
CHAPTER 3

THE RECORD PACKAGE

The advantages of ‘‘data abstraction’’ have long been known: more readable code, fewer bugs, the ability
to change the data structure without having to make major modi�cations to the program, etc. The record
package encourages and facilitates this good programming practice by providing a uniform syntax for
creating, accessing and storing data into many di�erent types of data structures (arrays, list structures,
association lists, etc.) as well as removing from the user the task of writing the various manipulation
routines. The user declares (once) the data structures used by his programs, and thereafter indicates
the manipulations of the data in a data- structure- independent manner. Using the declarations, the
record package automatically computes the corresponding Interlisp expressions necessary to accomplish
the indicated access/storage operations. If the data structure is changed by modifying the declarations,
the programs automatically adjust to the new conventions.

The user describes the format of a data structure (record) by making a ‘‘record declaration’’ (see page
3.5). The record declaration is a description of the record, associating names with its various parts, or
‘‘�elds’’. For example, the record declaration describes a data
structure called , which contains three �elds: , , and . The user can reference these �elds
by name, to retrieve their values or to store new values into them, by using the and
operators (page 3.1). The operator (page 3.3) is used for creating new instances of a record, and

(page 3.4) is used for testing whether an object is an instance of a particular record. (note: all
record operators can be in either upper or lower case.)

Records may be implemented in a variety of di�erent ways, as determined by the �rst element (‘‘record
type’’) of the record declaration. (used to specify elements and tails of a list structure) is just
one of several record types currently implemented. The user can specify a property list format by using
the record type , or that �elds are to be associated with parts of a data structure via a
speci�ed hash array by using the record type , or that an entirely new data type be allocated
(as described on page 3.14) by using the record- type .

The record package is implemented through the DWIM/CLISP facilities, so it contains features such as
spelling correction on �eld names, record types, etc. Record operations are translated using all CLISP
declarations in e�ect (standard/fast/undoable); it is also possible to declare local record declarations that
override global ones (see page 16.9).

The �le package includes a �le package command for dumping record declarations (page 11.25),
and and will inform the user about records that need to be dumped.

3.1 FETCH AND REPLACE

The �elds of a record are accessed and changed with the and operators. If the record
has the record declaration , and is a data structure,

will return the value of the �eld of , and

3.1

(RECORD MSG (FROM TO . TEXT))
MSG FROM TO TEXT

FETCH REPLACE
CREATE

TYPE?

RECORD

PROPRECORD
HASHLINK

DATATYPE

RECORDS
FILES? CLEANUP

FETCH REPLACE
MSG (RECORD MSG (FROM TO . TEXT)) X MSG
(fetch FROM of X) FROM X (replace FROM of X with

FETCH and REPLACE

will replace this �eld with the value of . In general, the value of a operation is the same
as the value stored into the �eld.

Note that the form implicitly states that is an instance of the record , or
at least it should to be treated as such for this particular operation. In other words, the interpretation
of never depends on the value of . Therefore, if is not a record, this
may produce incorrect results. The record operation (page 3.4) may be used to test the types of
objects.

If there is another record declaration, , then
is ambiguous, because could be either a or a record. In this case, an error will

occur, . To clarify this, and can take a list for their ‘‘�eld’’
argument: will fetch the �eld of an record.

Note that if a �eld has an interpretation in two declarations, e.g. if the �eld occurred in
the same location within the declarations of and , then would be
considered ambiguous.

Another complication can occur if the �elds of a record are themselves records. The �elds of a record
can be further broken down into sub- �elds by a ‘‘subdeclaration’’ within the record declaration (see page
3.10). For example,

permits the user to access the �eld with , or its sub�eld
with .

The user may also elaborate a �eld by declaring that �eld name in a record declaration (as
opposed to an embedded subdeclaration). For instance, the �eld in the and records
above may be subdivided with the seperate record declaration .
Fields of sub�elds (to any level of nested sub�elds) are accessed by specifying the ‘‘data path’’ as a list
of record/�eld names, where there is some path from each record to the next in the list. For instance,

indicates that is to be treated as a record, its
�eld should be accessed, and �eld should be accessed. Only as much of the data path as
is necessary to disambiguate it needs to be speci�ed. In this case, is
su�cient. The record package interprets a data path by performing a tree search among all current record
declarations for a path from each name to the next, considering �rst local declarations (if any) and then
global ones. The central point of separate declarations is that the (sub)record is tied to another record
(as with embedded declarations), and therefore can be used in many di�erent contexts. If a data- path
rather than a single �eld is ambiguous, (e.g., if there were yet another declaration

and the user speci�ed), the error
is generated.

and forms are translated using the CLISP declarations in e�ect. and
are versions which insure fast CLISP declarations will be in e�ect, insures undoable

declarations.

3.2

Y) Y REPLACE

(fetch FROM of X) X MSG

(fetch FROM of X) X X MSG
TYPE?

