
CHAPTER 4

CONDITIONALS AND ITERATIVE STATEMENTS

In order to do any but the simplest computations, it is necessary to test values and execute expressions
conditionally, and to execute expressions repeatedly. Interlisp supplies a large number of useful conditional
and iterative constructs.

��� [NLambda NoSpread Function]
The conditional function of Interlisp, , takes an inde�nite number of
arguments, called clauses. Each is a list of the form ��� ,
where is the predicate, and ��� are the consequents. The operation of

can be paraphrased as:

IF THEN ��� ELSEIF THEN ��� ELSEIF ���

The clauses are considered in sequence as follows: the predicate of the clause
is evaluated. If the value of is ‘‘true’’ (non-), the consequents

��� are evaluated in order, and the value of the is the value of , the
last expression in the clause. If is ‘‘false’’ (to), then the remainder of

is ignored, and the next clause, , is considered. If no is true
for clause, the value of the is .

Note: If a clause has no consequents, and has the form , then if evaluates
to non- , it is returned as the value of the . It is only evaluated once.

Example:

A few points about this example: Notice that is both a number and an atom,
but it is ‘‘caught’’ by the clause before the clause. Also notice
the predicate , which is always true. This is the normal way to indicate a

4.1

(COND)
COND

()

COND

NIL
COND

EQ NIL

any COND NIL

()
NIL COND

_ (DEFINEQ (DOUBLE (X)
(COND ((NUMBERP X) (PLUS X X))

((STRINGP X) (CONCAT X X))
((ATOM X) (PACK* X X))
(T (PRINT "unknown") X)
((HORRIBLE- ERROR))]

(DOUBLE)
_ (DOUBLE 5)
10
_ (DOUBLE "FOO")
"FOOFOO"
_ (DOUBLE ’BAR)
BARBAR
_ (DOUBLE ’(A B C))
"unknown"
(A B C)

5
NUMBERP ATOM

T COND

CLA USE 1 CLA USE 2 CLA USE K

CLA USE i Pi C i1 C iN
Pi C i1 C iN

P1 C 11 C 1N P2 C 21 C 2N P3

P1
CLA USE i P1 C i1

C iN C iN
P1

CLA USE i CLA USE i+1 Pi

Pi Pi

clause which will always be executed (if none of the preceeding clauses are true).
will never be executed.

Note: The statement (page 4.4) provides an easier and more readable way of
coding conditional expressions than .

��� [NLambda NoSpread Function]
Takes an inde�nite number of arguments (including zero), that are evaluated in
order. If any argument evaluates to , immediately returns (without
evaluating the remaining arguments). If all of the arguments evaluate to non- ,
the value of the last argument is returned. .

��� [NLambda NoSpread Function]
Takes an inde�nite number of arguments (including zero), that are evaluated in
order. If any argument is non- , the value of that argument is returned by
(without evaluating the remaining arguments). If all of the arguments evaluate to

, is returned. .

and can be used as simple logical connectives, but note that they may not evaluate all of their
arguments. This makes a di�erence if the evaluation of some of the arguments causes side-e�ects. Another
result of this implementation of and is that they can be used as simple conditional statements.
For example: returns the value of if is a list cell, otherwise
it returns without evaluating . In general, this use of and should be avoided in
favor of more explicit conditional statements in order to make programs more readable.

��� [NLambda NoSpread Function]
Selects a form or sequence of forms based on the value of its �rst argument .
Each clause is a list of the form ��� where is the selection
key. The operation of can be paraphrased as:

IF = THEN ��� ELSEIF = THEN ��� ELSE .

If is an atom, the value of is tested to see if it is to (which is not
evaluated). If so, the expressions ��� are evaluated in sequence, and the
value of the is the value of the last expression evaluated, i.e., .

If is a list, the value of is compared with each element (not evaluated) of ,
and if is to any one of them, then ��� are evaluated as above.

