
CHAPTER 19

INTERLISP-D DISPLAY FACILITIES

This chapter describes the functions that support the display and the interaction with programs that use
the display. First, a brief introductory view of using the Interlisp- D display and how some of the other
Interlisp facilities have been extended to include display interfaces. The two screen images at left show
some of the display features as used by exploratory programming tools of the Interlisp- D environment.
The screen is divided into several rectangular areas or windows, each of which provides a view onto some
data or process and which can be reshaped and repositioned at will by the user. When they overlap,
the occluded portion of the lower window is automatically saved, so that it can be restored when the
overlapping window is removed. Since the display is bitmapped, each window can contain an arbitrary
mixture of text, lines, curves, and half- tone and solid area images.

The typescript window is in the upper left corner of the screen. It corresponds to the output channel
. In it, the user has de�ned a program (factorial) and has then immediately run it, giving an input

of 4 and getting a result of 24. Next, he queries the state of his �les using the �le package function
, �nding that one �le has been changed (previously) and one function () has been de�ned but

not associated with any �le yet. The user sets the value of to 0 in command 74, and the
system notes that this is a change and adds to the set of ‘‘changed objects’’ that might
need to be saved.

Then, the user runs his program , giving it a parse tree for the sentence ‘‘My uncle’s story
about the war will bore you to tears’’. This opens up the big window on the right in which the sentence
diagram is drawn. Using the mouse, the user starts to move the node on the left (which is inverted
to show that it is being moved). While the move is taking place, the user interrupts the tree editor using
Control- H, which suspends the computation and causes three ‘‘break’’ windows to appear on top of the
lower edge of the typescript. These are part of the window break package. The smallest window shows the
dynamic state of the computation, which has been broken inside a subprogram called .
The window to the right shows the value of the local variables bound by

. One of them has been selected (and so appears inverted) and in response, its value
has been shown in more detail in the window at the lower left of the screen. The user has marked one of
the component values as suspicious by drawing on it using the window command . In addition, he
has asked to examine the contents of the component, which used the function to open
a bitmap edit window to the right. This shows an enlarged copy of the actual image that is being
moved by the tree editor.

Inside the largest break window, the user has asked some questions about , and queried
the value of (now 66). Using the lispusers package, the Masterscope

command brought up the horizontal tree diagram on the left, which shows which subprograms
call each other, starting at . Each node in the call tree produced by the
command is an active element which will respond to the user’s selecting it with the mouse. In the second
image, the user has selected the subprogram, which has caused its code to be retrieved from
the �le () on the remote �le server () where it was stored and displayed
in the ‘‘Browser printout window’’ which has been opened at middle right. User programs and extended
Lisp forms (like for and do) are highlighted by system generated font changes. By selecting nodes in the

window, the user could also have edited or obtained a summary description of any of the

19.1

T F

FILES? F
DRAWBETWEEN

DRAWBETWEEN

EDITTREE

NP

FOLLOW/CURSOR
"FOLLOW/CURSOR Frame"

FOLLOW/CURSOR

PAINT
BITMAP EDITBM

NP

FOLLOW/CURSOR
DRAWBETWEEN BROWSER SHOW

PATHS
FOLLOW/CURSOR SHOW PATHS

SHOWNODE
<LISP>DEMO>LATTICER PHYLUM

SHOW PATHS

POSITION

subprograms.

Instead, the user told Masterscope (in the break typescript window) to edit wherever anyone calls
the program (a line drawing function). This request causes the system to consult
its (dynamically maintained) database of information about user programs, wherein it �nds that the
subprogram calls . It therefore loads the code for into an edit
window which appears under the ‘‘Browser print out window’’. The system then automatically �nds and
underlines the �rst (and only) call on . On the previous line, is used as
a variable (the one the user set and interrogated earlier). The system, however, knows that this is not a
subprogram call, so it has been skipped. If the user makes any change to in the editor, not
only will the change take e�ect immediately, but will be marked as needing to be updated
in its �le and the information about it in the program database will be updated. This, in turn, will cause
the window to be repainted, as its display may no longer be valid.

The Interlisp- D display facility has several layers. At the lowest level are routines which view the display
as a collection of bits and provides primitives for moving blocks of bits around (). The concepts
important to this level are positions, regions and bitmaps. The next level is the display stream, an
abstraction that implements clipping to rectangular areas of the screen, line and curve drawing, and
printing to the screen in di�erent fonts. The concepts important to this level are fonts and display
streams. On the input side, there is a low level interface for reading the display input devices, the cursor
location and the mouse buttons. The input and output come together at the next level, the window system
which allows areas of the screen used by di�erent programs to overlap by keeping track of information
covered and providing control primitives for mouse interaction. This chapter is organized according to
these levels.

19.1 POSITION

A position denotes a point in an X,Y coordinate system. A is an instance of a record with
�elds and and is manipulated with the standard record package facilities. For example,

creates a position representing the point (10,20).

[Function]
Returns if is a ; otherwise.

19.2 REGION

A Region denotes a rectangular area in a coordinate system. Regions are characterized by the coordinates
of their bottom left corner and their width and height. A is a record with �elds , ,

, and . It can be manipulated with the standard record package facilities. There are access
functions for the record that returns the and of the region.

The following functions are provided for manipulating regions:

[Function]
Returns an instance of the record which has , , and

19.2

DRAWBETWEEN

SHOWLINK DRAWBETWEEN SHOWLINK

DRAWBETWEEN DRAWBETWEEN

SHOWLINK
SHOWLINK

SHOW PATHS

BITBLT

POSITION
XCOORD YCOORD

(create POSITION XCOORD _ 10 YCOORD _ 20)

(POSITIONP)
POSITION NIL

REGION LEFT BOTTOM
WIDTH HEIGHT

REGION TOP RIGHT

(CREATEREGION)
REGION

X

X X

LEFT BOTTOM WIDTH HEIGHT

LEFT BOTTOM WIDTH

INTERLISP-D DISPLAY FACILITIES

as respectively its , , , and .

Example: will create a region that denotes
a rectangle whose width is 100, whose height is 200, and whose lower left corner
is (10,-20).

��� [NoSpread Function]
Returns a region which is the intersection of a number of regions. Returns
if the intersection is empty. If there are no regions given, it returns a very large
region.

��� [NoSpread Function]
Returns a region which is the union of a number of regions, i.e. the smallest region
that contains all of them. Returns if there are no regions given.

[Function]
Returns if intersects . Returns if they do not intersect.

[Function]
Returns if is a subregion (is equal to or entirely contained in)

; otherwise returns .

[Function]
Changes (destructively modi�es) the region so that it includes the region

. It returns .

[Function]
If and are numbers, it returns if the point (,) is inside of . If is
a , it returns if is inside of . Otherwise, it returns .

19.3 BITMAP

The display primitives manipulate graphical images in the form of bitmaps . A bitmap is a rectangular
array of ‘‘pixels,’’ each of which is an integer representing the color of one point in the bitmap image.
A bitmap is created with a speci�c number of bits allocated for each pixel. Most bitmaps used for the
display screen use one bit per pixel, so that at most two colors can be represented. If a pixel is 0, the
corresponding location on the image is white. If a pixel is 1, its location is black. (This interpretation can
be changed with the function ; see page 19.7.) Bitmaps with more than one bit per pixel
are used to represent color or grey scale images.

Bitmaps use a positive integer coordinate system with the lower left corner pixel at coordinate (0,0).
Bitmaps are represented as instances of the datatype with �elds , ,

, , and . Only the width, height, and bits
per pixel �elds are of interest to the user, and can be accessed with the following functions:

[Function]
Returns the width of in pixels.

19.3

LEFT BOTTOM WIDTH HEIGHT

(CREATEREGION 10 -20 100 200)

(INTERSECTREGIONS)
NIL

(UNIONREGIONS)

NIL

(REGIONSINTERSECTP)
T NIL

(SUBREGIONP)
T

NIL

(EXTENDREGION)

(INSIDEP)
T

POSITION T NIL

VIDEOCOLOR

BITMAP BITMAPWIDTH BITMAPHEIGHT
BITMAPBITSPERPIXEL BITMAPRASTERWIDTH BITMAPBASE

(BITMAPWIDTH)

HEIGHT

REGION 1 REGION 2 REGION n

REGION 1 REGION 2 REGION n

REGION1 REGION2

REGION1 REGION2

LAR GEREGION SMALLREGION

SMALLREGION

LAR GEREGION

REGION INCL UDEREGION

REGION

INCL UDEREGION REGION

REGION X Y

X Y X Y REGION X

X REGION

BITMAP

BITMAP

BITBLT

[Function]
Returns the height of in pixels.

[Function]
Returns the number of bits per pixel of .

The functions used to manipulate bitmaps are:

[Function]
Creates and returns a new bitmap which is pixels wide by pixels
high, with pits per pixel. If is , the default is 1.

[Function]
If is between 0 and the maximum value for a pixel in , the
pixel () is changed to and the old value is returned. If
is , is not changed but the value of the pixel is returned. If
is anything else, an error is generated. If () is outside the limits of , 0
is returned and no pixels are changed. can also be a window.

[Function]
Returns a new bitmap which is a copy of (same dimensions and contents).

[Function]
Returns a new bitmap that is times as wide as and

times as high. Each pixel of is copied into a
times block of pixels. If , defaults to 4,

to 1.

There are two distinguished bitmaps that are read by the hardware to become visible as the screen and
the cursor. The screen is a bitmap (=1024) wide by (=808) high. The
cursor is a bitmap (=16) wide by (=16) high. They are accessed by:

[Function]
Returns the screen bitmap.

[Function]
Returns the cursor bitmap.

Note: The cursor bitmap can be changed with the function (page 19.16).

19.4 BITBLT

is the primitive function for moving bits from one bitmap to another. It is similar to the function
that is used in other systems.

[Function]

and de�ne a pair of rectangles, one in each of the and

19.4

(BITMAPHEIGHT)

(BITSPERPIXEL)

(BITMAPCREATE)

NIL

(BITMAPBIT)

NIL

(BITMAPCOPY)

(EXPANDBITMAP)

NIL

SCREENWIDTH SCREENHEIGHT
CURSORWIDTH CURSORHEIGHT

(SCREENBITMAP)

(CURSORBITMAP)

CURSOR

BITBLT
RASTEROP

(BITBLT
)

BITMAP

BITMAP

BITMAP

BITMAP

WIDTH HEIGHT BITSPERPIXEL

WIDTH HEIGHT

BITSPERPIXEL BITSPERPIXEL

BITMAP X Y NEWV AL UE

NEWV AL UE BITMAP

X,Y NEWV AL UE NEWV AL UE

BITMAP NEWV AL UE

X,Y BITMAP

BITMAP

BITMAP

BITMAP

BITMAP WIDTHF A CTOR HEIGHTF ACTOR

WIDTHF ACTOR BITMAP

HEIGHTF A CTOR BITMAP WIDTHF A CTOR

HEIGHTF ACTOR WIDTHF ACTOR

HEIGHTF A CTOR

SOUR CEBITMAP SOUR CELEFT SOUR CEBOTTOM DESTINA TIONBITMAP DESTINA TIONLEFT

DESTINA TIONBOTTOM WIDTH HEIGHT SOUR CETYPE OPERA TION TEXTURE CLIPPINGREGION

WIDTH HEIGHT SOUR CEBITMAP DESTINA TIONBITMAP

INTERLISP-D DISPLAY FACILITIES

whose left, bot tom corners are at, respec tively, (,) and (,
). If these rectangles overlap the bound aries of either bitmap they are both reduced

in size (without trans lation) so that they �t within their respec tive bound aries. If is
non- it should be a and is interpreted as a clipping region within ;
clipping to this region may fur ther reduce the de�ning rectangles. These (possibly reduced) rectangles
de�ne the source and destina tion rectangles for . and can
also be display streams or windows, in which case their associated bitmaps are used.

The mode of trans ferring bits is de�ned by and . and
specify boolean func tions that are used to deter mine, respec tively, the method of combin ing
bits with the and the opera tion between these resul tant bits and .
is a gray pat tern, as described on page 19.6. (Note: The alignment of the texture pat tern with is
such that the origin of the destina tion bitmap is at an intersection of the ‘‘tiles.’’)

speci�es how to combine the bits from with the bits from (a
background pattern) to produce a ‘‘Source’’. This is designed to allow characters and �gures to be placed
on a background.

Source

For the and case, the argument to is ignored. For the
case, the , , and arguments are ignored.

speci�es how this source is combined with the bits in and stored back
into .

becomes

Source

Source

Source

Source

, , , and default to 0. and
default to the width and height of the . defaults to white.

defaults to . defaults to . If is not provided, no additional
clipping is done. returns if any bits were moved; otherwise.

Note: and accept windows and display streams as their bitmap arguments. In
these cases, the remaining arguments are interpreted as values in the coordinate system of the window or
display stream and the operation of the functions are translated and clipped accordingly. If a window or
display stream is used as the destination to , its clipping region limits the operation involved.

19.5

NIL REGION

BITBLT

BITBLT

INPUT

INVERT (NOT)

TEXTURE

INPUT INVERT BITBLT TEXTURE

REPLACE

PAINT (OR)

INVERT (XOR)

ERASE (AND (NOT))

INPUT REPLACE
BITBLT T NIL

BITBLT BITMAPBIT

BITBLT

SOUR CELEFT SOUR CEBOTTOM DESTINA TIONLEFT

DESTINA TIONBOTTOM

CLIPPINGREGION

DESTINA TIONBITMAP

SOUR CEBITMAP DESTINA TIONBITMAP

SOUR CETYPE OPERA TION SOUR CETYPE OPERA TION

SOUR CEBITMAP

TEXTURE DESTINA TIONBITMAP TEXTURE

SOUR CETYPE SOUR CEBITMAP TEXTURE

SOUR CETYPE

SOUR CEBITMAP

SOUR CEBITMAP

TEXTURE

TEXTURE

SOUR CEBITMAP SOUR CELEFT SOUR CEBOTTOM

OPERA TION DESTINA TIONBITMAP

DESTINA TIONBITMAP

OPERA TION DESTINA TIONBITMAP

DESTINA TIONBITMAP

DESTINA TIONBITMAP

DESTINA TIONBITMAP

SOUR CELEFT SOUR CEBOTTOM DESTINA TIONLEFT DESTINA TIONBOTTOM WIDTH

HEIGHT SOUR CEBITMAP TEXTURE SOUR CETYPE

OPERA TION CLIPPINGREGION

TEXTURE

19.5 TEXTURE

A Texture denotes a pattern of gray which can be used by to (conceptually) tessellate the plane
to form an in�nite sheet of gray. It is currently a 4 by 4 pattern. Textures are created interactively using
the function or from bitmaps using the following function.

[Function]
Returns a texture object that will produce the texture of . If is too
large, its lower left portion is used. If is too small, it is repeated to �ll out
the texture.

[Function]
Returns if it is a texture, i.e. a legal texture argument to .

The common textures white and black are available as system constants and . The
global variable is used by many system facilities as a background gray shade and can be set by
the user. The original background shade of the window system is kept in . The
background shade can be changed by the following func tion:

[Function]
Changes the background shade of the window system. determines the
pattern of the background. If is a texture, then the background is simply
painted with it. If is a , the background is tesselated (tiled) with it
to cover the screen. If is , it changes to the original shade, the value of

. It returns the previous value of the background.

19.6 SAVING BITMAPS

Bitmaps can be saved on �les with the �le package command (page 11.22). The following two
functions translate bitmaps into and out of a representation which may be used to transfer bitmaps
between Interlisp and other computer systems’ representations.

[Function]
Creates a bitmap by reading an expression (written by) from the
primary input channel.

[Function]
Prints the bitmap on the primary output channel in a format that can be
read back in by .

19.7 SCREEN OPERATION

The following functions control the display screen.

19.6

BITBLT

EDITSHADE

(CREATETEXTUREFROMBITMAP)

(TEXTUREP)
BITBLT

WHITESHADE BLACKSHADE
GRAYSHADE

WINDOWBACKGROUNDSHADE

(CHANGEBACKGROUND)

BITMAP
T

WINDOWBACKGROUNDSHADE

VARS

(READBITMAP)
PRINTBITMAP

(PRINTBITMAP)

READBITMAP

BITMAP

BITMAP BITMAP

BITMAP

OBJECT

OBJECT

SHADE

SHADE

SHADE

SHADE

SHADE

BITMAP

BITMAP

INTERLISP-D DISPLAY FACILITIES

[NoSpread Function]
Sets the interpretation of the bits in the screen bitmap. If is ,
a 0 bit will be displayed as white, otherwise a 0 bit will be displayed as black.

returns the previous setting. If is not given,
will return the current setting without changing anything.

Note: This function only works on the Xerox 1100 and Xerox 1108.