(RECORD REPLY (TEXT . RESPONSE)) (fetch TEXT
of X) X MSG REPLY

AMBIGUOUS RECORD FIELD FETCH REPLACE
(fetch (MSG TEXT) of X) TEXT MSG

identical TEXT
MSG REPLY (fetch TEXT of X) not

(RECORD NODE (POSITION . LABEL) (RECORD POSITION (XLOC . YLOC)))

POSITION (fetch POSITION of X) XLOC
(fetch XLOC of X)

separate
TEXT MSG REPLY

(RECORD TEXT (HEADER . TXT))

(fetch (MSG TEXT HEADER) of X) X MSG TEXT
its HEADER

(fetch (MSG HEADER) of X)

not

(RECORD TO (NAME
. HEADER)) (fetch (MSG HEADER) of X) AMBIGUOUS DATA
PATH

FETCH REPLACE FFETCH
FREPLACE /REPLACE

THE RECORD PACKAGE

3.2 CREATE

Record operations can be applied to arbitrary structures, i.e., the user can explicitely creating a data
structure (using , etc), and then manipulate it with and . However, to be consistant
with the idea of data abstraction, new data should be created using the same declarations that de�ne its
data paths. This can be done with an expression of the form:

A expression translates into an appropriate Interlisp form using , , , ,
etc., that creates the new datum with the various �elds initialized to the appropriate values.
is optional and may contain expressions of the following form:

_
Speci�es initial value for .

Speci�es that for all �elds not explicitly given a value, the value of the corresponding
�eld in is to be used.

Similar to except the corresponding values are copied (with).

Similar to , except that wherever possible, the corresponding in
is used.

A new instance of the record is not created at all; rather, the value of is
used and smashed.

The record package goes to great pains to insure that the order of evaluation in the translation
is the same as that given in the original expression if the side e�ects of one expression
might a�ect the evaluation of another. For example, given the declaration

, the expression will translate to , but
will translate to

because might set some variables used by .

Note that does not itself do any destructive operations on
the value of . The distinction between and is that

will incorporate as much as possible of the old data structure into the new one being created,
while will create a completely new data structure, with only
the contents of the �elds re-used. For example, a just es the new
property names and values onto the list, while copies the top level of the list. Another
example of this distinction occurs when a �eld is elaborated by a subdeclaration: will create a
new instance of the sub- record, while will use the old contents of the �eld (unless some �eld
of the subdeclaration is assigned in the expression.)

If the value of a �eld is neither explicitly speci�ed, nor implicitly speci�ed via , or
, the default value in the declaration is used, if any, otherwise . (Note: For �elds

in records, is used; for other non- pointer �elds zero is used.) For example, following
,

3.3

CONS FETCH REPLACE

(CREATE .)

CREATE CONS LIST PUTHASH ARRAY

USING

COPYING USING COPYALL

REUSING USING structure

SMASHING

CREATE
(RECORD CONS (CAR .

CDR)) (CREATE CONS CDR_X CAR_Y) (CONS Y X) (CREATE
CONS CDR_(FOO) CAR_(FIE)) ((LAMBDA ($$1) (CONS (PROGN (SETQ $$1
(FOO)) (FIE)) $$1))) FOO FIE

(CREATE REUSING ...)
USING REUSING (CREATE REUSING

...)
(CREATE USING ...)

CREATE REUSING PROPRECORD CONS
CREATE USING

USING
REUSING
CREATE

USING COPYING
REUSING NIL BETWEEN

DATATYPE
(RECORD A (B C D) D _ 3)

(CREATE A B_T) ==> (LIST T NIL 3)

(CREATE A B_T USING X) ==> (LIST T (CADR X) (CADDR X))

RECORD- NAME ASSIGNMENTS

ASSIGNMENTS

FIELD-NAME FORM

FIELD-NAME

FORM

FORM

FORM

FORM

FORM

FORM FORM

RECORD FORM

FORM RECORD

FORM

RECORD FORM

N 1

TYPE?

3.3 TYPE?

The record package allows the user to test if a given datum ‘‘looks like’’ an instance of a record. This can
be done via an expression of the form

is mainly intended for records with a record type of or . For s,
the check is exact; i.e. the expression will return non- only if the value of
is an instance of the record named by . For s, the expression will
check that the value of is a list beginning with . For s, it checks that
the value is an array of the correct size. For s and s, a expression
will make sure that the value of is a property/association list with property names among the
�eld- names of the declaration.

Attempting to execute a expression for a record of type , or
will cause an error, . The user can (re)de�ne the
interpretation of expressions for a particular declaration by inclusion of an expression of the form

in the record declaration (see page 3.9).

3.4 WITH

Often it is necessary to manipulate the values of the �elds of a particular record. The construct can
be used to talk about the �elds of a record as if they were variables within a lexical scope:

���

is the name of a record, and is an expression which evaluates to an
instance of that record. The expressions ��� are evaluated so that references to variables
which are �eld- names of are implemented via and s of those variables are
implemented via .

For example, given

Then the construct

is equivalent to

3.4

(CREATE A B_T COPYING X)) ==> [LIST T (COPYALL (CADR X)) (COPYALL (CADDR X]

(CREATE A B_T REUSING X) ==> (CONS T (CDR X))

(TYPE?)

TYPE? DATATYPE TYPERECORD DATATYPE
TYPE? TYPE? NIL

TYPERECORD TYPE?
ARRAYRECORD

PROPRECORD ASSOCRECORD TYPE?