If is not selected in one of the two ways described, is tested,
etc., until all the clauses have been tested. If none is selected, is evaluated,
and its value is returned as the value of the . must be present.

An example of the form of a is:

If the value of is the litatom , the returns 28 or 29
(depending on); otherwise if is , , ,

4.2

(HORRIBLE-ERROR)

IF
COND

(AND)

NIL AND NIL
NIL

(AND) => T

(OR)

NIL OR

NIL NIL (OR) => NIL

AND OR

AND OR
(AND (LISTP) (CDR)) (CDR)

NIL (CDR) AND OR

(SELECTQ)

()
SELECTQ

EQ

SELECTQ

EQ

SELECTQ

SELECTQ

[SELECTQ MONTH
(FEBRUARY (if (LEAPYEARP) then 29 else 28))
((APRIL JUNE SEPTEMBER NOVEMBER) 30)
31]

MONTH FEBRUARY SELECTQ
(LEAPYEARP) MONTH APRIL JUNE SEPTEMBER

X 1 X 2 X N

X 1 X 2 X N

X X X X

X

X CLA USE 1 CLA USE 2 CLA USE K DEF AUL T

X

CLA USE i Si C i1 C iN Si

X S1 C 11 C 1N X S2 DEF AUL T

Si X Si
C i1 C iN

C iN

Si X Si
X C i1 C iN

CLA USE i CLA USE i+1
DEF AUL T

DEF AUL T

CONDITIONALS AND ITERATIVE STATEMENTS

or , the returns 30; otherwise it returns 31.

compiles open, and is therefore very fast; however, it will not work if
the value of is a list, a large integer, or �oating point number, since
uses for all comparisons.

Note: The function (page 2.13) is a version of that recognizes litatoms.

��� [NLambda NoSpread Function]
‘‘ -on-Constant.’’ Similar to except that the selection keys are
evaluated, and the result used as a -style selection key.

is compiled as a , with the selection keys evaluated at compile-
time. Therefore, the selection keys act like compile- time constants (see page 12.5).
For example:

compiles as:

��� [NLambda NoSpread Function]
Evaluates its arguments in order, and returns the value of its �rst argument . For
example, sets to , and returns ’s original value.

��� [Function]
Similar to . Evaluates its arguments in order, and returns the value of its
second argument .

��� [NLambda NoSpread Function]
evaluates each of its arguments in order, and returns the value of its last

argument. is used to specify more than one computation where the syntax
allows only one, e.g., ��� ��� allows evaluation of several
expressions as the default condition for a .

��� [NLambda NoSpread Function]
This function allows the user to write an ALGOL- like program containing Interlisp
expressions (forms) to be executed. The �rst argument, , is a list of local
variables (must be if no variables are used). Each atom in is treated
as the name of a local variable and bound to . can also contain lists
of the form . In this case, is the name of the variable and is
bound to the value of . The evaluation takes place before any of the bindings
are performed, e.g., ��� will bind local variable to
the value of (evaluated the) and local variable to the value of

(outside the). An attempt to use anything other than a literal atom as a
variable will cause an error, . An attempt to use

or as a variable will cause an error, .

4.3

NOVEMBER SELECTQ

SELECTQ
SELECTQ

EQ

SELCHARQ SELECTQ CHARCODE

(SELECTC)
SELECTQ SELECTQ

SELECTQ

SELECTC SELECTQ

[SELECTC NUM
((for X from 1 to 9 collect (TIMES X X)) "SQUARE")
"HIP"]

[SELECTQ NUM
((1 4 9 16 25 36 49 64 81) "SQUARE")
"HIP"]

(PROG1)

(PROG1 X (SETQ X Y)) X Y X

(PROG2)
PROG1

(PROGN)
PROGN

PROGN
(SELECTQ (PROGN))

SELECTQ

(PROG)

