 intersects REG ON2 . Returns NI L if they do not intersect.

(SUBREG ONP LAR GEREG ON SMALLREG ON) [Function]
Returns T if SMALLREG ON s a subregion (is equa to or entirely contained in)
LAR GEREG ON ; otherwise returns NI L.

(EXTENDREG ON REG ON | NCL UDEREG ON) [Function]
Changes (destructively modi es) the region REG ON so that it includes the region
I NCL UDEREG ON . It returns REG ON .

(I NSIDEP REGON X Y) [Function]
If X and Y are numbers, it returns T if the point (x,Y) isinside of REG ON . If X is
a POSI TI ON, it returns T if x isinside of REG ON . Otherwise, it returns NI L.

193 BITMAP

The display primitives manipulate graphical images in the form of bitmaps. A bitmap is a rectangular
array of ‘‘pixels,’’ each of which is an integer representing the color of one point in the bitmap image.
A bitmap is created with a speci ¢ number of bits alocated for each pixel. Most bitmaps used for the
display screen use one bit per pixel, so that at most two colors can be represented. If a pixel is O, the
corresponding location on the image is white. If a pixel is 1, its location is black. (This interpretation can
be changed with the function VI DEOCOLOR; see page 19.7.) Bitmaps with more than one bit per pixel
are used to represent color or grey scale images.

Bitmaps use a positive integer coordinate system with the lower left corner pixel at coordinate (0,0).
Bitmaps are represented as instances of the datatype Bl TMAP with elds Bl TMAPW DTH, Bl TMAPHEI GHT,
Bl TMAPBI TSPERPI XEL , Bl TMAPRASTERW DTH, and Bl TMAPBASE. Only the width, height, and bits
per pixel elds are of interest to the user, and can be accessed with the following functions:

(BI TMAPW DTH BI TMAP) [Function]
Returns the width of Bl TMAP in pixels.

19.3

BITBLT

(Bl TMAPHEI GHT BI T™MAP) [Function]
Returns the height of B TMAP in pixels.

(Bl TSPERPI XEL BI TMAP) [Function]
Returns the number of bits per pixel of B TMAP .

The functions used to manipulate bitmaps are:

(BI TMAPCREATE WDTH HEIGHT Bl TSPERPI XEL) [Function]
Creates and returns a new bitmap which is wDTH pixels wide by Hel GHT pixels
high, with BI TSPERPI XEL pits per pixel. If BI TSPERPI XEL is NI L, the default is 1.

(BITMAPBI T BITMAP X Y NEW ALUE) [Function]
If New/ AL UE is between 0 and the maximum value for a pixel in Bl T™MAP , the
pixel (X, Y) is changed to News AL UE and the old value is returned. If NEW AL UE
isNI'L, Bl TMAP isnot changed but the value of the pixel isreturned. If NeWw AL UE
is anything €lse, an error is generated. If (X, Y) is outside the limits of Bl TMAP , O
isreturned and no pixels are changed. BI TMAP can also be a window.

(BI TMAPCOPY BI T™AP) [Function]
Returns a new bitmap which isa copy of Bl TMAP (same dimensions and contents).

(EXPANDBI TMAP BI TMAP W DTHF ACTOR HEI GHTF ACTOR) [Function]
Returns a new bitmap that is WDTHF ACTOR times as wide as Bl TvaP and
HEI GHTF ACTOR times as high. Each pixel of Bl TMaP iscopied into aw DTHF ACTOR
times HEl GHTF ACTOR block of pixels. If NIL, wDTHF ACTOR defaults to 4,
HEl GHTF ACTOR to 1.

There are two distinguished bitmaps that are read by the hardware to become visible as the screen and
the cursor. The screen is a bitmap SCREENW DTH (=1024) wide by SCREENHEI GHT (=808) high. The
cursor is a bitmap CURSCORW DTH (=16) wide by CURSORHEI GHT (=16) high. They are accessed by:

(SCREENBI TMAP) [Function]
Returns the screen bitmap.

(CURSORBI TMAP) [Function]
Returns the cursor bitmap.

Note: The cursor bitmap can be changed with the function CURSOR (page 19.16).

194 BITBLT

Bl TBLT isthe primitive function for moving bits from one bitmap to another. It is similar to the function
RASTEROP that is used in other systems.

(BI TBLT SOUR CEBITMAP SOUR CELEFT SOUR CEBOTTOM DESTI NA TI ONBI TMAP DESTI NA TI ONLEFT
DESTI NA TIONBOTTOM ~ WDTH HEI GHT SOUR CETYPE OPERA TION TEXTURE CLI PPl NGREG ON)
[Function]

W DTH and HEl GHT dene apair of rectangles, one in each of the SOUR CEBI TMAP and DESTI NA TI ONBI TMAP

194

INTERLISP-D DISPLAY FACILITIES

whose left, bottom corners are at, respectively, (SOUR CELEFT , SOUR CEBOTTOM) and (DESTI NA TI ONLEFT
DESTI NA TI ONBOTTOM). If these rectangles overlap the bound aries of either bitmap they are both reduced
in size (without translation) so that they t within their respective bound aries. If CLI PPINGREG ON iS
non-NI L it should be a REA ON and is interpreted as a clipping region within DESTI NA TI ONBI TMAP
clipping to this region may further reduce the dening rectangles. These (possibly reduced) rectangles
dene the source and destination rectangles for Bl TBLT. SOUR CEBI TMAP and DESTI NA TI ONBI TMAP Can
also be display streams or windows, in which case their associated bitmaps are used.

The mode of transferring bits isdened by SOUR CETYPE and OPERA TION. SOUR CETYPE and OPERA TION
specify boolean functions that are used to deter mine, respectively, the method of combining SOUR CEBI TMAP
bits with the TEXTURE and the operation between these resul tant bits and DESTI NA TI ONBI TMAP . TEXTURE
isagray pattern, as described on page 19.6. (Note: The alignment of the texture pattern with Bl TBLT is
such that the origin of the destination bitmap is at an intersection of the ‘‘tiles.’’)

SOUR CETYPE speci es how to combine the bits from SourR ceBl TMaP with the bits from TEXTURE (a
background pattern) to produce a ‘‘Source’’. This is designed to allow characters and gures to be placed
on a background.

SQUR CETYPE Source
I NPUT SOUR CEBI TMAP

| NVERT (NOT SOUR CEBI TMAP)
TEXTURE TEXTURE

For the I NPUT and | NVERT case, the TEXTURE argument to Bl TBLT is ignored. For the TEXTURE
case, the SOUR CEBI TMAP , SOUR CELEFT , and SOUR CEBOTTOM arguments are ignored.

OPERA TION speci es how this source is combined with the bits in DESTI NA TI onBl TMAP and stored back
into DESTI NA TI ONBI TMAP

OPERA TI ON DESTI NA TI ONBI TMAP becomes

REPLACE Source

PAI NT (OR DESTI NA TI ONBI TMAP Source)

I NVERT (XOR DESTI NA TI ONBI TMAP ~ Source)

ERASE (AND DESTINA TIONBI TMAP - (NOT Source))

SOUR CELEFT , SOUR CEBOTTOM , DESTI NA TI ONLEFT , and DESTI NA TIONBOTTOM default to 0. wbDrH and
HEl GHT default to the width and height of the SOUR CEBI TMAP . TEXTURE defaults to white. SOUR CETYPE
defaults to | NPUT. oPERA TI ON defaults to REPLACE. If cLI PPINGREG ON is not provided, no additional
clipping is done. BI TBLT returns T if any bits were moved; NI L otherwise.

Note: BI TBLT and BI TMAPBI T accept windows and display streams as their bitmap arguments. In
these cases, the remaining arguments are interpreted as values in the coordinate system of the window or
display stream and the operation of the functions are translated and clipped accordingly. If a window or
display stream is used as the destination to BI TBLT, its clipping region limits the operation involved.

195

TEXTURE

195 TEXTURE

A Texture denotes a pattern of gray which can be used by Bl TBLT to (conceptualy) tessellate the plane
to form an innite sheet of gray. It is currently a 4 by 4 pattern. Textures are created interactively using
the function EDI TSHADE or from bitmaps using the following function.

(CREATETEXTUREFROVBI TMAP BI TMAP) [Function]
Returns a texture object that will produce the texture of Bl T™aP . If BI TMAP S toO
large, its lower left portion isused. If Bl TMAP istoo smal, it isrepeated to Il out
the texture.

(TEXTUREP OBJECT) [Function]
Returns oBJECT if it is a texture, i.e. alegal texture argument to Bl TBLT.

The common textures white and black are avail able as system constants VWHI TESHADE and BLACKSHADE. The
global variable GRAYSHADE isused by many system facilities as a back ground gray shade and can be set by
the user. The original background shade of the window system iskept in W NDOABACKGROUNDSHADE . The
back ground shade can be changed by the following function:

(CHANGEBACKGROUND SHADE) [Function]
Changes the background shade of the window system. SHADE determines the
pattern of the background. If sHADE is a texture, then the background is simply
painted with it. If SHADE is a Bl TMAP, the background is tesselated (tiled) with it
to cover the screen. If sHADE is T, it changes to the origina shade, the value of
W NDOWBACKGROUNDSHADE . It returns the previous vaue of the background.

19.6 SAVING BITMAPS

Bitmaps can be saved on les with the VARS le package command (page 11.22). The following two
functions trandlate bitmaps into and out of a representation which may be used to transfer bitmaps
between Interlisp and other computer systems' representations.

(READBI TVAP) [Function]
Creates a hitmap by reading an expression (written by PRI NTBI TMAP) from the
primary input channel.

(PRI NTBI TMAP BI TMAP) [Function]
Prints the bitmap BI TMAP on the primary output channel in a format that can be
read back in by READBI TMAP.

19.7 SCREEN OPERATION

The following functions control the display screen.

19.6

INTERLISP-D DISPLAY FACILITIES

(VI DECCOLOR BLA CKFL G) [NoSpread Function]
Sets the interpretation of the bits in the screen bitmap. If BLACKFL G is NI L,
a 0 bit will be displayed as white, otherwise a O bit will be displayed as black.
VI DECCOLOR returns the previous setting. If BLA CKFL G isnhot given, VI DEOCOLCOR
will return the current setting without changing anything.

Note: This function only works on the Xerox 1100 and Xerox 1108.

(VI DEORATE TYPE) [Function]
Sets the rate at which the screen isrefreshed. TYPE is one of NORMAL or TAPE. If
TYPE is TAPE, the screen will be refreshed at the same rate as TV (60 cycles per
second). This makes the picture look better when video taping the screen. Note:
Changing the rate may change the dimensions of the display on the picture tube.

Several functions are provided for turning o the display (partially or completely). See page 18.22.

19.8 CHARACTERS AND FONTS

Fonts control the way characters look when printed on the screen or a graphics printer. Fonts are de ned
by a distinctive style or FAM LY (such as Gacha or TimesRoman), a Sl ZE (such as 10 points), and FACE
(such as bold or italic). Fonts aso have a ROTATI ON that indicates the orientation of characters on the
screen or page. A norma horizontal font (also called a portrait font) has a rotation of 0O; the rotation of
a vertical (landscape) font is 90 degrees. While the speci cation allows any combination, in practice the
user will nd that only certain combinations of families, sizes, faces, and rotations are available.

In specifying a font to the functions described below, a FAM LY is represented by a literal atom, a SI ZE
by a positive integer, and a FACE by a three- element list of the form (WEl GHT SLOPE EXPANSI ON) .
V\EI GHT, which indicates the thickness of the characters, can be BOLD, MEDI UM, or LI GHT; SLOPE can
be | TALI C or REGULAR; and EXPANSI ON can be REGULAR, COVPRESSED, or EXPANDED, indicating
how spread out the characters are. For convenience, faces may also be speci ed by three- character atoms,
where each character isthe rst letter of the corresponding eld. Thus, MRR is a synonym for (MEDI UM
REGULAR REGULAR) . In addition, certain common face combinations may be indicated by specia litera
atoms:

STANDARD = (MEDI UM REGULAR REGULAR) = MRR
| TALIC= (MEDI UM | TALIC REGULAR) = MR
BOLD = (BOLD REGULAR REGULAR) = BRR

BOLDI TALIC = (BOLD I TALIC REGULAR) = BIR

A font aso has the properties ASCENT, DESCENT, and HEI GHT (= ASCENT + DESCENT), and, for
each character, a width and bit pattern. The ASCENT is the maximum height of any character in the
font from its base line (the printing position). The DESCENT is the maximum extent of any character
below the base line, such as the lower part of a ‘‘p.”" Therefore the top line of a character will be at
Base+ ASCENT-1, while the bottom line will be at Base-DESCENT. The width of each character speci es
how a stream’s position will change when the character is printed. This may have both an X and a Y
component (e.g., for landscape fonts), and it varies from character to character in variable pitch fonts.

19.7

Charactersand Fonts

The information about a particular font is represented in a font descriptor. The following functions
manipulate font descriptors:

(FONTCREATE FAMLY SIZE FACE ROTATION DEVICE NOERR ORFL G) [Function]
Returns a font descriptor for the specied font. Size is an integer indicating
the size of the font in points. FACE species the face characteristics in one of
the formats listed above; if FACE is NI L, STANDARD is used. ROT ATI ON, which
speci es the orientation of the font, is O (or NI L) for a portrait font and 90 for a
landscape font. DeEvi CE indicates the output device for the font. For Interlisp- D,
the possible values for DEvi CE are DI SPLAY for the display screen and PRESS for
Press printers. DeEvi CE defaults to DI SPLAY.

For display fonts, FONTCREATE looks for a STRI KE le with the appropriate name
(such as TI MESROMANBBI . STRI KE for a TI MESROVAN 8 BCLDI TALI C font),
searching through directories on the list FONTDI RECTORI ES. If the le is found,
it isread into a font descriptor. If the le is not found, FONTCREATE looks for
fonts with less face information (in this example, TI MESROVANSI . STRI KE) and
fakes the remaining faces (such as by doubling the bit pattern of each character
or dlanting it). If no appropriately sized font is found, the action of the function
is determined by NOERR ORFL G. If NOERR ORFL G is NI'L, it generates a FI LE
NOT FOUND error with the name of the most specic le tried (in the example
TI MESROVANSBI . STRI KE); otherwise, FONTCREATE returns NI L.

For Press fonts, FONTCREATE accesses the widths information for the font from a
font-dictionary le whose name isin the list FONTW DTHSFI LES (usually initialized
in the site-greeting le to contain at least { DSK} FONTS. W DTHS) . That dictionary
must contain information for the face as speci ed; there is no acceptable faking
algorithm for hard- copy fonts. The width and height information for press fonts is
expressed in micas (= 10 microns = 1/2540 inch), not in screen- point units.

The FAM LY argument to FONTCREATE may also be a list, in which case it is
interpreted as a FAM L Y-SI ZEFACE -ROT ATION quadruple. Thus, (FONTCREATE
"(GACHA 10 BOLD)) is equivalent to (FONTCREATE ' GACHA 10 ' BOLD) .
FAMLY may also be a font descriptor, in which case that descriptor is simply
returned.

(FONTP Xx) [Function]
Returns x if x is afont descriptor; NI L otherwise.

The following functions take a font as one argument. This argument must either be a particular font
descriptor or coerceable to a font descriptor. A display stream is coerced to its current font, a window is
coerced to the current font of its display stream, and anything else is coerced by applying FONTCREATE
to it.

(FONTPROP FONT PROP) [Function]
Returns the value of the PrRoP property of font FONT . PROP may be one
of FAM LY, Sl ZE, FACE, WEI GHT, SLOPE, EXPANSI ON, DEVI CE, ASCENT,
DESCENT, HEI GHT, or ROTATI ON.