TYPE? ACCESSFNS HASHLINK RECORD
TYPE? NOT IMPLEMENTED FOR THIS RECORD

TYPE?
(TYPE?)

WITH

(WITH)

fetch SETQ
replace

(RECORD RECN (FLD1 FLD2))
(SETQ INST (CREATE RECN FLD1 _ 10 FLD2 _ 20))

(with RECN INST (SETQ FLD2 (PLUS FLD1 FLD2]

RECORD- NAME FORM

FORM

RECORD- NAME

FORM RECORD- NAME

FORM

COM

RECORD- NAME RECORD- INSTANCE FORM 1 FORM N

RECORD- NAME RECORD- INSTANCE

FORM 1 FORM N
RECORD- NAME

1

1

THE RECORD PACKAGE

Note that the substitution is lexical: this operates by actually doing a substitution inside the forms.

3.5 RECORD DECLARATIONS

A record is de�ned by evaluating a record declaration, which is an expression of the form:

speci�es the ‘‘type’’ of data being described by the record declaration, and thereby
implicitly speci�es how the corresponding access/storage operations are performed.
currently is either , , , , , ,

, , or . and are used to describe
list structures, to describe user data- types, to describe arrays,
to describe (the property list of) litatoms, to describe lists in property list format, and

to describe association list format. can be used with any type of data: it
simply speci�es the data path to be a hash- link. is also type- less; the user speci�es the
data- paths in the record declaration itself, as described below.

is a litatom used to identify the record declaration for creating instances of the record
via , testing via , and dumping to �les via the �le package command (page
11.25). and declarations also use to identify the data structure
(as described below).

describes the structure of the record. Its exact interpretation varies with :

[Record Type]
is a list structure whose non- literal atoms are taken as �eld- names

to be associated with the corresponding elements and tails of a list structure.
For example, with the record declaration ,

translates as .

can be used as a place marker to �ll an unnamed �eld, e.g.,
describes a three element list, with corresponding to the third element. A number
may be used to indicate a sequence of s, e.g. is interpreted as

.

[Record Type]
Similar to , except that is also used as an indicator in
of the datum to signify what ‘‘type’’ of record it is. This type- �eld is used by
the record package in the translation of expressions. will insert
an extra �eld containing at the beginning of the structure, and
the translation of the access and storage functions will take this extra �eld into

Local record declarations are de�ned by including an expression of this form in the CLISP declaration
for that function, rather than evaluating the expression itself (see page 16.10).

3.5

(replace FLD2 of INST with (PLUS (fetch FLD1 of INST) (fetch FLD2 of INST]

(.)

RECORD TYPERECORD ARRAYRECORD ATOMRECORD ASSOCRECORD PROPRECORD
DATATYPE HASHLINK ARRAYBLOCK ACCESSFNS RECORD TYPERECORD

DATATYPE ARRAYRECORD ATOMRECORD
PROPRECORD

ASSOCRECORD HASHLINK
ACCESSFNS

CREATE TYPE? RECORDS
DATATYPE TYPERECORD

RECORD
NIL

(RECORD MSG (FROM TO . TEXT))
(fetch FROM of X) (CAR X)

NIL (A NIL B)
B

NIL (A 4 B) (A
NIL NIL NIL NIL B)

TYPERECORD
RECORD CAR

TYPE? CREATE

RECORD- TYPE RECORD- NAME FIELDS RECORD- TAIL

RECORD- TYPE

RECORD- TYPE

RECORD- NAME

RECORD- NAME

FIELDS RECORD- TYPE

FIELDS

RECORD- NAME

RECORD- NAME

Record Declarations

account. For example, for ,
translates as , not .

[Record Type]
is a list of literal atoms. The �elds are stored in association- list format:

���

Accessing is performed with (or , depending on current
declarations), storing with .

[Record Type]
is a list of literal atoms. The �elds are stored in ‘‘property list’’ format:

���

Accessing is performed with , storing with .

Both and are useful for de�ning data structures in which it is often the
case that many of the �elds are . A for these record types only stores those �elds which are
non- . Note, however, that with the record declaration the expression

would still construct , since a later operation of
could not possibly change the instance of the record if it were .

[Record Type]
is a list of �eld- names that are associated with the corresponding elements

of an array. can be used as a place marker for an unnamed �eld (element).
Positive integers can be used as abbreviation for the corresponding number of s.
For example, describes an
eight element array, with corresponding to the �rst element, to the fourth,
and to the eighth.

Note that only creates arrays of pointers. Other kinds of arrays
must be implemented by the user with .

[Record Type]
is either an atom , or a list

. indicates the hash- array to be used; if not given,
is used. is used for initializing the hash array: if

has not been initialized at the time of the declaration, it will be
set to . s are useful as
subdeclarations to other records to add additional �elds to already existing data-
structures. For example, suppose that is a record declared with

. To add an aditional �eld , without modifying the already- existing
data strutures, redeclare with:

Now, will trans late into , hash-
ing o� the existing .

[Record Type]
is a list of property names, e.g.,

3.6

(TYPERECORD MSG (FROM TO . TEXT)) (fetch
FROM of X) (CADR X) (CAR X)

ASSOCRECORD

((.) (.))