[Function]
Sets the rate at which the screen is refreshed. is one of or . If

is , the screen will be refreshed at the same rate as TV (60 cycles per
second). This makes the picture look better when video taping the screen. Note:
Changing the rate may change the dimensions of the display on the picture tube.

Several functions are provided for turning o� the display (partially or completely). See page 18.22.

19.8 CHARACTERS AND FONTS

Fonts control the way characters look when printed on the screen or a graphics printer. Fonts are de�ned
by a distinctive style or (such as Gacha or TimesRoman), a (such as 10 points), and
(such as bold or italic). Fonts also have a that indicates the orientation of characters on the
screen or page. A normal horizontal font (also called a portrait font) has a rotation of 0; the rotation of
a vertical (landscape) font is 90 degrees. While the speci�cation allows any combination, in practice the
user will �nd that only certain combinations of families, sizes, faces, and rotations are available.

In specifying a font to the functions described below, a is represented by a literal atom, a
by a positive integer, and a by a three- element list of the form .

, which indicates the thickness of the characters, can be , , or ; can
be or ; and can be , , or , indicating
how spread out the characters are. For convenience, faces may also be speci�ed by three- character atoms,
where each character is the �rst letter of the corresponding �eld. Thus, is a synonym for

. In addition, certain common face combinations may be indicated by special literal
atoms:

= =

= =

= =

= =

A font also has the properties , , and (= +), and, for
each character, a width and bit pattern. The is the maximum height of any character in the
font from its base line (the printing position). The is the maximum extent of any character
below the base line, such as the lower part of a ‘‘p.’’ Therefore the top line of a character will be at
Base+ -1, while the bottom line will be at Base- . The width of each character speci�es
how a stream’s position will change when the character is printed. This may have both an X and a Y
component (e.g., for landscape fonts), and it varies from character to character in variable pitch fonts.

19.7

(VIDEOCOLOR)
NIL

VIDEOCOLOR VIDEOCOLOR

(VIDEORATE)
NORMAL TAPE

TAPE

FAMILY SIZE FACE
ROTATION

FAMILY SIZE
FACE (WEIGHT SLOPE EXPANSION)

WEIGHT BOLD MEDIUM LIGHT SLOPE
ITALIC REGULAR EXPANSION REGULAR COMPRESSED EXPANDED

MRR (MEDIUM
REGULAR REGULAR)

STANDARD (MEDIUM REGULAR REGULAR) MRR

ITALIC (MEDIUM ITALIC REGULAR) MIR

BOLD (BOLD REGULAR REGULAR) BRR

BOLDITALIC (BOLD ITALIC REGULAR) BIR

ASCENT DESCENT HEIGHT ASCENT DESCENT
ASCENT

DESCENT

ASCENT DESCENT

BLA CKFL G

BLA CKFL G

BLA CKFL G

TYPE

TYPE

TYPE

Characters and Fonts

The information about a particular font is represented in a font descriptor. The following functions
manipulate font descriptors:

[Function]
Returns a font descriptor for the speci�ed font. is an integer indicating
the size of the font in points. speci�es the face characteristics in one of
the formats listed above; if is , is used. , which
speci�es the orientation of the font, is 0 (or) for a portrait font and 90 for a
landscape font. indicates the output device for the font. For Interlisp- D,
the possible values for are for the display screen and for
Press printers. defaults to .

For display fonts, looks for a �le with the appropriate name
(such as for a font),
searching through directories on the list . If the �le is found,
it is read into a font descriptor. If the �le is not found, looks for
fonts with less face information (in this example,) and
fakes the remaining faces (such as by doubling the bit pattern of each character
or slanting it). If no appropriately sized font is found, the action of the function
is determined by . If is , it generates a

error with the name of the most speci�c �le tried (in the example
); otherwise, returns .

For Press fonts, accesses the widths information for the font from a
font- dictionary �le whose name is in the list (usually initialized
in the site-greeting �le to contain at least . That dictionary
must contain information for the face as speci�ed; there is no acceptable faking
algorithm for hard- copy fonts. The width and height information for press fonts is
expressed in micas (= 10 microns = 1/2540 inch), not in screen- point units.

The argument to may also be a list, in which case it is
interpreted as a - - - quadruple. Thus,

is equivalent to .
may also be a font descriptor, in which case that descriptor is simply

returned.

[Function]
Returns if is a font descriptor; otherwise.

The following functions take a font as one argument. This argument must either be a particular font
descriptor or coerceable to a font descriptor. A display stream is coerced to its current font, a window is
coerced to the current font of its display stream, and anything else is coerced by applying
to it.

[Function]
Returns the value of the property of font . may be one
of , , , , , , , ,

, , or .

��� [NoSpread Function]
Returns a font descriptor that is a copy of the font , but which di�ers from

in that ’s properties are replaced by the speci�ed properties

19.8

(FONTCREATE)

NIL STANDARD
NIL

DISPLAY PRESS
DISPLAY

FONTCREATE STRIKE
TIMESROMAN8BI.STRIKE TIMESROMAN 8 BOLDITALIC

FONTDIRECTORIES
FONTCREATE

TIMESROMAN8I.STRIKE

NIL FILE
NOT FOUND
TIMESROMAN8BI.STRIKE FONTCREATE NIL

FONTCREATE
FONTWIDTHSFILES

{DSK}FONTS.WIDTHS)

FONTCREATE
(FONTCREATE

’(GACHA 10 BOLD)) (FONTCREATE ’GACHA 10 ’BOLD)

(FONTP)
NIL

FONTCREATE

(FONTPROP)

FAMILY SIZE FACE WEIGHT SLOPE EXPANSION DEVICE ASCENT
DESCENT HEIGHT ROTATION

(FONTCOPY)

FAMIL Y SIZE FA CE R OT ATION DEVICE NOERR ORFL G

SIZE

FACE

FACE R OT ATION

DEVICE

DEVICE

DEVICE

NOERR ORFL G NOERR ORFL G

FAMIL Y

FAMIL Y SIZE FACE R OT ATION

FAMIL Y

X

X X

FONT PR OP

PR OP FONT PR OP

OLDF ONT PR OP 1 VAL 1 PR OP 2 VAL 2
OLDF ONT

OLDF ONT OLDF ONT

INTERLISP-D DISPLAY FACILITIES

and values. Thus,
will return a bold press font with all other properties the same as those of

. accepts all the properties that interrogates except for
, , and . If the �rst property is a list, it is taken to be

the ��� sequence. Thus,
is equivalent to the example above.

[Function]
is an integer that represents a valid character (as returned by).

Returns the amount by which a stream’s X-position will be incremented when the
character is printed.

[Function]
Like , but returns the Y component of the character’s width, the
amount by which a stream’s Y-position will be incremented when the character is
printed. This will be zero for most characters in normal portrait fonts, but may be
non- zero for landscape fonts or for vector- drawing fonts.

[Function]
Returns the amount by which a stream’s X-position will be incremented if the
printname for the Interlisp- D object is printed in font . If is a
display stream, its font is used. If is non- , the -pname of

with respect to the readtable is used.

[Function]
Returns the region occupied by if it were printed at the current location in

. This is useful for determining where text is in a window to allow the user
to select it. The arguments and are passed to .

It is sometimes useful to simulate an unavailable font or to use a font with characteristics di�erent from
the interpretations provided by the system. The following function allows the user to tell the system what
font descriptor to use for given characteristics.

[Function]
Indicates to the system that is the font with the

characteristics. If is , the font associated with these characteristics
is cleared and will be recreated the next time it is needed. As with and

, is coerced to a font descriptor if it is not one already.

[Function]
Returns the font that would be used as the default (if were speci�ed as a
font argument) for device . If is a font descriptor, it is set to be the
default font for .

The following functions allow the user to access and change the bitmaps for individual characters in a
display font.

[Function]
Returns a bitmap containing a copy of the image of the character in
the font .

19.9

(FONTCOPY ’WEIGHT ’BOLD ’DEVICE ’PRESS)

FONTCOPY FONTPROP
ASCENT DESCENT HEIGHT

(FONTCOPY ’(WEIGHT
BOLD DEVICE PRESS))

(CHARWIDTH)
CHCON1

(CHARWIDTHY)
CHARWIDTH

(STRINGWIDTH)

NIL PRIN2

(STRINGREGION)

STRINGWIDTH

(SETFONTDESCRIPTOR)

NIL
FONTPROP

FONTCOPY

(DEFAULTFONT)
NIL

(GETCHARBITMAP)

FONT

FONT

PR OP 1 VAL 1 PR OP 2 VAL 2 FONT

CHAR CODE FONT

CHAR CODE

CHAR CODE FONT

STR FONT PRIN2FL G RDTBL

STR FONT FONT

PRIN2FL G

STR RDTBL

STR WINDO W PRIN2FL G RDTBL

STR

WINDO W

PRIN2FL G RDTBL

FAMIL Y SIZE FACE R OT ATION DEVICE FONT

FONT FAMIL Y SIZE FACE R OT ATION

DEVICE FONT

FONT

DEVICE FONT _

DEVICE FONT

DEVICE

CHAR CODE FONT

CHAR CODE

FONT

Display Streams

[Function]
Changes the bitmap image of the character in the font to the
bitmap . Currently, must be the same width
and height as the current image for in the font .

Users can interactively edit characters using the function (page 20.10).

19.9 DISPLAY STREAMS

Streams are used as the basis for all I/O operations. Files are implemented as streams that can support
character printing and reading operations, and �le pointer manipulation. Display streams are a type of
stream that also provides an interface for translation, clipping, and �gure generation on bitmaps. All of
the operations that can applied to streams can be applied to display streams. For example, a display
stream can be passed as the argument to , to print something on the bitmap of a display stream. In
addition, special functions are provided to draw lines and curves and perform other graphical operations
on display streams. Calling these functions on a stream that is not a display stream will generate an error.

Windows are closely related to display streams and can be thought of as a type of display stream. (In
the near future, windows will be a type of display stream.) All of the functions that operate on display
streams also accept windows.

Display streams can be created with the following function:

[Function]
Returns a display stream, with initial settings as indicated below. If
is speci�ed, it is used as the destination bitmap, otherwise the screen bitmap is
used.

Each window has an associated display stream. To get the window of a particular display stream, use:

[Function]
Returns the window associated with , creating a window if one
does not exist. Returns if the destination of is not a screen
bitmap that supports a window system.

19.9.1 Manipulating Display Streams

The following functions manipulate the �elds of a display stream (they may also be given a window, in
which case the associated display stream is used). These functions return the old value (the one being
replaced). A value of for the new value will return the current setting without changing it. These
functions do not change any of the bits in the display stream’s destination bitmap; just the e�ect of future
operations done through the display stream.

Warning: The window system maintains the Destination, XO�set, YO�set, and ClippingRegion �elds
of each window’s display stream, adjusting them during window operations. Users should be very
careful about changing these �elds in a window’s display stream (with , ,

, or).

19.10

(PUTCHARBITMAP)

EDITCHAR

PRINT

(DSPCREATE)

(WFROMDS)

NIL

NIL

DSPDESTINATION DSPXOFFSET
DSPYOFFSET DSPCLIPPINGREGION

CHAR CODE FONT NEW CHARBITMAP

CHAR CODE FONT

NEW CHARBITMAP NEW CHARBITMAP

CHAR CODE FONT

DESTINA TION

DESTINA TION

DISPLA YSTREAM

DISPLA YSTREAM

DISPLA YSTREAM

INTERLISP-D DISPLAY FACILITIES

[Function]
Destination: The bitmap that the display stream modi�es. This can be either the
screen bitmap, or an auxilliary bitmap in order to construct �gures, possibly save
them, and then display them in a single operation. Initially the screen bitmap.

[Function]
[Function]

XO�set: The X origin of the display stream’s coordinate system in the destination
bitmap’s coordinate system. Initially 0 (no X-coordinate translation).

YO�set: The Y origin of the display stream’s coordinate system in the destination
bitmap’s coordinate system. Initially 0 (no Y-coordinate translation).

Display streams have their own coordinate system. Having the coordinate system
local to the display stream allows objects to be displayed at di�erent places by
translating the display stream’s coordinate system relative to its destination bitmap.

[Function]
ClippingRegion: A region that limits the extent of characters printed and lines
drawn (in the display stream’s coordinate system). Initially set so that no clipping
occurs.

[Function]
[Function]

XPosition: The current X position. Initially 0.

YPosition: The current Y position. Initially 0.

and specify the ‘‘current position’’ of the display
stream, the position (in the display stream’s coordinate system) where the next
printing operation will start from. The functions which print characters or draw
on a display stream update these values appropriately.

[Function]
Texture: A texture that is the background pattern used for the display stream.
Initially the value of .

[Function]
Font: A Font Descriptor that speci�es the font used when printing characters to
the display stream. Initially Gacha 10.

Note: determines its new font descriptor from by the same coercion
rules that and use, with one additional possibility: If
is a list of the form ��� where is acceptable
as a font- property to , then the new font is obtained by

��� .

[Function]
LeftMargin: An integer that is the X position after an end- of-line (in the display
stream’s coordinate system) - initially 0.

[Function]
RightMargin: An integer that is the maximum X position that characters will

19.11

(DSPDESTINATION)

(DSPXOFFSET)
(DSPYOFFSET)

(DSPCLIPPINGREGION)

(DSPXPOSITION)
(DSPYPOSITION)

DSPXPOSITION DSPYPOSITION

(DSPTEXTURE)

WHITESHADE

(DSPFONT)

DSPFONT
FONTPROP FONTCOPY

()
FONTCOPY (FONTCOPY

(DSPFONT NIL DISPLAYSTREAM))

(DSPLEFTMARGIN)

(DSPRIGHTMARGIN)

DESTINA TION DISPLA YSTREAM

XOFFSET DISPLA YSTREAM

YOFFSET DISPLA YSTREAM

REGION DISPLA YSTREAM

XPOSITION DISPLA YSTREAM

YPOSITION DISPLA YSTREAM

TEXTURE DISPLA YSTREAM

FONT DISPLA YSTREAM

FONT

FONT

PR OP 1 VAL 1 PR OP 2 VAL 2 PR OP 1

PR OP 1 VAL 1 PR OP 2 VAL 2

XPOSITION DISPLA YSTREAM

XPOSITION DISPLA YSTREAM

Drawing on Windows and Display Streams

be printed at (in the display stream’s coordinate system) - initially the value of
. This determines when an end of line is automatically inserted by

the printing functions.

The line length of a window or display stream (as returned by , page 6.8) is computed by
dividing the distance between the left and right margins by the width of an uppercase ‘‘A’’in the current
font. The line length is changed whenever the Font, LeftMargin, or RightMargin are changed.

[Function]
SourceType: The sourcetype used when printing characters to the display
stream. Must be either or . Initially .

[Function]
Operation: The default operation (, , , or)
used when printing or drawing on the display stream. Initially .

[Function]
LineFeed: An integer that speci�es the Y increment for each linefeed, normally
negative. Initially minus the height of the initial font (Gacha 10).

[Function]
Scroll: A �ag that determines the scrolling behavior of the display stream; either

or . If , the bits in the display streams’s destination are moved after any
linefeed that moves the current position out of the destination bitmap. Any bits
moved out of the current clipping region are lost. Does not adjust the XO�set,
YO�set, or ClippingRegion �elds. Initially . (Note: if is ,
the Scroll �eld is changed, and the previous value is returned.)

19.9.2 Drawing on Windows and Display Streams

[Function]
Fills of the destination bitmap (within the clipping region) with
(a pattern of bits). If is , the whole destination (within the
clipping region) is used. If or are , the values from

are used.

[Function]
Fills in a circular area of radius about the point (,) in the destination
bitmap of with . ’s position is left at
(,).

[Function]
Sets the X position of to its left margin, sets its Y position to the
top of the clipping region minus the font ascent, and �lls its destination bitmap
with its background Texture.

[Function]
Changes the current position of to the point .

[Function]
Changes the current position to the point coordinates away from current

19.12

SCREENWIDTH

LINELENGTH

(DSPSOURCETYPE)
BITBLT

INPUT INVERT INPUT

(DSPOPERATION)
BITBLT REPLACE PAINT INVERT ERASE

REPLACE

(DSPLINEFEED)

(DSPSCROLL)

ON OFF ON

OFF NIL
not

(DSPFILL)

NIL
NIL

(FILLCIRCLE)

(DSPRESET)

(MOVETO)
(,)

(RELMOVETO)
(,)

SOUR CETYPE DISPLA YSTREAM

OPERA TION DISPLA YSTREAM

DEL TAY DISPLA YSTREAM

SWITCHSETTING DISPLA YSTREAM

SWITCHSETTING

REGION TEXTURE OPERA TION DISPLA YSTREAM

REGION TEXTURE

REGION

TEXTURE OPERA TION

DISPLA YSTREAM

X Y RADIUS TEXTURE DISPLA YSTREAM

RADIUS X Y

DISPLA YSTREAM TEXTURE DISPLA YSTREAM

X Y

DISPLA YSTREAM

DISPLA YSTREAM

X Y DISPLA YSTREAM

DISPLA YSTREAM X Y

DX DY DISPLA YSTREAM

DX D Y

INTERLISP-D DISPLAY FACILITIES

position of .