(FONTCCOPY OLDF ONT PROP, VAL, PROP, VAL,) [NoSpread Function]
Returns afont descriptor that isa copy of the font a.bF ONT , but which di ers from
OLDF ONT in that OLDF ONT 's properties are replaced by the speci ed properties

198

INTERLISP-D DISPLAY FACILITIES

and values. Thus, (FONTCOPY FONT 'WEI GHT ' BOLD ' DEVI CE ' PRESS)
will return a bold press font with al other properties the same as those of
FONT . FONTCOPY accepts al the properties that FONTPROP interrogates except for
ASCENT, DESCENT, and HEI GHT. If the rst property is a ligt, it is taken to be
the PROP; VAL ; PROP, VAL, sequence. Thus, (FONTCOPY FonT * (VAEI GHT
BOLD DEVI CE PRESS)) isequivalent to the example above.

(CHARW DTH CHAR CODE FONT) [Function]
CHAR CODE isan integer that represents avalid character (as returned by CHCONL).
Returns the amount by which a stream’s X-position will be incremented when the
character is printed.

(CHARW DTHY CHAR CODE FONT) [Function]
Like CHARW DTH, but returns the Y component of the character's width, the
amount by which a stream’s Y-position will be incremented when the character is
printed. This will be zero for most characters in normal portrait fonts, but may be
non- zero for landscape fonts or for vector-drawing fonts.

(STRI NGWN DTH STR FONT PRIN2FL G RDTBL) [Function]
Returns the amount by which a stream’'s X-position will be incremented if the
printname for the Interlisp- D object STR is printed in font FONT . If FONT is a
display stream, its font is used. If PRIN2FL G is non-NI L, the PRI N2-pname of
STR with respect to the readtable RDTBL is used.

(STRI NGREG ON STR WNDO W PRIN2FL G RDTBL) [Function]
Returns the region occupied by STR if it were printed at the current location in
WNDO W. This isuseful for determining where text isin a window to alow the user
to select it. The arguments PRIN2FL G and RDTBL are passed to STRI NGW DTH.

It is sometimes useful to simulate an unavailable font or to use a font with characteristics di erent from
the interpretations provided by the system. The following function alows the user to tell the system what
font descriptor to use for given characteristics.

(SETFONTDESCRI PTOR FAM LY SIZE FACE ROTATION DEVICE FONT) [Function]
Indicates to the system that FONT isthe font with the FAM L Y SI ZE FACE ROT ATI ON
DEVI CE characteristics. If FONT isNI L, the font associated with these characteristics
is cleared and will be recreated the next time it is needed. As with FONTPROP and
FONTCOPY, FONT is coerced to a font descriptor if it is not one already.

(DEFAULTFONT DEVICE FONT _) [Function]
Returns the font that would be used as the default (if NI L were specied as a
font argument) for device DeEvicE . If FONT is a font descriptor, it is set to be the
default font for DEVI CE .

The following functions allow the user to access and change the bitmaps for individua characters in a
display font.

(GETCHARBI TMAP CHAR CODE FONT) [Function]
Returns a bitmap containing a copy of the image of the character cHAR CODE in
the font FONT .

199

Display Streams

(PUTCHARBI TMAP CHAR CODE FONT NEW CHARBI TMAP) [Function]
Changes the bitmap image of the character cHAR CobE in the font FONT to the
bitmap NEw cHARBI TMAP . Currently, NEW CHARBI TMAP must be the same width
and height as the current image for cHAR CODE in the font FONT .

Users can interactively edit characters using the EDI TCHAR function (page 20.10).

199 DISPLAY STREAMS

Streams are used as the basis for all I/O operations. Files are implemented as streams that can support
character printing and reading operations, and le pointer manipulation. Display streams are a type of
stream that also provides an interface for trandation, clipping, and gure generation on bitmaps. All of
the operations that can applied to streams can be applied to display streams. For example, a display
stream can be passed as the argument to PRI NT, to print something on the bitmap of a display stream. In
addition, special functions are provided to draw lines and curves and perform other graphical operations
on display streams. Calling these functions on a stream that is not a display stream will generate an error.

Windows are closely related to display streams and can be thought of as a type of display stream. (In
the near future, windows will be a type of display stream.) All of the functions that operate on display
streams also accept windows.

Display streams can be created with the following function:

(DSPCREATE DESTI NA TION) [Function]
Returns a display stream, with initial settings as indicated below. If DESTI NA TI ON
is speci ed, it is used as the destination bitmap, otherwise the screen bitmap is
used.

Each window has an associated display stream. To get the window of a particular display stream, use:

(WFROVDS DI SPLAYSTREAM) [Function]
Returns the window associated with DI SPLAYSTREAM , creating a window if one
does not exist. Returns NI L if the destination of DI SPLAYSTREAM is not a screen
bitmap that supports a window system.

19.9.1 Manipulating Display Streams

The following functions manipulate the elds of a display stream (they may also be given a window, in
which case the associated display stream is used). These functions return the old value (the one being
replaced). A value of NI L for the new value will return the current setting without changing it. These
functions do not change any of the bits in the display stream’s destination bitmap; just the eect of future
operations done through the display stream.

Warning: The window system maintains the Destination, XOset, YOset, and ClippingRegion elds
of each window’s display stream, adjusting them during window operations. Users should be very
careful about changing these elds in awindow’s display stream (with DSPDESTI NATI ON, DSPXOFFSET,
DSPYOFFSET, or DSPCLI PPl NGREQ ON).

19.10

INTERLISP-D DISPLAY FACILITIES

(DSPDESTI NATI ON DESTINA TION DI SPLAYSTREAM) [Function]
Destination: The bitmap that the display stream modi es. This can be either the
screen bitmap, or an auxilliary bitmap in order to construct gures, possibly save
them, and then display them in a single operation. Initialy the screen bitmap.

(DSPXOFFSET XOFFSET DI SPLAYSTREAM) [Function]

(DSPYOFFSET YOFFSET DI SPLAYSTREAM) [Function]
XOset: The X origin of the display stream’s coordinate system in the destination
bitmap’s coordinate system. Initially O (no X-coordinate transation).

YOset: The Y origin of the display stream’s coordinate system in the destination
bitmap’s coordinate system. Initially O (no Y-coordinate trandation).

Display streams have their own coordinate system. Having the coordinate system
local to the display stream alows objects to be displayed at di erent places by
trandlating the display stream’s coordinate system relative to its destination bitmap.

(DSPCLI PPI NGREG ON REG ON DI SPLAYSTREAM) [Function]
ClippingRegion: A region that limits the extent of characters printed and lines
drawn (in the display stream’s coordinate system). Initially set so that no clipping

occurs.
(DSPXPGCSI TI ON XPCSI TION DI SPLAYSTREAM) [Function]
(DSPYPGOSI TI ON YPOSI TION DI SPLAYSTREAM) [Function]

XPosition: The current X position. Initially O.
YPosition: The current Y position. Initialy O.

DSPXPGCSI TI ON and DSPYPOSI TI ON specify the ‘‘current position” of the display
stream, the position (in the display stream’s coordinate system) where the next
printing operation will start from. The functions which print characters or draw
on adisplay stream update these values appropriately.

(DSPTEXTURE TEXTURE DI SPLAYSTREAM) [Function]
Texture: A texture that is the background pattern used for the display stream.
Initially the value of WHI TESHADE.

(DSPFONT FONT DI SPLAYSTREAM) [Function]

Font: A Font Descriptor that speci es the font used when printing characters to
the display stream. Initially Gacha 10.

Note: DSPFONT determines its new font descriptor from FONT by the same coercion
rules that FONTPROP and FONTCOPY use, with one additional possibility: If FONT
isalist of the form (PROP, VAL, PROP, VAL,) where PROP , is acceptable
as a font-property to FONTCOPY, then the new font is obtained by (FONTCORPY
(DSPFONT N L DI SPLAYSTREAM PROP; VAL; PROP, VAL,).

(DSPLEFTMARG N XPOSI TION DI SPLAYSTREAM) [Function]

LeftMargin: An integer that is the X position after an end- of-line (in the display
stream’s coordinate system) - initialy O.

(DSPRI GHTMARG N XPCsI TION DI SPLAYSTREAM) [Function]
RightMargin: An integer that is the maximum X position that characters will

1911

Drawing on Windows and Display Streams

be printed at (in the display stream’s coordinate system) - initialy the value of
SCREENW DTH. This determines when an end of line is automatically inserted by
the printing functions.

The line length of a window or display stream (as returned by LI NELENGTH, page 6.8) is computed by
dividing the distance between the left and right margins by the width of an uppercase ‘A’ in the current
font. The line length is changed whenever the Font, LeftMargin, or RightMargin are changed.

(DSPSOURCETYPE SOUR CETYPE DI SPLAYSTREAM) [Function]
SourceType: The Bl TBLT sourcetype used when printing characters to the display
stream. Must be either | NPUT or | NVERT. Initially | NPUT.

(DSPOPERATI ON OPERA TION DI SPLAYSTREAM) [Function]
Operation: The default Bl TBLT operation (REPLACE, PAI NT, | NVERT, or ERASE)
used when printing or drawing on the display stream. Initially REPLACE.

(DSPLI NEFEED DEL TAY DI SPLAYSTREAM) [Function]
LineFeed: An integer that species the Y increment for each linefeed, normally
negative. Initially minus the height of the initia font (Gacha 10).

(DSPSCROLL SW TCHSETTING DI SPLAYSTREAM) [Function]
Scroll: A ag that determines the scrolling behavior of the display stream; either
ON or OFF. If ON, the bits in the display streams's destination are moved after any
linefeed that moves the current position out of the destination bitmap. Any bits
moved out of the current clipping region are lost. Does not adjust the XO set,
YO set, or ClippingRegion elds. Initially OFF. (Note: if sSwTCHSETTING isNI L,
the Scroll eld is not changed, and the previous value is returned.)

19.9.2 Drawing on Windows and Display Streams

(DSPFI LL REGON TEXTURE OPERA TION DI SPLAYSTREAM) [Function]
Fills ReG oN of the destination bitmap (within the clipping region) with TEXTURE
(a pattern of bits). If ReEG@oN is NIL, the whole destination (within the
clipping region) is used. If TEXTURE or OPERA TION are NI L, the vaues from
DI SPLAYSTREAM are used.

(FILLO RCLE X Y RADIUS TEXTURE DI SPLAYSTREAM) [Function]
Fills in a circular area of radius rRADIUS about the point (x,Y) in the destination
bitmap of DI SPLAYSTREAM with TEXTURE . DI SPLAYSTREAM 's position is left at
(X,Y).

(DSPRESET DI SPLAYSTREAM) [Function]
Sets the X position of DI SPLAYSTREAM to its left margin, setsits 'Y position to the
top of the clipping region minus the font ascent, and lls its destination bitmap
with its background Texture.

(MOVETO X Y DI SPLAYSTREAM) [Function]
Changes the current position of DI SPLAYSTREAM to the point (X, Y).

(RELMOVETO DX DY DI SPLAYSTREAM) [Function]
Changes the current position to the point (DX, DY) coordinates away from current

19.12

INTERLISP-D DISPLAY FACILITIES

position of DI SPLAYSTREAM

(MOVETOUPPERLEFT DI SPLAYSTREAM REG ON) [Function]
Changes the X position to the left edge of REG ON and the Y position to the top
of REG ON less the font height of DI SPLAYSTREAM . This is the beginning position
of the top line of text in this region. If REG oN is NI L, the clipping region of
DI SPLAYSTREAM is used. Note: this does not set the X position to the left margin
like the function DSPRESET does.

(DSPBACKUP WDTH DI SPLAYSTREAM) [Function]
Backs up DI SPLAYSTREAM over a character which is wDTH screen points wide.
DSPBACKUP llIs the backed over area with the display stream’s background texture
and decreases the X position by wDTH . If this would put the X position less than
DI SPLAYSTREAM ’'sleft margin, its operation is stopped at the left margin. It returns
T if any bits were written, NI L otherwise.

(CENTERPRI NTI NREA ON EXP REG ON DI SPLAYSTREAM) [Function]
Prints ExP so that isit centered within REG ON of the DI SPLAYSTREAM . If REG ON
isNI L, exp will be centered in the clipping region of DI SPLAYSTREAM

19.9.3 DrawingLines and Curves

Interlisp- D provides several functions for drawing lines and curves onto the destination bitmap of a display
stream or window. The curve drawing functions take their Bl TBLT operation from the display stream,
while for straight lines the Operation may be speci ed as an argument to the drawing function, with the
display stream’s operation only being used by default.

The following functions produce straight lines of the speci ed width (in screen points, the default is
1) in the display stream’s destination bitmap. They do not alow ‘‘brush’’ patterns, however, they do
support | NVERT mode inwhich redrawing a line will erase it. These functions are intended for interactive
applications where eciency isimportant. DRAWCURVE can be used to draw lines with brushes.

(DRAWIO X Y WDTH OPERA TION DI SPLAYSTREAM COL CR) [Function]
Draws a line from the current position to the point (X, Y) onto the destination
bitmap of DI SPLAYSTREAM . The position of DI SPLAYSTREAM is set to (X, Y).

If the destination bitmap has multiple bits per pixel, co. OrR is a color speci cation
that determines the color used to draw the line (See page 19.44). If co. &R isNIL,
this will be the DSPCOLOR of DI SPLAYSTREAM

(RELDRAWIO DX DY WDTH OPERA TION DI SPLAYSTREAM COL OR) [Function]
Draws a line from the current position to the point (DX, DY) coordinates away
onto the destination bitmap of DI SPLAYSTREAM . The position of DI SPLAYSTREAM
is set to the end of the line.

(DRAWLINE X; Y7 X, Yo WDTH OPERA TION DI SPLAYSTREAM COL OR) [Function]
Draws a line from the point (X4, Y;) to the point (X, Y,) onto the destination
bitmap of DI SPLAYSTREAM . The position of DI SPLAYSTREAM iS set t0 (X5, Y5) .

(DRAWBETWEEN PCSITION 4 POSITION, WDTH OPERA TION DI SPLAYSTREAM COL CR) [Function]
Draws aline from the point PosI TI ON 4 to the point POSI TI ON , onto the destination

19.13

Typescript Facilities. The ‘T File

bitmap of DI SPLAYSTREAM . The position of DI SPLAYSTREAM is set to POSI TI ON »,.

A curve is drawn by placing a brush pattern centered at each point along the curve's trgjectory. A brush
pattern is dened by its shape, size, and color. The currently recognized shapes are ROUND, SQUARE,
HORI ZONTAL , VERTI CAL, and DI AGONAL . A brush size is an integer specifying the width of the brush
in screen points. The color is a color speci cation (see page 19.44), which is only used if the curve is
drawn on a multiple bits per pixel bitmap.

A brush is speci ed to the various drawing functions as a shape- width- color list (such as (SQUARE 2)
or (VERTI CAL 4 RED)). A brush can aso be specied as a positive integer, which is interpreted as
a ROUND brush of that width. Finally, if a brush is specied as NI L, a (ROUND 1) brush is used as
default.

If abrush isa litatom, it isassumed to be afunction which iscalled at each point of the curve's trgectory
with three arguments. the X-coordinate or the point, the Y-coordinate, and the display stream.

The appearance of a curve is also determined by its dashing characteristics. Dashing is specied by a
list of positive integers. If a curve is dashed, the brush is placed along the trajectory for the number of
points indicated by the rst element of the dashing list. The brush iso , not placed in the bitmap, for
a number of points indicated by the second element. The third element indicates how long it will be on
again, and so forth. The dashing sequence is repeated from the beginning when the list is exhausted. A
curve or line is not dashed if the dashing argument to the drawing function is NI L.