ASSOC FASSOC CLISP
PUTASSOC

PROPRECORD

()

LISTGET LISTPUT

ASSOCRECORD PROPRECORD
NIL CREATE

NIL (PROPRECORD FIE (H I J))
(CREATE FIE) (H NIL) (replace J of X with
Y) NIL

ARRAYRECORD

NIL
NIL

(ARRAYRECORD (ORG DEST NIL ID 3 TEXT))
ORG ID

TEXT

ARRAYRECORD
ACCESSFNS

HASHLINK
(

)
SYSHASHARRAY

(LIST (HARRAY (OR 100))) HASHLINK

FOO (RECORD FOO
(A B C)) BAR

FOO

(RECORD FOO (A B C) (HASHLINK FOO (BAR BARHARRAY)))

(fetch BAR of X) (GETHASH X BARHARRAY)
list X

ATOMRECORD
(ATOMRECORD (EXPR CODE MACRO

FIELDS

FIELDNAME 1 VAL UE 1 FIELDNAME 2 VAL UE 2

FIELDS

FIELDNAME 1 VAL UE 1 FIELDNAME 2 VAL UE 2

FIELDS

FIELDS FIELD-NAME FIELD-NAME HARRA YNAME

HARRA YSIZE HARRA YNAME

HARRA YSIZE

HARRA YNAME

HARRA YSIZE

FIELDS

THE RECORD PACKAGE

. Accessing is performed with , storing with
. As with , is not initially de�ned for

records.

[Record Type]
Speci�es that a new user data type with type name be allocated
via (page 3.14). Unlike other record- types, the records of a

declaration are represented with a completely new Interlisp type, and
not in terms of other existing types.

is a list of �eld speci�cations, where each speci�cation is either a list
, or an atom . If is omitted,

it defaults to . Options for are:

Field contains a pointer to any arbitrary Interlisp object.

Field contains an -bit unsigned integer.

A generalization of . Field may contain an integer
, such that is greater than or equal to and less

than or equal to . Enough bits are allocated to store a
number between 0 and - ; is appropriately added or
subtracted when the �eld is accessed or stored into.

or Field contains a full word signed integer (the size is
implementation- dependent).

or
Field contains a full word �oating point number.

Field is a one bit �eld that ‘‘contains’’ or .

For example, the declaration

would de�ne a data type which occupies (in Interlisp- 10) three words of storage
with two pointer �elds (one word), a full word �oating point number, �elds for an
18, 12, and 4 bit unsigned integer, and a �ag (one bit), with 1 bit left over. Fields
are allocated in such a way as to optimize the storage used and not necessarily in the
order speci�ed. To store this information in a conventional list structure,
e.g., , would take 5
words of list space and up to three number boxes (for , , and).

Since the user data type must be set up at -time, the �le package
command will dump a expression as well as the

3.7

BLKLIBRARYDEF)) GETPROP
PUTPROP ACCESSFNS CREATE ATOMRECORD

DATATYPE

DECLAREDATATYPE
DATATYPE

(.)
POINTER

POINTER

BITS

BETWEEN BITS

INTEGER FIXP

FLOATING FLOATP

FLAG T NIL

(DATATYPE FOO
((FLG BITS 12)

TEXT
(CNT BETWEEN 10 25)
HEAD
(DATE BITS 18)
(PRIO FLOATP)
(READ? FLAG)))

FOO

RECORD
(RECORD MSG (FLG TEXT CNT DATE PRIO . HEAD))

FLG DATE PRIO

run RECORDS
DECLAREDATATYPE DATATYPE

RECORD- NAME

FIELDS

FIELDNAME FIELDTYPE FIELDNAME FIELDTYPE

FIELDTYPE

N N

N 1 N 2
X X N 1

N 2
N 2 N 1 N 1

Record Declarations

declaration itself. The �le package command (page 11.25) will
dump only the expression.

Note: declarations should be used with caution within local declarations,
since a new and di�erent data type is allocated for each one with a di�erent name.

[Record Type]
(Not implemented in Interlisp- D) Similar to a declaration, except that
the objects it creates and manipulates are arrays. As with ’s, the actual
order of the �elds of the may be shu�ed around in order to satisfy
garbage collector constraints.

For example,

[Record Type]
is a list of elements of the form ,

i.e. for each �eldname, the user speci�es how it is to be accessed and set.
should be a function of one argument, the datum, and will be used

for accessing. should be a function of two arguments, the datum and
the new value, and will be used for storing. may be omitted, in which
case, no storing operations are allowed. and/or may also be a

expression or a form written in terms of variables and (in)
. For example, given the declaration

would trans late to
. Since no is given for the �eld, attempt ing to per form

would generate an error,
. Note that do not have a de�nition.