NIL
NIL

(atom form) atom
form

(PROG ((X Y) (Y X))) X
Y outside PROG Y

X PROG
PROG ARG NOT LITATOM NIL

T PROG ATTEMPT TO BIND NIL OR T

X

X CLA USE 1 CLA USE 2 CLA USE K DEF AUL T

X 1 X 2 X N
X 1

X 1 X 2 X N

X 2

X 1 X 2 X N

VARLST E1 E2 EN

VARLST

VARLST

VARLST

The IF Statement

The rest of the is a sequence of non- atomic statements (forms) and litatoms
(labels). The forms are evaluated sequentially; the labels serve only as markers.
The two special functions and alter this �ow of control as described
below. The value of the is usually speci�ed by the function . If no

is executed before the ‘‘falls o� the end,’’ the value of the is
.

[NLambda NoSpread Function]
is used to cause a transfer in a . will cause the to evaluate

forms starting at the label (does not evaluate its argument). A can be
used at any level in a . If the label is not found, will search higher progs

e.g., ��� ��� ��� . If the
label is not found in the function in which the appears, an error is generated,

.

[Function]
A is the normal exit for a . Its argument is evaluated and is
immediately returned the value of the in which it appears.

Note: If a or is executed in an interpreted function which is not a , the or
will be executed in the last interpreted entered if any, otherwise cause an error.

or inside of a compiled function that is not a is not allowed, and will cause an error
at compile time.

As a corollary, or in a functional argument, e.g., to , will not work compiled. Also,
since ’s and ’s compile as functions, a or be used inside of a
compiled or if the corresponding is outside, i.e., above, the or .

4.1 THE IF STATEMENT

The statement provides a way of way of specifying conditional expressions that is much easier and
readable than using the function directly. CLISP translates expressions employing , ,

, or into equivalent expressions. In general, statements of the form:

are translated to:

The segment between or and the next corresponds to the predicate of a clause,
and the segment between and the next or as the consequent(s). is the same as

. These words are spelling corrected using the spelling list . Lower
case versions (, , ,) may also be used.

If there is nothing following a , or is omitted entirely, then the resulting clause has a

4.4

PROG

GO RETURN
PROG RETURN

RETURN PROG PROG
NIL

(GO)
GO PROG (GO L) PROG

L GO GO
PROG GO

within the same function, (PROG A (PROG (GO A)))
PROG

UNDEFINED OR ILLEGAL GO

(RETURN)
RETURN PROG

PROG

GO RETURN PROG GO RETURN
PROG

GO RETURN PROG

GO RETURN SORT
NLSETQ ERSETQ separate GO RETURN cannot

NLSETQ ERSETQ PROG NLSETQ ERSETQ

IF
COND IF THEN

ELSEIF ELSE COND

(IF THEN ELSEIF THEN ELSE)

(COND ()
()
(T))

IF ELSEIF THEN COND
THEN ELSE ELSEIF ELSE

ELSEIF T THEN CLISPIFWORDSPLST
if then elseif else

THEN THEN COND

X

X

AAA BBB CCC DDD EEE

AAA BBB

CCC DDD

EEE

CONDITIONALS AND ITERATIVE STATEMENTS

predicate but no consequent. For example, ��� and ��� both
translate to ��� , which means that if is not , it is returned as the value of the .

CLISP considers , , , and to have lower precedence than all in�x and pre�x
operators, as well as Interlisp forms, so it is sometimes possible to omit parentheses around predicate or
consequent forms. For example, ��� is equivalent to
��� , and ��� as equivalent to ��� .
Essentially, CLISP determines whether the segment between and the next or
corresponds to one form or several and acts accordingly, occasionally interacting with the user to resolve
ambiguous cases. Note that if is bound as a variable, ��� is translated as

��� , so if a call to the is desired, use ��� .

4.2 THE ITERATIVE STATEMENT

The iterative statement (i.s.) in its various forms permits the user to specify complicated iterative
statements in a straightforward and visible manner. Rather than the user having to perform the mental
transformations to an equivalent Interlisp form using , , , etc., the system does it for
him. The goal was to provide a robust and tolerant facility which could ‘‘make sense’’ out of a wide class
of iterative statements. Accordingly, the user should not feel obliged to read and understand in detail the
description of each operator given below in order to use iterative statements.