The curve functions use the display stream’'s clipping region and operation. Because of the problem of
overlapping brush points, the REPLACE and | NVERT operations are not implemented.

(DRAWCURVE KNOTS CLOSED BRUSH DASHING DI SPLAYSTREAM) [Function]
Draws a spline curve. KNOTS isalist of positions to which the spline will be tted.
CLCSED is a ag which indicates whether or not the spline is to be closed. The
other arguments are interpreted as described above.

(DRAWCI RCLE X Y RADIUS BRUSH DASHI NG DI SPLAYSTREAM) [Function]
Draws acircle of radius raDI US about the point (X, Y) onto the destination bitmap
of DI SPLAYSTREAM . DI SPLAYSTREAM 'S position is left at (X, v). (Dashing may
not be implemented for this function yet.) The other arguments are interpreted as
described above.

(DRAVEELLI PSE X Y SEM M NORRADI US SEM MAJORRADI US ORI ENT ATION BRUSH DASH NG

DI SPLAYSTREAM) [Function]
Draws an €elipse with a minor radius of SEM M NORRADIUS and a magjor radius
of SEM MAJORRADI US about the point (X, Y) onto the destination bitmap of
DI SPLAYSTREAM . ORI ENT ATION isthe angle of the major axis in degrees, positive
in the counterclockwise direction. DI SPLAYSTREAM s position is left at (X, Y).
(Dashing may not be implemented for this function yet.) The other arguments are
interpreted as described above.

1910 TYPESCRIPT FACILITIES: THE *“TFILE

Output to the le T and echoing of type-in is directed to a distinguished termina display stream. This is

19.14

INTERLISP-D DISPLAY FACILITIES

initidlized to be a display stream at the top of the screen, but that initial setting can be modi ed by the
function TTYDI SPLAYSTREAM.

(TTYDI SPLAYSTREAM DI SPLAYSTREAM) [Function]

(CARET NEW CARET)

(PAGEHEI GHT N)

Selects the display stream or window DI SPLAYSTREAM to be the termina output
channel, and returns the previous termina output display stream. TTYDI SPLAYSTREAM
puts DI SPLAYSTREAM into scrolling mode and calls PAGEHEI GHT with the num ber

of lines that will t into DI SPLAYSTREAM given its current Font and ClippingRegion.

The linelength of TTYDI SPLAYSTREAM is computed (like any other display stream)
from its LeftMargin, RightMargin, and Font. If one of these elds is changed, its
linelength is recal culated. If one of the elds used to compute the number of lines
(such as the ClippingRegion or Font) changes, PAGEHEI GHT is not automati cally
recomputed. (TTYDI SPLAYSTREAM (TTYDI SPLAYSTREAM)) will cause it to

be recomputed.

If the window system is active, the line buer issaved in the old TTY window, and
the line buer is set to the one saved in the window of the new display stream,
or to anewly created line buer (if it does not have one). Caution: It is possible
to move the TTYDI SPLAYSTREAM to a nonvisible display stream or to a window
whose current position is not in its clipping region.

[Function]
Sets the shape that blinks at the location of the next output to the TTYDI SPLAYSTREAM.
NEW CARET is either (1) NIL - no changes, returns a CURSOR representing the
current caret, (2) OFF - turns the caret o, or (3) a CURSOR which gives the new
caret shape. The hotspot of NEw CARET indicates which point in the new caret
bitmap should be located at the current output position. The previous caret is
returned.

[Function]
If N is greater than O, it is the number of lines of output that will be printed to
TTYDI SPLAYSTREAM before the page is held. A page is held before the N+1
line is printed to TTYDlI SPLAYSTREAM without intervening input if there is no
terminal input waiting to be read. The output isheld with the screen video reversed
until a character is typed. Output holding is disabled if N is 0. PAGEHEI GHT
returns the previous setting.

1911 CURSOR AND MOUSE

The screen relative position at which the cursor bitmap is being displayed can be read or set using the

functions:

(CURSORPOSI TI ON NEWPOSI TION DI SPLAYSTREAM ~ OLDPOSI TION) [Function]

This returns the location of the cursor in the coordinate system of DI SPLAYSTREAM
(the current display stream, if DI SPLAYSTREAM is NIL). If OLDPOSITION is a
PCOSI TI ON, it will be reused, and returned. If NewpasI TION isnon-NI L, it should
be a position and the cursor will be positioned at NEWPCSI TI ON

19.15

Mouse Button Testing

(ADJUSTCURSORPCSI Tl ON DEL TAX DEL TAY) [Function]
Moves the cursor DEL TAX points in the X direction and DEL TAY points in the Y
direction. DEL TAX and DEL TAY default to O.

The cursor can be changed like any other bitmap by BI TBLTing into it or pointing a display stream at
it and printing or drawing curves. For most applications, it is also necessary to locate the hotspot - a
point within the CURSORW DTH by CURSORHEI GHT area which is used to determine a point position for
the cursor. Also for some applications it is necessary to save and restore the cursor. The Cursor record
and the following functions provide these capabilities. A Cursor record has elds CURSORBI TMAP and
CURSORHOTSPOT , the latter a POSI Tl ON that gives the location of the hot spot inside the cursor.

(CURSORCREATE BITMAP X Y) [Function]
Returns a cursor object which has BITMAP as its image and the location (X,Y) as
the hot spot. If X is a POSI TI ON, it is used as the hot spot. If BITMAP has
dimensions di erent from CURSORW DTH by CURSORHEI GHT, the lesser of the
widths and the lesser of the heights are used to determine the bits that actually
get copied into the lower left corner of the cursor. If X isNIL, Oisused. If Y is
NI L, CURSORHEI GHT -1 is used. The default cursor is an uparrow with its tip in
the upper left corner and its hot spot at (0,CURSORHEI GHT -1).

(CURSOR NEW CURSOR _) [Function]
Returns a CURSOR record instance that contains (a copy of) the current cursor
speci cation. If NEW CURSOR is a CURSOR record instance, the cursor will be set
to the values in NEW CURSOR . If NEw CURSOR is T, the cursor will be set to the
default cursor DEFAULTCURSOR, an upward left pointing arrow.

(SETCURSOR NEW CURSOR _) [Function]
If NEw CURSOR is a CURSOR record instance, the cursor will be set to the values in
NEW CURSOR . This does not return the old cursor, and therefore, provides a way
of changing the cursor without using storage.

(FLI PCURSOR) [Function]
Inverts the cursor.

There are several cursors dened in Interlisp- D that may be of interest to users. One of these is
WAI TI NGCURSOR, an hour glass shape used by the system to indicate that a long computation is in
progress.

CURSORs can be saved on a le using the le package command CURSORS, or the UGLYVARS le package
command.

19.11.1 Mouse Button Testing

There are various graphical input devices that can be read from Interlisp- D. The devices used in this
manner are; a device caled a mouse, which has three keys and steers the cursor, and seven uninterpreted

keys on the keyboard. (Some Xerox 1100 systems may also have a small, ve- key keyset.) The following
macros are provided to test the state of these input devices. (The three keys on the mouse (often called
buttons) are referred to by their location: left, middle, or right.)

(MOUSESTATE BUTTONF ORM) [Macro]
Reads the mouse state and returns T if that state is described by BUTTONF ORM .

19.16

INTERLISP-D DISPLAY FACILITIES

BUTTONF ORM can be one of the key indicators LEFT, M DDLE, or Rl GHT; the
atom UP (indicating al keys are up); the form (ONLY Key) ; or aform of AND, OR,
or NOT applied to any valid button form. For example: (MOUSESTATE LEFT)
will be true if the left mouse button is down. (MOUSESTATE (ONLY LEFT))
will be true if the left mouse button is the only one down. (MOUSESTATE (OR
(NOT LEFT) M DDLE)) will be true if either the left mouse button is up or the
middle mouse button is down.

(LASTMOUSESTATE BUTTONF ORM) [Macro]
Similar to MOUSESTATE, but tests the value of LASTMOUSEBUTTONS rather than
getting the current state. This is useful for determining which keys caused a
MOUSESTATE to be true.

(UNTI LMOUSESTATE BUTTONF ORM | NTERVAL) [Macro]
BUTTONF ORM is as described in MOUSESTATE. Waits until BUTTONF ORM S true
or until 1 NTER VAL milliseconds have elapsed. The value of UNTI LMOUSESTATE is
T if BUTTO\F ORM was satised before it timed out, otherwise NI L. If | NTER VAL
is NI L, it waits indenitely. It compiles into an open loop that calls the TTY
wait background function. This form should not be used inside the TTY wait
background function. UNTI LMOUSESTATE does not use any storage during its
wait loop.

The macros KEYSETSTATE and LASTKEYSETSTATE are identical to MOUSESTATE and LASTMOUSESTATE
except that they also check the state of the ve- nger keyset as well as the state of the mouse buttons.

That is they check the state of both the mouse and the keyset. Thus, if the left mouse button was the

only mouse button held down, (MOUSESTATE (ONLY LEFT)) would be T even though a keyset key

was down; whereas (KEYSETSTATE (ONLY LEFT)) would be NI L if a keyset button were down.

The names of the keyset keys aree LEFTKEY, LEFTM DDLEKEY, M DDLEKEY, Rl GHTM DDLEKEY and
Rl GHTKEY.

19.11.2 Low Level Access to Mouse

This section describes the low level access to the graphical input devices and can be skipped by most
users. Graphical input information is represented in the following global variables:

LASTMOUSEX [Variable]
The X position of the cursor in absolute screen coordinates. Also see the function
LASTMOUSEX below.

LASTMOUSEY [Variable]
The Y position of the cursor in absolute screen coordinates. Also see the function
LASTMOUSEY below.

LASTMOUSEBUTTONS [Variable]
An 8-bit number that has bits on corresponding to the mouse buttons that are
down: 4Qisthe left mouse button, 2Qisthe right button, 1Qisthe middle button.
(Bits 200Q, 100Q, 40Q, 20Q, and 10Q give the state of the keyset keys, from left
to right, if you have a keyset.)

19.17

Windows

LASTKEYBOARD [Variable]
The state of certain keys on the keyboard (200Q = lock, 100Q = left shift, 40Q =
ctrl, 10Q = right shift, 4Q = blankBottom, 2Q = blankMiddle, 1Q = blankTop).
If the key is down, the corresponding bit is on.

LASTMOUSETI ME [Variable]
The time in milliseconds since the mouse was last read (since the last call to
CETMOUSESTATE. LASTMOUSETI ME is a 16-hit positive integer so it rolls over
every 65+ seconds.

The following functions provide low level cursor access in display stream coordinates.

(LASTMOUSEX DI SPLAYSTREAM) [Function]
Returns the value of the cursor's X position in the coordinates of DI SPLAYSTREAM .

(LASTMOUSEY DI SPLAYSTREAM) [Function]
Returns the value of the cursor's Y position in the coordinates of DI SPLAYSTREAM .

(DECODEBUTTONS BUTTONST ATE) [Function]
Returns a list of the buttons or keys that are down in the state BUTTONST ATE. If
BUTTONST ATE isnot a SMALLP, LASTMOUSEBUTTONS isused (see GETMOUSESTATE
below). The button names that can be returned are: LEFT, M DDLE, RI GHT (the
three mouse keys), LEFTKEY, LEFTM DDLEKEY, M DDLEKEY, Rl GHTM DDLEKEY
and Rl GHTKEY (the ve keyset keys).

(GETMOUSESTATE) [Function]
Reads the current state of the mouse and sets the variables LASTMOUSEX,
LASTMOUSEY, LASTMOUSEBUTTONS , LASTMOUSETI ME, and LASTKEYBQARD. In
polling mode, the program must remember the previous state and look for changes,
such as a key going up or down, or the cursor moving outside a region of interest.

1912 WINDOWS

Windows provide a means by which di erent programs can share the display harmonioudly. Interlisp- D
provides both interactive and programmatic constructs for creating, moving, reshaping, overlapping, and
destroying windows in such a way that a program can be embedded in awindow in arelatively transparent
fashion. This is implemented by having each window save the bits that it obscures. This alows existing
Interlisp programs to be used without change, while providing a base for experimentation with more
complex window semantics in new applications.

Because the window system assumes that al programs follow certain conventions concerning control of
the screen, ordinary user programs should not perform display operations directly on the screen. In
particular, functions that can operate directly on bitmaps (such as Bl TBLT or Bl TMAPBI T) should not
be given (SCREENBI TMAP) as the destination argument. All interactions with the screen should take
place through windows.

For specialized applications that require taking complete control of the display, the window system can
be turned o (and back on again) with the following function:

19.18

INTERLISP-D DISPLAY FACILITIES

(W NDOWMORLD FLA G) [NoSpread Function]
The window world isturned on if FLAG isT and o if FLAG isNI L. W NDOWAORLD
returns the previous state of the window world (T or NI L). If W NDOWADRLD is
given no arguments, it ssimply returns the current state without aecting the window
world.

19.12.1 What are Windows?

A window speci es a region of the screen, a display stream, a location in an occlusion stack, functions
that get called when the window undergoes certain actions, and various other items of information. The
basic model isthat a window is a passive collection of bits (on the screen). On top of this basic level, the
system supports many di erent types of windows that are linked to the data structures displayed in them
and provide selection and redisplaying routines. In addition, it is possible for the user to create new types
of windows by providing selection and displaying functions for them.

Windows are ordered in depth from user to background. Windows in front of others obscure the latter.
Operating on a window generaly brings it to the top.

Windows are located at a certain position on the screen. Each window has a clipping region that con nes
al bits splashed at it to a region that alows a border around the window, and a title above it.

Each window has a display stream associated with it, and either a window or its display stream can
be passed interchangeably to al system functions. There are dependencies between the window and its
display stream that the user should not disturb. For instance, the destination bitmap of the display stream
of a window must always be (SCREENBI TMAP) . The XOset, YOset, and ClippingRegion attributes
of the display stream should not be changed. At some future date, the notions of window and display
stream will be merged.

Windows can be created by the user interactively, under program control, or may be created automatically
by the system.

Windows are in one of two states. ‘‘open’’ or ‘‘closed’’. In an ‘‘open’’ state, a window is on the occlusion
stack and therefore visible on the screen (unless it is covered by other open windows) and accessible to
mouse operations. In a ‘‘closed’’ state, a window is not on the occlusion stack and therefore not visible
and not accessible to mouse operations. Any attempt to print or draw on a closed window will open it.

When Interlisp- D starts up, there are three windows on the screen: atop level typescript window, awindow
containing the Interlisp- D logo, and a prompt window. The top level typescript window corresponds to
the le T in the EXEC process where the read- eval-print loop is operating. The logo window is bound to
the variable LOGOW until it is closed. The prompt window is used for the printing of help or prompting
messages. It is available to user programs through the following functions:

PROVPTW NDOW [Variable]
Globa variable containing the prompt window.

(PROVPTPRI NT EXP) [NoSpread Function]
Prints ExP in the prompt window.

(CLRPROVPT) [Function]
Clears the prompt window.

19.19

I nteractive Window Operations

19.12.2 Interactive Window Operations

The Interlisp- D window system allows the user to interactively manipulate the windows on the screen,

moving them around,

changing their shape, etc. by selecting various operations from a menu.

Programmatic versions of these operations are described on page 19.26.