However, the user may supply one in the defaults and/or subdeclara tions of the
declaration, as described below. Attempting to an record
without specifying a create de�nition will cause an error

.

and can also be a property list which specify ,
and versions of the forms, e.g.

means if declaration is in e�ect, use for fetching, if , use

3.8

INITRECORDS
DECLAREDATATYPE

DATATYPE

ARRAYBLOCK
DATATYPE

DATATYPE
ARRAYBLOCK

(ARRAYBLOCK FOO
((F1 INTEGER)

(F2 FLOATING)
(F3 POINTER)
(F4 BETWEEN -30 -2)
(F5 BITS 12)
(F6 FLAG)))

ACCESSFNS
()

LAMBDA DATUM
NEWVALUE

[ACCESSFNS ((FIRSTCHAR (NTHCHAR DATUM 1)
(RPLSTRING DATUM 1 NEWVALUE))

(RESTCHARS (SUBSTRING DATUM 2]

(replace FIRSTCHAR of X with Y) (RPLSTRING X 1
Y) RESTCHARS
(replace RESTCHARS of X with Y) REPLACE
UNDEFINED FOR FIELD ACCESSFNS CREATE

CREATE ACCESSFNS
CREATE NOT DEFINED

FOR THIS RECORD

FAST STANDARD
UNDOABLE ACCESSFNS

[ACCESSFNS LITATOM ((DEF (STANDARD GETD FAST FGETD)
(STANDARD PUTD UNDOABLE /PUTD]

FAST FGETD UNDOABLE

FIELDS FIELD-NAME ACCESSDEF SETDEF

A CCESSDEF

SETDEF

SETDEF

ACCESSDEF SETDEF

SETDEF

SETDEF

A CCESSDEF SETDEF

THE RECORD PACKAGE

for saving.

The facility allows the use of data- structures not speci�ed by one of the built- in record
types. For example, one possible representation of a data- structure is to store the �elds in arrays,
especially if the number of instances required is known, and they do not need to be garbage collected.
Thus, to implement a data structure called with two �elds and , one would have two
arrays and . The representation of an ‘‘instance’’ of the record would be an integer
which is used to index into the arrays. This can be accomplished with the declaration:

To a new , a counter is incremented and the new elements stored (although the
form given the declaration should actually include a test for over�ow).

is optional. It may contain expressions of the form:

Allows the user to specify within the record declaration the default value to be
stored in by a (if no value is given within the
expression itself). Note that is evaluated at time, not when the
declaration is made.

De�nes the manner in which of this record should be performed. This
provides a way of specifying how should be created or overriding the
usual de�nition of . If contains the �eld- names of the declaration as
variables, the forms given in the operation will be substituted in. If the
word appears in the create form, the de�nition is inserted.
This e�ectively allows the user to ‘‘advise’’ the create.

Note: may also be speci�ed as ‘‘ ’’, e.g.
.

Speci�es that should be evaluated when the record is declared. will
also be dumped by the �le package command (page 11.25).

For example, see the example of an record declaration above. In this
example, and are initialized with an form.

De�nes the manner in which expressions are to be translated. may
either be an expression in terms of or a function of one argument.

Note: may also be speci�ed as ‘‘ ’’, e.g.
.

3.9

/PUTD

ACCESSFNS
parallel

LINK FROM TO
FROMARRAY TOARRAY

[ACCESSFNS LINK
((FROM (ELT FROMARRAY DATUM)

(SETA FROMARRAY DATUM NEWVALUE))
(TO (ELT TOARRAY DATUM)

(SETA TOARRAY DATUM NEWVALUE)))
(CREATE (PROG1 (SETQ LINKCNT (ADD1 LINKCNT))

(SETA FROMARRAY LINKCNT FROM)
(SETA TOARRAY LINKCNT TO)))

(INIT (PROGN (SETQ FROMARRAY (ARRAY 100))
(SETQ FROMARRAY (ARRAY 100))]

CREATE LINK CREATE

_

CREATE CREATE
CREATE

(CREATE) CREATE
ACCESSFNS

CREATE
CREATE

DATUM original CREATE

(CREATE) _
C _ (CONS A D)

(INIT)
INITRECORDS

ACCESSFNS
FROMARRAY TOARRAY INIT

(TYPE?) TYPE?
DATUM

(TYPE?) @
C @ LISTP

RECORD- TAIL

FIELD-NAME FORM

FIELD-NAME

FORM

FORM

FORM

FORM RECORD- NAME FORM

FORM FORM FORM

FORM FORM

FORM RECORD- NAME FORM

De�ning New Record Types

must be a �eld that appears in the current declaration and the name of
another record. This says that, for the purposes of translating expressions,
substitute the top- level declaration of for the form, adding on
any defaults speci�ed.

For example: Given ,
would be treated like for

the pur poses of trans lating expres sions.

a subdeclaration (i.e., a record declaration.)
The of a subdeclaration must be either the of its
immediately superior declaration or one of the superior’s �eld- names. Instead of
identifying the declaration as with top level declarations, the record- name of a
subdeclaration identi�es the parent �eld or record that is being described by the
subdeclaration. Subdeclarations can be nested to an arbitrary depth.

Giving a subdeclaration is a simple way of de�ning a
for the �eld .

Note that, in a few cases, it makes sense for a given �eld to have more than one
subdeclaration. For example, in

is elaborated by both a and a . Similarly,

is also acceptable, and essentially ‘‘overlays’’ and , i.e.
and would be equivalent. In such cases, the

subdeclaration is the one used by .