[Function]
Changes the X position to the left edge of and the Y position to the top
of less the font height of . This is the beginning position
of the top line of text in this region. If is , the clipping region of

is used. Note: this does not set the X position to the left margin
like the function does.

[Function]
Backs up over a character which is screen points wide.

�lls the backed over area with the display stream’s background texture
and decreases the X position by . If this would put the X position less than

’s left margin, its operation is stopped at the left margin. It returns
if any bits were written, otherwise.

[Function]
Prints so that is it centered within of the . If
is , will be centered in the clipping region of .

19.9.3 Drawing Lines and Curves

Interlisp- D provides several functions for drawing lines and curves onto the destination bitmap of a display
stream or window. The curve drawing functions take their operation from the display stream,
while for straight lines the Operation may be speci�ed as an argument to the drawing function, with the
display stream’s operation only being used by default.

The following functions produce straight lines of the speci�ed width (in screen points; the default is
1) in the display stream’s destination bitmap. They do not allow ‘‘brush’’ patterns; however, they do
support mode inwhich redrawing a line will erase it. These functions are intended for interactive
applications where e�ciency is important. can be used to draw lines with brushes.

[Function]
Draws a line from the current position to the point onto the destination
bitmap of . The position of is set to .

If the destination bitmap has multiple bits per pixel, is a color speci�cation
that determines the color used to draw the line (See page 19.44). If is ,
this will be the of .

[Function]
Draws a line from the current position to the point coordinates away
onto the destination bitmap of . The position of
is set to the end of the line.

[Function]
Draws a line from the point to the point onto the destination
bitmap of . The position of is set to .

[Function]
Draws a line from the point to the point onto the destination

19.13

(MOVETOUPPERLEFT)

NIL

DSPRESET

(DSPBACKUP)

DSPBACKUP

T NIL

(CENTERPRINTINREGION)

NIL

BITBLT

INVERT
DRAWCURVE

(DRAWTO)
(,)

(,)

NIL
DSPCOLOR

(RELDRAWTO)
(,)

(DRAWLINE)
(,) (,)

(,)

(DRAWBETWEEN)

DISPLA YSTREAM

DISPLA YSTREAM REGION

REGION

REGION DISPLA YSTREAM

REGION

DISPLA YSTREAM

WIDTH DISPLA YSTREAM

DISPLA YSTREAM WIDTH

WIDTH

DISPLA YSTREAM

EXP REGION DISPLA YSTREAM

EXP REGION DISPLA YSTREAM REGION

EXP DISPLA YSTREAM

X Y WIDTH OPERA TION DISPLA YSTREAM COL OR

X Y

DISPLA YSTREAM DISPLA YSTREAM X Y

COL OR

COL OR

DISPLA YSTREAM

DX DY WIDTH OPERA TION DISPLA YSTREAM COL OR

DX DY

DISPLA YSTREAM DISPLA YSTREAM

X 1 Y 1 X 2 Y 2 WIDTH OPERA TION DISPLA YSTREAM COL OR

X 1 Y 1 X 2 Y 2
DISPLA YSTREAM DISPLA YSTREAM X 2 Y 2

POSITION 1 POSITION 2 WIDTH OPERA TION DISPLA YSTREAM COL OR

POSITION 1 POSITION 2

Typescript Facilities: The ‘‘T’’File

bitmap of . The position of is set to .

A curve is drawn by placing a brush pattern centered at each point along the curve’s trajectory. A brush
pattern is de�ned by its shape, size, and color. The currently recognized shapes are , ,

, , and . A brush size is an integer specifying the width of the brush
in screen points. The color is a color speci�cation (see page 19.44), which is only used if the curve is
drawn on a multiple bits per pixel bitmap.

A brush is speci�ed to the various drawing functions as a shape- width- color list (such as
or). A brush can also be speci�ed as a positive integer, which is interpreted as
a brush of that width. Finally, if a brush is speci�ed as , a brush is used as
default.

If a brush is a litatom, it is assumed to be a function which is called at each point of the curve’s trajectory
with three arguments: the X-coordinate or the point, the Y-coordinate, and the display stream.

The appearance of a curve is also determined by its dashing characteristics. Dashing is speci�ed by a
list of positive integers. If a curve is dashed, the brush is placed along the trajectory for the number of
points indicated by the �rst element of the dashing list. The brush is , not placed in the bitmap, for
a number of points indicated by the second element. The third element indicates how long it will be on
again, and so forth. The dashing sequence is repeated from the beginning when the list is exhausted. A
curve or line is not dashed if the dashing argument to the drawing function is .

The curve functions use the display stream’s clipping region and operation. Because of the problem of
overlapping brush points, the and operations are not implemented.

[Function]
Draws a spline curve. is a list of positions to which the spline will be �tted.

is a �ag which indicates whether or not the spline is to be closed. The
other arguments are interpreted as described above.

[Function]
Draws a circle of radius about the point onto the destination bitmap
of . ’s position is left at . (Dashing may
not be implemented for this function yet.) The other arguments are interpreted as
described above.

[Function]
Draws an ellipse with a minor radius of and a major radius
of about the point onto the destination bitmap of

. is the angle of the major axis in degrees, positive
in the counterclockwise direction. ’s position is left at .
(Dashing may not be implemented for this function yet.) The other arguments are
interpreted as described above.

19.10 TYPESCRIPT FACILITIES: THE ‘‘T’’FILE

Output to the �le and echoing of type- in is directed to a distinguished terminal display stream. This is

19.14

ROUND SQUARE
HORIZONTAL VERTICAL DIAGONAL

(SQUARE 2)
(VERTICAL 4 RED)

ROUND NIL (ROUND 1)

o�

NIL

REPLACE INVERT

(DRAWCURVE)

(DRAWCIRCLE)
(,)

(,)

(DRAWELLIPSE
)

(,)

(,)

T

DISPLA YSTREAM DISPLA YSTREAM POSITION 2

KNOTS CL OSED BR USH D ASHING DISPLA YSTREAM

KNOTS

CL OSED

X Y RADIUS BR USH D ASHING DISPLA YSTREAM

RADIUS X Y

DISPLA YSTREAM DISPLA YSTREAM X Y

X Y SEMIMINORRADIUS SEMIMAJORRADIUS ORIENT ATION BR USH D ASHING

DISPLA YSTREAM

SEMIMINORRADIUS

SEMIMAJORRADIUS X Y

DISPLA YSTREAM ORIENT ATION

DISPLA YSTREAM X Y

INTERLISP-D DISPLAY FACILITIES

initialized to be a display stream at the top of the screen, but that initial setting can be modi�ed by the
function .

[Function]
Selects the display stream or window to be the terminal out put
chan nel, and returns the previous terminal out put display stream.
puts into scrolling mode and calls with the num ber
of lines that will �t into given its current Font and ClippingRegion.
The linelength of is computed (like any other display stream)
from its LeftMargin, RightMargin, and Font. If one of these �elds is changed, its
linelength is recalculated. If one of the �elds used to compute the num ber of lines
(such as the ClippingRegion or Font) changes, is not automati cally
recom puted. will cause it to
be recom puted.

If the window system is active, the line bu�er is saved in the old window, and
the line bu�er is set to the one saved in the window of the new display stream,
or to a newly created line bu�er (if it does not have one). Caution: It is possible
to move the to a nonvisible display stream or to a window
whose current position is not in its clipping region.

[Function]
Sets the shape that blinks at the location of the next out put to the .

is either (1) - no changes, returns a rep resenting the
current caret, (2) - turns the caret o�, or (3) a which gives the new
caret shape. The hotspot of indicates which point in the new caret
bitmap should be located at the current out put position. The previous caret is
returned.

[Function]
If is greater than 0, it is the number of lines of output that will be printed to

before the page is held. A page is held before the +1
line is printed to without intervening input if there is no
terminal input waiting to be read. The output is held with the screen video reversed
until a character is typed. Output holding is disabled if is 0.
returns the previous setting.

19.11 CURSOR AND MOUSE

The screen relative position at which the cursor bitmap is being displayed can be read or set using the
functions:

[Function]
This returns the location of the cursor in the coordinate system of
(the current display stream, if is). If is a

, it will be reused, and returned. If is non- , it should
be a position and the cursor will be positioned at .

19.15

TTYDISPLAYSTREAM

(TTYDISPLAYSTREAM)

TTYDISPLAYSTREAM
PAGEHEIGHT

TTYDISPLAYSTREAM

PAGEHEIGHT
(TTYDISPLAYSTREAM (TTYDISPLAYSTREAM))

TTY

TTYDISPLAYSTREAM

(CARET)
TTYDISPLAYSTREAM

NIL CURSOR
OFF CURSOR

(PAGEHEIGHT)

TTYDISPLAYSTREAM
TTYDISPLAYSTREAM

PAGEHEIGHT

(CURSORPOSITION)

NIL
POSITION NIL

DISPLA YSTREAM

DISPLA YSTREAM

DISPLA YSTREAM

DISPLA YSTREAM

NEW CARET

NEW CARET

NEW CARET

N

N

N

N

NEWPOSITION DISPLA YSTREAM OLDPOSITION

DISPLA YSTREAM

DISPLA YSTREAM OLDPOSITION

NEWPOSITION

NEWPOSITION

Mouse Button Testing

[Function]
Moves the cursor points in the X direction and points in the Y
direction. and default to 0.

The cursor can be changed like any other bitmap by ing into it or pointing a display stream at
it and printing or drawing curves. For most applications, it is also necessary to locate the - a
point within the by area which is used to determine a position for
the cursor. Also for some applications it is necessary to save and restore the cursor. The Cursor record
and the following functions provide these capabilities. A Cursor record has �elds and

, the latter a that gives the location of the hot spot inside the cursor.

[Function]
Returns a cursor object which has as its image and the location (,) as
the hot spot. If is a , it is used as the hot spot. If has
dimensions di�erent from by , the lesser of the
widths and the lesser of the heights are used to determine the bits that actually
get copied into the lower left corner of the cursor. If is , 0 is used. If is

, -1 is used. The default cursor is an uparrow with its tip in
the upper left corner and its hot spot at (0, -1).

[Function]
Returns a record instance that contains (a copy of) the current cursor
speci�cation. If is a record instance, the cursor will be set
to the values in . If is , the cursor will be set to the
default cursor , an upward left pointing arrow.

[Function]
If is a record instance, the cursor will be set to the values in

. This does not return the old cursor, and therefore, provides a way
of changing the cursor without using storage.

[Function]
Inverts the cursor.

There are several cursors de�ned in Interlisp- D that may be of interest to users. One of these is
, an hour glass shape used by the system to indicate that a long computation is in

progress.

s can be saved on a �le using the �le package command , or the �le package
command.

19.11.1 Mouse Button Testing

There are various graphical input devices that can be read from Interlisp- D. The devices used in this
manner are: a device called a mouse , which has three keys and steers the cursor, and seven uninterpreted
keys on the keyboard. (Some Xerox 1100 systems may also have a small, �ve- key keyset.) The following
macros are provided to test the state of these input devices. (The three keys on the mouse (often called
buttons) are referred to by their location: left, middle, or right.)

[Macro]
Reads the mouse state and returns if that state is described by .

19.16

(ADJUSTCURSORPOSITION)

BITBLT
hotspot

CURSORWIDTH CURSORHEIGHT point

CURSORBITMAP
CURSORHOTSPOT POSITION

(CURSORCREATE)

POSITION
CURSORWIDTH CURSORHEIGHT

NIL
NIL CURSORHEIGHT

CURSORHEIGHT

(CURSOR)
CURSOR

CURSOR
T

DEFAULTCURSOR

(SETCURSOR)
CURSOR

(FLIPCURSOR)

WAITINGCURSOR

CURSOR CURSORS UGLYVARS

(MOUSESTATE)
T

DEL TAX DEL TAY

DEL TAX DEL TAY

DEL TAX DEL TAY

BITMAP X Y

BITMAP X Y

X BITMAP

X Y

NEW CURSOR _

NEW CURSOR

NEW CURSOR NEW CURSOR

NEW CURSOR _

NEW CURSOR

NEW CURSOR

BUTTONF ORM

BUTTONF ORM

INTERLISP-D DISPLAY FACILITIES

can be one of the key indicators , , or ; the
atom (indicating all keys are up); the form ; or a form of , ,
or applied to any valid button form. For example:
will be true if the left mouse button is down.
will be true if the left mouse button is the only one down.

will be true if either the left mouse button is up or the
middle mouse button is down.

[Macro]
Similar to , but tests the value of rather than
getting the current state. This is useful for determining which keys caused a

to be true.

[Macro]
is as described in . Waits until is true

or until milliseconds have elapsed. The value of is
if was satis�ed before it timed out, otherwise . If

is , it waits inde�nitely. It compiles into an open loop that calls the
wait background function. This form should not be used inside the wait
background function. does not use any storage during its
wait loop.

The macros and are iden tical to and
except that they also check the state of the �ve- �nger keyset as well as the state of the mouse but tons.
That is they check the state of both the mouse and the keyset. Thus, if the left mouse but ton was the
only mouse but ton held down, would be even though a keyset key
was down; whereas would be if a keyset but ton were down.

The names of the keyset keys are: , , , and
.

19.11.2 Low Level Access to Mouse

This section describes the low level access to the graphical input devices and can be skipped by most
users. Graphical input information is represented in the following global variables:

[Variable]
The X position of the cursor in absolute screen coordinates. Also see the function

below.

[Variable]
The Y position of the cursor in absolute screen coordinates. Also see the function

below.

[Variable]
An 8-bit number that has bits on corresponding to the mouse buttons that are
down: is the left mouse button, is the right button, is the middle button.
(Bits , , , , and give the state of the keyset keys, from left
to right, if you have a keyset.)

19.17

LEFT MIDDLE RIGHT
UP (ONLY) AND OR

NOT (MOUSESTATE LEFT)
(MOUSESTATE (ONLY LEFT))

(MOUSESTATE (OR
(NOT LEFT) MIDDLE))

(LASTMOUSESTATE)
MOUSESTATE LASTMOUSEBUTTONS

MOUSESTATE

(UNTILMOUSESTATE)
MOUSESTATE

UNTILMOUSESTATE
T NIL

NIL TTY
TTY

UNTILMOUSESTATE

KEYSETSTATE LASTKEYSETSTATE MOUSESTATE LASTMOUSESTATE

(MOUSESTATE (ONLY LEFT)) T
(KEYSETSTATE (ONLY LEFT)) NIL

LEFTKEY LEFTMIDDLEKEY MIDDLEKEY RIGHTMIDDLEKEY
RIGHTKEY

LASTMOUSEX

LASTMOUSEX

LASTMOUSEY

LASTMOUSEY

LASTMOUSEBUTTONS

4Q 2Q 1Q
200Q 100Q 40Q 20Q 10Q

BUTTONF ORM

KEY

BUTTONF ORM

BUTTONF ORM INTER VAL

BUTTONF ORM BUTTONF ORM

INTER VAL

BUTTONF ORM INTER VAL

Windows

[Variable]
The state of certain keys on the keyboard (= lock, = left shift, =
ctrl, = right shift, = blankBottom, = blankMiddle, = blankTop).
If the key is down, the corresponding bit is on.

[Variable]
The time in milliseconds since the mouse was last read (since the last call to

. is a 16-bit positive integer so it rolls over
every 65+ seconds.

The following functions provide low level cursor access in display stream coordinates.

[Function]
Returns the value of the cursor’s X position in the coordinates of .

[Function]
Returns the value of the cursor’s Y position in the coordinates of .

[Function]
Returns a list of the but tons or keys that are down in the state . If

is not a , is used (see
below). The but ton names that can be returned are: , , (the
three mouse keys), , , ,
and (the �ve keyset keys).

[Function]
Reads the current state of the mouse and sets the variables ,

, , , and . In
polling mode, the program must remember the previous state and look for changes,
such as a key going up or down, or the cursor moving outside a region of interest.

19.12 WINDOWS

Windows provide a means by which di�erent programs can share the display harmoniously. Interlisp- D
provides both interactive and programmatic constructs for creating, moving, reshaping, overlapping, and
destroying windows in such a way that a program can be embedded in a window in a relatively transparent
fashion. This is implemented by having each window save the bits that it obscures. This allows existing
Interlisp programs to be used without change, while providing a base for experimentation with more
complex window semantics in new applications.