An iterative statement is a form consisting of a number of special words (known as i.s. operators or
i.s.oprs), followed by operands. Many i.s.oprs (, , , etc.) are similar to iterative statements
in other programming languages; other i.s.oprs (, , , etc.) specify useful operations in a
Lisp environment. Lower case versions of i.s.oprs (, , etc.) can also be used. Here are some
examples of iterative statements:

Iterative statements are implemented through CLISP, which translates the form into the appropriate
, , etc. Iterative statement forms are translated using all CLISP declarations in e�ect

(standard/fast/undoable/ etc.); see page 16.9. Misspelled i.s.oprs are recognized and corrected using the
spelling list . The order of appearance of operators is never important; CLISP
scans the entire statement before it begins to construct the equivalent Interlisp form. New i.s.oprs can be
de�ned as described on page 4.13.

If the user de�nes a function by the same name as an i.s.opr (, , etc.), the i.s.opr will no longer
have the CLISP interpretation when it appears as of a form, although it will continue to be treated

4.5

(IF X THEN ELSEIF) (IF X ELSEIF)
(COND (X)) X NIL COND

IF THEN ELSE ELSEIF

(IF FOO X Y THEN) (IF (FOO X Y) THEN
) (IF X THEN FOO X Y ELSE) (IF X THEN (FOO X Y) ELSE)

THEN ELSE ELSEIF

FOO (IF FOO THEN) (COND
(FOO)) function FOO (IF (FOO) THEN)

PROG MAPC MAPCAR

FOR DO WHILE
COLLECT JOIN IN

do collect

_ (for X from 1 to 5 do (PRINT ’FOO))
FOO
FOO
FOO
FOO
FOO
NIL
_ (for X from 2 to 10 by 2 collect (TIMES X X))
(4 16 36 64 100)
_ (for X in ’(A B 1 C 6.5 NIL (45)) count (NUMBERP X))
2

PROG MAPCAR

CLISPFORWORDSPLST

WHILE TO
CAR

I.s.types

as an i.s.opr if it appears in the interior of an iterative statement. To alert the user, a warning message is
printed, e.g., .

4.2.1 I.s.types

The following i.s.oprs are examples of a certain kind of iterative statement operator called an i.s.type. The
i.s.type speci�es what is to be done at each iteration. Its operand is called the ‘‘body’’ of the iterative
statement. Each iterative statement must have one and only one i.s.type.

[I.S. Operator]
Speci�es what is to be done at each iteration. with no other operator speci�es
an in�nite loop. If some explicit or implicit terminating condition is speci�ed, the
value of the i.s. is . Translates to or whenever possible.

[I.S. Operator]
Speci�es that the value of at each iteration is to be collected in a list, which
is returned as the value of the i.s. when it terminates. Translates to ,

or whenever possible.

When translates to a (e.g., if , , etc. appear in the
i.s.), the translation employs an open using two pointers similar to that
used by the compiler for compiling . To disable this translation, perform

.

[I.S. Operator]
Similar to , except that the values of at each iteration are ed.
Translates to or whenever possible. , , and

are used when the CLISP declaration is in e�ect.

[I.S. Operator]
Speci�es that the values of at each iteration be added together and returned
as the value of the i.s., e.g., is equal to

. , , or will be used in the translation depending
on the CLISP declarations in e�ect.

[I.S. Operator]
Counts the number of times that is true, and returns that count as its value.

[I.S. Operator]
Returns if the value of is non- for all iterations. (Note: returns
as soon as the value of is).

[I.S. Operator]
Similar to , except returns if the value of is true. (Note:
returns as soon as the value of is non-).

The following i.s.types explicitly refer to the iteration variable (i.v.) of the iterative statement, which is a
variable set at each iteration. This is explained below under .