3.6 DEFINING NEW RECORD TYPES

In addition to the built- in record types, users can declare their own record types by performing the
following steps:

(1) Add the new record- type to the value of ;.

(2) Perform , i.e. give the record- type the same de�nition as that of
the function ;

(3) Put the name of a function which will return the translation on the property list of , as
the value of the property . Whenever a record declaration of type is
encountered, this function will be passed the record declaration as its argument, and should return a
record declaration which the record package will then use in its place.

3.10

(SUBRECORD .)

CREATE
SUBRECORD

(RECORD B (E F G)) (RECORD A (B C D) (SUBRECORD
B)) (RECORD A (B C D) (RECORD B (E F G)))

CREATE

(RECORD)
synonym

(RECORD (A . B) (PROPRECORD B (FOO FIE FUM)) (HASHLINK B C))

B PROPRECORD HASHLINK

(RECORD (A B) (RECORD A (C D)) (RECORD A (FOO FIE)))

(FOO FIE) (C D) (fetch
FOO of X) (fetch C of X) �rst

CREATE

CLISPRECORDTYPES

(MOVD ’RECORD)
RECORD

USERRECORDTYPE
new

NAME DEF A UL TS

NAME

NAME

RECORD- NAME RECORD- NAME

NAME 1 NAME 2
NAME 1

RECORD- TYPE

RECORD- TYPE

RECORD- TYPE

THE RECORD PACKAGE

3.7 RECORD MANIPULATION FUNCTIONS

The user may edit (or delete) global record declarations with the function:

��� [NLambda NoSpread Function]
Nospread nlambda function similar to or . calls the editor
on a copy of all declarations in which is the record- name or a �eld name.
On exit, it redeclares those that have changed and undeclares any that have been
deleted. If is , declarations are edited.

��� are (optional) edit commands.

When the user redeclares a global record, the translations of all expressions involving that record or any
of its �elds are automatically deleted from , and thus will be recomputed using the new
information. If the user changes a record declaration, or changes some other CLISP declaration, e.g.,

to , and wishes the new information to a�ect record expressions already translated, he
must make sure the corresponding translations are removed, usually either by ing or applying
the edit macro.

[Function]
Returns the entire declaration for the record named ; if
no record declaration with name . Note that the record package
maintains internal state about current record declarations, so performing destructive
operations (e.g.) on the value of may leave the record package
in an inconsistant state. To change a record declaration, use .

[Function]
Returns the list of declarations in which is the name of a �eld.

[Function]
Returns the list of �elds declared in record . may
either be a name or an entire declaration.

[Function]
is one of , , , , or their

lowercase equivalents. = means . If corresponds to a fetch
operation, i.e. is , or , performs

. If corresponds to a replace, performs
. is an optional declaration; if given,

is interpreted as a �eld name of that declaration.

Note that is relatively ine�cient, although it is better than
constructing the equivalent form and performing an .

3.8 CHANGETRAN

A very common programming construction consists of assigning a new value to some datum that is a
function of the current value of that datum. Some examples of such read- modify- write sequences include:

3.11

(EDITREC)
EDITF EDITV EDITREC

NIL all

CLISPARRAY
local

STANDARD FAST
CLISPIFY

!DW

(RECLOOK)
NIL

NCONC RECLOOK
EDITREC

(FIELDLOOK)

(RECORDFIELDNAMES)

(RECORDACCESS)
FETCH REPLACE FFETCH FREPLACE /REPLACE

NIL FETCH
FETCH FFETCH RECORDACCESS (

OF) RECORDACCESS (
OF WITH)

RECORDACCESS
EVAL

NAME COM 1 COM N

NAME

NAME

COM 1 COM N

RECORDNAME _ _ _ _

RECORDNAME

RECORDNAME

FIELDNAME

FIELDNAME

RECORDNAME

RECORDNAME RECORDNAME

FIELD DATUM DEC TYPE NEWV AL UE

TYPE

TYPE TYPE

TYPE FIELD

DATUM TYPE TYPE

FIELD D ATUM NEWV AL UE DEC

FIELD

Changetran

Incrementing a counter

Pushing an item on the front of a list

Popping an item o� a list

It is easier to express such computations when the datum in question is a simple variable as above than
when it is an element of some larger data structure. For example, if the datum to be modi�ed was

, the above examples would be:

and if the datum was an element in an array, , the examples would be:

The di�culty in expressing (and reading) modi�cation idioms is in part due to the well-known assymmetry
of setting versus accessing operations on structures: is used to smash what would return,

corresponds to , and so on.

The ‘‘Changetran’’ facility is designed to provide a more satisfactory notation in which to express certain
common (but user- extensible) structure modi�cation operations. Changetran de�nes a set of CLISP words
that encode the kind of modi�cation that is to take place, e.g. pushing on a list, adding to a number,
etc. More important, the expression that indicates the datum whose value is to be modi�ed needs to be
stated only once. Thus, the ‘‘change word’’ is used to increase the value of a datum by the sum of
a set of numbers. Its arguments are an expression denoting the datum, and a set of items to be added to
its current value. The datum expression must be a variable or an accessing expression (envolving ,

, , , etc) that can be translated to the appropriate setting expression.