Because the window system assumes that all programs follow certain conventions concerning control of
the screen, ordinary user programs should not perform display operations directly on the screen. In
particular, functions that can operate directly on bitmaps (such as or) should not
be given as the destination argument. All interactions with the screen should take
place through windows.

For specialized applications that require taking complete control of the display, the window system can
be turned o� (and back on again) with the following function:

19.18

LASTKEYBOARD
200Q 100Q 40Q

10Q 4Q 2Q 1Q

LASTMOUSETIME

GETMOUSESTATE LASTMOUSETIME

(LASTMOUSEX)

(LASTMOUSEY)

(DECODEBUTTONS)

SMALLP LASTMOUSEBUTTONS GETMOUSESTATE
LEFT MIDDLE RIGHT

LEFTKEY LEFTMIDDLEKEY MIDDLEKEY RIGHTMIDDLEKEY
RIGHTKEY

(GETMOUSESTATE)
LASTMOUSEX

LASTMOUSEY LASTMOUSEBUTTONS LASTMOUSETIME LASTKEYBOARD

BITBLT BITMAPBIT
(SCREENBITMAP)

DISPLA YSTREAM

DISPLA YSTREAM

DISPLA YSTREAM

DISPLA YSTREAM

BUTTONST ATE

BUTTONST ATE

BUTTONST ATE

INTERLISP-D DISPLAY FACILITIES

[NoSpread Function]
The window world is turned on if is and o� if is .
returns the previous state of the window world (or). If is
given no arguments, it simply returns the current state without a�ecting the window
world.

19.12.1 What are Windows?

A window speci�es a region of the screen, a display stream, a location in an occlusion stack, functions
that get called when the window undergoes certain actions, and various other items of information. The
basic model is that a window is a passive collection of bits (on the screen). On top of this basic level, the
system supports many di�erent types of windows that are linked to the data structures displayed in them
and provide selection and redisplaying routines. In addition, it is possible for the user to create new types
of windows by providing selection and displaying functions for them.

Windows are ordered in depth from user to background. Windows in front of others obscure the latter.
Operating on a window generally brings it to the top.

Windows are located at a certain position on the screen. Each window has a clipping region that con�nes
all bits splashed at it to a region that allows a border around the window, and a title above it.

Each window has a display stream associated with it, and either a window or its display stream can
be passed interchangeably to all system functions. There are dependencies between the window and its
display stream that the user should not disturb. For instance, the destination bitmap of the display stream
of a window must always be . The XO�set, YO�set, and ClippingRegion attributes
of the display stream should not be changed. At some future date, the notions of window and display
stream will be merged.

Windows can be created by the user interactively, under program control, or may be created automatically
by the system.

Windows are in one of two states: ‘‘open’’ or ‘‘closed’’. In an ‘‘open’’ state, a window is on the occlusion
stack and therefore visible on the screen (unless it is covered by other open windows) and accessible to
mouse operations. In a ‘‘closed’’ state, a window is not on the occlusion stack and therefore not visible
and not accessible to mouse operations. Any attempt to print or draw on a closed window will open it.

When Interlisp- D starts up, there are three windows on the screen: a top level typescript window, a window
containing the Interlisp- D logo, and a prompt window. The top level typescript window corresponds to
the �le in the process where the read- eval-print loop is operating. The logo window is bound to
the variable until it is closed. The prompt window is used for the printing of help or prompting
messages. It is available to user programs through the following functions:

[Variable]
Global variable containing the prompt window.

[NoSpread Function]
Prints in the prompt window.

[Function]
Clears the prompt window.

19.19

(WINDOWWORLD)
T NIL WINDOWWORLD

T NIL WINDOWWORLD

(SCREENBITMAP)

T EXEC
LOGOW

PROMPTWINDOW

(PROMPTPRINT)

(CLRPROMPT)

FLA G

FLA G FLA G

EXP

EXP

Interactive Window Operations

19.12.2 Interactive Window Operations

The Interlisp- D window system allows the user to interactively manipulate the windows on the screen,
moving them around, changing their shape, etc. by selecting various operations from a menu.
Programmatic versions of these operations are described on page 19.26.

For most windows, depressing the mouse key when the cursor is inside a window during I/O wait
will cause the window to come to the top and a menu of window operations to appear. If a command
is selected from this menu (by releasing the right mouse key while the cursor is over a command), the
selected operation will be applied to the window in which the menu was brought up. (It is possible for an
applications program to rede�ne the action of the mouse key. In these cases, there is a convention
that the default command menu may be brought up by depressing the key when the cursor is in
the header or border of a window. See page 19.30) The operations are:

[Window Menu Command]
Clears the window and repositions it to the left margin of the �rst line of text
(below the upper left corner of the window by the amount of the font ascent).

[Window Menu Command]
Closes the window, i.e, removes it from the screen. (See , page 19.26.)

[Window Menu Command]
Puts the window on the bottom of the occlusion stack, thereby exposing any
windows that it was hiding.

[Window Menu Command]
Moves the window to a location speci�ed by depressing and then releasing the

key. During this time a ghost frame will indicate where the window will
reappear when the key is released. (See , page 19.36.)

[Window Menu Command]
Allows the user to specify a new region for the existing window contents. If the

key is used to specify the new region, the reshaped window can be placed
anywhere. If the key is used, the cursor will start out tugging at the nearest
corner of the existing window, which is useful for making small adjustments in a
window that is already positioned correctly.

[Window Menu Command]
Redisplays the window. (See , page 19.27.)

[Window Menu Command]
Switches to a mode in which the cursor can be used like a paint brush to draw
in a window. This is useful for making notes on a window. While the key
is down, bits are added. While the key is down, they are erased. The

button pops up a command menu that allows changing of the brush shape,
size and shade, changing the mode of combining the brush with the existing bits,
or stopping paint mode.

Paint mode also contains a hardcopy command that makes a Press �le of the bits
in a window and sends it to the printer. There are limitations on the complexity
and size of the bitmaps that some printers will print. If the printer does not print

19.20

RIGHT

RIGHT
RIGHT

CLEAR

CLOSE
CLOSEW

BURY

MOVE

LEFT
GETBOXPOSITION

SHAPE

LEFT
MIDDLE

REDISPLAY
REDISPLAYW

PAINT

LEFT
MIDDLE

RIGHT

INTERLISP-D DISPLAY FACILITIES

the entire window correctly, try a smaller window or one with fewer black bits
in it. To get a hardcopy of an arbitrary part of the screen that crosses window
boundaries, use the command in the background menu (below).

[Window Menu Command]
Prompts for a region on the screen and makes a new window whose bits are a
snapshot of the bits currently in that region. Useful for saving some particularly
choice image before the window image changes.

Occasionally, a user will have a number of large windows on the screen, making it di�cult to access those
windows being used. To help with the problem of screen space management, the Interlisp- D window
system allows the creation of . An icon is a small rectangle (containing text or a bitmap) which is
a ‘‘shrunken- down’’ form of a particular window. Using the and commands, the user
can shrink windows not currently being used into icons, and quickly restore the original windows at any
time.

[Window Menu Command]
Removes the window from the screen and brings up its icon. (See ,
page 19.27.) The window can be restored by selecting from the window
command menu of the icon.

If the button is pressed while the cursor is in an icon, the window command menu will contain
a slightly di�erent set of commands. The and commands are removed, and the

command is replaced with the command:

[Window Menu Command]
Restores the window associated with this icon and removes the icon. (See ,
page 19.28.)

If the button is pressed while the cursor is not in any window, a ‘‘background menu’’ appears
with the following operations:

[Window Menu Command]
Calls the function (page 18.4), which writes out all of the dirty pages
of the virtual memory. After a , and until the pagefault handler is next
forced to write out a dirty page, your virtual memory image will be continuable
(as of the) should you experience a system crash or other disaster.

[Window Menu Command]
The same as the command described above.

[Window Menu Command]
Prompts for a region on the screen, makes a press �le and sends it to the printer.

The printing is done with (page 18.18), so if
is non- , the image will be sent there, rather than to .

Some built- in facilities and Lispusers packages add commands to the background menu, to provide an
easy way of calling the di�erent facilities. The user can determine what these new commands do by
holding the button down for a few seconds over the item in question; an explanatory message
will be printed in the prompt window.

19.21

HARDCOPY

SNAP

Icons
SHRINK EXPAND

SHRINK
SHRINKW

EXPAND

RIGHT
REDISPLAY CLEAR

SHRINK EXPAND

EXPAND
EXPANDW

RIGHT

SAVEVM
SAVEVM

SAVEVM

SAVEVM

SNAP
SNAP

HARDCOPY

HARDCOPYW FULLPRESSPRINTER
NIL (PRINTINGHOST)

RIGHT

Changing Entries on the Window Command Menus

The following functions provide a functional interface to the interactive window operations so that user
programs can call them directly.

[Function]
If is , it calls . If is a shrunken window,
it brings up the ‘‘icon window’’ menu. If is a unshrunken window, it
brings up the window menu. The initial items in these menus are described above.
If the user selects one of the items from the provided menu, that item is ed
to . If is not a or , it returns.

[Function]
Brings up the background menu. The initial items in this menu are described
above. If the user selects one of the items from the menu, that item is ed.

19.12.3 Changing Entries on the Window Command Menus

The window command menus for unshrunken windows, shrunken windows, and the background are
cached in the variables , , and . To change the
entries in these menus, the user should change the change the menu ‘‘command lists’’ in the variables

, , and , and set the
appropriate menu variable to a non- , so the menu will be recreated. This provides a way of adding
commands to the menu, of changing its font or of restoring the menu if it gets clobbered. The ‘‘command
lists’’ are in the format of the �eld of a menu (see page 19.39), except as speci�ed below.

Note: command menus are recreated using the current value of .

[Variable]
[Variable]

The menu that is brought up in response to a right button in an unshrunken window
is stored on the variable . If is set to a non- , the
menu will be recreated from the list of commands . The

of each command added to should be a function
name that will be ed to the window.

[Variable]
[Variable]

The menu that is brought up in response to a right button in a shrunken window is
stored on the variable . If it is , it is recreated from the list
of commands . The of each command added
a function name that will be ed to the window.

[Variable]
[Variable]

The menu that is brought up in response to a right button in the background is
stored on the variable . If it is , it is recreated from the list
of commands . The of each command added
to should be a form that will be ed.

19.22

(DOWINDOWCOM)
NIL DOBACKGROUNDCOM

APPLY
WINDOW NIL

(DOBACKGROUNDCOM)

EVAL

WindowMenu IconWindowMenu BackgroundMenu

WindowMenuCommands IconWindowMenuCommands BackgroundMenuCommands
MENU

ITEMS

MENUFONT

WindowMenu
WindowMenuCommands

WindowMenu WindowMenu MENU
WindowMenuCommands

CADR WindowMenuCommands
APPLY

IconWindowMenu
IconWindowMenuCommands

IconWindowMenu NIL
IconWindowMenuCommands CADR

APPLY

BackgroundMenu
BackgroundMenuCommands

BackgroundMenu NIL
BackgroundMenuCommands CADR

BackgroundMenuCommands EVAL

WINDO W

WINDO W WINDO W

WINDO W

WINDO W WINDO W

INTERLISP-D DISPLAY FACILITIES

19.12.4 Coordinate Systems

One way of thinking of a window is as a ‘‘view’’ onto an object (e.g. a graph, a �le, a picture, etc.)
The object has its own natural coordinate system in terms of which its subparts are laid out. When the
window is created, the XO�set and YO�set of the window’s display stream are set to map the origin
of the object’s coordinate system into the lower left point of the window’s interior region. At the same
time, the ClippingRegion of the display stream is set to correspond to the interior of the window. From
then on, the display stream’s coordinate system is translated and its clipping region adjusted whenever
the window is moved, scrolled or reshaped.

There are several distinct regions associated with a window viewing an object. First, there is a region in
the window’s coordinate system that contains the complete image of the object. This region (which can
only be determined by application programs with knowledge of the ‘‘semantics’’ of the object) is stored as
the property of the window (page 19.32). Second, the clipping region of the window (obtainable
with the function) speci�es the portion of the object that is actually visible in the
window. This is set so that it corresponds to the interior of the window (not including the border or title).
Finally, there is the region on the screen that speci�es the total area that the window occupies, including
the border and title. This region (in screen coordinates) is stored as the property of the window
(page 19.33).

19.12.5 Scrolling

The window system supports the idea of scrolling the contents of a window. Scrolling regions are on
the left and the bottom edge of each window. The scrolling regions will only be active if the window
has a window property (page 19.31). If a window has a and the cursor moves
from inside that window into its scrolling region and remains there for milliseconds
(initially 1000), a scroll bar appears. The value of the global variable (initially 24)
determines the size of the scrolling region. The key is used to indicate upward or leftward scrolling
by the amount necessary to move the selected position to the top or the left edge. The key is
used to indicate downward or rightward scrolling by the amount necessary to move the top or left edge
to the selected position. The key is used to indicate global placement of the object within the
window (similar to ‘‘thumbing’’ a book).

In the scroll region, the part of the object that is being viewed by the window is marked with a gray
shade. If the whole scroll bar is thought of as the entire object, the shaded portion is the portion currently
being viewed. This will only occur when the window ‘‘knows’’how big the object is (see window property

, page 19.32).

When the button is released in a scroll region, the function is called. calls the
scrolling function associated with the window to do the actual scrolling and provides a programmable
entry to the scrolling operation.

[Function]
Calls the window property of the window with argu-
ments , , and . See window
property, page 19.31.

The function that tracks the mouse while it is in the scroll region is .

19.23

EXTENT
DSPCLIPPINGREGION

REGION

SCROLLFN SCROLLFN
SCROLLWAITTIME
SCROLLBARWIDTH

LEFT
RIGHT

MIDDLE

EXTENT

SCROLLW SCROLLW

(SCROLLW)
SCROLLFN

SCROLLFN

SCROLL.HANDLER

WINDO W DEL TAX DEL TAY CONTINUOUSFL G

WINDO W

WINDO W DEL TAX DEL TAY CONTINUOUSFL G

Scrolling

[Function]
This is called when the cursor leaves a window in either the left or downward
direction. If does not have a scroll region for this direction (e.g. the
window has moved or reshaped since it was last scrolled), a scroll region is created
that is wide. It then waits for milliseconds
and if the cursor is still inside the scroll region, it opens a window the size of the
scroll region and changes the cursor to indicate the scrolling is taking place.

When a but ton is pressed, the cursor shape is changed to indicate the type
of scrolling (up, down, left, right or thumb). After the but ton is held for

milliseconds, un til the but ton is released
is called each milliseconds. These calls are made
with the argument set to . If the but ton is released before

milliseconds, is called with the
argument set to .

The arguments passed to depend on the mouse button. If the
button is used in the vertical scroll region, is distance from cursor position at
the time the button was released to the top of the window and is 0. If the

button is used, the inverse of this quantity is used for and 0 for .
If the button is used in the horizontal scroll region, is distance from
cursor position to left of the window and is 0. If the button is used,
the inverse of this quantity is used for and 0 for .

If the button is pressed, the distance argument to will be a
between 0.0 and 1.0 that indicates the proportion of the distance the

cursor was from the left or top edge to the right or bottom edge.

is the standard scrolling function which should be used as the property
for most scrolling windows.

[Function]
This function, when used as a , s the bits that will remain
visible after the scroll to their new location, �lls the newly exposed area with
texture, adjusts the window’s coordinates and then calls the window’s
on the newly exposed region. Thus this function will scroll any window that
has a repaint function. If has an property (page 19.32),

will limit scrolling to keep the extent region visible or
near visible. That is, it will not scroll the window so that the top of the extent
is below the top of the window, the bottom of the extent is more than one point
above the top of the window, the left of the extent is to the right of the window
and the right of the extent is to the left of the window. The is scrolled
to just above the window to provide a way of ‘‘hiding’’ the contents of a window.

If or is a , will position the
window so that its top or left edge will be positioned at that proportion of its

. If the window does not have an , will
do nothing.

If is non- , this indicates that the scrolling button is being
held down. In this case, will scroll the distance of one
linefeed height (as returned by , page 19.12).