[I.S. Operator]
Returns the �rst value of the i.v. for which is non- , e.g.,

4.6

(WHILE DEFINED, THEREFORE DISABLED IN CLISP)

DO
DO

NIL MAPC MAP

COLLECT

MAPCAR
MAPLIST SUBSET

COLLECT PROG UNTIL WHILE
TCONC

MAPCAR
(CLDISABLE ’FCOLLECT)

JOIN
COLLECT NCONC

MAPCONC MAPCON /NCONC /MAPCONC
/MAPCON UNDOABLE

SUM

(FOR I FROM 1 TO 5 SUM I^2)
1+4+9+16+25 IPLUS FPLUS PLUS

COUNT

ALWAYS
T NIL NIL

NIL

NEVER
ALWAYS T never

NIL NIL

FOR

THEREIS
NIL (FOR X IN Y

FORM

FORM

FORM

FORM

FORM

FORM

FORM

FORM

FORM

FORM

FORM

FORM

FORM

FORM

FORM

FORM

FORM

CONDITIONALS AND ITERATIVE STATEMENTS

returns the �rst number in . (Note: returns the value
of the i.v. as soon as the value of is non-).

[I.S. Operator]
[I.S. Operator]

Returns the value of the i.v. that provides the largest/smallest value of .
is always bound to the current greatest/smallest value, to the

value of the i.v. from which it came.

4.2.2 Iteration Variable I.s.oprs

[I.S. Operator]
Speci�es the iteration variable (i.v.) which is used in conjunction with , ,

, , and . The variable is rebound within the i.s., so the value of the
variable outside the i.s. is not e�ected. Example:

[I.S. Operator]
a list of variables, e.g., ��� . The �rst variable is the

i.v., the rest are dummy variables. See below.

[I.S. Operator]
Similar to , except that is rebound within the i.s., so the value of the
i.v. outside of the i.s. is changed. Example:

[I.S. Operator]
[I.S. Operator]

Used to specify dummy variables, which are bound locally within the i.s.

Note: , , and variables can be initialized by using the form :

���

[I.S. Operator]
Speci�es that the i.s. is to iterate down a list with the i.v. being reset to the
corresponding element at each iteration. For example, ���
corresponds to ��� . If no i.v. has
been speci�ed, a dummy is supplied, e.g., is equivalent

4.7

THEREIS (NUMBERP X)) Y
NIL

LARGEST
SMALLEST

$$EXTREME $$VAL

FOR
IN ON

FROM TO BY

_ (SETQ X 55)
55
_ (for X from 1 to 5 collect (TIMES X X))
(1 4 9 16 25)
_ X
55

FOR
(FOR (X Y Z) IN)

BIND

FOR OLD
FOR not

_ (SETQ X 55)
55
_ (for old X from 1 to 5 collect (TIMES X X))
(1 4 9 16 25)
_ X
6

BIND
BIND

FOR FOR OLD BIND _

(FOR OLD (X_) BIND (Y_))

IN

(FOR X IN Y DO)
(MAPC Y (FUNCTION (LAMBDA (X))))

(IN Y COLLECT CADR)

FORM

FORM

FORM

FORM

VAR

VARS

VARS

VAR

VAR

VAR

VARS

VAR FORM

FORM FORM

FORM

1

1

Iteration Variable I.s.oprs

to .

[I.S. Operator]
Same as except that the i.v. is reset to the corresponding at each iteration.
Thus corresponds to , , and , while corresponds to

, , and .

Note: for both and , is evaluated before the main part of the i.s. is entered, i.e. of
the scope of any of the bound variables of the i.s. For example,
��� will map down the list which is the value of evaluated of the i.s., .

[I.S. Operator]
Speci�es that the i.s. is to iterate down , with itself being reset to the
corresponding tail at each iteration, e.g., after ���
��� �nishes, will be some tail of its original value.

[I.S. Operator]
Same as , except is �rst set to value of .

[I.S. Operator]
Same as except the i.v. is reset to the current value of at each
iteration, instead of to .