For most windows, depressing the RI GHT mouse key when the cursor isinside a window during I/O wait
will cause the window to come to the top and a menu of window operations to appear. If a command
is selected from this menu (by releasing the right mouse key while the cursor is over a command), the
selected operation will be applied to the window in which the menu was brought up. (It is possible for an
applications program to redene the action of the RI GHT mouse key. In these cases, there is a convention
that the default command menu may be brought up by depressing the RI GHT key when the cursor isin
the header or border of a window. See page 19.30) The operations are:

CLEAR

BURY

MOVE

SHAPE

REDI SPLAY

PAI NT

[Window Menu Command]
Clears the window and repositions it to the left margin of the rst line of text
(below the upper left corner of the window by the amount of the font ascent).

[Window Menu Command]
Closes the window, i.e, removes it from the screen. (See CLOSEW page 19.26.)

[Window Menu Command]
Puts the window on the bottom of the occlusion stack, thereby exposing any
windows that it was hiding.

[Window Menu Command]
Moves the window to a location specied by depressing and then releasing the
LEFT key. During this time a ghost frame will indicate where the window will
reappear when the key is released. (See GETBOXPCSI Tl ON, page 19.36.)

[Window Menu Command]
Allows the user to specify a new region for the existing window contents. If the
LEFT key is used to specify the new region, the reshaped window can be placed
anywhere. If the M DDLE key isused, the cursor will start out tugging at the nearest
corner of the existing window, which is useful for making small adjustments in a
window that is aready positioned correctly.

[Window Menu Command)]
Redisplays the window. (See REDI SPLAYW, page 19.27.)

[Window Menu Command)]
Switches to a mode in which the cursor can be used like a paint brush to draw
in a window. This is useful for making notes on a window. While the LEFT key
is down, bits are added. While the M DDLE key is down, they are erased. The
Rl GHT button pops up a command menu that allows changing of the brush shape,
size and shade, changing the mode of combining the brush with the existing bits,
or stopping paint mode.

Paint mode aso contains a hardcopy command that makes a Press le of the bits
in a window and sends it to the printer. There are limitations on the complexity
and size of the bitmaps that some printers will print. If the printer does not print

19.20

INTERLISP-D DISPLAY FACILITIES

the entire window correctly, try a smaller window or one with fewer black bits
in it. To get a hardcopy of an arbitrary part of the screen that crosses window
boundaries, use the HARDCOPY command in the background menu (below).

SNAP [Window Menu Command]
Prompts for a region on the screen and makes a new window whose bits are a
snapshot of the bits currently in that region. Useful for saving some particularly
choice image before the window image changes.

Occasionally, a user will have a number of large windows on the screen, making it di cult to access those
windows being used. To help with the problem of screen space management, the Interlisp- D window
system allows the creation of Icons. An icon is a small rectangle (containing text or a bitmap) which is
a ‘‘shrunken- down’’ form of a particular window. Using the SHRI NK and EXPAND commands, the user
can shrink windows not currently being used into icons, and quickly restore the original windows at any
time.

SHRI NK [Window Menu Command]
Removes the window from the screen and brings up its icon. (See SHRI NKW,
page 19.27.) The window can be restored by selecting EXPAND from the window
command menu of the icon.

If the RI GHT button is pressed while the cursor isin an icon, the window command menu will contain
a dightly dierent set of commands. The REDI SPLAY and CLEAR commands are removed, and the
SHRI NK command is replaced with the EXPAND command:

EXPAND [Window Menu Command]
Restores the window associated with this icon and removes the icon. (See EXPANDW,
page 19.28.)

If the RI GHT button is pressed while the cursor is not in any window, a ‘‘background menu’’ appears
with the following operations:

SAVEVM [Window Menu Command)]
Cdlls the function SAVEVM (page 18.4), which writes out al of the dirty pages
of the virtual memory. After a SAVEVM, and until the pagefault handler is next
forced to write out a dirty page, your virtual memory image will be continuable
(as of the SAVEVM) should you experience a system crash or other disaster.

SNAP [Window Menu Command)]
The same as the SNAP command described above.

HARDCOPY [Window Menu Command)]
Prompts for a region on the screen, makes a press le and sends it to the printer.

The printing is done with HARDCOPYW (page 18.18), so if FULLPRESSPRI NTER
is non- NI L, the image will be sent there, rather than to (PRI NTI NGHOST) .

Some built-in facilities and Lispusers packages add commands to the background menu, to provide an
easy way of calling the di erent facilities. The user can determine what these new commands do by
holding the RI GHT button down for a few seconds over the item in question; an explanatory message
will be printed in the prompt window.

19.21

Changing Entries on the Window Command Menus

The following functions provide a functiona interface to the interactive window operations so that user
programs can call them directly.

(DOW NDOACOM W NDO W) [Function]
If wnoo w isNI L, it calls DOBACKGROUNDCOM. If wNDO W is a shrunken window,
it brings up the ‘‘icon window’’ menu. If WNDO W is a unshrunken window, it
brings up the window menu. The initial items in these menus are described above.
If the user selects one of the items from the provided menu, that item is APPLYed
to WNDO W. If wNDO W is not a W NDOWor NI L, it returns.

(DOBACKGROUNDCOM) [Function]
Brings up the background menu. The initia items in this menu are described
above. If the user selects one of the items from the menu, that item is EVAL ed.

19.12.3 Changing Entries on the Window Command M enus

The window command menus for unshrunken windows, shrunken windows, and the background are
cached in the variables W ndowienu, | conW ndowMenu, and BackgroundMenu. To change the
entries in these menus, the user should change the change the menu ‘‘command lists’ in the variables
W ndowMenuCommrands , | conW ndowienuConmands , and Backgr oundMenuComands , and set the
appropriate menu variable to a non- MENU, so the menu will be recreated. This provides a way of adding
commands to the menu, of changing its font or of restoring the menu if it gets clobbered. The ‘‘command
lists” are in the format of the | TEMS eld of a menu (see page 19.39), except as speci ed below.

Note: command menus are recreated using the current value of MENUFONT.

W ndowienu [Variable]

W ndowivenuConmands [Variable]
The menu that isbrought up in response to aright button in an unshrunken window
is stored on the variable W ndowienu. If W ndowMenu is set to a non- MENU, the
menu will be recreated from the list of commands W ndowMenuConmands . The
CADR of each command added to W ndowiMenuConmands should be a function
name that will be APPLYed to the window.

| conW ndowivenu [Variable]

| conW ndowivenuComrands [Variable]
The menu that is brought up in response to aright button in a shrunken window is
stored on the variable | conW ndowiMenu . If it isNI L, it isrecreated from the list
of commands | conW ndowivenuConmrands . The CADR of each command added
a function name that will be APPLYed to the window.

Backgr oundMenu [Variable]

Backgr oundMenuComands [Variable]
The menu that is brought up in response to a right button in the background is
stored on the variable Backgr oundMenu. If it isNI L, it isrecreated from the list
of commands Backgr oundMenuComrands . The CADR of each command added
to Backgr oundMenuCommrands should be a form that will be EVAL ed.

19.22

INTERLISP-D DISPLAY FACILITIES

19.12.4 Coordinate Systems

One way of thinking of a window is as a ‘‘view'’ onto an object (eg. a graph, a le, a picture, etc.)
The object has its own natural coordinate system in terms of which its subparts are laid out. When the
window is created, the XOset and YOset of the window’'s display stream are set to map the origin
of the object’s coordinate system into the lower left point of the window’s interior region. At the same
time, the ClippingRegion of the display stream is set to correspond to the interior of the window. From
then on, the display stream’'s coordinate system is trandated and its clipping region adjusted whenever
the window is moved, scrolled or reshaped.

There are several distinct regions associated with a window viewing an object. First, there is a region in
the window’s coordinate system that contains the complete image of the object. This region (which can
only be determined by application programs with knowledge of the ‘*semantics’ of the object) is stored as
the EXTENT property of the window (page 19.32). Second, the clipping region of the window (obtainable
with the function DSPCLI PPI NGREG ON) speci es the portion of the object that is actualy visible in the
window. This is set so that it corresponds to the interior of the window (not including the border or title).
Finally, there isthe region on the screen that speci es the total area that the window occupies, including
the border and title. This region (in screen coordinates) is stored as the REG ON property of the window
(page 19.33).

19.125 Scrolling

The window system supports the idea of scrolling the contents of a window. Scrolling regions are on
the left and the bottom edge of each window. The scrolling regions will only be active if the window
has a SCROLLFN window property (page 19.31). If a window has a SCROLLFN and the cursor moves
from inside that window into its scrolling region and remains there for SCROLLWAI TTI ME milliseconds
(initially 1000), a scroll bar appears. The vaue of the global variable SCROLLBARW DTH (initially 24)
determines the size of the scrolling region. The LEFT key is used to indicate upward or leftward scrolling
by the amount necessary to move the selected position to the top or the left edge. The RI GHT key is
used to indicate downward or rightward scrolling by the amount necessary to move the top or left edge
to the selected position. The M DDLE key is used to indicate global placement of the object within the
window (similar to ‘‘thumbing’’ a book).

In the scroll region, the part of the object that is being viewed by the window is marked with a gray
shade. If the whole scroll bar isthought of asthe entire object, the shaded portion isthe portion currently
being viewed. This will only occur when the window ‘‘knows’ how big the object is (see window property
EXTENT, page 19.32).

When the button is released in a scroll region, the function SCROLLW is called. SCROLLW cals the
scrolling function associated with the window to do the actual scrolling and provides a programmable
entry to the scrolling operation.

(SCROLLW WNDO W DEL TAX DEL TAY CONTINUOUSFL G) [Function]
Calls the SCROLLFN window property of the window wNDO W with argu-
ments W NDO W, DEL TAX, DEL TAY and CONTI NUOUSFL G. See SCROLLFN window
property, page 19.31.

The function that tracks the mouse while it isin the scroll region is SCROLL. HANDLER.

19.23

Scrolling

(SCROLL. HANDLER wNDO W) [Function]
This is called when the cursor leaves a window in either the left or downward
direction. If wnbo w does not have a scroll region for this direction (e.g. the
window has moved or reshaped since it was last scrolled), a scroll region is created
that is SCROLLBARW DTH wide. It then waits for SCROLLWAI TTI ME milliseconds
and if the cursor is ill inside the scroll region, it opens a window the size of the
scroll region and changes the cursor to indicate the scrolling is taking place.

When a button is pressed, the cursor shape is changed to indicate the type
of scrolling (up, down, left, right or thumb). After the button is held for
WAl TBEFORESCROLLTI ME milliseconds, until the button is released SCROLLW
is called each WAl TBETWEENSCROLLTI ME milliseconds. These calls are made
with the CONTINUOUSFL G argument set to T. If the button is released before
WAl TBEFORESCROLLTI ME milliseconds, SCROLLWis called with the CoNTI NUOUSFL
argument set to NI L.

The arguments passed to SCROLLW depend on the mouse button. If the LEFT
button is used in the vertical scroll region, Dy is distance from cursor position at
the time the button was released to the top of the window and Dx is 0. If the
RI GHT button is used, the inverse of this quantity is used for by and O for DX.
If the LEFT button is used in the horizontal scroll region, DX is distance from
cursor position to left of the window and Dy is 0. If the RI GHT button is used,
the inverse of this quantity isused for bx and O for Dy.

If the M DDLE button is pressed, the distance argument to SCROLLW will be a
FLOATP between 0.0 and 1.0 that indicates the proportion of the distance the
cursor was from the left or top edge to the right or bottom edge.

SCROLLBYREPAI NTFN isthe standard scrolling function which should be used asthe SCROLLFN property
for most scrolling windows.

(SCROLLBYREPAI NTFN WNDO W DEL TAX DEL TAY CONTINUOUSFL G) [Function]
This function, when used as a SCROLLFN, Bl TBLTs the bhits that will remain
visible after the scroll to their new location, lls the newly exposed area with
texture, adjusts the window’s coordinates and then calls the window's REPAI NTFN
on the newly exposed region. Thus this function will scroll any window that
has a repaint function. If wNDO w has an EXTENT property (page 19.32),
SCROLLBYREPAI NTEN will limit scrolling to keep the extent region visible or
near visible. That is, it will not scroll the window so that the top of the extent
is below the top of the window, the bottom of the extent is more than one point
above the top of the window, the left of the extent is to the right of the window
and the right of the extent is to the left of the window. The EXTENT is scrolled
to just above the window to provide a way of ‘‘hiding’’ the contents of a window.

If DEL TAX or DELTAY is a FLOATP, SCROLLBYREPAI NTFN will position the
window so that its top or left edge will be positioned at that proportion of its
EXTENT. If the window does not have an EXTENT, SCROLLBYREPAI NTFN will
do nothing.

If conTINUOUSFL G is non-NI L, this indicates that the scrolling button is being
held down. In this case, SCROLLBYREPAI NTFN will scroll the distance of one
linefeed height (as returned by DSPLI NEFEED, page 19.12).

19.24

INTERLISP-D DISPLAY FACILITIES

19.12.6 Programmatic Window Operations

(CREATEW REG ON TITLE BORDER NOOPENFL G) [Function]

(W NDOWP X)

(OPENWP W NDO W)

(OPENW NDOWB)

(VWHI CHW X Y)

Creates a new window. REG ON indicates where and how large the window should
be by specifying the exterior region of the window (the usable height and width
of the resulting window will be smaller than the height and width of the region by
twice the border size and further less the height of the title, if any). If REG ON s
NI L, GETREG ON is called to prompt the user for a region.

If TITLE isnon-NI L, it isprinted in the border at the top of the window. The TI TLE
is printed using the global display stream W ndowTi t| eDi spl aySt ream. Thus
the height of the title will be (FONTPROP W ndowTit| eDi spl ayStream
' HEIl GHT) .

If BORDER is a number, it isused as the border size. If BORDER is not a number,
the window will have a border WBor der (initialy 4) bits wide.

If NOOPENFL G is non-NI L, the window will not be opened, i.e. displayed on the
screen.

[Function]
Returns X if X is awindow, NI L otherwise.

[Function]
Returns wnNDO w, if WNDO w is an open window (has not been closed); NI L
otherwise.

[Function]
Returns a list of all active windows.

[Function]
Returns the window which contains the position in screen coordinates of X if x
is a POSI Tl ON, the position (X,Y) if X and Y are numbers, or the position of the
cursor if X isNI L. Returns NI L if the coordinates are not in any window. If they
are in more than one window, it returns the uppermost.

Example: (WH CHW returns the window that the cursor isin.

(DECODE/ W NDOW OR/ DI SPLAYSTREAM DSORW WNDO W AR TITLE BORDER) [Function]

If pSOR W is a display stream, it is returned. If DSOR W is a window, its display
stream is returned. If bSORw is NI L, it evaluates wNDO W AR (which should be
an atom). If its value is a window, it isreopened if it is closed, and returned. If its
value is not a window, WNDO W AR is set to a newly created window (prompting
user for region) and returned. If DSOR W is NEW a new window is created and
returned. If TITLE or BORDER are given and a window is involved, the Tl TLE or
BORDER property of the window is reset. The bsoR w= NI L case is most useful
for programs that want to display their output in a window, but want to reuse the
same window each time they are called. The non-NI L cases are good for decoding
a display stream argument passed to a function.

(W DTHI FW NDOW | NTERIOR WDTH BORDER) [Function]

Returns the width of the window necessary to have | NTERIOR WDTH points in its

19.25

Programmatic Window Oper ations

interior if the width of the border is BoRDER . If BORDER is NI L, the default
border size \\Bor der is used.

(HEI GHTI FW NDOW | NTERI ORHEI GHT ~ TI TLEFL G BORDER) [Function]
Returns the height of the window necessary to have | NTERI ORHEI GHT ~ points in its
interior with a border of BORDER and, if TITLEFL G isnon-NI L, atitle. If BORDER
is NI L, the default border size \Bor der is used.