19.24

(SCROLL.HANDLER)

SCROLLBARWIDTH SCROLLWAITTIME

WAITBEFORESCROLLTIME SCROLLW
WAITBETWEENSCROLLTIME

T
WAITBEFORESCROLLTIME SCROLLW

NIL

SCROLLW LEFT

RIGHT
LEFT

RIGHT

MIDDLE SCROLLW
FLOATP

SCROLLBYREPAINTFN SCROLLFN

(SCROLLBYREPAINTFN)
SCROLLFN BITBLT

REPAINTFN

EXTENT
SCROLLBYREPAINTFN

EXTENT

FLOATP SCROLLBYREPAINTFN

EXTENT EXTENT SCROLLBYREPAINTFN

NIL
SCROLLBYREPAINTFN

DSPLINEFEED

WINDO W

WINDO W

CONTINUOUSFL G

CONTINUOUSFL G

D Y

DX

DY DX

D X

D Y

D X D Y

WINDO W DEL TAX DEL TAY CONTINUOUSFL G

WINDO W

DEL TAX DEL TAY

CONTINUOUSFL G

INTERLISP-D DISPLAY FACILITIES

19.12.6 Programmatic Window Operations

[Function]
Creates a new window. indicates where and how large the window should
be by specifying the exterior region of the window (the usable height and width
of the resulting window will be smaller than the height and width of the region by
twice the border size and further less the height of the title, if any). If is

, is called to prompt the user for a region.

If is non- , it is printed in the border at the top of the window. The
is printed using the global display stream . Thus
the height of the title will be

.

If is a number, it is used as the border size. If is not a number,
the window will have a border (initially 4) bits wide.

If is non- , the window will not be opened, i.e. displayed on the
screen.

[Function]
Returns if is a window, otherwise.

[Function]
Returns , if is an open window (has not been closed);
otherwise.

[Function]
Returns a list of all active windows.

[Function]
Returns the window which contains the position in screen coordinates of if
is a , the position (,) if and are numbers, or the position of the
cursor if is . Returns if the coordinates are not in any window. If they
are in more than one window, it returns the uppermost.

Example: returns the window that the cursor is in.

[Function]
If is a display stream, it is returned. If is a window, its display
stream is returned. If is , it evaluates (which should be
an atom). If its value is a window, it is reopened if it is closed, and returned. If its
value is not a window, is set to a newly created window (prompting
user for region) and returned. If is , a new window is created and
returned. If or are given and a window is involved, the or

property of the window is reset. The = case is most useful
for programs that want to display their output in a window, but want to reuse the
same window each time they are called. The non- cases are good for decoding
a display stream argument passed to a function.

[Function]
Returns the width of the window necessary to have points in its

19.25

(CREATEW)

NIL GETREGION

NIL
WindowTitleDisplayStream

(FONTPROP WindowTitleDisplayStream
’HEIGHT)

WBorder

NIL

(WINDOWP)
NIL

(OPENWP)
NIL

(OPENWINDOWS)

(WHICHW)

POSITION
NIL NIL

(WHICHW)

(DECODE/WINDOW/OR/DISPLAYSTREAM)

NIL

NEW
TITLE

BORDER NIL

NIL

(WIDTHIFWINDOW)

REGION TITLE BORDER NOOPENFL G

REGION

REGION

TITLE TITLE

BORDER BORDER

NOOPENFL G

X

X X

WINDO W

WINDO W WINDO W

X Y

X X

X Y X Y

X

DSOR W WINDO WV AR TITLE BORDER

DSOR W DSOR W

DSOR W WINDO WV AR

WINDO WV AR

DSOR W

TITLE BORDER

DSOR W

INTERIOR WIDTH BORDER

INTERIOR WIDTH

Programmatic Window Operations

interior if the width of the border is . If is , the default
border size is used.

[Function]
Returns the height of the window necessary to have points in its
interior with a border of and, if is non- , a title. If
is , the default border size is used.

and are useful for calculating the width and height for a call to
for the purpose of positioning a window.

Interlisp- D provides a set of operations which apply to any window. In addition to being available as
functions, most of these are also available via the standard mouse interface. See page 19.20

[Function]
Brings to the top of the stack of overlapping windows, guaranteeing that
it is entirely visible. If is closed, it is opened. This is done automatically
whenever a printing or drawing operation occurs to the window.

If is , the of is called (page 19.30). If
is , it is not called, which allows a to call

without causing an in�nite loop.

[Function]
Reshapes to the region , or prompts for a region (with

, page 19.37) if none is supplied. Calls the window’s , if
any (page 19.31).

[Function]
calls the function or functions on the window property of

, if any (page 19.30). If one of the s is the atom or
returns the atom as a value, returns without doing anything
further. Otherwise, removes from the window stack and restores
the bits it is obscuring. If was closed, is returned as the value.
If it was not closed, (for example because its returned the atom),

is returned as the value.

can be restored in the same place with the same contents (reopened) by
calling or by using it as the source of a display operation.

[Function]
If is a closed window, calls the function or functions on the
window property of , if any (page 19.30). If one of the s
is the atom , the window will not be opened. Otherwise the window is
placed on the occlusion stack of windows and its contents displayed on the screen.
If is an open window, it returns .

[Function]
Moves to the position speci�ed by and according to the following
rules:

If is , (page 19.36) is called to read a position from

19.26

NIL
WBorder

(HEIGHTIFWINDOW)

NIL
NIL WBorder

WIDTHIFWINDOW HEIGHTIFWINDOW
GETBOXPOSITION

(TOTOPW)

NIL TOTOPFN
T TOTOPFN TOTOPW

(SHAPEW)

GETREGION RESHAPEFN

(CLOSEW)
CLOSEW CLOSEFN

CLOSEFN DON’T
DON’T CLOSEW
CLOSEW

CLOSEFN DON’T
NIL

OPENW

(OPENW)
OPENW

OPENFN OPENFN
DON’T

NIL

(MOVEW)

NIL GETBOXPOSITION

BORDER BORDER

INTERIORHEIGHT TITLEFL G BORDER

INTERIORHEIGHT

BORDER TITLEFL G BORDER

WINDO W NOCALL TOPWFN

WINDO W

WINDO W

NOCALL TOPWFN WINDO W

NOCALL TOPWFN

WINDO W NEWREGION

WINDO W NEWREGION

WINDO W

WINDO W

WINDO W

WINDO W WINDO W

WINDO W

WINDO W

WINDO W

WINDO W

WINDO W

WINDO W POSorX Y

WINDO W POSorX Y

POSorX

INTERLISP-D DISPLAY FACILITIES

the user.

If is a , is used.

If and are both , a position is created using as the
and as the .

If is a , a position is created using its as the and
as the .

If is not open and is non- , the window will be moved without
being opened. Otherwise, it will be opened.

If has the atom as a property (page 19.32), the window
will not be moved. If has any other non- value as a property,
it should be a function or list of functions that will be called before the window
is moved with the as an argument. If it returns the atom , the
window will not be moved. If it returns a position, the window will be moved to
that position instead of the one speci�ed by and . If there are more than
one s, the last one to return a value is the one that determines where the
window is moved to.

If is moved and has a window property of (page
19.32), it should be a function or a list of functions that will be called after the
window is moved with as an argument.

returns the new position, or if the window could not be moved.

[Function]
Like for moving windows but is interpreted relative to the current
position of . Example: The following code moves to the right
one screen point.

[Function]
Fills with its background texture, changes its coordinate system so that
the origin is the lower left corner of the window, sets its X position to the left
margin and sets its Y position to the base line of the uppermost line of text, ie.
the top of the window less the font ascent.

[Function]
Puts on the bottom of the stack by moving all the windows that it covers
in front of it.

[Function]
Redisplay the region of the window . If is , the
entire window is redisplayed. If is , and doesn’t have a

(page 19.32), will not change and the message ‘‘That window
doesn’t have a REPAINTFN’’ will be printed in the prompt window.

[Function]
makes a small icon which represents and removes

19.27

POSITION

NUMBERP
XCOORD YCOORD

REGION LEFT XCOORD
BOTTOM YCOORD

NIL

DON’T MOVEFN
NIL MOVEFN

DON’T

MOVEFN

AFTERMOVEFN

MOVEW NIL

(RELMOVEW)
MOVEW

(RELMOVEW (create POSITION XCOORD _ 1 YCOORD _ 0))

(CLEARW)

(BURYW)

(REDISPLAYW)
NIL

NIL
REPAINTFN

(SHRINKW)
SHRINKW

POSorX POSorX

POSorX Y POSorX

Y

POSorX

WINDO W POSorX

WINDO W

WINDO W

WINDO W

POSorX Y

WINDO W WINDO W

WINDO W

WINDO W POSITION

POSITION

WINDO W WINDO W

WINDO W

WINDO W

WINDO W

WINDO W

WINDO W

WINDO W REGION ALW AYSFL G

REGION WINDO W REGION

ALW AYSFL G WINDO W

WINDO W

WINDO W TO WHA T ICONPOSITION EXP ANDFN

WINDO W WINDO W

Window Properties

from the screen. Icons have a di�erent window command menu that contains
‘‘ ’’ instead of ‘‘ ’’. The command calls which
returns the shrunken window to its original size and place.

The property (page 19.30) of the window a�ects the operation
of . If the property of is the atom ,
prints ‘‘Can’t shrink that window’’ in the and returns. Otherwise,
the property of the window is treated as a (list of) function(s) to apply
to ; if any returns the atom , prints ‘‘Can’t shrink that
window’’ in the and returns.

, if given, indicates the image the icon window will have. If is
a string, atom or list, the icon’s image will be that string (currently implemented
as a title-only window with as the title.) If is a , the
icon’s image will be a copy of the bitmap. If is a , that window
will be used as the icon.

If is not given (as is the case when invoked from the window
command), then the following apply in turn: (1) If the window has an
property (page 19.31), it gets called with arguments , where

is the window being shrunk and is the previously created icon,
if any. The should return one of the entities described above
or return the if it does not want to change it. (2) If the window has an

property (page 19.31), it is used as the value of . (3) If the window
has neither an or property, the icon will be ’s title or, if

doesn’t have a title, the date and time of the icon creation.

gives the position that the new icon will be on the screen. If it is
, the icon will be in the corner of the window furthest from the center of the

screen.

In all cases the icon is cached on the property (page 19.31) of
so repeating reuses the same icon (unless overridden by the

described above). Thus to change the icon it is necessary to remove the
property or call explicitly giving a argument.

[Function]
Restores the window for which is an icon, and removes the icon from the
screen. If the (page 19.31) window property of the main window is
the atom , the window won’t be expanded. Otherwise, the window will be
restored to its original size and location and the (or list of functions)
will be applied to it.

19.12.7 Window Properties

The behavior of a window is controlled by a set of window properties . Some of these are used by the
system. However, any arbitrary property name may be used by a user program to associate information
with a window. For many applications the user will associate the structure being displayed with its
window using a property. The following functions provide for reading and setting window properties:

19.28

EXPAND SHRINK EXPAND EXPANDW

SHRINKFN
SHRINKW SHRINKFN DON’T SHRINKW

PROMPTWINDOW
SHRINKFN

DON’T SHRINKW
PROMPTWINDOW

BITMAP
WINDOW

SHRINK
ICONFN

()

ICONFN

ICON
ICONFN ICON

NIL

ICONWINDOW
SHRINKW

ICONFN
ICONWINDOW SHRINKW

(EXPANDW)

EXPANDFN
DON’T

EXPANDFN

WINDO W

WINDO W

WINDO W

TO WHA T TO WHA T

TO WHA T TO WHA T

TO WHA T

TO WHA T

WINDO W OLDICON

WINDO W OLDICON

TO WHA T

OLDICON

TO WHA T

WINDO W

WINDO W

ICONPOSITION

WINDO W

TO WHA T

ICON

ICON

INTERLISP-D DISPLAY FACILITIES

[NoSpread Function]
Returns the previous value of ’s aspect. If is given,
(even if given as), it is stored as the new aspect. Some aspects cannot
be set by the user and will generate errors. Any name that is not recognized
is stored on a property list associated with the window.

[Function]
adds a new item to a window property. If is

to an element of the property of the window , nothing is added.
If the current property is not a list, it is made a list before added.

returns the previous property. The new item always goes on the
end of the list. (Note: If the order of items in the list is important, the list can be
modi�ed using .) is useful for adding or

functions to a window without a�ecting its existing functions.

[Function]
deletes from the window property of

and returns the previous list if was an element. If
was not a member of window property , is returned.

19.12.7.1 Mouse Function Window Properties

These properties allow the user to control the response to mouse activity in a window. The value of these
properties, if non- , should be a function that will be called (with the window as argument) when the
speci�ed event occurs.

Note: these functions should be ‘‘self-contained’’, communicating with the outside world solely via their
window argument, e.g., by setting window properties. In particular, these functions should not expect to
access variables bound on the stack, as the stack context is formally unde�ned at the time these functions
are called. Since the functions are invoked asynchronously, they perform any input operations from
their own window.

[Window Property]
Whenever a button goes down in the window and the process associated with
the window (stored under the property) is not the tty process, the

is called. The default is (page 18.34)
which gives the process associated with the window the tty and calls the

.

[Window Property]
Whenever the mouse moves into the window, the is called.

[Window Property]
The is called when the cursor leaves the window.

[Window Property]
The is called whenever the cursor has moved and is inside the
window. This allows a window function to implement ‘‘active’’regions within itself
by having its determine if the cursor is in a region of interest,
and if so, perform some action.

19.29

(WINDOWPROP)

NIL

(WINDOWADDPROP)
WINDOWADDPROP EQ

WINDOWADDPROP

WINDOWPROP WINDOWADDPROP OPENFN
CLOSEFN

(WINDOWDELPROP)
WINDOWDELPROP

NIL

NIL

TTY

WINDOWENTRYFN

PROCESS
WINDOWENTRYFN GIVE.TTY.PROCESS

BUTTONEVENTFN

CURSORINFN
CURSORINFN

CURSOROUTFN
CURSOROUTFN

CURSORMOVEDFN
CURSORMOVEDFN

CURSORMOVEDFN

WINDO W PR OP NEWV AL UE

WINDO W PR OP NEWV AL UE

PR OP

PR OP

WINDO W PR OP ITEMTO ADD

ITEMTO ADD

PR OP WINDO W

ITEMTO ADD

WINDO W PR OP ITEMTODELETE

ITEMTODELETE PR OP

WINDO W ITEMTODELETE

ITEMTODELETE PR OP

Event Window Properties

[Window Property]
The is called whenever there is a change in the state (up or
down) of the mouse buttons inside the window. Changes to the mouse state while
the is running will not be interpreted as new button events, and
the will not be re-invoked.

[Window Property]
The is called in lieu of the standard window menu operation

when the key is depressed in a window. More
speci�cally, the is called instead of the when

. If the key is to be treated like any
other key in a window, supply and with the
same function.

Note: When an application program de�nes its own , there is a
convention that the default , (page 19.22), may
be executed by depressing the key when the cursor is in the header or
border of a window. User programs are encouraged to follow this convention.

19.12.7.2 Event Window Properties

[Window Property]
The window property can be a single function or a list of functions that
are called just before a window is closed by (page 19.26). (Note: If the

of the list is a word, it is treated as a single function.) The function(s)
will be called with the window as a single argument. If any of the s are
the atom , or if the value returned by any of the s is the atom

, the window will not be closed.

Note: A should not call on its argument.

[Window Property]
The window property can be a single function or a list of functions. If one
of the s is the atom , the window will not be opened. Otherwise,
the s are called after a window has been opened by (page 19.26),
with the window as a single argument.

[Window Property]
If non- , whenever the window is brought to the top, the is called
(with the window as a single argument). This function may be used to bring a
collection of windows to the top together.

If the argument of (page 19.26) is non- , the
of the window is not called, which provides a way of avoiding in�nite

loops when using from within a .

[Window Property]
The window property can be a single function or a list of functions
that are called just before a window is shrunken by (page 19.27), with
the window as a single argument. If any of the s are the atom ,

19.30

BUTTONEVENTFN
BUTTONEVENTFN

BUTTONEVENTFN
BUTTONEVENTFN

RIGHTBUTTONFN
RIGHTBUTTONFN

(DOWINDOWCOM) RIGHT
RIGHTBUTTONFN BUTTONEVENTFN

(MOUSESTATE (ONLY RIGHT)) RIGHT
RIGHTBUTTONFN BUTTONEVENTFN

RIGHTBUTTONFN
RIGHTBUTTONFN DOWINDOWCOM

RIGHT

CLOSEFN
CLOSEFN

CLOSEW
CAR LAMBDA

CLOSEFN
DON’T CLOSEFN

DON’T

CLOSEFN CLOSEW

OPENFN
OPENFN

OPENFN DON’T
OPENFN OPENW

TOTOPFN
NIL TOTOPFN

TOTOPW NIL
TOTOPFN

TOTOPW TOTOPFN

SHRINKFN
SHRINKFN

SHRINKW
SHRINKFN DON’T

NOCALL TOPWFN

INTERLISP-D DISPLAY FACILITIES

or if the value returned by any of the s is the atom , the window
will not be shrunk.

[Window Property]
If (page 19.27) is called without begin given a argument (as
is the case when invoked from the window command) and the window’s

property is non- , then it gets called with two arguments, the window
being shrunk and the previously created icon, if any. The should return
one of the entities described on page 19.27 or return the previously
created icon if it does not want to change it.