[I.S. Operator]
Same as , except is �rst set to value of .

[I.S. Operator]
Similar to , except treats �rst non- list, non- tail as the last element of the
iteration, e.g., iterates �ve times with the i.v. set to

on the last iteration. is equivalent to , which will
iterate once.

[I.S. Operator]
Used to specify an initial value for a numerical i.v. The i.v. is automatically
incremented by 1 after each iteration (unless is speci�ed). If no i.v. has been
speci�ed, a dummy i.v. is supplied and initialized, e.g.,

returns .

[I.S. Operator]
Used to specify the �nal value for a numerical i.v. If is not speci�ed, the
i.v. is initialized to 1. If no i.v. has been speci�ed, a dummy i.v. is supplied
and initialized. If is not speci�ed, the i.v. is automatically incremented by 1
after each iteration. When the i.v. is de�nitely being , i.e., either is
not speci�ed, or its operand is a positive number, the i.s. terminates when the i.v.
exceeds the value of e.g., is equivalent to

. Similarly, when the i.v. is de�nitely

except when both the operands to and are numbers, and ’s operand is less than ’s
operand, e.g., , in which case the i.v. is decremented by 1 after each iteration. In this
case, the i.s. terminates when the i.v. becomes than the value of .

4.8

(MAPCAR Y (FUNCTION CADR))

ON
IN tail

IN MAPC MAPCAR MAPCONC ON
MAP MAPLIST MAPCON

IN ON outside
(FOR X BIND (Y_’(1 2 3)) IN Y

) Y outside not (1 2 3)

IN OLD

(FOR X IN OLD L DO UNTIL
) L

IN OLD (_)
IN OLD

ON OLD
IN OLD

(CAR)

ON OLD (_)
ON OLD

INSIDE
IN NIL

INSIDE ’(A B C D . E)
E INSIDE ’A INSIDE ’(A)

FROM

BY
(FROM 2 TO 5 COLLECT

SQRT) (1.414 1.732 2.0 2.236)

TO
FROM

BY
incremented BY

(FOR X FROM 1 TO 10 --)
(FOR X FROM 1 UNTIL (X GT 10) --)

TO FROM TO FROM
FROM 10 TO 1

less

FORM

FORM

VAR

VAR VAR

VAR FORM

VAR VAR FORM

VAR

VAR VAR

VAR

VAR FORM

VAR VAR FORM

FORM

FORM

FORM

FORM

FORM

2

2

CONDITIONALS AND ITERATIVE STATEMENTS

being decremented the i.s. terminates when the i.v. becomes than the value of
(see description of).

Note: is evaluated only once, when the i.s. is �rst entered, and its value
bound to a temporary variable against which the i.v. is checked each interation. If
the user wishes to specify an i.s. in which the value of the boundary condition is
recomputed each iteration, he should use or instead of .

(with /) [I.S. Operator]
If or have been speci�ed, the value of determines the for
the next iteration, which in turn determines the value for the i.v. as described
earlier, i.e., the new i.v. is of the tail for , the tail itself for . In
conjunction with , the user can refer to the current tail within by using
the i.v. or the operand for / , e.g., ���
or ��� . At translation time, the name of the
internal variable which holds the value of the current tail is substituted for the i.v.
throughout . For example,

speci�es that after each iteration, of the current tail is
to be searched for the atom , and (of) this latter tail to be used for the
next iteration.

(without /) [I.S. Operator]
If or have not been used, speci�es how the i.v. itself is reset at each
iteration. If or have been speci�ed, the i.v. is known to be numerical,
so the new i.v. is computed by adding the value of (which is reevaluated
each iteration) to the current value of the i.v., e.g.,

makes a list of the �rst �ve odd numbers.

If is a positive number, the i.s. terminates when the value of the i.v.
the value of ’s operand. If is a negative number, the i.s. terminates when
the value of the i.v. becomes than ’s operand, e.g.,

. Otherwise, the terminating condition for each
iteration depends on the value of for that iteration: if <0, the test is
whether the i.v. is less than ’s operand, if >0 the test is whether the i.v.
exceeds ’s operand, otherwise if =0, the i.s. terminates unconditionally.