W DTHI FW NDOW and HEI GHTI FW NDOW are useful for calculating the width and height for a call to
GETBOXPOSI Tl ON for the purpose of positioning a window.

Interlisp- D provides a set of operations which apply to any window. In addition to being available as
functions, most of these are also available via the standard mouse interface. See page 19.20

(TOTOPW WNDO W NOCALL TOPWN) [Function]
Brings WNDO W to the top of the stack of overlapping windows, guaranteeing that
it is entirely visible. If wNDO W is closed, it is opened. This is done automatically
whenever a printing or drawing operation occurs to the window.

If NocALL TOPWN is NI L, the TOTOPFN of wNDo w is called (page 19.30). If
NOCALL TOPWN is T, it is not caled, which alows a TOTOPFN to call TOTOPW
without causing an innite loop.

(SHAPEW WNDO W NEWREG ON) [Function]
Reshapes wnNDO w to the region NEwReG ON , or prompts for a region (with
GETREG ON, page 19.37) if none is supplied. Cals the window’s RESHAPEFN, if
any (page 19.31).

(CLOSEW w NDO W) [Function]
CLOSEW calls the function or functions on the window property CLOSEFN of
WNDO W, if any (page 19.30). If one of the CLOSEFNSs is the atom DON T or
returns the atom DON T as a value, CLOSEW returns without doing anything
further. Otherwise, CLOSEWremoves wNDO W from the window stack and restores
the bits it is obscuring. |If wNDO W was closed, wNDO W is returned as the vaue.
If it was not closed, (for example because its CLOSEFN returned the atom DON' T),
NI L is returned as the value.

WNDO W can be restored in the same place with the same contents (reopened) by
calling OPENWor by using it as the source of a display operation.

(OPENW W NDO W) [Function]
If wnoo w is a closed window, OPENW calls the function or functions on the
window property OPENFN of wNDO w, if any (page 19.30). If one of the OPENFNs
is the atom DON T, the window will not be opened. Otherwise the window is
placed on the occlusion stack of windows and its contents displayed on the screen.
If WNDO W is an open window, it returns NI L.

(MOVEW WNDO W PCSor X Y) [Function]
Moves wNDO W to the position speci ed by Posor X and Y according to the following
rules:

If Posorx isNI L, GETBOXPCSI Tl ON (page 19.36) is called to read a position from

19.26

INTERLISP-D DISPLAY FACILITIES

the user.
If PosorX isa POSI TI ON, PGsor X is used.

If Posorx and Y are both NUMBERP, a position is created using POSorXx as the
XCOORD and Y as the YCOORD.

If POsorx is a REG ON, a position is created using its LEFT as the XCOORD and
BOTTOM as the YCOORD.

If wNDO W isnot open and Pcsor X isnon-NI L, the window will be moved without
being opened. Otherwise, it will be opened.

If wNDO W has the atom DON' T as a MOVEFN property (page 19.32), the window
will not be moved. If wNDO w has any other non-NI L value as a MOVEFN property,
it should be a function or list of functions that will be called before the window
is moved with the wNDO W as an argument. If it returns the atom DON T, the
window will not be moved. If it returns a position, the window will be moved to
that position instead of the one speci ed by PosorX and Y. If there are more than
one MOVEFNS, the last one to return a value is the one that determines where the
window is moved to.

If wNDO W ismoved and wNDO w has awindow property of AFTERMOVEFN (page
19.32), it should be a function or a list of functions that will be called after the
window is moved with wNDO W as an argument.

MOVEW returns the new position, or NI L if the window could not be moved.

(RELMOVEW W NDO W POSI TION) [Function]

(CLEARW w NDO W)

(BURYW w NDO W)

Like MOVEWTfor moving windows but PosI TI ON isinterpreted relative to the current
position of wNDO w. Example: The following code moves wnNDO w to the right
one screen point.

(RELMOVEW wNDO W (create POSI TION XCOORD _ 1 YCOORD _ 0))

[Function]
Fills wnpo w with its background texture, changes its coordinate system so that
the origin is the lower left corner of the window, sets its X position to the left
margin and sets its Y position to the base line of the uppermost line of text, ie.
the top of the window less the font ascent.

[Function]
Puts wNDO W on the bottom of the stack by moving al the windows that it covers
in front of it.

(REDI SPLAYW WNDO W REG ON ALWAYSFL G) [Function]

(SHRI NKW w NDO W

Redisplay the region Rea oN of the window wnbo w. If REGON is NI L, the
entire window is redisplayed. If ALWAYSFL G isNI L, and wnNDO w doesn't have a
REPAI NTFN (page 19.32), wNDO W will not change and the message *‘ That window
doesn’'t have a REPAINTFN'’ will be printed in the prompt window.

TOWHA T | CONPOSI TION EXP ANDFN) [Function]
SHRI NKW makes a small icon which represents WNDO w and removes W NDO W

19.27

(EXPANDW 1 CON)

Window Properties

from the screen. lcons have a dierent window command menu that contains
“EXPAND’’ instead of ‘‘SHRI NK'’. The EXPAND command calls EXPANDW which
returns the shrunken window to its original size and place.

The SHRI NKFN property (page 19.30) of the window W NDO W aects the operation

of SHRI NKW If the SHRI NKFN property of wNDO W isthe atom DON T, SHRI NKW
prints ‘‘Can’t shrink that window’’ in the PROMPTW NDOW and returns. Otherwise,

the SHRI NKFN property of the window is treated as a (list of) function(s) to apply

to wNDo w; if any returns the atom DON T, SHRI NKW prints ‘‘Can’t shrink that

window’’ in the PROVPTW NDOW and returns.

TOWHA T, if given, indicates the image the icon window will have. If TOWA T is
a string, atom or list, the icon’s image will be that string (currently implemented
as a title-only window with TOWHA T as the title) If TOWHA T is a Bl TMAP, the
icon’s image will be a copy of the bitmap. If TowdA T is a W NDOW that window
will be used as the icon.

If TOwHA T is not given (as is the case when invoked from the SHRI NK window
command), then the following apply in turn: (1) If the window has an | CONFN
property (page 19.31), it gets called with arguments (WNDO W OLDICON), where
WNDO W isthe window being shrunk and o.Di coN is the previously created icon,
if any. The | CONFN should return one of the TowdA T entities described above
or return the oLbl coN if it does not want to change it. (2) If the window has an
| CON property (page 19.31), it is used as the value of Towsa T. (3) If the window
has neither an | CONFN or | CON property, the icon will be wnbo w’stitle or, if
WNDO W doesn’t have a title, the date and time of the icon creation.

| CONPCSI TI ON gives the position that the new icon will be on the screen. If it is
NI L, the icon will be in the corner of the window furthest from the center of the
screen.

In al cases the icon is cached on the property | CONW NDOW (page 19.31) of
WNDO W so repeating SHRI NKW reuses the same icon (unless overridden by the
| CONFN described above). Thus to change the icon it is necessary to remove the
I CONW NDOW property or call SHRI NKW explicitly giving a TOwHA T argument.

[Function]
Restores the window for which 1 con is an icon, and removes the icon from the
screen. If the EXPANDFN (page 19.31) window property of the main window is
the atom DON T, the window won't be expanded. Otherwise, the window will be
restored to its original size and location and the EXPANDFN (or list of functions)
will be applied to it.

19.12.7 Window Properties

The behavior of a window is controlled by a set of window properties. Some of these are used by the
system. However, any arbitrary property name may be used by a user program to associate information
with a window. For many applications the user will associate the structure being displayed with its
window using a property. The following functions provide for reading and setting window properties:

19.28

INTERLISP-D DISPLAY FACILITIES

(W NDOWPROP WNDO W PROP NEW AL UE) [NoSpread Function]
Returns the previous value of WNDO W'S PROP aspect. If NEWs AL UE is given,
(even if given as NI L), it is stored as the new PROP aspect. Some aspects cannot
be set by the user and will generate errors. Any PROP name that is not recognized
is stored on a property list associated with the window.

(W NDOANADDPROP WNDO W PROP | TEMIO ADD) [Function]
W NDOWADDPROP adds a new item to a window property. If 1 TEMrO ADD is EQ
to an element of the PROP property of the window wNDO w, nothing is added.
If the current property is not a list, it is made a list before | TEMro ADD added.
W NDOWADDPROP returns the previous property. The new item always goes on the
end of the list. (Note: If the order of items in the list is important, the list can be
modi ed using W NDOWPROP.) W NDOWADDPRORP is useful for adding OPENFN or
CLOSEFN functions to a window without aecting its existing functions.

(W NDOWDELPROP WNDO W PRCP | TEMIODELETE) [Function]
W NDOWDELPROP deletes | TEMTODELETE ~ from the window property PROP of
WNDO W and returns the previous list if | TEMTODELETE ~ was an element. |If
| TEMTODELETE ~ was hot a member of window property PRoP, NI L is returned.

19.12.7.1 Mouse Function Window Properties

These properties alow the user to control the response to mouse activity in a window. The value of these
properties, if non-NI L, should be a function that will be called (with the window as argument) when the
speci ed event occurs.

Note: these functions should be ‘‘self-contained’’, communicating with the outside world solely via their
window argument, e.g., by setting window properties. In particular, these functions should not expect to
access variables bound on the stack, as the stack context is formally undened at the time these functions
are caled. Since the functions are invoked asynchronously, they perform any TTY input operations from
their own window.

W NDOVENTRYFN [Window Property]
Whenever a button goes down in the window and the process associated with
the window (stored under the PROCESS property) is not the tty process, the
W NDOAENTRYFN is caled. The default is G VE. TTY. PROCESS (page 18.34)
which gives the process associated with the window the tty and calls the
BUTTONEVENTFN.

CURSORI NFN [Window Property]
Whenever the mouse moves into the window, the CURSORI NFN is called.

CURSORQUTFN [Window Property]
The CURSORQUTFEN is called when the cursor leaves the window.

CURSORMOVEDFN [Window Property]
The CURSORMOVEDFN is called whenever the cursor has moved and is inside the
window. This allows a window function to implement ‘‘active’’ regions within itself
by having its CURSORMOVEDFN determine if the cursor isin a region of interest,
and if so, perform some action.

19.29

BUTTONEVENTFN

Rl GHTBUTTONFN

Event Window Properties

[Window Property]
The BUTTONEVENTFN is called whenever there is a change in the state (up or
down) of the mouse buttons inside the window. Changes to the mouse state while
the BUTTONEVENTFN is running will not be interpreted as new button events, and
the BUTTONEVENTFEN will not be re-invoked.

[Window Property]
The RI GHTBUTTONFN is called in lieu of the standard window menu operation
(DOWN NDONCOV) when the RI GHT key is depressed in a window. More
speci cally, the RI GHTBUTTONFN is called instead of the BUTTONEVENTFN when
(MOUSESTATE (ONLY RIGHT)) . If the RI GHT key is to be treated like any
other key in a window, supply Rl GHTBUTTONFN and BUTTONEVENTFN with the
same function.

Note: When an application program denes its own Rl GHTBUTTONFN, there is a
convention that the default RI GHTBUTTONFN, DOW NDOWNCOM (page 19.22), may
be executed by depressing the RI GHT key when the cursor is in the header or
border of a window. User programs are encouraged to follow this convention.

19.12.7.2 Event Window Properties

CLOSEFN

OPENFN

TOTOPFN

SHRI NKFN

[Window Property]
The CLOSEFN window property can be a single function or alist of functions that
are called just before a window is closed by CLOSEW (page 19.26). (Note: If the
CAR of the list isa LAMBDA word, it istreated as a single function.) The function(s)
will be called with the window as a single argument. If any of the CLOSEFNSs are
the atom DON T, or if the value returned by any of the CLOSEFNs is the atom
DON' T, the window will not be closed.

Note: A CLOSEFN should not call CLOSEWon its argument.

[Window Property]
The OPENFN window property can be a single function or alist of functions. If one
of the OPENFNs is the atom DON T, the window will not be opened. Otherwise,
the OPENFNSs are called after a window has been opened by OPENW (page 19.26),
with the window as a single argument.

[Window Property]
If non-NI L, whenever the window is brought to the top, the TOTOPFN is called
(with the window as a single argument). This function may be used to bring a
collection of windows to the top together.

If the NocaLL ToPweN argument of TOTOPW (page 19.26) is non-NI L, the
TOTOPFN of the window is not called, which provides a way of avoiding in nite
loops when using TOTOPW from within a TOTOPFN.

[Window Property]
The SHRI NKFN window property can be a single function or a list of functions
that are caled just before a window is shrunken by SHRI NKW (page 19.27), with
the window as a single argument. If any of the SHRI NKFNs are the atom DON T,

19.30

| CONFN

| CON

| CONW NDOW

EXPANDFN

SCROLLFN

NEWREGQ ONFN

RESHAPEFN

INTERLISP-D DISPLAY FACILITIES

or if the value returned by any of the CLOSEFNs is the atom DON T, the window
will not be shrunk.

[Window Property]
If SHRI NKW (page 19.27) is called without begin given a TowdA T argument (as
is the case when invoked from the SHRI NK window command) and the window’s
| CONFN property is non-NI L, then it gets called with two arguments, the window
being shrunk and the previously created icon, if any. The | CONFN should return
one of the Towda T entities described on page 19.27 or return the previously
created icon if it does not want to change it.

[Window Property]
If SHRI NKW (page 19.27) is called without being given a TOowdA T argument, the
window’s | CONFN property is NI L, and the | CON property is non-NI L, then it is
used as the value of TOwA T.

[Window Property]
Whenever an icon is created, it is cached on the property | CONW NDOW of the
window, so calling SHRI NKWagain will reuse the same icon (unless overridden by
the | CONFN.

Thus, to change the icon it is necessary to remove the | CONW NDOW property or
call SHRI NKW (page 19.27) explicitly giving a TOWA T argument.

[Window Property]
The EXPANDFN window property can be a single function or a list of functions.
If one of the EXPANDFNSs is the atom DON T, the window will not be expanded.
Otherwise, the EXPANDFNs are called after the window has been expanded by
EXPANDW (page 19.28), with the window as a single argument.

[Window Property]
If the SCROLLFN property is NI L, the window will not scroll. Otherwise, it should
be a function of four arguments. (1) the window being scrolled, (2) the distance
to scroll in the horizontal direction (positive to right, negative to left), (3) the
distance to scroll in the vertical direction (positive up, negative down), and (4) a
ag which is T if the scrolling button is being held down. For more information,
see SCROLL. HANDLER (page 19.24). For most scrolling windows, the SCROLLFN
function should be SCROLLBYREPAI NTFN (page 19.24).

[Window Property]
The NEWREGQ ONFN is passed as the NEWREG ONFN argument to GETREG ON
(page 19.37) when the window is reshaped.

[Window Property]
The RESHAPEFN window property can be asingle function or alist of functions that
are called when awindow isreshaped by SHAPEW ((page 19.26). If the RESHAPEFN
isDON' T or alist containing DON' T, the window will not be reshaped. Otherwise,
the function(s) are called after the window has been reshaped, its coordinate system
readjusted to the new position, the title and border displayed, and the interior lled
with texture. The RESHAPEFN should display any additional information needed
to complete the window’s image in the new position and shape. The RESHAPEFN
is called with three arguments. (1) the window in its reshaped form, (2) a bitmap

1931

REPAI NTFN

MOVEFN

AFTERMOVEFN

Miscellaneous Properties

with the contents of the old window, and (3) the region within the bitmap that
contains the old image. This function is provided so that users can reformat
window contents or whatever. RESHAPEBYREPAI NTFN (page 19.33) is the default
and should be useful for many windows.