For example, is equivalent to:

If the datum expression is a complicated form involving subsidiary function calls, such as
, Changetran goes to some lengths to make sure that those subsidiary functions are evaluated

only once (it binds local variables to save the results), even though they logically appear in both the
setting and accessing parts of the translation. Thus, in thinking about both e�ciency and possible side
e�ects, the user can rely on the fact that the forms will be evaluated only as often as they appear in the
expression.

For and all other changewords, the lower-case version (, etc.) may also be speci�ed. Like other
CLISP words, change words are translated using all CLISP declarations in e�ect (see page 16.9).

The following is a list of those change words recognized by Changetran. Except for , the value of all

3.12

(SETQ X (IPLUS X 1))

(SETQ X (CONS Y X))

(PROG1 (CAR X) (SETQ X (CDR X)))

(CAR
X)

(CAR (RPLACA X (IPLUS (CAR X) 1)))

(CAR (RPLACA X (CONS Y (CAR X)))

(PROG1 (CAAR X) (RPLACA X (CDAR X)))

(ELT A N)

(SETA A N (IPLUS (ELT A N) 1)))

(SETA A N (CONS Y (ELT A N))))

(PROG1 (CAR (ELT A N)) (SETA A N (CDR (ELT A N))))

RPLACA CAR
SETA ELT

ADD

fetch
CAR LAST ELT

(ADD (CADDR X) (FOO))

(CAR (RPLACA (CDDR X)
(PLUS (FOO) (CADDR X)))

(ELT (FOO X)
(FIE Y)))

ADD add

POP

THE RECORD PACKAGE

built- in changeword forms is de�ned to be the new value of the datum.

��� [Change Word]
Adds the speci�ed items to the current value of the datum, stores the result back
in the datum location. The translation will use , , or according
to the CLISP declarations in e�ect.

��� [Change Word]
es the items onto the front of the current value of the datum, and stores the

result back in the datum location. For example, would translate
as .

[Change Word]
Like (with only one item) except that the item is not added if it is already

of the datum’s value.

Note that, whereas will always be ,
might be something else if already existed in the middle of the

list.

��� [Change Word]
Similar to , except that the items are ed in front of the current value
of the datum. For example, would translate as

.

[Change Word]
Returns of the current value of the datum after storing its into the datum.
The current value is computed only once even though it is referenced twice. Note
that this is the only built- in changeword for which the value of the form is not the
new value of the datum.

[Change Word]
Sets to and vice versa.

[Change Word]
This is the most �exible of all change words, since it enables the user to provide an
arbitrary form describing what the new value should be, but it still highlights the
fact that structure modi�cation is to occur, and still enables the datum expression
to appear only once. sets to the value of , where is
constructed from by substituting the datum expression for every occurrence
of the litatom . For example,
translates as .

is useful for expressing modi�cations that are not built- in and are not
su�ciently common to justify de�ning a user- changeword. As for other changeword
expressions, the user need not repeat the datum- expression and need not worry
about multiple evaluation of the accessing form.

It is possible for the user to de�ne new change words. To de�ne a change word, say , that
subtracts items from the current value of the datum, the user must put the property , value

on both the upper and lower-case versions of :

3.13

(ADD)

IPLUS PLUS FPLUS

(PUSH)
CONS

(PUSH X A B)
(SETQ X (CONS A (CONS B X)))

(PUSHNEW)
PUSH

FMEMB

(CAR (PUSH X ’FOO)) FOO (CAR (PUSHNEW
X ’FOO)) FOO

(PUSHLIST)
PUSH APPEND

(PUSHLIST X A B) (SETQ X
(APPEND A B X))

(POP)
CAR CDR

(SWAP)

(CHANGE)

CHANGE

DATUM (CHANGE (CAR X) (ITIMES DATUM 5))
(CAR (RPLACA X (ITIMES (CAR X) 5)))

CHANGE

sub
CLISPWORD

(CHANGETRAN . sub) sub

D ATUM ITEM 1 ITEM 2

D ATUM ITEM 1 ITEM 2

D ATUM ITEM

DATUM ITEM 1 ITEM 2

D ATUM

D ATUM 1 DATUM 2
D ATUM 1 D ATUM 2

D ATUM FORM

D ATUM FORM* FORM*

FORM

User De�ned Data Types

Then, the user must put (on the -case version of only) the property , with value
. is a function that will be applied to a single argument, the whole form, and must return a

form that Changetran can translate into an appropriate expression. This form should be a list structure
with the atom used whenever the user wants an accessing expression for the current value of the
datum to appear. The form (note that is a single atom) should occur once in
the expression; this speci�es that an appropriate storing expression into the datum should occur at that
point. For example, could be de�ned with:

If the expression were encountered, the arguments to would �rst be
dwimi�ed, and then the function would be passed the list , and
return , which Changetran would convert to

.

Note: The changeword as de�ned above will always use and ; uses the
correct addition operation depending on the current CLISP declarations.

3.9 USER DEFINED DATA TYPES

Note: The most convenient way to de�ne new user data types is via record declarations (see
page 3.7).