[Window Property]
If (page 19.27) is called without being given a argument, the
window’s property is , and the property is non- , then it is
used as the value of .

[Window Property]
Whenever an icon is created, it is cached on the property of the
window, so calling again will reuse the same icon (unless overridden by
the .

Thus, to change the icon it is necessary to remove the property or
call (page 19.27) explicitly giving a argument.

[Window Property]
The window property can be a single function or a list of functions.
If one of the s is the atom , the window will not be expanded.
Otherwise, the s are called after the window has been expanded by

(page 19.28), with the window as a single argument.

[Window Property]
If the property is , the window will not scroll. Otherwise, it should
be a function of four arguments: (1) the window being scrolled, (2) the distance
to scroll in the horizontal direction (positive to right, negative to left), (3) the
distance to scroll in the vertical direction (positive up, negative down), and (4) a
�ag which is if the scrolling button is being held down. For more information,
see (page 19.24). For most scrolling windows, the
function should be (page 19.24).

[Window Property]
The is passed as the argument to
(page 19.37) when the window is reshaped.

[Window Property]
The window property can be a single function or a list of functions that
are called when a window is reshaped by (page 19.26). If the
is or a list containing , the window will not be reshaped. Otherwise,
the function(s) are called after the window has been reshaped, its coordinate system
readjusted to the new position, the title and border displayed, and the interior �lled
with texture. The should display any additional information needed
to complete the window’s image in the new position and shape. The
is called with three arguments: (1) the window in its reshaped form, (2) a bitmap

19.31

CLOSEFN DON’T

ICONFN
SHRINKW

SHRINK
ICONFN NIL

ICONFN

ICON
SHRINKW

ICONFN NIL ICON NIL

ICONWINDOW
ICONWINDOW

SHRINKW
ICONFN

ICONWINDOW
SHRINKW

EXPANDFN
EXPANDFN

EXPANDFN DON’T
EXPANDFN

EXPANDW

SCROLLFN
SCROLLFN NIL

T
SCROLL.HANDLER SCROLLFN

SCROLLBYREPAINTFN

NEWREGIONFN
NEWREGIONFN GETREGION

RESHAPEFN
RESHAPEFN

SHAPEW RESHAPEFN
DON’T DON’T

RESHAPEFN
RESHAPEFN

TO WHA T

TO WHA T

TO WHA T

TO WHA T

TO WHA T

NEWREGIONFN

Miscellaneous Properties

with the contents of the old window, and (3) the region within the bitmap that
contains the old image. This function is provided so that users can reformat
window contents or whatever. (page 19.33) is the default
and should be useful for many windows.

[Window Property]
The window property can be a single function or a list of functions
that are called to repaint parts of the window by (page 19.27). The

s are called with two arguments: the window and the region in the
coordinates of the window’s display stream of the area that should be repainted.
Before the is called, the clipping region of the window is set to clip
all display operations to the area of interest so that the can display
the entire window contents and the results will be appropriately clipped. (Note:

(page 19.27) should not be used in s because it resets the
window’s coordinate system. If a wants to clear its region �rst, it
should use (page 19.12).)

[Window Property]
If the is , the window will not be moved by (page 19.26).
Otherwise, if the is non- , it should be a function or a list of functions
that will be called before a window is moved with two arguments: the window
being moved and the new position of the lower left corner in screen coordinates.
If the returns , the window will not be moved. If the
returns a , the window will be moved to that position. Otherwise, the
window will be moved to the speci�ed new position.

[Window Property]
If non- , it should be a function or a list of functions that will be called after
the window is moved (by , page 19.26) with the window as an argument.

19.12.7.3 Miscellaneous Properties

[Window Property]
Accesses the title of the window. If a title is added to a window whose title
is or the title is removed (set to) from a window with a title, the
window’s exterior (its region on the screen) is enlarged or reduced to accomodate
the change without changing the window’s interior. For example,

changes the title of to be ‘‘Results’’.
removes the title of .

[Window Property]
Accesses the width of the border of the window. The border will have at most 2
point of white (but never more than half) and the rest black. The default border
is the value of the global variable (initially 4).

[Window Property]
Used to limit scrolling operations (see page 19.23). Accesses the extent region of
the window. If non- , the is a region in the window’s display stream
that contains the complete image of the object being viewed by the window. User
programs are responsible for updating the . The functions ,

19.32

RESHAPEBYREPAINTFN

REPAINTFN
REPAINTFN

REDISPLAYW
REPAINTFN

REPAINTFN
REPAINTFN

CLEARW REPAINTFN
REPAINTFN

DSPFILL

MOVEFN
MOVEFN DON’T MOVEW

MOVEFN NIL

MOVEFN DON’T MOVEFN
POSITION

AFTERMOVEFN
NIL

MOVEW

TITLE

NIL NIL

(WINDOWPROP
’TITLE "Results")

(WINDOWPROP ’TITLE NIL)

BORDER

WBorder

EXTENT

NIL EXTENT

EXTENT UNIONREGIONS

WINDO W WINDO W

WINDO W WINDO W

INTERLISP-D DISPLAY FACILITIES

, etc. (page 19.3) are useful for computing a new extent region.

In some situations, it is useful to de�ne an that only exists in one
dimension. This may be done by specifying an region with a width or
height of . handling recognizes this situation as meaning that the
negative dimension is unknown.

[Window Property]
If the window property is non- , it should be a and will
be made the TTY process by (page 18.34), the default

property. This implements the mechanism by which the
keyboard is associated with di�erent processes.

[Window Property]
If the is non- , it will be called with the window as a single
argument when the window is full (i.e., when enough has been printed since the
last interaction so that the next character printed will cause information to
be scrolled o� the top of the window.) If the is , the system
function (page 19.33) is called.

Note: is only called on windows which are the
of some process (see page 19.15).

The following properties are read- only (i.e. their property values cannot be changed using .

[Window Property]
Value is the display stream of the window. All system functions will operate on
either the window or its display stream.

[Window Property]
[Window Property]

Value is the height and width of the interior of the window (the usable space not
counting the border and title).

[Window Property]
Value is a region (in screen coordinates) indicating where the window (counting
the border and title) is located on the screen.

19.12.8 Auxiliary Functions

[Function]
It s the old region contents into the lower left corner of the new region. If
the new shape is larger in either or both dimensions, the new areas exposed are to
the top and right of the old image. When this happens,
calls ’s (page 19.32) to display the newly exposed region’s
contents. Note that this may result in two calls to the .

[Function]
If the window property (page 19.33) is , when the window is full
the system function is called. simply returns if there
are characters in the type- in bu�er for , otherwise it inverts the window

19.33

EXTENDREGION

EXTENT
EXTENT

-1 SCROLLFN
EXTENT

PROCESS
PROCESS NIL PROCESS

GIVE.TTY.PROCESS
WINDOWENTRYFN

PAGEFULLFN
PAGEFULLFN NIL

TTY
PAGEFULLFN NIL

PAGEFULLFN

PAGEFULLFN TTYDISPLAYSTREAM

WINDOWPROP

DSP

HEIGHT
WIDTH

REGION

(RESHAPEBYREPAINTFN)
BITBLT

RESHAPEBYREPAINTFN
REPAINTFN

REPAINTFN

(PAGEFULLFN)
PAGEFULLFN NIL

PAGEFULLFN PAGEFULLFN

WINDO W OLDIMA GE OLDREGION

WINDO W

WINDO W

WINDO W

Example: A Scrollable Window

and waits for the user to type a character. is user advisable.

19.12.9 Example: A Scrollable Window

The following is a simple example showing how one might create a scrollable window.

creates a window that displays the pretty printed expression . The window
properties , , and are used for saving this expression, and the initial window
position. Using this information, simply reinitializes the window position, and
prettyprints the expression again. Note that the whole expression is reformatted every time, even if only
a small part actually lies within the window. If this window was going to be used to display very large
structures, it would be desirable to implement a more sophisticated that only redisplays that
part of the expression within the window. However, this scheme would be satisfactory if most of the
items to be displayed are small.

resets the window (and stores the initial window position), calls
to display the window’s expres sion, and then sets the property of the window so that

will be able to handle scrolling and ‘‘thumbing’’ correctly.

19.34

PAGEFULLFN

CREATE.PPWINDOW EXPR
PPEXPR PPORIGX PPORIGY

REPAINT.PPWINDOW

REPAINTFN

RESHAPE.PPWINDOW REPAINT.PPWINDOW
EXTENT

SCROLLBYREPAINTFN

(DEFINEQ

(CREATE.PPWINDOW
[LAMBDA (EXPR) (* rrb ‘‘ 4-OCT- 82 12:06’’)

(* creates a window that displays
a pretty printed expression.)

(PROG (WINDOW) (* ask the user for a piece of the
screen and make it into a window.)

(SETQ WINDOW (CREATEW NIL "PP window"))
(* put the expression on the
property list of the window so that
the repaint and reshape functions
can access it.)

(WINDOWPROP WINDOW (QUOTE PPEXPR)
EXPR) (* set the repaint and reshape

functions.)
(WINDOWPROP WINDOW (QUOTE REPAINTFN)

(FUNCTION REPAINT.PPWINDOW))
(WINDOWPROP WINDOW (QUOTE RESHAPEFN)

(FUNCTION RESHAPE.PPWINDOW))
(* make the scroll function
SCROLLBYREPAINTFN, a system
function that uses the repaint
function to do scrolling.)

(WINDOWPROP WINDOW (QUOTE SCROLLFN)
(FUNCTION SCROLLBYREPAINTFN))

(* call the reshape function to
initially print the expression and
calculate its extent.)

(RESHAPE.PPWINDOW WINDOW)

INTERLISP-D DISPLAY FACILITIES

19.35

(RETURN WINDOW])

(REPAINT.PPWINDOW
[LAMBDA (WINDOW REGION) (* rrb ‘‘ 4-OCT- 82 11:52’’)

(* the repainting function for a window with a pretty printed expression.
This repainting function ignores the region to be repainted and repaints
the entire window.)

(* set the window position to the
beginning of the pretty printing
of the expression.)

(MOVETO (WINDOWPROP WINDOW (QUOTE PPORIGX))
(WINDOWPROP WINDOW (QUOTE PPORIGY))
WINDOW)

(PRINTDEF (WINDOWPROP WINDOW (QUOTE PPEXPR))
0 NIL NIL NIL WINDOW])

(RESHAPE.PPWINDOW
[LAMBDA (WINDOW) (* rrb ‘‘ 4-OCT- 82 12:01’’)

(* the reshape function for a
window with a pretty printed
expression.)

(PROG (BTM)

(* set the position of the window so that the �rst character appears in
the upper left corner and save the X and Y for the repaint function.)

(DSPRESET WINDOW)
(WINDOWPROP WINDOW (QUOTE PPORIGX)

(DSPXPOSITION NIL WINDOW))
(WINDOWPROP WINDOW (QUOTE PPORIGY)

(DSPYPOSITION NIL WINDOW))
(* call the repaint function to
pretty print the expression in
the newly cleared window.)

(REPAINT.PPWINDOW WINDOW)

(* save the region actually covered by the pretty printed expression so
that the scrolling routines will know where to stop. The pretty printing
of the expression does a carriage return after the last piece of the
expression printed so that the current position is the base line of
the next line of text. Hence the last visible piece of the expression
(BTM) is the ending position plus the height of the font above the
base line e.g its ASCENT.)

(WINDOWPROP WINDOW (QUOTE EXTENT)
(create REGION

LEFT _ 0

Interactive Display Functions

19.13 INTERACTIVE DISPLAY FUNCTIONS

The following functions allow the user to interactively specify positions or regions on the display screen.

[Function]
Returns a that is speci�ed by the user. waits for the
user to press and release the left button of the mouse and returns the cursor
position at the time of release. If is a , the position will be in the
coordinate system of ’s display stream. If is , the position
will be in screen coordinates. If is a , the cursor will be changed
to it while is running. If is , the value of the system
variable will be used as the cursor.

[Function]
Allows the user to position a ‘‘ghost’’ region of size by on the
screen, and returns the of the lower left corner of the region. If

is non- , �rst prints it in the .
then changes the cursor to a box (using the global variable

). If and are numbers, they are taken to be the original
position of the region, and the cursor is moved to the nearest corner of that region.
The user is then free to move the cursor around the screen. When a mouse button
is depressed, a ghost region is locked to the cursor so that if the cursor is moved,
the ghost region moves with it. If and are numbers, the corner of
the original region that is nearest the cursor position at the time the button is
pressed is locked, otherwise the lower left corner is locked. The user can change
to another corner by continuing to hold down the left button and holding down
the right button also. With both buttons down, the cursor can be moved across
the screen without e�ect on the ghost region frame. When the right button is
released, the mouse will snap to the nearest corner, which will then become locked
to the cursor. When all buttons are released, the lower left corner of the region
is returned. If is a , the returned position will be in ’s
coordinate system; otherwise it will be in screen coordinates.

Example:

19.36

BOTTOM _[SETQ BTM (IPLUS (DSPYPOSITION NIL WINDOW)
(FONTPROP WINDOW (QUOTE ASCENT]

WIDTH _(WINDOWPROP WINDOW (QUOTE WIDTH))
HEIGHT _(IDIFFERENCE (WINDOWPROP WINDOW (QUOTE HEIGHT))

BTM])
)

(GETPOSITION)
POSITION GETPOSITION

WINDOW
NIL

CURSOR
GETPOSITION NIL

CROSSHAIRS

(GETBOXPOSITION)

POSITION
NIL GETBOXPOSITION PROMPTWINDOW

GETBOXPOSITION
BOXCURSOR

WINDOW

(GETBOXPOSITION 100 200 NIL NIL NIL
"Specify the position of the command area.")

WINDO W CURSOR

WINDO W

WINDO W WINDO W

CURSOR

CURSOR

WIDTH HEIGHT OR GX OR GY WINDO W PR OMPTMSG

WIDTH HEIGHT

PR OMPTMSG

OR GX OR GY

OR GX OR GY

WINDO W WINDO W

INTERLISP-D DISPLAY FACILITIES

prompts the user for a 100 wide by 200 high region and returns its lower left corner
in screen coordinates.

[Function]
Lets the user specify a new region and returns that region in screen coordinates.

prompts for a region by displaying a four- pronged box next to the
cursor arrow. If the user presses the left button, one corner of a ‘‘ghost’’ region
outline is locked to that point and the opposite corner is locked to the cursor. As
the cursor moves, the outline expands. To specify a region, the user moves the
cursor to one corner of the intended region, presses the left button, moves the
cursor to the opposite corner while holding down the left button, and then releases
the button.

If is a and the user presses the middle button, the corner of
farthest from the cursor position is �xed and the corner nearest the

cursor is locked to the cursor.

One can switch from one corner to another while positioning the region. To change
to another corner, continue to hold down the left button and hold down the right
button also. With both buttons down, the cursor can be moved across the screen
without e�ect on the ghost region frame. When the right button is released, the
cursor will snap to the nearest corner, which will become the moving corner. In
this way, the region may be moved all over the screen, before its size and position
is �nalized.

and , if given, are the smallest and that
the returned region will have. If the user speci�ed region is smaller, it will be
increased in width or height to these dimensions.

If is non- , it will be called to determine values for the positions
of the corners. This provides a way of ‘‘�ltering’’ prospective regions; for instance,
by restricting the region to lie on an arbitrary grid. When the user is specifying a
region, the region is determined by two of its corners, one that is �xed and one that
is tracking the cursor. Each time the cursor moves or a mouse button is pressed,

is called with three arguments: , the position of the
�xed corner of the prospective region; , the position of the opposite
corner of the prospective region; and .
allows the caller of to pass information to the . The
�rst time a button is pressed, is and is the position
the user selected for the �xed corner of the new region. In this case, the position
returned by will be used for the �xed corner instead of the one
proposed by the user. For all other calls, is the position of the �xed
corner (as returned by the previous call) and is the new position the
user selected for the opposite corner. In these cases, the value of
is used for the opposite corner instead of the one proposed by the user. In all
cases, the ghost region is drawn with the values returned by .

[Function]
Performs the same prompting as and returns the
speci�ed by the user instead of the of its lower left corner.