[Window Property]
The REPAI NTFN window property can be a single function or a list of functions
that are caled to repaint parts of the window by REDI SPLAYW (page 19.27). The
REPAI NTFNs are caled with two arguments: the window and the region in the
coordinates of the window's display stream of the area that should be repainted.
Before the REPAI NTFN is called, the clipping region of the window is set to clip
al display operations to the area of interest so that the REPAI NTFN can display
the entire window contents and the results will be appropriately clipped. (Note:
CLEARW (page 19.27) should not be used in REPAI NTFNs because it resets the
window’s coordinate system. If a REPAI NTFN wants to clear its region rst, it
should use DSPFI LL (page 19.12).)

[Window Property]
If the MOVEFN is DON' T, the window will not be moved by MOVEW (page 19.26).
Otherwise, if the MOVEFN is non-NI L, it should be a function or alist of functions
that will be called before a window is moved with two arguments. the window
being moved and the new position of the lower left corner in screen coordinates.
If the MOVEFN returns DON' T, the window will not be moved. If the MOVEFN
returns a PCSI Tl ON, the window will be moved to that position. Otherwise, the
window will be moved to the speci ed new position.

[Window Property]
If non-NI L, it should be a function or a list of functions that will be called after
the window is moved (by MOVEW page 19.26) with the window as an argument.

19.12.7.3 Miscellaneous Properties

TI TLE

BORDER

EXTENT

[Window Property]
Accesses the title of the window. If a title is added to a window whose title
is NIL or the title is removed (set to NIL) from a window with a title, the
window’s exterior (its region on the screen) is enlarged or reduced to accomodate
the change without changing the window’s interior. For example, (W NDOANPROP
WNDO W ' TI TLE "Resul ts") changes the title of wNDO w to be ‘‘Results’.
(W NDOWPROP wnpo W ' TI TLE NIL) removes the title of wNDO w.

[Window Property]
Accesses the width of the border of the window. The border will have at most 2
point of white (but never more than half) and the rest black. The default border
is the value of the global variable WBor der (initialy 4).

[Window Property]
Used to limit scrolling operations (see page 19.23). Accesses the extent region of
the window. If non-NI L, the EXTENT is a region in the window’s display stream
that contains the complete image of the object being viewed by the window. User
programs are responsible for updating the EXTENT. The functions UNI ONREGE ONS,

19.32

PROCESS

PAGEFULLFN

INTERLISP-D DISPLAY FACILITIES

EXTENDREQ ON, etc. (page 19.3) are useful for computing a new extent region.

In some situations, it is useful to dene an EXTENT that only exists in one
dimension. This may be done by specifying an EXTENT region with a width or
height of -1. SCROLLFN handling recognizes this situation as meaning that the
negative EXTENT dimension is unknown.

[Window Property]
If the PROCESS window property is non-NI L, it should be a PROCESS and will
be made the TTY process by G VE. TTY. PROCESS (page 18.34), the default
W NDOWENTRYFN property. This implements the mechanism by which the
keyboard is associated with di erent processes.

[Window Property]
If the PAGEFULLFN is non-NI L, it will be caled with the window as a single
argument when the window is full (i.e., when enough has been printed since the
last TTY interaction so that the next character printed will cause information to
be scrolled o the top of the window.) If the PAGEFULLFN is NI L, the system
function PAGEFULLFN (page 19.33) is called.

Note: PAGEFULLFN isonly called on windows which are the TTYDI SPLAYSTREAM
of some process (see page 19.15).

The following properties are read- only (i.e. their property values cannot be changed using W NDOWPROP.

DSP

HEI GHT
W DTH

REG ON

[Window Property]
Value is the display stream of the window. All system functions will operate on
either the window or its display stream.

[Window Property]

[Window Property]
Vaue is the height and width of the interior of the window (the usable space not
counting the border and title).

[Window Property]
Vaue is a region (in screen coordinates) indicating where the window (counting
the border and title) is located on the screen.

19.12.8 Auxiliary Functions

(RESHAPEBYREPAI NTFN WNDO W O.DIMA GE OLDREG ON) [Function]

It Bl TBLTsthe old region contents into the lower left corner of the new region. If
the new shape islarger in either or both dimensions, the new areas exposed are to
the top and right of the old image. When this happens, RESHAPEBYREPAI NTFN
cals wNnpo w's REPAI NTFN (page 19.32) to display the newly exposed region’s
contents. Note that this may result in two calls to the REPAI NTFN.

(PAGEFULLFN wnNDO W) [Function]

If the window property PAGEFULLFN (page 19.33) is NI L, when the window is full
the system function PAGEFULLFN is called. PAGEFULLFN simply returns if there
are characters in the type-in buer for wnNDO W, otherwise it inverts the window

19.33

Example: A Scrollable Window

and waits for the user to type a character. PAGEFULLFN is user advisable.

19.12.9 Example: A Scrollable Window

The following is a smple example showing how one might create a scrollable window.

CREATE. PPW NDOW creates a window that displays the pretty printed expresson EXPR. The window
properties PPEXPR, PPCORI GX, and PPORI GY are used for saving this expression, and the initial window
position. Using this information, REPAI NT. PPW NDOW simply reinitializes the window position, and
prettyprints the expression again. Note that the whole expression is reformatted every time, even if only
a small part actually lies within the window. If this window was going to be used to display very large
structures, it would be desirable to implement a more sophisticated REPAI NTFN that only redisplays that
part of the expression within the window. However, this scheme would be satisfactory if most of the
items to be displayed are small.

RESHAPE. PPW NDOW resets the window (and stores the initial window position), calls REPAI NT. PPW NDOW
to display the window’s expression, and then sets the EXTENT property of the window so that
SCROLLBYREPAI NTFN will be able to handle scrolling and ‘‘thumbing’’ correctly.

(DEFI NEQ

(CREATE. PPW NDOW
[LAMBDA (EXPR) (* rrb ** 4-OCT- 82 12:06'")
(* creates a window that displays
a pretty printed expression.)

(PROG (W NDOW (* ask the user for a piece of the
screen and make it into a window.)
(SETQ W NDOW (CREATEW NI L " PP w ndow"))
(* put the expression on the
property list of the window so that
the repaint and reshape functions
can access it.)
(W NDOWPROP W NDOW (QUOTE PPEXPR)
EXPR) (* set the repaint and reshape
functions.)
(W NDOAPROP W NDOW (QUOTE REPAI NTFN)
(FUNCTI ON REPAI NT. PPW NDOW)
(W NDOWPROP W NDOW (QUOTE RESHAPEFN)
(FUNCTI ON RESHAPE. PPW NDOW)
(* make the scroll function
SCROLLBYREPAINTFEN, a system
function that uses the repaint
function to do scrolling.)
(W NDOWPROP W NDOW (QUOTE SCROLLFN)
(FUNCTI ON SCROLLBYREPAI NTEN))
(* call the reshape function to
initially print the expression and
calculate its extent.)
(RESHAPE. PPW NDOW W NDOW

19.34

INTERLISP-D DISPLAY FACILITIES

(RETURN W NDOW)

(REPAI NT. PPW NDOW
[LAVBDA (W NDOW REG ON) (* rrb ** 4-OCT- 82 11:52")

(* the repainting function for a window with a pretty printed expression.
This repainting function ignores the region to be repainted and repaints
the entire window.)

(* set the window position to the
beginning of the pretty printing
of the expression.)
(MOVETO (W NDOAPROP W NDOW (QUOTE PPCRI GX))
(W NDOWPROP W NDOW (QUOTE PPORI GY))
W NDOW
(PRI NTDEF (W NDOWPROP W NDOW (QUOTE PPEXPR))
O NNL NIL NIL W NDOW)

(RESHAPE. PPW NDOW
[LAVBDA (W NDOW (* rrb ** 4-OCT- 82 12:01"")
(* the reshape function for a
window with a pretty printed
expression.)
(PROG (BTM

(* set the position of the window so that the rst character appearsin
the upper left corner and save the X and Y for the repaint function.)

(DSPRESET W NDOW
(W NDOWPROP W NDOW (QUOTE PPORI GX)
(DSPXPOSI TION NI L W NDOW)
(W NDOWPROP W NDOW (QUOTE PPORI GY)
(DSPYPCSI TION NI L W NDOW)
(* call the repaint function to
pretty print the expression in
the newly cleared window.)
(REPAI NT. PPW NDOW W NDOW

(* save the region actually covered by the pretty printed expression so
that the scrolling routines will know where to stop. The pretty printing
of the expression does a carriage return after the last piece of the
expression printed so that the current position is the base line of
the next line of text. Hence the last visible piece of the expression
(BTM) is the ending position plus the height of the font above the
base line e.g its ASCENT.)

(W NDOWPROP W NDOW (QUOTE EXTENT)

(create REG ON
LEFT _ O

19.35

Interactive Display Functions

BOTTOM _[SETQ BTM (1 PLUS (DSPYPOSI TION NI L W NDOW
(FONTPROP W NDOW (QUOTE ASCENT]

W DTH _ (W NDOWPROP W NDOW (QUOTE W DTH))
HEI GHT _ (| DI FFERENCE (W NDOWPROP W NDOW (QUOTE HEI GHT))

BTM)

19.13 INTERACTIVE DISPLAY FUNCTIONS

The following functions allow the user to interactively specify positions or regions on the display screen.

(GETPCSI TION WNDO W CURSCR) [Function]
Returns a POSI Tl ON that is speci ed by the user. GETPOSI TI ON waits for the
user to press and release the left button of the mouse and returns the cursor
position at the time of release. If wNDO W is a W NDOW the position will be in the
coordinate system of wWNDO wW’s display stream. If wNDO W is NI L, the position
will be in screen coordinates. If CURSOR is a CURSOR, the cursor will be changed
to it while GETPOSI Tl ON is running. If cURSOR is NI L, the value of the system
variable CROSSHAI RS will be used as the cursor.

(GETBOXPOSI TI ON WDTH HEIGHT ORGX ORGY WNDO W PROWPTMSG) [Function]
Allows the user to position a ‘‘ghost’” region of size WDTH by HEIGHT on the
screen, and returns the POSI TI ON of the lower left corner of the region. If
PROWTMSG ishon-NI L, GETBOXPOSI Tl ON rst prints it in the PROVPTW NDOW.
CETBOXPOSI TI ON then changes the cursor to a box (using the globa variable
BOXCURSOR). If orRGx and OR Gr are numbers, they are taken to be the original
position of the region, and the cursor is moved to the nearest corner of that region.
The user isthen free to move the cursor around the screen. When a mouse button
is depressed, a ghost region is locked to the cursor so that if the cursor is moved,
the ghost region moves with it. If oR&x and OR Gr are numbers, the corner of
the origina region that is nearest the cursor position at the time the button is
pressed is locked, otherwise the lower left corner is locked. The user can change
to another corner by continuing to hold down the left button and holding down
the right button aso. With both buttons down, the cursor can be moved across
the screen without eect on the ghost region frame. When the right button is
released, the mouse will snap to the nearest corner, which will then become locked
to the cursor. When all buttons are released, the lower left corner of the region
is returned. If wNDO w is a W NDOW the returned position will be in wnDo w's
coordinate system; otherwise it will be in screen coordinates.

Example:

(GETBOXPCSI TION 100 200 NIL NIL NL
"Specify the position of the command area.")

19.36

INTERLISP-D DISPLAY FACILITIES

prompts the user for a 100 wide by 200 high region and returns its lower left corner
in screen coordinates.

(GETREG ON M NWDTH M NHEIGHT |INITREG ON NEWREG ONFN NEWREG ONFNAR ~ G) [Function]
Lets the user specify a new region and returns that region in screen coordinates.
GETREG ON prompts for a region by displaying a four-pronged box next to the
cursor arrow. If the user presses the left button, one corner of a ‘‘ghost’’ region
outline is locked to that point and the opposite corner is locked to the cursor. As
the cursor moves, the outline expands. To specify a region, the user moves the
cursor to one corner of the intended region, presses the left button, moves the
cursor to the opposite corner while holding down the left button, and then releases
the button.

If INITREG ON isa REG ON and the user presses the middle button, the corner of
INITREG N farthest from the cursor position is xed and the corner nearest the
cursor is locked to the cursor.

One can switch from one corner to another while positioning the region. To change
to another corner, continue to hold down the left button and hold down the right
button also. With both buttons down, the cursor can be moved across the screen
without eect on the ghost region frame. When the right button is released, the
cursor will snap to the nearest corner, which will become the moving corner. In
this way, the region may be moved all over the screen, before its size and position
is nalized.

MNWDTH and M NHEIGHT , if given, are the smalest W DTH and HElI GHT that
the returned region will have. If the user specied region is smaller, it will be
increased in width or height to these dimensions.

If NEWREG ONFN isnon-NI L, it will be called to determine values for the positions
of the corners. This provides a way of ‘* Itering’’ prospective regions; for instance,
by restricting the region to lie on an arbitrary grid. When the user is specifying a
region, the region is determined by two of its corners, one that is xed and one that
is tracking the cursor. Each time the cursor moves or a mouse button is pressed,
NEWREG ONFN is caled with three arguments. FI XEDPO NT , the position of the
xed corner of the prospective region; MO Vi NGPOI NT , the position of the opposite
corner of the prospective region; and NEWREG ONFNAR G. NEWREG ONFNAR G
allows the caller of GETREG ON to pass information to the NEWREG ONFN . The
rst time abutton ispressed, MO ViNGPO NT iSNI L and FI XEDPO NT isthe position
the user selected for the xed corner of the new region. In this case, the position
returned by NEWREG ONFN will be used for the xed corner instead of the one
proposed by the user. For all other calls, FI XeDPa NT is the position of the xed
corner (asreturned by the previous cal) and MO VI NGPO NT is the new position the
user selected for the opposite corner. In these cases, the value of NEWREG ONFN

is used for the opposite corner instead of the one proposed by the user. In al
cases, the ghost region is drawn with the values returned by NEWREG ONFN

(CGETBOXREG ON WDTH HEIGHT ORGX ORGY WNDO W PROWPTMSG) [Function]
Performs the same prompting as GETBOXPOSI TI ON and returns the REQ ON
speci ed by the user instead of the POSI TI ON of its lower left corner.

19.37

Menus

19.14 MENUS

A menu is basicaly a means of sdlecting from a list of items. The system provides common layout
and interactive user selection mechanisms, then calls a user-supplied function when a selection has been
conrmed. The two mgjor constituents of a menu are a list of items and a ‘‘when selected function.”
The label that appears for each item is the item itself for non-lists, or its CAR if the item is a list. The
menu includes a position on the screen where it will be displayed and a means of specifying the place
in the menu that isto be put at that position. In addition, there are a multitude of di erent formatting
parameters for specifying font, size, and layout. When a menu is created, its unspecied elds are lled
with defaults and its screen image is computed and saved.

Menus can be either pop up or xed. If xed menus are used, the menu must be included in a window.

(MENU MENU POSITION) [Function]
This function provides menus that pop up when they are used. It displays MENU
at PosITION (in screen coordinates) and waits for the user to select an item with
a mouse key. While any key is down, the selected menu item is video reversed.
When al keys are released, MeNU 's WHENSELECTEDFN eld is called with three
arguments: (1) the item selected, (2) the menu, and (3) the last mouse key released
(LEFT, M DDLE, or RI GHT), and MENU returns its value. If no item is selected,
MENU returns NI L. If posi TIoN is NI L, the menu is brought up at the value from
MENU 'SMENUPGCSI Tl ON eld, if itisaPOSI Tl ON, or at the current cursor position.
The orientation of MENU with respect to the speci ed position is determined by its
MENUOFFSET €ld.