If or have not been speci�ed and is not a number, the i.v. is
simply reset to the value of after each iteration, e.g.,

is equivalent to .

[I.S. Operator]
Used to specify an itera tive statement involving more than one itera tive variable,
e.g., corresponds to . The i.s. ter-
minates when any of the terminat ing conditions are met, e.g.,

makes a list of the �rst ten elements of , or
however many elements there are on if less than 10.

The operand to , , speci�es the new i.v. For the remainder of the i.s.,
or until another is encountered, all operators refer to the new i.v. For

itself, not its value, which in general CLISP would have no way of knowing in advance.

4.9

less
BY

WHILE UNTIL TO

BY IN ON
IN ON tail

CAR IN ON
IN

IN ON (FOR Z IN L BY (CDDR Z))
(FOR Z IN L BY (CDDR L))

(FOR X IN Y BY (CDR (MEMB ’FOO (CDR
X))) COLLECT X) CDR

FOO CDR

BY IN ON
IN ON BY

FROM TO

(FOR N FROM 1 TO 10 BY
2 COLLECT N)

exceeds
TO

less TO (FOR I FROM N TO M
BY -2 UNTIL (I LT M) ...)

TO
TO

FROM TO
(FOR I FROM N BY

M ...) (FOR I_N BY (IPLUS I M) ...)

AS

(FOR X IN Y AS U IN V DO --) MAP2C
(FOR X IN Y AS

I FROM 1 TO 10 COLLECT X) Y
Y

AS
AS

FORM

FORM

FORM

FORM

FORM

FORM

FORM

FORM

FORM

FORM

FORM FORM

FORM

FORM

FORM

FORM

VAR

VAR

FORM

Condition I.s.oprs

example,
terminates when exceeds , or exceeds , or

becomes less than 1. After each iteration, is incremented by 1, by 2, and by
-1.

[I.S. Operator]
For use with generators (page 7.13). On each iteration, the i.v. is set to successive
values returned by the generator. The i.s. terminates when the generator runs out.

4.2.3 Condition I.s.oprs

[I.S. Operator]
Provides a way of excepting certain iterations. For example,

collects only the elements of that are
numbers.

[I.S. Operator]
Same as except for the di�erence in sign, i.e., is the same as

.

[I.S. Operator]
Provides a way of terminating the i.s. evaluates each
iteration, and if the value is , exits.

[I.S. Operator]
Same as except for di�erence in sign, i.e., is equivalent to

.

[I.S. Operator]
Equivalent to .

[I.S. Operator]
Same as except the test is performed after the evalution of the body, but
before the i.v. is reset for the next iteration.

[I.S. Operator]
Same as , except the test is performed after the evaluation of the body.

[I.S. Operator]
Equivalent to .

4.2.4 Other I.s.oprs

[I.S. Operator]
is evaluated once before the �rst iteration, e.g.,

��� , and could be used to initialize and .

[I.S. Operator]
is evaluated after the i.s. terminates. For example,

4.10

(FOR I FROM 1 TO N1 AS J FROM 1 TO N2 BY 2 AS K FROM
N3 TO 1 BY -1 --) I N1 J N2 K

I J K

OUTOF

WHEN
(FOR X IN Y

COLLECT X WHEN (NUMBERP X)) Y

UNLESS
WHEN WHEN Z UNLESS

(NOT Z)

WHILE
WHILE before

NIL

UNTIL
WHILE WHILE X UNTIL

(NOT X)

UNTIL (a number)
UNTIL (GT)

REPEATWHILE
WHILE

REPEATUNTIL
UNTIL

REPEATUNTIL (a number)
REPEATUNTIL (GT)

FIRST
(FOR X Y Z IN L FIRST

(FOO Y Z)) FOO Y Z

FINALLY
(FOR X IN

FORM

FORM

FORM

FORM

FORM FORM

FORM

N N

I.V. N

FORM

FORM

N N

I.V. N

FORM

FORM

FORM

FORM

CONDITIONALS AND ITERATIVE STATEMENTS

will
return the number of atoms in .