19.37

(GETREGION)

GETREGION

REGION

WIDTH HEIGHT

NIL

GETREGION
NIL

(GETBOXREGION)
GETBOXPOSITION REGION
POSITION

MINWIDTH MINHEIGHT INITREGION NEWREGIONFN NEWREGIONFNAR G

INITREGION

INITREGION

MINWIDTH MINHEIGHT

NEWREGIONFN

NEWREGIONFN FIXEDPOINT

MO VINGPOINT

NEWREGIONFNAR G NEWREGIONFNAR G

NEWREGIONFN

MO VINGPOINT FIXEDPOINT

NEWREGIONFN

FIXEDPOINT

MO VINGPOINT

NEWREGIONFN

NEWREGIONFN

WIDTH HEIGHT OR GX OR GY WINDO W PR OMPTMSG

Menus

19.14 MENUS

A menu is basically a means of selecting from a list of items. The system provides common layout
and interactive user selection mechanisms, then calls a user- supplied function when a selection has been
con�rmed. The two major constituents of a menu are a list of items and a ‘‘when selected function.’’
The label that appears for each item is the item itself for non- lists, or its if the item is a list. The
menu includes a position on the screen where it will be displayed and a means of specifying the place
in the menu that is to be put at that position. In addition, there are a multitude of di�erent formatting
parameters for specifying font, size, and layout. When a menu is created, its unspeci�ed �elds are �lled
with defaults and its screen image is computed and saved.

Menus can be either pop up or �xed. If �xed menus are used, the menu must be included in a window.

[Function]
This function provides menus that pop up when they are used. It displays
at (in screen coordinates) and waits for the user to select an item with
a mouse key. While any key is down, the selected menu item is video reversed.
When all keys are released, ’s �eld is called with three
arguments: (1) the item selected, (2) the menu, and (3) the last mouse key released
(, , or), and returns its value. If no item is selected,

returns . If is , the menu is brought up at the value from
’s �eld, if it is a , or at the current cursor position.

The orientation of with respect to the speci�ed position is determined by its
�eld.

[Function]
This function provides menus that remain active in windows. displays

at in (is defaulted as in except
that it is in window coordinates). is added to the property of

. The and of are replaced with
, so that will be active during wait. of

is set to restore ’s image when the window is reshaped. When an
item is selected, the value of the �eld of is called with
three arguments: (1) the item selected, (2) the menu, and (3) the mouse key that
the item was selected with (, , or). More than one menu can
be put in a window, but a menu can only be added to one window at a time. If

is not given, a window is created at (in screen coordinates) that
is the size of .

returns the window into which is placed.

[Function]
This function removes from the window . If is the only
menu in the window and is non- , its window will be closed (by

).

If is , the list of currently active (open) windows is searched
for one that contains . If non is found, does nothing.

19.38

CAR

(MENU)

WHENSELECTEDFN

LEFT MIDDLE RIGHT MENU
MENU NIL NIL

MENUPOSITION POSITION

MENUOFFSET

(ADDMENU)
ADDMENU

MENU
MENU

CURSORINFN BUTTONEVENTFN
MENUBUTTONFN TTY RESHAPEFN

WHENSELECTEDFN

LEFT MIDDLE RIGHT

ADDMENU

(DELETEMENU)

NIL
CLOSEW

NIL
DELETEMENU

MENU POSITION

MENU

POSITION

MENU

POSITION

MENU

MENU

MENU WINDO W POSITION _

MENU POSITION WINDO W POSITION

MENU

WINDO W WINDO W

MENU

WINDO W MENU

MENU

WINDO W POSITION

MENU

MENU

MENU CL OSEFL G FR OMWINDO W

MENU FR OMWINDO W MENU

CL OSEFL G

FR OMWINDO W

MENU

INTERLISP-D DISPLAY FACILITIES

19.14.1 Menu Fields

A menu is a datatype with the following �elds:

[Menu Field]
The list of items to appear in the menu. If an item is a list, its will appear
in the menu. If the item (or its) is a bitmap, the bitmap will be displayed
in the menu. The default selection functions interpret each item as a list of three
elements: a label, a form whose value is returned upon selection, and a help string
that is printed in the prompt window when the user presses a mouse key with the
cursor pointing to this item.

[Menu Field]
A function to be called when an item is selected. The function is called with
three arguments: (1) the item selected, (2) the menu, and (3) the mouse key that
the item was selected with (, , or). The default function

evaluates and returns the value of the of the
item if there is one, or simply returns the item if it is not a list or if its is

.

[Menu Field]
The function which is called when the user has held a mouse key on an item for

milliseconds (initially 1200). The function is called with three
arguments: (1) the item selected, (2) the menu, and (3) the mouse key that the
item was selected with (, , or). is intended
for prompting users. The default is which prints (in the
prompt window) the third element of the item or, if there is not a third element,
the string ‘‘This item will be selected when the button is released.’’

[Menu Field]
If was called, will be called: (1) when the cursor
leaves the item, (2) when a mouse key is released, or (3) when another key is
pressed. The function is called with the same three argument values used to call

. The default is the function (page
19.19), which just clears the prompt window.

[Menu Field]
The position of the menu to be used if the call to or does not
specify a position. For popup menus, this is in screen coordinates. For �xed
menus, it is in the coordinates of the window the menu is in. The point within
the menu image that is placed at this position is determined by . If

is , the menu will be brought up at the cursor position.

[Menu Field]
The position in the menu image that is to be located at . The
default o�set is (0,0). For example, to bring up a menu with the cursor over a
particular menu item, set its to a position within that item and set
its to .

[Menu Field]
The font in which the items will be appear in the menu. Default is the value of

19.39

ITEMS
CAR

CAR

WHENSELECTEDFN

LEFT MIDDLE RIGHT
DEFAULTWHENSELECTEDFN CADR

CADR
NIL

WHENHELDFN

MENUHELDWAIT

LEFT MIDDLE RIGHT WHENHELDFN
DEFAULTMENUHELDFN

WHENUNHELDFN
WHENHELDFN WHENUNHELDFN

WHENHELDFN WHENUNHELDFN CLRPROMPT

MENUPOSITION
MENU ADDMENU

MENUOFFSET
MENUPOSITION NIL

MENUOFFSET
MENUPOSITION

MENUOFFSET
MENUPOSITION NIL

MENUFONT

Menu Fields

, initially Helvetica 10.

[Menu Field]
If speci�ed, a title will appear in a line above the menu. The title will be in the
same font as window titles.

[Menu Field]
If non- , the menu items are centered; otherwise they are left-justi�ed.

[Menu Field]
[Menu Field]

These �elds control the shape of the menu in terms of rows and columns. If
is given, the menu will have that number of rows. If

is given, the menu will have that number of columns. If only one is given, the
other one will be calculated to generate the minimal rectangular menu. (Normally
only one of or is given.) If neither is given, the items
will be in one column.

[Menu Field]
The height of each item box in the menu. If not speci�ed, it will be the maximum
of the height of the and the heights of any bitmaps appearing as labels.

[Menu Field]
The width of each item box in the menu. If not speci�ed, it will be the width of
the largest item in the menu.

[Menu Field]
The size of the border around each item box. If not speci�ed, 0 (no border) is
used.

[Menu Field]
The size of the outline around the entire menu. If not speci�ed, a maximum of 1
and the is used.

[Menu Field]
(popup menus only) If is non- , the position of the menu
o�set is set each time a selection is con�rmed so that the menu will come up
next time in the same position relative to the cursor. This will cause the menu to
reappear in the same place on the screen if the cursor has not moved since the
last selection. This is implemented by changing the �eld on each
use. If is the atom or the atom , only the X or the Y
coordinate of the �eld will be changed. For example, by setting the

position to (-1,0) and setting to , the menu
will pop up so that the cursor is just to the left of the last item selected. This is
the setting of the window command menus.

The following �elds are read only.

[Menu Field]
Returns the height of the entire menu.

19.40

MENUFONT

TITLE

CENTERFLG
NIL

MENUROWS
MENUCOLUMNS

MENUROWS MENUCOLUMNS

MENUROWS MENUCOLUMNS

ITEMHEIGHT

MENUFONT

ITEMWIDTH

MENUBORDERSIZE

MENUOUTLINESIZE

MENUBORDERSIZE

CHANGEOFFSETFLG
CHANGEOFFSETFLG NIL

MENUOFFSET
CHANGEOFFSETFLG X Y

MENUOFFSET
MENUOFFSET CHANGEOFFSETFLG Y

IMAGEHEIGHT

INTERLISP-D DISPLAY FACILITIES

[Menu Field]
Returns the width of the entire menu.

19.14.2 Miscellaneous Menu Functions

[Function]
Returns the window is located in, if it is in one; otherwise.

[Function]
Calls ’s on and . It provides a programmatic
way of making a selection. It does not change the display.

[Function]
Returns the region occupied by in .

[Function]
Shades the region occupied by in . If is a display stream or a
window, it is assumed to be where is displayed. Otherwise, is
called to locate the window is in.

19.14.3 Examples of Menu Use

Creates a menu with items and in a single vertical column. If is selected, will be returned.
Otherwise, will be returned.

Creates a touch- tone- phone number pad with the items in 15 by 15 boxes printed in Helvetica 10 bold
font. If used in pop up mode, its �rst use will have the cursor in the middle. Subsequent use will have
the cursor in the same relative location as the previous selection.

19.41

IMAGEWIDTH

(WFROMMENU)
NIL

(DOSELECTEDITEM)
WHENSELECTEDFN

(MENUITEMREGION)

(SHADEITEM)

WFROMMENU

(create MENU ITEMS _ ’((YES T) (NO)))

YES NO YES T
NIL

(create MENU ITEMS _ ’(1 2 3 4 5 6 7 8 9 * 0 #)
CENTERFLG _ T
MENUCOLUMNS _ 3
MENUFONT _ (FONTCREATE ’HELVETICA 10 ’BOLD)
ITEMHEIGHT _ 15
ITEMWIDTH _ 15
CHANGEOFFSETFLG _ T)

(SELECTQ [MENU
(COND ((type? MENU FOOMENU)

(* use previously computed menu.)
FOOMENU)

(T (* create and save the menu)
(SETQ FOOMENU

(create MENU
ITEMS _ ’((A ’A-SELECTED "prompt string for A")

(B ’B-SELECTED "prompt string for B"]
(A-SELECTED (* if A is selected) (DOATHING))

MENU

MENU

MENU ITEM BUTTON

MENU ITEM BUTTON

ITEM MENU

ITEM MENU

ITEM MENU SHADE DSOR W

ITEM MENU DSOR W

MENU

MENU

Grid Functions

This expression displays a pop up menu with two items, and , and waits for the user to select one. If
is selected, is called. If is selected, is called. If neither of these is selected,

the form returns .

The purpose of this example is to show some good practices to follow when using menus. First, the menu
is only created once, and saved in the variable . This is more e�cient if the menu is used more
than once. Second, all of the information about the menu is kept in one place, which makes it easy to
understand and edit. Third, the forms evaluated as a result of selecting something from the menu are
part of the code and hence will be known to masterscope (as opposed to the situation if the forms were
stored as part of the items). Fourth, the items in the menu have help strings for the user. Finally, the
code is commented (always worth the trouble).

19.15 GRID FUNCTIONS

A Grid is a partitioning of an arbitrary coordinate system (hereafter referred to as the ‘‘source system’’)
into rectangles. This subsection describes functions that operate on Grids. It includes functions to
draw the outline of a Grid, to translate between positions in a source system and Grid coordinates (the
coordinates of the rectangle which contains a given position), and to shade Grid rectangles. A Grid is
de�ned by its ‘‘unit grid’’, a region (called a GridSpec) which is the origin rectangle of the Grid in terms
of the source system. Its is the X-coordinate of the left edge of the origin rectangle, its is
the Y-coordinate of the bottom edge of the origin rectangle, its is the width of the grid rectangles,
and its is the height of the grid rectangles.

[Function]
Outlines the grid de�ned by which is rectangles wide and

rectangles high on . Each box in the grid has a border
within it that is points on each side; so the resulting lines in the grid
are 2* thick. If is the atom , instead of a border
the lower left point of each grid rectangle will be turned on. If is
non- , it should be a texture and the border lines will be drawn in that shade.

[Function]
Shades the grid rectangle (,) of with texture using
on . is interpreted the same as for .

The following two functions map from the X,Y coordinates of the source system into the Grid X,Y
coordinates:

[Function]
Returns the Grid X-coordinate (in the Grid speci�ed by) that contains
the source system X-coordinate .

[Function]
Returns the Grid Y-coordinate (in the Grid speci�ed by) that contains
the source system Y-coordinate .

19.42

(B-SELECTED (* if B is selected) (DOBTHING))
(PROGN (* user selected outside the menu) NIL)))

A B
A DOATHING B DOBTHING

NIL

FOOMENU

LEFT BOTTOM
WIDTH

HEIGHT

(GRID)

POINT

NIL

(SHADEGRIDBOX)

GRID

(GRIDXCOORD)

(GRIDYCOORD)

GRIDSPEC UNITSWIDE UNITSHIGH GRIDBORDER DISPLA YSTREAM GRIDSHADE

GRIDSPEC UNITSWIDE

UNITSHIGH DISPLA YSTREAM

GRIDBORDER

GRIDBORDER GRIDBORDER

GRIDSHADE

X Y SHADE OPERA TION GRIDSPEC GRIDBORDER DISPLA YSTREAM

X Y GRIDSPEC SHADE OPERA TION

DISPLA YSTREAM GRIDBORDER

XCOORD GRIDSPEC

GRIDSPEC

X COORD

YCOORD GRIDSPEC

GRIDSPEC

YCOORD

INTERLISP-D DISPLAY FACILITIES

The following two functions map from the Grid X,Y coordinates into the X,Y coordinates of the source
system:

[Function]
Returns the source system X-coordinate of the left edge of a Grid rectangle at Grid
X-coordinate (in the Grid speci�ed by).

[Function]
Returns the source system Y-coordinate of the bottom edge of a Grid rectangle at
Grid Y-coordinate (in the Grid speci�ed by).

19.16 COLOR GRAPHICS

The color boards on the Xerox 1100 and the Xerox 1132 di�er in design. The Xerox 1100 board supports
4 bits per pixel color. The Xerox 1132 supports 4 or 8 bits per pixel. All of the user’s code should be
written in higher level machine independent functions.

Both color boards produce an image that is 640 pixels wide by 480 pixels high. The image can be thought
of as a paint- by-number painting where the number of a pixel is its value. The number of bits per pixel
(4 on the Xerox 1100, 4 or 8 on the Xerox 1132) determines the number of di�erence colors that can
be displayed at one time. When there are 4 bpp, 16 colors can be displayed at once. When there are
8 bpp, 256 colors can be displayed at once. A mapping table called a ‘‘color map’’ determines what
color actually appears for each pixel value. A color map gives the color in terms of how much of the
three primary colors (red, green and blue) displayed on the screen for each possible pixel value. In the
following sections, the notions of ‘‘color map’’, and ‘‘color’’ are described.

19.16.1 Color Bitmaps

A ‘‘color bitmap’’ is actually just a bitmap that allows more than one bit per pixel. To test whether a
bitmap is a ‘‘color bitmap’’, use the following form:

Color bitmaps are created by calling (page 19.4) with a argument of
anything other than 1 or . Currently, any value of except 1, 4, 8 or (defaults to
1) will cause an error.

A 4 bit per pixel color screen bitmap uses approximately 76k of storage. There is only one such bitmap.
The following function provides access to it:

[Function]
Returns the color bitmap that is being or will be displayed on the color display. This
will be if the color display has never been turned on (see ,
page 19.47).

19.43

(LEFTOFGRIDCOORD)

(BOTTOMOFGRIDCOORD)

Note: This section describes the Interlisp- D facilities for using a color display. To use these facilities you
need to have a Xerox 1100 or Xerox 1132 with a color display attached, and you must load in the LispUsers
�les COLOR.DCOM and LLCOLOR.DCOM (automatically loaded by COLOR.DCOM).

(NEQ (fetch (BITMAP BITMAPBITSPERPIXEL) of) 1)

BITMAPCREATE
NIL NIL

(COLORSCREENBITMAP)

NIL COLORDISPLAY

GRID X GRIDSPEC

GRID X GRIDSPEC

GRID Y GRIDSPEC

GRID Y GRIDSPEC

X

X

BITSPERPIXEL

BITSPERPIXEL

Color Speci�cations

[Variable]
A global variable set to a that covers the entire color display screen.
Currently this is .

[Variable]
The width of the color display. Currently 640.

[Variable]
The height of the color display. Currently 480.

19.16.2 Color Speci�cations

A color map maps a color number (from 0 to 2 -1) into the intensities of the three color
guns (red, green and blue). Each entry in the color map has 8 bits for each of the primary colors
allowing 256 levels per primary or 224 possible colors (not all of which are distinct to the human
eye). Within Interlisp- D programs, colors can be manipulated as numbers, red- green- blue triples, names,
or hue- lightness- saturation triples. Any function that takes a color will accept any of the di�erent
speci�cations.

If a number is given, it will be the color number used in the operation. It must be valid for the color
bitmap used in the operation. (Since all of the routines that use a color need to determine its number,
it is fastest to use numbers for colors. described below provides a way to translate into
numbers from the other representations.)