(ADDMENU MENU WNDO W PCSITION _) [Function]
This function provides menus that remain active in windows. ADDVENU displays
MENU a POSITION in WNDO W (PosITION is defaulted as in MENU except
that it is in window coordinates). MENU is added to the MENU property of
WNDO W. The CURSORI NFN and BUTTONEVENTFN of wNDO W are replaced with
MENUBUTTONFN, so that MeNU will be active during TTY wait. RESHAPEFN of
WNDO W is set to restore MENU 'simage when the window is reshaped. When an
item is selected, the value of the WHENSELECTEDFN eld of MENU is called with
three arguments. (1) the item selected, (2) the menu, and (3) the mouse key that
the item was selected with (LEFT, M DDLE, or Rl GHT). More than one menu can
be put in a window, but a menu can only be added to one window at atime. If
WNDO W isnot given, awindow is created at PosI TION (in screen coordinates) that
is the size of MENU .

ADDMENU returns the window into which MENU is placed.

(DELETEMENU MENU CLOSEFL G FROMANDO W) [Function]
This function removes MENU from the window FROMW NDO W. If MENU isthe only
menu in the window and cL oserFL G is non-NI L, its window will be closed (by
CLOSEW.

If FROWWNDO W is NI L, the list of currently active (open) windows is searched
for one that contains MENU . If non is found, DELETEMENU does nothing.

19.38

19.14.1 Menu Fields

A menu is a datatype

| TEMS

WHENSEL ECTEDFN

WHENHEL DFN

WHENUNHEL DFN

MENUPGSI T1 ON

MENUCFFSET

MENUFONT

INTERLISP-D DISPLAY FACILITIES

with the following €lds:

[Menu Field]
The list of items to appear in the menu. If an item is a list, its CAR will appear
in the menu. If the item (or its CAR) is a bitmap, the bitmap will be displayed
in the menu. The default selection functions interpret each item as a list of three
elements: a label, a form whose value isreturned upon selection, and a help string
that is printed in the prompt window when the user presses a mouse key with the
cursor pointing to this item.

[Menu Field]
A function to be called when an item is selected. The function is called with
three arguments. (1) the item selected, (2) the menu, and (3) the mouse key that
the item was selected with (LEFT, M DDLE, or RI GHT). The default function
DEFAULTWHENSELECTEDFN evaluates and returns the value of the CADR of the
item if there is one, or simply returns the item if it is not a list or if its CADR is
NI L.

[Menu Field]
The function which is called when the user has held a mouse key on an item for
MENUHELDWAI T milliseconds (initially 1200). The function is called with three
arguments: (1) the item selected, (2) the menu, and (3) the mouse key that the
item was selected with (LEFT, M DDLE, or Rl GHT). WHENHELDFN is intended
for prompting users. The default is DEFAULTMENUHELDFN which prints (in the
prompt window) the third element of the item or, if there is not a third element,
the string ‘‘Thisitem will be selected when the button is released.’”

[Menu Field]
If WHENHELDFN was called, WHENUNHELDFN will be called: (1) when the cursor
leaves the item, (2) when a mouse key is released, or (3) when another key is
pressed. The function is called with the same three argument vaues used to cal
WHENHELDFN. The default WHENUNHELDFN is the function CLRPROVPT (page
19.19), which just clears the prompt window.

[Menu Field]
The position of the menu to be used if the call to MENU or ADDMENU does not
specify a position. For popup menus, this is in screen coordinates. For xed
menus, it isin the coordinates of the window the menu is in. The point within
the menu image that is placed at this position is determined by MENUOFFSET. If
MENUPCSI Tl ON is NI L, the menu will be brought up at the cursor position.

[Menu Field]
The position in the menu image that is to be located at MENUPQSI TI ON. The
default oset is (0,0). For example, to bring up a menu with the cursor over a
particular menu item, set its MENUOFFSET to a position within that item and set
its MENUPCSI TI ON to NI L.

[Menu Field]
The font in which the items will be appear in the menu. Default is the value of

19.39

TI TLE

CENTERFLG

MVENUROWS
MENUCOLUWMNS

| TEMHEI GHT

| TEMA DTH

MENUBORDERSI ZE

MENUCUTLI NESI ZE

CHANGEOFFSETFLG

Menu Fields

VENUFONT, initially Helvetica 10.

[Menu Field]
If speci ed, a title will appear in a line above the menu. The title will be in the
same font as window titles.

[Menu Field]
If non-NI L, the menu items are centered; otherwise they are left-justi ed.

[Menu Field]

[Menu Field]
These €lds control the shape of the menu in terms of rows and columns. |If
MENUROWS is given, the menu will have that number of rows. If MENUCOLUWNS
is given, the menu will have that number of columns. If only one is given, the
other one will be calculated to generate the minimal rectangular menu. (Normally
only one of MENUROWS or MENUCOLUMNS is given.) If neither is given, the items
will be in one column.

[Menu Field]
The height of each item box in the menu. If not speci ed, it will be the maximum
of the height of the MENUFONT and the heights of any bitmaps appearing as labels.

[Menu Field]
The width of each item box in the menu. If not speci ed, it will be the width of
the largest item in the menu.

[Menu Field]
The size of the border around each item box. If not specied, O (no border) is
used.

[Menu Field]
The size of the outline around the entire menu. If not speci ed, a maximum of 1
and the MENUBORDERSI ZE is used.

[Menu Field]
(popup menus only) If CHANGEOFFSETFLG is non-NI L, the position of the menu
oset is set each time a selection is conrmed so that the menu will come up
next time in the same position relative to the cursor. This will cause the menu to
reappear in the same place on the screen if the cursor has not moved since the
last selection. This is implemented by changing the MENUOFFSET eld on each
use. If CHANGEOFFSETFLG is the atom X or the atom Y, only the X or the Y
coordinate of the MENUOFFSET eld will be changed. For example, by setting the
MENUCFFSET position to (-1,0) and setting CHANGEOFFSETFLG to Y, the menu
will pop up so that the cursor is just to the left of the last item selected. This is
the setting of the window command menus.

The following elds are read only.

| MAGEHEI GHT

[Menu Field]
Returns the height of the entire menu.

19.40

INTERLISP-D DISPLAY FACILITIES

| MAGEW DTH [Menu Field]
Returns the width of the entire menu.

19.14.2 Miscellaneous Menu Functions

(WFROVMVENU MENU) [Function]
Returns the window MENU islocated in, if it isin one; NI L otherwise.

(DOSELECTEDI TEM MENU I TEM BUTTON) [Function]
Calls veNu "sVWHENSEL ECTEDFN on | TEM and BUTTON . It provides a programmatic
way of making a selection. It does not change the display.

(MENUI TEMREG ON I TEM MENU) [Function]
Returns the region occupied by | TEM in MENU .

(SHADEI TEM ITEM MENU SHADE DSCR W) [Function]
Shades the region occupied by I TEM in MENU . If DSOR W is a display stream or a
window, it is assumed to be where Menu s displayed. Otherwise, WFROMMVENU is
caled to locate the window MENU isiin.

19.14.3 Examples of Menu Use

(create MENU ITEMS _ "((YES T) (NO))

Creates a menu with items YES and NOin a single vertical column. If YES is selected, T will be returned.
Otherwise, NI L will be returned.

(create MENU ITEMS _ (1 23456789 * 0#)
CENTERFLG _ T
MENUCOLUMNS _ 3
MENUFONT _ (FONTCREATE ’ HELVETI CA 10 ' BOLD)
| TEVHEI GHT _ 15
| TEMN DTH _ 15
CHANGEOFFSETFLG _ T)

Creates a touch- tone- phone number pad with the items in 15 by 15 boxes printed in Helvetica 10 bold
font. If used in pop up mode, its rst use will have the cursor in the middle. Subsequent use will have
the cursor in the same relative location as the previous selection.

(SELECTQ [MENU
(COND ((type? MENU FOOVENU)
(* use previously computed menu.)
FOOVENU)
(T (* create and save the menu)
(SETQ FOOVENU
(create MENU
ITEMS _ ' ((A ' A SELECTED "pronpt string for A")
(B ' B- SELECTED "pronpt string for B"]
(A- SELECTED (* if A is selected) (DOATHI NG)

19.41

Grid Functions

(B- SELECTED (* if B is selected) (DOBTHI NG))
(PROGN (* user selected outside the menu) NIL)))

This expression displays a pop up menu with two items, A and B, and waits for the user to select one. If
A is selected, DOATHI NG is called. If B is selected, DOBTHI NG is caled. If neither of these is selected,
the form returns NI L.

The purpose of this example isto show some good practices to follow when using menus. First, the menu
isonly created once, and saved in the variable FOOMVENU. This is more ecient if the menu is used more
than once. Second, al of the information about the menu is kept in one place, which makes it easy to
understand and edit. Third, the forms evaluated as a result of selecting something from the menu are
part of the code and hence will be known to masterscope (as opposed to the situation if the forms were
stored as part of the items). Fourth, the items in the menu have help strings for the user. Finadly, the
code is commented (always worth the trouble).

19.15 GRID FUNCTIONS

A Grid is a partitioning of an arbitrary coordinate system (hereafter referred to as the ‘‘source system’”)
into rectangles. This subsection describes functions that operate on Grids. It includes functions to
draw the outline of a Grid, to trandate between positions in a source system and Grid coordinates (the
coordinates of the rectangle which contains a given position), and to shade Grid rectangles. A Grid is
dened by its ‘“‘unit grid’’, a region (called a GridSpec) which is the origin rectangle of the Grid in terms
of the source system. Its LEFT isthe X-coordinate of the left edge of the origin rectangle, its BOTTOM is
the Y-coordinate of the bottom edge of the origin rectangle, its W DTH is the width of the grid rectangles,
and its HEl GHT is the height of the grid rectangles.

(GRID GRIDSPEC UNITSWDE UNITSH GH GRIDBORDER DI SPLAYSTREAM GRI DSHADE) [Function]
Outlines the grid dened by GRIDSPEC which is UNITSWDE rectangles wide and
UNI TSHI GH rectangles high on DI SPLAYSTREAM . Each box in the grid has a border
within it that is GRIDBORDER points on each side; so the resulting lines in the grid
are 2*GRIDBORDER thick. If GRIDBORDER isthe atom PO NT, instead of a border
the lower left point of each grid rectangle will be turned on. If GRIDSHADE is
non-NI L, it should be a texture and the border lines will be drawn in that shade.

(SHADEGRI DBOX X Y SHADE OPERA TION GRIDSPEC GRIDBORDER DI SPLAYSTREAM) [Function]
Shades the grid rectangle (X,Y) of GRIDSPEC with texture SHADE using OPERA TI ON
on DI SPLAYSTREAM . GRIDBORDER is interpreted the same as for GRI D.

The following two functions map from the X,Y coordinates of the source system into the Grid X,Y
coordinates:

(GRI DXCOORD XCOORD GRI DSPEC) [Function]

Returns the Grid X-coordinate (in the Grid speci ed by GRIDSPEC) that contains
the source system X-coordinate XCOORD .

(GRI DYCOORD YCOORD GRI DSPEC) [Function]

Returns the Grid Y-coordinate (in the Grid speci ed by GRIDSPEC) that contains
the source system Y-coordinate YCOORD

19.42

INTERLISP-D DISPLAY FACILITIES

The following two functions map from the Grid X,Y coordinates into the X,Y coordinates of the source
system:

(LEFTOFGRI DCOORD GRIDX GRI DSPEC) [Function]
Returns the source system X-coordinate of the left edge of a Grid rectangle at Grid
X-coordinate GRIDX (in the Grid speci ed by GRI DSPEC).

(BOTTOMOFGRI DCOORD GRIDY GRI DSPEC) [Function]
Returns the source system Y-coordinate of the bottom edge of a Grid rectangle at
Grid Y-coordinate GRIDY (in the Grid specied by GRI DSPEC).

1916 COLOR GRAPHICS

Note: This section describes the Interlisp- D facilities for using a color display. To use these facilities you
need to have a Xerox 1100 or Xerox 1132 with a color display attached, and you must load in the LispUsers
les COLOR. DCOM and LLCOLOR. DCOM (automatically loaded by COLOR. DCOM).

The color boards on the Xerox 1100 and the Xerox 1132 di er in design. The Xerox 1100 board supports
4 hits per pixel color. The Xerox 1132 supports 4 or 8 hits per pixel. All of the user's code should be
written in higher level machine independent functions.

Both color boards produce an image that is 640 pixels wide by 480 pixels high. The image can be thought
of as a paint- by-number painting where the number of a pixel isits vaue. The number of bits per pixel
(4 on the Xerox 1100, 4 or 8 on the Xerox 1132) determines the number of di erence colors that can
be displayed at one time. When there are 4 bpp, 16 colors can be displayed at once. When there are
8 bpp, 256 colors can be displayed at once. A mapping table caled a ‘‘color map’’ determines what
color actually appears for each pixel value. A color map gives the color in terms of how much of the
three primary colors (red, green and blue) displayed on the screen for each possible pixel value. In the
following sections, the notions of ‘‘color map’’, and ‘‘color’’ are described.

19.16.1 Color Bitmaps

A ‘‘color bitmap’’' is actualy just a bitmap that allows more than one bit per pixel. To test whether a
bitmap X is a ‘‘color bitmap’’, use the following form:

(NEQ (fetch (BI TMAP Bl TMAPBI TSPERPI XEL) of X) 1)

Color bitmaps are created by calling Bl TVAPCREATE (page 19.4) with a BI TSPERPI XEL argument of
anything other than 1 or NI L. Currently, any value of BI TSPERPI XEL except 1, 4, 8 or NI L (defaults to
1) will cause an error.

A 4 bit per pixel color screen bitmap uses approximately 76k of storage. There is only one such bitmap.
The following function provides access to it:

(COLORSCREENBI TMAP) [Function]
Returns the color bitmap that isbeing or will be displayed on the color display. This
will be NI L if the color display has never been turned on (see COLORDI SPLAY,
page 19.47).

19.43

Color Speci cations

WHOLECOLORDI SPLAY [Variable]
A global variable set to a REA ON that covers the entire color display screen.
Currently this is (CREATEREG ON 0 0 640 480).

COLORSCREENW DTH [Variable]
The width of the color display. Currently 640.

COLORSCREENHEI GHT [Variable]
The height of the color display. Currently 480.

19.16.2 Color Speci cations

A color map maps a color number (from O to 2Bl TSPERPIXEL _1) into the intensities of the three color
guns (red, green and blue). Each entry in the color map has 8 bits for each of the primary colors
allowing 256 levels per primary or 224 possible colors (not al of which are distinct to the human
eye). Within Interlisp- D programs, colors can be manipulated as numbers, red-green-blue triples, names,
or hue-lightness- saturation triples. Any function that takes a color will accept any of the di erent
Speci cations.

If a number is given, it will be the color number used in the operation. It must be valid for the color
bitmap used in the operation. (Since all of the routines that use a color need to determine its number,
it is fastest to use numbers for colors. COLORNUMBERP described below provides a way to trandate into
numbers from the other representations.)

A red-green-blue (RGB) triple is a list of three numbers between 0 and 255. The rst element gives
the intensity for RED, the second for GREEN and the third for BLUE. When an RGB triple is used,
the current color map is searched to nd the color with the correct intensities. If none is found, an
error is generated. (That is, no attempt is made by the system to assign color numbers to intensities
automatically.) Example of an RGB triple is (255 255 255) which gives the color white. The record RGB
with elds RED, GREEN, and BLUE is provided to manipulate RGB triples.