In addition to built- in data- types such as atoms, lists, arrays, etc., Interlisp provides a way of de�ning
completely classes of objects, with a �xed number of �elds determined by the de�nition of the data
type. Facilities are provided for declaring the name and of the �elds for a given class, creating
objects of a given class, accessing and replacing the contents of each of the �elds of such an object, as
well as interrogating such objects.

In order to de�ne a new class of objects, the user must supply a name for the new data type and
speci�cations for each of its �elds. Each �eld may contain either a pointer (i.e., any arbitrary Interlisp
datum), an integer, a �oating point number, or an -bit integer. This is done via the function

:

[Function]
is a literal atom, which speci�es the name of the data type.

is a list of ‘‘�eld speci�cations’’. Each �eld speci�cation may be one of the following:

Field may contain any Interlisp datum.

Field contains an integer.

3.14

(PUTPROP ’SUB ’CLISPWORD ’(CHANGETRAN . sub))
(PUTPROP ’sub ’CLISPWORD ’(CHANGETRAN . sub))

lower sub CHANGEWORD
sub

DATUM
(DATUM_) DATUM_

sub

(PUTPROP ’sub ’CHANGEWORD
’(LAMBDA (FORM)

(LIST ’DATUM_
(LIST ’IDIFFERENCE

’DATUM
(CONS ’IPLUS (CDDR FORM))))))

(sub (CAR X) A B) SUB
CHANGEWORD (sub (CAR X) A B)

(DATUM_ (IDIFFERENCE DATUM (IPLUS A B))) (CAR
(RPLACA X (IDIFFERENCE (CAR X) (IPLUS A B))))

sub IDIFFERENCE IPLUS add

DATATYPE

new
type

DECLAREDATATYPE

(DECLAREDATATYPE)

POINTER

FIXP

FN FN

FORM

N

TYPENAME FIELDSPECS

TYPENAME FIELDSPECS

THE RECORD PACKAGE

Field contains a �oating point number.

Field contains a non- negative integer less than 2 .

returns a list of ‘‘�eld descriptors’’, one for each element of
. A �eld descriptor contains information about where within the datum

the �eld is actually stored.

If is already declared a datatype, it is re-declared. If is
, is ‘‘undeclared’’.

[Function]
Returns the contents of the �eld described by from .

must be a ‘‘�eld descriptor’’ as returned by .
If is not an instance of the datatype of which is a descriptor,
causes error .

In Interlisp- 10, if is quoted, compiles open. This
capability is used by the record package.

[Function]
Store into the �eld of described by .
must be a �eld descriptor as returned by . If is not an
instance of the datatype of which is a descriptor, causes error

. Value is .

[Function]
Creates and returns a new instance of datatype .

If is also a datum of datatype , the �elds of the new object are
initialized to the values of the corresponding �elds in .

will not work for built- in datatypes, such as , , etc. If
is not the type name of a previously declared data type, generates

an error, .

[Function]
Returns a list which is to the argument given to
for ; if is not a currently declared data- type, returns .

[Function]
Returns a list of �eld descriptors, to the of for

.

[Function]
Returns list of names of currently declared user data types.

Note that the user can de�ne how user data types are to be printed via (page 6.23), how they
are to be evaluated by the interpreter via (page 5.11), and how they are to be compiled by the
compiler via (page 12.9).

The facility in Interlisp- D is an extension of that found in Interlisp- 10. Interlisp- D also
accepts , , and as datatype �eld descriptors equivalent to , ,

3.15

FLOATP

(BITS)

DECLAREDATATYPE

NIL

(FETCHFIELD)

DECLAREDATATYPE

DATUM OF INCORRECT TYPE

FETCHFIELD

(REPLACEFIELD)

DECLAREDATATYPE
DATUM

OF INCORRECT TYPE

(NCREATE)

NCREATE ARRAYP STRINGP
user

ILLEGAL DATA TYPE

(GETFIELDSPECS)
EQUAL DECLAREDATATYPE

NIL

(GETDESCRIPTORS)
EQUAL value DECLAREDATATYPE

(USERDATATYPES)

DEFPRINT
DEFEVAL

COMPILETYPELST

DATATYPE
BYTE WORD SIGNEDWORD BITS 8 BITS 16

N N

FIELDSPECS

TYPENAME FIELDSPECS

TYPENAME

DESCRIPTOR DATUM

DESCRIPTOR DATUM

DESCRIPTOR

DATUM DESCRIPTOR

DESCRIPTOR

DESCRIPTOR D ATUM NEWV AL UE

NEWV AL UE DATUM DESCRIPTOR DESCRIPTOR

DATUM

DESCRIPTOR

NEWV AL UE

TYPENAME FR OM

TYPENAME

FR OM TYPENAME

FR OM

TYPENAME

TYPENAME

FIELDSPECS

TYPENAME TYPENAME

TYPENAME

TYPENAME

User De�ned Data Types

and -215 and 215-1 respectively. Interlisp- D will not move �elds around in a user declaration
if they pack into words and pointers as speci�ed. �elds take 24 bits and must be 32-bit
right- justi�ed.

3.16

BETWEEN
POINTER