A red- green- blue (RGB) triple is a list of three numbers between 0 and 255. The �rst element gives
the intensity for RED, the second for GREEN and the third for BLUE. When an RGB triple is used,
the current color map is searched to �nd the color with the correct intensities. If none is found, an
error is generated. (That is, no attempt is made by the system to assign color numbers to intensities
automatically.) Example of an RGB triple is (255 255 255) which gives the color white. The record
with �elds , , and is provided to manipulate RGB triples.

A color name is an atom that is on the association- list . The of the color name’s entry
will be used as the color corresponding to the color name. This can be any of the other representations.
(Note: It can even be another color name. Loops in the name space such as would be caused by putting

and on are checked for by the system.)
Several color names are available in the initial system and are intended to allow color programs written
by di�erent users to coexist. These are:

19.44

WHOLECOLORDISPLAY
REGION

(CREATEREGION 0 0 640 480)

COLORSCREENWIDTH

COLORSCREENHEIGHT

COLORNUMBERP

RGB
RED GREEN BLUE

COLORNAMES CDR

’(RED . CRIMSON) ’(CRIMSON . RED) COLORNAMES not

BITSPERPIXEL

INTERLISP-D DISPLAY FACILITIES

name RGB number in default color map

0

1

2

3

4

5

6

7

A hue- lightness- saturation triple is a list of three numbers. The �rst number (hue) is between 0 and 355
and indicates a position in degrees on a color wheel (blue at 0, red at 120 and green at 240). The second
(lightness) is a between 0 and 1 which indicates how much total intensity is in the color. The
third (saturation) is a between 0 and 1 which indicates how disparate the three primary levels
are. The record with �elds , , and is provided to manipulate HLS
triples. Example: the color blue is represented in HLS notation by (0 .5 1.0).

[Function]
Returns the color number (o�set into the screen color map) of .
should be either (1) a positive number less than the maximum number of colors,
(2) a color name, (3) an RGB triple, or (4) an HLS triple. If is one of the
above and is found in the screen colormap, its color number in the screen color
map is returned. If not, an error is generated unless is non- , in
which case is returned.

[Function]
Returns if is an RGB triple; otherwise.

[Function]
Returns if is an HLS triple; otherwise.

19.16.3 Color Maps

The screen color map holds the information about what color is displayed on the color screen for each
pixel value in the color screen bitmap. The values in the current screen color map may be changed and
this change will be re�ected in the colors being displayed at the next vertical retrace (approximately 1/30
of a second). Changing the color map can be used to get dramatic e�ects.

[Function]
Creates a color map for a screen that has bits per pixel. If

is , the number of bits per pixel is taken from the current
color display setting. speci�es the initial colors that should be in
the map. If is not , it should be a list of color speci�cations

19.45

BLACK (0 0 0)

BLUE (0 0 255)

GREEN (0 255 0)

CYAN (0 255 255)

RED (255 0 0)

MAGENTA (255 0 255)

YELLOW (255 255 0)

WHITE (255 255 255)

FLOATP
FLOATP

HLS HUE LIGHTNESS SATURATION

(COLORNUMBERP)

NIL
NIL

(RGBP)
NIL

(HLSP)
NIL

(COLORMAPCREATE)

NIL

NIL

COL OR BITSPERPIXEL NOERRFL G

COL OR COL OR

COL OR

NOERRFL G

X

X X

X

X X

INTENSITIES BITSPERPIXEL

BITSPERPIXEL

BITSPERPIXEL

INTENSITIES

INTENSITIES

Color Maps

(other than color numbers), e.g. the list of RGB triples returned by the
function (below). If is , the
default is the value of (if is 4) or

(if is 8).

[Function]
Returns if it is a color map that has bits per pixel;

otherwise. If is , it returns if it is either a 4
bits per pixel or an 8 bits per pixel colormap.

[Function]
Returns a list of the inten sity levels of (default is)
in a form accepted by . This list can be written on �le and thus
provides a way of saving color map speci�cations.

[Function]
If is a color map, it returns a color map that contains the same color
intensities as ; otherwise it returns a color map with default color values.

[Function]
Reads and sets the color map that is used by the color display. If
is non- , it should be a color map and sets the system color
map to be that color map. Returns the previous value of the screen color map. If

is , the current screen color map is returned without change.

[Function]
Returns a color map which is di�erent shades of one or more of the primary
colors. For example, gives a color map
of di�erent shades of gray; gives di�erent shades of red.

The following functions are provided to access and change the intensity levels in a color map.

[Function]
Sets the primary intensities of color number in the color map

to the ones speci�ed by . can be either an
RGB triple, an HLS triple or a color name. Returns .

[Function]
Sets and reads the intensity level of the primary color (either

, or) for the color number in the color map
. If is a number between 0 and 255, it is set. The previous

value of the intensity of is returned.

[Function]
Adds to the intensity of the primary color (either ,

or) for every color number in .

[Function]
Rotates a sequence of colors in . The rotation moves the intensity values
of color number into color number +1, the intensity
values of color number +1 into color number +2, etc.
and ’s values into .

19.46

INTENSITIESFROMCOLORMAP NIL
\DEFAULTCOLORINTENSITIES

\DEFAULT8BITCOLORINTENSITIES

(COLORMAPP)

NIL NIL

(INTENSITIESFROMCOLORMAP)
(SCREENCOLORMAP)

COLORMAPCREATE

(COLORMAPCOPY)

(SCREENCOLORMAP)

NIL SCREENCOLORMAP

NIL

(MAPOFACOLOR)

(MAPOFACOLOR ’(RED GREEN BLUE))
(MAPOFACOLOR ’RED)

(SETCOLORINTENSITY)

NIL

(COLORLEVEL)

RED GREEN BLUE

(ADJUSTCOLORMAP)
RED

GREEN BLUE

(ROTATECOLORMAP)

INTENSITIES

BITSPERPIXEL

BITSPERPIXEL

COL ORMAP? BITSPERPIXEL

COL ORMAP? BITSPERPIXEL

BITSPERPIXEL COL ORMAP?

COL ORMAP

COL ORMAP

COL ORMAP BITSPERPIXEL

COL ORMAP

COL ORMAP

NEW COL ORMAP

NEW COL ORMAP

NEW COL ORMAP

PRIMARIES

COL ORMAP COL ORNUMBER COL ORSPEC

COL ORNUMBER

COL ORMAP COL ORSPEC COL ORSPEC

COL ORMAP COL ORNUMBER PRIMAR YCOL OR NEWLEVEL

PRIMAR YCOL OR

COL ORNUMBER

COL ORMAP NEWLEVEL

PRIMAR YCOL OR

PRIMAR YCOL OR DEL TA COL ORMAP

DEL TA PRIMAR YCOL OR

COL ORMAP

COL ORMAP STAR TCOL OR THR UCOL OR

COL ORMAP

STAR TCOL OR STAR TCOL OR

STAR TCOL OR STAR TCOL OR

THR UCOL OR STAR TCOL OR

INTERLISP-D DISPLAY FACILITIES

[Function]
Allows interactive editing of a color map. If is an atom whose value is a color
map, its value is edited. Otherwise a new color map is created and edited. The
color map being edited is made the screen color map while the editing is taking
place so that its e�ects can be observed. The edited color map is returned as the
value.

If is and the color display is on, the user is asked if they want a test
pat tern of colors. A yes response will cause the func tion
to be called which will display a test pat tern with blocks of each of the possible
colors.

The user is prompted for the location of a color control window to be placed on
the black and white display. This window allows the value of any of the colors
to be changed. The color number of the color being edited is in the upper left
part of the window. Six bars are displayed. The right three bars give the color
intensities for the three primary colors of the current color number. The left three
bars give the value of the color’s Hue, Lightness and Saturation parameters. These
levels can be changed by positioning the cursor in one of the bars and pressing the

button. While the button is down, the value of that parameter will
track the Y position of the cursor. When the button is released, the color
tracking stops. The color being edited is changed by pressing the button
while the cursor is in the interior of the edit window. This will bring up a menu
of color numbers. Selecting one sets the current color to the selected color.

The color being edited can also be changed by selecting the menu item ‘‘PickPt’’.
This will switch the cursor onto the color screen and allow the user to select a
point from the color screen. It will then edit the color of the selected point.

To stop the editing, move the cursor into the title of the editing window and press
the button. This will bring up a menu. Select to quit.

19.16.4 Turning the Color Display On and O�

The color display can be turned on and o�. While the color display is on, the memory used for the color
display screen bitmap is locked down and a signi�cant amount of processing time (35% on the Xerox
1100) is used to drive the color display.

[Function]
Returns the current color map if the color display is on; otherwise .

[Function]
If is , it turns o� the color display. If is non- , it
turns on the color display allocating bits per pixel. If is
a color map, it is used as the screen color map. If is non- ,
all of the bits in the color screen are set to 0.

Turning on the color display requires allocating and locking down the memory
necessary to hold the color display screen bitmap and the system color map.
Turning the color display o� frees this memory.

19.47

(EDITCOLORMAP)

NIL
SHOWCOLORTESTPATTERN

LEFT LEFT
LEFT

MIDDLE

MIDDLE STOP

(COLORDISPLAYP)
NIL

(COLORDISPLAY)
NIL NIL

NIL

VAR NOQFL G

VAR

NOQFL G

COL ORMAP BITSPERPIXEL CLEARSCREENFL G

COL ORMAP COL ORMAP

BITSPERPIXEL COL ORMAP

CLEARSCREENFL G

Printing and Drawing in Color

19.16.5 Printing and Drawing in Color

The current color implementation allows display streams to operate on color bitmaps. The following two
functions set the color in which a display stream prints or draws:

[Function]
Sets the foreground color of a display stream. Returns the previous foreground
color. If is , it returns the current foreground color without changing
anything. The default foreground color is 7, which is white in the default color
map.

[Function]
Sets the background color of a display stream. Returns the previous background
color. If is , it returns the current background color without changing
anything. The default background color is 0 which is black in the default color
map.

, the line and curve drawing routines and the printing routines know how to operate on a display
stream that has a color bitmap as its destination. Following are some notes about them.

(page 19.4) When ing from a color bitmap onto another color bitmap with the same
bits per pixel, the operations , and are done on a bit level;
not on a pixel level. Thus painting color 3 onto color 10 will result in color 11.

When ing from a black and white bitmap onto a color bitmap, the 1
bits will appear in the and the 0 bits in . Currently,

is the only operation that is supported ing from black and white
to color. This operation is fairly expensive; if the same bitmap is going to be put
up several times in the same color it is faster to create a color copy then blt the
color copy.

If the is and the is a color bitmap,
the argument is taken to be a color. Thus, to �ll an area with the color

, do:

Curve drawing (page 19.14)
For the functions , and , the notion of
a brush has been extended to include a color. A brush can be a list of the form

. A brush can also be a bitmap, which can be color bitmap.

Line drawing (page 19.13)
The line drawing functions have been extended to take another argument which is
the color the line is to appear in if the destination of the display stream is a color
bitmap. If the argument is , the of the display stream is
used.

Printing Printing only works (currently) in mode. The characters will have a
foreground color of and a background of . The �rst
time a character is printed in a new color, the color images corresponding to the

19.48

(DSPCOLOR)

NIL

(DSPBACKCOLOR)

NIL

BITBLT

BITBLT BITBLT
PAINT INVERT ERASE

BITBLT
DSPCOLOR DSPBACKCOLOR

REPLACE BITBLT

TEXTURE

BLUE

(BITBLT NIL NIL NIL 50 75 100 200 ’TEXTURE ’REPLACE
’BLUE)

DRAWCIRCLE DRAWELLIPSE DRAWCURVE

()

NIL DSPCOLOR

REPLACE
DSPCOLOR DSPBACKCOLOR

COL OR DISPLA YSTREAM

COL OR

COL OR DISPLA YSTREAM

COL OR

SOUR CETYPE DESTINA TIONBITMAP

TEXTURE

COL ORBITMAP

SHAPE SIZE COL OR

COL OR

INTERLISP-D DISPLAY FACILITIES

current font are calculated and cached. Thus the �rst character may take a while
to appear but succeeding characters print quickly.

19.16.6 Using the Cursor on the Color Screen

The cursor can be moved to the color screen. While on the color screen, the cursor is placed using
mode, thus with some color maps it may be hard to see. It is automatically taken down whenever an
operation is performed that changes any bits on the color screen. While the cursor is on the color screen,
the black and white cursor is cleared.

[Function]
must be either the value of or the

value of . moves the cursor onto the
speci�ed screen. The value returned is the screen bitmap that the cursor was on
before was called.

19.16.7 Miscellaneous Color Functions

The following functions provide some common operations on color bitmaps and display streams.

[Function]
Fills the region in with the color , using
the operation .

[Function]
Fills an area in the color bitmap with a color.

[Function]
Creates and returns a color bitmap copying the black and white bitmap .
The returned color bitmap will have color number in those pixels of

that were 1 and in those pixels of that were 0. This
provides a way of producing a color bitmap from a black and white bitmap. Note:
this is a fairly expensive operation in terms of both time and space.

19.16.8 Demonstration programs

[Function]
Brings up a menu of color demonstration programs. The system will cycle through
the entries on the menu automatically, allowing each to run for a small �xed
amount of time (typically 40 seconds). Selecting one of the entries in the menu
will cause it to start that program.

[Function]
Runs the Interlisp- D logo demonstration until a button is pressed then adds

19.49

XOR

(CHANGECURSORSCREEN)
(COLORSCREENBITMAP)

(SCREENBITMAP) CHANGECURSORSCREEN

CHANGECURSORSCREEN

(COLORFILL)

(COLORFILLAREA)

(COLORIZEBITMAP)

The following functions provide some demonstrations of the color display. These are available in the Lispusers
�le COLORDEMO.DCOM.

(COLORDEMO)

(COLORDEMO1)

SCREENBITMAP

SCREENBITMAP

REGION COL ORNUMBER COL ORBITMAP OPERA TION

REGION COL ORBITMAP COL ORNUMBER

OPERA TION

LEFT BOTTOM WIDTH HEIGHT COL ORNUMBER COL ORBITMAP OPERA TION

BITMAP 0COL OR 1COL OR BITSPERPIXEL

BITMAP

1COL OR

BITMAP 0COL OR BITMAP

Demonstration programs

. The button will bring up a menu that allows changing
the speed of rotation or editting the color map. The button will rotate the
color map in the kinetic area.

[Function]
Puts up a test pattern of size , then rotates the color map. The speed of rotation
of the color map is determined by the Y position of the cursor. The
button will bring up a menu that allows editing of the color map or changing the
color map to a map of di�erent shades of one color.

[Function]
Runs color kinetic in a region of the color display using colors
through .

[Function]
Draws a series of concentric rectangles of increasing size in increasing color numbers.

determines the size of the rectangles. This can then be ‘‘run’’ by calling
described below.

[Function]
Draws a series of concentric rectangles of size in increasing color numbers.

determines whether the color numbers increase or decrease. This can then
be ‘‘run’’ by calling described below.

[Function]
Draws a series of concentric circles on the color screen in increasing color numbers.
The circles will be of size . This can then be ‘‘run’’by calling described
below.

[Function]
Displays a pattern of colors on the color display. This is useful when editing a
color map. The pattern has squares of the 16 possible colors layed out in two rows
at the top of the screen. Colors 0 through 7 in the top row. Colors 8 through 15 in
the next row. The bottom part of the screen is then layered with bars of
width with the consecutive color numbers. The pattern is designed so that every
color has a border with every other color (unless is too large to allow
room for every color - about 20).

[Function]
Goes into an in�nite loop rotating the screen color map. The colors between

(default 0) and (default maximum color) are rotated. If
is given, is called each time the color map is changed.

This provides an easy way of ‘‘animating’’ screen images.

[Function]
Runs a version of the Polygons program on the color screen.

19.50

COLORKINETIC MIDDLE
LEFT

(COLORDEMO2)

MIDDLE

(COLORKINETIC)

(TUNNEL)

ROTATEIT

(MINESHAFT)

ROTATEIT

(WELL)

ROTATEIT

(SHOWCOLORTESTPATTERN)

(ROTATEIT)

(DISMISS)

Note: The following function is available in the Lispusers �le COLORPOLYGONS.DCOM.

(COLORPOLYDEMO)

SIZE

SIZE

REGION FIRSTCOL OR LASTCOL OR

REGION FIRSTCOL OR

LASTCOL OR

SPEED

SPEED

N OUTFL G

N

OUTFL G

N

N

BARSIZE

BARSIZE

BARSIZE

BEGINCOL OR ENDCOL OR W AIT

BEGINCOL OR ENDCOL OR

W AIT W AIT

COL ORDS