A color name is an atom that is on the association- lisst COLORNAMES. The CDR of the color name's entry
will be used as the color corresponding to the color name. This can be any of the other representations.
(Note: It can even be another color name. Loops in the name space such as would be caused by putting
"(RED . CRIMSON) and ' (CRI MSON . RED) on COLORNAMES are not checked for by the system.)
Several color names are available in the initial system and are intended to allow color programs written
by di erent users to coexist. These are:

19.44

INTERLISP-D DISPLAY FACILITIES

name RGB number in default color map
BLACK (0 0 0) 0
BLUE (0 0 255) 1
GREEN (0 255 0) 2
CYAN (0 255 255) 3
RED (255 0 0) 4
MAGENTA (255 0 255) 5
YELLOW (255 255 0) 6
VWH TE (255 255 255) 7

A hue- lightness- saturation triple is a list of three numbers. The rst number (hue) is between 0 and 355
and indicates a position in degrees on a color wheel (blue at O, red at 120 and green at 240). The second
(lightness) is a FLOATP between 0 and 1 which indicates how much total intensity isin the color. The
third (saturation) is a FLOATP between 0 and 1 which indicates how disparate the three primary levels
are. The record HLS with elds HUE, LI GHTNESS, and SATURATI ON is provided to manipulate HLS
triples. Example: the color blue is represented in HLS notation by (0 .5 1.0).

(COLORNUMBERP COL OR BITSPERPI XEL NOERRFL G) [Function]
Returns the color number (oset into the screen color map) of coL OR. COL OR
should be either (1) a positive number less than the maximum number of colors,
(2) a color name, (3) an RGB triple, or (4) an HLS triple. If co. orR is one of the
above and is found in the screen colormap, its color number in the screen color
map is returned. If not, an error is generated unless NOERRFL G is hon-NI L, in
which case NI L is returned.

(RGBP Xx) [Function]
Returns x if x isan RGB triple; NI L otherwise.

(HLSP Xx) [Function]
Returns x if x isan HLS triple; NI L otherwise.

19.16.3 Color Maps

The screen color map holds the information about what color is displayed on the color screen for each
pixel value in the color screen bitmap. The values in the current screen color map may be changed and
this change will be reected in the colors being displayed at the next vertica retrace (approximately 1/30
of a second). Changing the color map can be used to get dramatic e ects.

(COLORMAPCREATE | NTENSI TIES Bl TSPERPI XEL) [Function]
Creates a color map for a screen that has BI TSPERPI XEL bits per pixel. If
BI TSPERPI XEL is NI L, the number of bits per pixel is taken from the current
color display setting. | NTENSITIES speci es the initial colors that should be in
the map. If INTENSITIES is not NI L, it should be a list of color speci cations

19.45

Color Maps

(other than color numbers), eg. the list of RGB triples returned by the
function | NTENSI TI ESFROMCOLORVAP (below). If INTENSITIES is NI L, the
default is the value of \ DEFAULTCOLORI NTENSI TI ES (if BI TSPERPI XEL IS 4) or
\ DEFAULT8BI TCOLORI NTENSI TI ES (if BI TSPERPI XEL iS 8).

(COLORVAPP cOL ORVAP? BI TSPERPI XEL) [Function]
Returns co. orvapP? if it is a color map that has BI TSPERPI XEL bits per pixel;
NI L otherwise. If BITSPERPI XEL iS NI L, it returns co. orvaP? if it is either a 4
bits per pixel or an 8 bits per pixel colormap.

(1 NTENSI TI ESFROMCOLORVAP COL ORVAP) [Function]
Returns alist of the intensity levels of co. orvap (default is (SCREENCOLORMVAP))
in aform accepted by COLORMAPCREATE. This list can be written on le and thus
provides a way of saving color map speci cations.

(COLORMAPCOPY COL ORVAP Bl TSPERPI XEL) [Function]
If ca. orvaP is a color map, it returns a color map that contains the same color
intensities as co. ORvAP ; otherwise it returns a color map with default color values.

(SCREENCOLORMAP NEW COL ORMAP) [Function]
Reads and sets the color map that is used by the color display. If NEW COL ORVAP
isnon-NI L, it should be a color map and SCREENCOLORVAP sets the system color
map to be that color map. Returns the previous value of the screen color map. If
NEW coL orvAP IS NI L, the current screen color map is returned without change.

(MAPOFACOLOR PRI MARI ES) [Function]
Returns a color map which is di erent shades of one or more of the primary
colors. For example, (MAPOFACOLCR ' (RED GREEN BLUE)) gives a color map
of di erent shades of gray; (MAPOFACOLOR ' RED) gives di erent shades of red.

The following functions are provided to access and change the intensity levels in a color map.

(SETCOLORI NTENSI TY COL ORMAP COL ORNUMBER ~ COL ORSPEC) [Function]
Sets the primary intensities of color number co. oRNUMBER — in the color map
COL ORVAP to the ones specied by COL ORSPEC . COL ORSPEC can be either an
RGB triple, an HLS triple or a color name. Returns NI L.

(COLORLEVEL co. ORMAP COL ORNUMBER PRI MAR YCOL OR NEWEVEL) [Function]
Sets and reads the intensity level of the primary color PRIMAR YCOL OR (either
RED, GREEN or BLUE) for the color number co. ORNUMBER in the color map
coL ORVAP . If NEWEVEL isa number between 0 and 255, it is set. The previous
value of the intensity of PRIMAR YCOL OR is returned.

(ADJUSTCOLORVAP PRIMAR YCOL OR DEL TA COL ORVAP) [Function]
Adds DeEL TA to the intensity of the primary color PRIMAR YCOL OR (either RED,
GREEN or BLUE) for every color number in COL ORVAP

(ROTATECOLORMAP COL ORVAP STARTCOL OR THR UCOL OR) [Function]
Rotates a sequence of colors in coL ocRMAP . The rotation moves the intensity values
of color number STARTCOL OR into color number STARTCOL OR +1, the intensity
values of color number STARTCOL OR +1 into color number STARTCOL COR +2, e€tC.
and THR UCOL OR’'svalues into STARTCOL CR.

19.46

INTERLISP-D DISPLAY FACILITIES

(EDI TCOLORMAP VAR NOFL G) [Function]
Allows interactive editing of a color map. If vAR isan atom whose value is a color
map, its value is edited. Otherwise a new color map is created and edited. The
color map being edited is made the screen color map while the editing is taking
place so that its eects can be observed. The edited color map is returned as the
value.

If NogFL G isNI L and the color display ison, the user is asked if they want a test
pattern of colors. A yesresponse will cause the function SHOANCOLORTESTPATTERN
to be called which will display a test pattern with blocks of each of the possible
colors.

The user is prompted for the location of a color control window to be placed on
the black and white display. This window alows the value of any of the colors
to be changed. The color number of the color being edited is in the upper left
part of the window. Six bars are displayed. The right three bars give the color
intensities for the three primary colors of the current color number. The left three
bars give the value of the color's Hue, Lightness and Saturation parameters. These
levels can be changed by positioning the cursor in one of the bars and pressing the
LEFT button. While the LEFT button is down, the value of that parameter will
track the Y position of the cursor. When the LEFT button is released, the color
tracking stops. The color being edited is changed by pressing the M DDLE button
while the cursor isin the interior of the edit window. This will bring up a menu
of color numbers. Selecting one sets the current color to the selected color.

The color being edited can also be changed by selecting the menu item *‘PickPt.
This will switch the cursor onto the color screen and alow the user to select a
point from the color screen. It will then edit the color of the selected point.

To stop the editing, move the cursor into the title of the editing window and press
the M DDLE button. This will bring up a menu. Select STOP to quit.

19.16.4 Turningthe Color Display On and O

The color display can be turned on and o. While the color display is on, the memory used for the color
display screen bitmap is locked down and a signi cant amount of processing time (35% on the Xerox
1100) is used to drive the color display.

(COLORDI SPLAYP) [Function]
Returns the current color map if the color display is on; otherwise NI L.

(COLORDI SPLAY CO. ORVAP BI TSPERPI XEL CLEARSCREENFL G) [Function]
If cao orvaP isSNIL, it turns o the color display. If coo orvaP isnon-NI L, it
turns on the color display allocating BI TSPERPI XEL bits per pixel. If coL orRvaP IS
a color map, it is used as the screen color map. If CLEARSCREENFL G ishon-NI L,
all of the bits in the color screen are set to 0.

Turning on the color display requires alocating and locking down the memory
necessary to hold the color display screen bitmap and the system color map.
Turning the color display o frees this memory.

19.47

Printing and Drawing in Color

19.16.5 Printing and Drawing in Color

The current color implementation allows display streams to operate on color bitmaps. The following two
functions set the color in which a display stream prints or draws:

(DSPCOLOR cOL OR DI SPLAYSTREAM) [Function]
Sets the foreground color of a display stream. Returns the previous foreground
color. If coL R is NI L, it returns the current foreground color without changing
anything. The default foreground color is 7, which is white in the default color
map.

(DSPBACKCOLOR COL OR DI SPLAYSTREAM) [Function]
Sets the background color of a display stream. Returns the previous background
color. If coL orR is NIL, it returns the current background color without changing
anything. The default background color is O which is black in the default color
map.

Bl TBLT, the line and curve drawing routines and the printing routines know how to operate on a display
stream that has a color bitmap as its destination. Following are some notes about them.

BI TBLT (page 19.4) When BI TBLTing from a color bitmap onto another color bitmap with the same
bits per pixel, the operations PAI NT, | NVERT and ERASE are done on a hit level;
not on a pixel level. Thus painting color 3 onto color 10 will result in color 11.

When BI TBLTing from a black and white bitmap onto a color bitmap, the 1
bits will appear in the DSPCOLOR and the 0 bits in DSPBACKCOLOR. Currently,
REPLACE is the only operation that is supported Bl TBLTing from black and white
to color. This operation is fairly expensive; if the same bitmap is going to be put
up severa times in the same color it is faster to create a color copy then blt the
color copy.

If the SOUR CETYPE is TEXTURE and the DESTINA TI ONBI TMAP is a color bitmap,
the TEXTURE argument istaken to be a color. Thus, to Il an area with the color
BLUE, do:

(BITBLT NIL NIL NIL co. creiTMaP 50 75 100 200 ' TEXTURE ' REPLACE
’ BLUE)

Curve drawing (page 19.14)
For the functions DRAWCI RCLE, DRAVIEELLI PSE and DRAWCURVE, the notion of
a brush has been extended to include a color. A brush can be a list of the form
(SHAPE sIZE coL OR) . A brush can also be a bitmap, which can be color bitmap.

Line drawing (page 19.13)
The line drawing functions have been extended to take another argument which is
the color the line isto appear in if the destination of the display stream is a color
bitmap. If the coL R argument is NI L, the DSPCOLOR of the display stream is
used.

Printing Printing only works (currently) in REPLACE mode. The characters will have a

foreground color of DSPCOLOR and a background of DSPBACKCOLOR. The rst
time a character is printed in a new color, the color images corresponding to the

19.48

INTERLISP-D DISPLAY FACILITIES

current font are calculated and cached. Thus the rst character may take a while
to appear but succeeding characters print quickly.

19.16.6 Using the Cursor on the Color Screen

The cursor can be moved to the color screen. While on the color screen, the cursor is placed using XOR
mode, thus with some color maps it may be hard to see. It is automatically taken down whenever an
operation is performed that changes any bits on the color screen. While the cursor is on the color screen,
the black and white cursor is cleared.

(CHANGECURSORSCREEN SCREENBI TMAP) [Function]
SCREENBI TMAP must be either the value of (COLORSCREENBI TMAP) or the
value of (SCREENBI TMAP) . CHANGECURSORSCREEN moves the cursor onto the
speci ed screen. The value returned is the screen bitmap that the cursor was on
before CHANGECURSORSCREEN was called.

19.16.7 Miscellaneous Color Functions

The following functions provide some common operations on color bitmaps and display streams.

(COLORFI LL REG ON CO. ORNUMBER COL ORBI TMAP OPERA TION) [Function]
Fills the region REG ON in coL ORBI TMAP with the color COL ORNUMBER , using
the operation OPERA TION.

(COLORFI LLAREA LEFT BOTTOM WDTH HEIGHT COL ORNUMBER COL ORBI TMAP OPERA TION)
[Function]
Fills an area in the color bitmap with a color.

(COLORI ZEBI TMAP BITMAP 0COL OR 1COL OR Bl TSPERPI XEL) [Function]
Creates and returns a color bitmap copying the black and white bitmap BI TMAP .
The returned color bitmap will have color number 1co. R in those pixels of
BITMAP that were 1 and ocoL R in those pixels of Bl TMaP that were 0. This
provides a way of producing a color bitmap from a black and white bitmap. Note:
this is a fairly expensive operation in terms of both time and space.

19.16.8 Demonstration programs

The following functions provide some demonstrations of the color display. These are available in the Lispusers
le COLORDEMO. DCOM

(COLORDEMD) [Function]
Brings up a menu of color demonstration programs. The system will cycle through
the entries on the menu automatically, alowing each to run for a small xed
amount of time (typicaly 40 seconds). Selecting one of the entries in the menu
will cause it to start that program.

(COLORDEMOL) [Function]
Runs the Interlisp- D logo demonstration until a button is pressed then adds

19.49

Demonstration programs

COLORKI NETI C. The M DDLE button will bring up a menu that alows changing
the speed of rotation or editting the color map. The LEFT button will rotate the
color map in the kinetic area.

(COLORDEMX2 sI zF) [Function]
Puts up atest pattern of size s zg, then rotates the color map. The speed of rotation
of the color map is determined by the Y position of the cursor. The M DDLE
button will bring up a menu that alows editing of the color map or changing the
color map to a map of di erent shades of one color.

(COLORKI NETI C REGON FIRSTCOL OR LASTCOL OR) [Function]
Runs color kinetic in aregion REG N of the color display using colors FI RSTCOL OR

through LASTCOL OR.

(TUNNEL SPEED) [Function]
Draws a series of concentric rectangles of increasing sizein increasing color numbers.
SPEED determines the size of the rectangles. This can then be ‘‘run’’ by calling
ROTATEI T described below.

(M NESHAFT N QUTFL G) [Function]
Draws a series of concentric rectangles of size N in increasing color numbers.
OUTFL G determines whether the color numbers increase or decrease. This can then
be “‘run’’ by calling ROTATEI T described below.

(VELL N) [Function]
Draws a series of concentric circles on the color screen in increasing color numbers.
The circles will be of size N. This can then be ‘‘run’’ by calling ROTATEI T described

below.

(SHOAMCOLORTESTPATTERN BARSI ZE) [Function]
Displays a pattern of colors on the color display. This is useful when editing a
color map. The pattern has squares of the 16 possible colors layed out in two rows
at the top of the screen. Colors 0 through 7 in the top row. Colors 8 through 15 in
the next row. The bottom part of the screen isthen layered with bars of BARSI zE
width with the consecutive color numbers. The pattern is designed so that every
color has a border with every other color (unless BARSI zE is too large to alow
room for every color - about 20).

(ROTATEI T BEGNCOL OR ENDCOL OR WAIT) [Function]
Goes into an innite loop rotating the screen color map. The colors between
BEG NCOL OR (default 0) and ENDCOL OR (default maximum color) are rotated. |If
WAIT is given, (DI SM SS wal T) is cdled each time the color map is changed.
This provides an easy way of ‘‘animating’’ screen images.

Note: The following function is available in the Lispusers le COLORPOLYGONS. DCOM

(COLORPCLYDEMO COL ORDS) [Function]
Runs a version of the Polygons program on the color screen.

19.50