[I.S. Operator]
is evaluated at the beginning of each iteration before, and regardless of, any

testing. For example, consider,

��� ���
��� ���

��� ���

The user might want to set a temporary variable to the value of in order
to avoid computing it three times each iteration. However, without knowing the
translation, he would not know whether to put the assignment in the operand to

, , or , i.e., which one would be executed �rst. He can avoid this
problem by simply writing .

[I.S. Operator]
Inserts the form immediately following the variable list in
the translation, or, in the case that the translation is a mapping function rather than
a , immediately following the argument list of the lambda expression in the
translation. This can be used to declare variables bound in the iterative statement
to be compiled as local or special variables (see page 12.4). For example

��� . Several s can apppear in
the same i.s.; the declarations are inserted in the order they appear.

[I.S. Operator]
Same as .

Note that since is also the name of a function, cannot be used
as an i.s. operator when it appears as of a form, i.e. as the �rst i.s. operator
in an iterative statement. However, (lower-case version) be the �rst
i.s. operator.

[I.S. Operator]
will be translated using its original, built- in interpretation, independent of

any user de�ned i.s. operators. See page 4.13.

There are also a number of i.s.oprs that make it easier to create iterative statements that use the clock,
looping for a given period of time. See Timers, page 14.11.

4.2.5 Miscellaneous

� Lowercase versions of all i.s. operators are equivalent to the uppercase, e.g., ��� .

� Each i.s. operator is of lower precedence than all Interlisp forms, so parentheses around the operands
can be omitted, and will be supplied where necessary, e.g., can be written

as , as , etc.

� or may be used in any operand. (In this case, the translation of the iterative statement will

4.11

L BIND Y_0 DO (IF ATOM X THEN Y_Y+1) FINALLY (RETURN Y))
L

EACHTIME

(FOR I FROM 1 TO N
DO ((FOO I))
UNLESS ((FOO I))
UNTIL ((FOO I)))

(FOO I)

DO UNLESS UNTIL
EACHTIME (SETQ J (FOO I))

DECLARE:
(DECLARE) PROG

PROG

(FOR X
IN Y DECLARE: (LOCALVARS X)) DECLARE:

DECLARE
DECLARE:

DECLARE DECLARE
CAR

declare can

ORIGINAL

(for X in Y)

BIND (X Y Z) BIND X Y
Z, OLD (X_) OLD X_ WHEN (NUMBERP X) WHEN NUMBERP X

RETURN GO

FORM

FORM

DECL

DECL

DECL

I.S.OPR OPERAND

I.S.OPR

FORM FORM

Miscellaneous

always be in the form of a , never a mapping function.) means return from the i.s. (with
the indicated value), from the function in which the i.s appears. refers to a label elsewhere in
the function in which the i.s. appears, except for the labels , , and which are
reserved, as described below.

� In the case of , , , or one of the i.s.types, e.g., , ,
, etc., the operand can consist of more than one form, e.g., , in which

case a is supplied.

� Each operand can be the name of a function, in which case it is applied to the (last) i.v., e.g.,
is the same as

. Note that the i.v. need not be explicitly speci�ed, e.g., will
work.

For i.s.types, e.g., , , , the function is always applied to the �rst i.v. in the i.s., whether
explicity named or not. For example, prints elements on

, not integers between 1 and 10.

Note that this feature does not make much sense for , , , , or , since they ‘‘operate’’
before the loop starts, when the i.v. may not even be bound.

In the case of in conjunction with , the function is applied to the current e.g.,
is the same as .

� While the exact form of the translation of an iterative statement depends on which operators are present,
a will always be used whenever the i.s. speci�es dummy variables, i.e., if a operator appears,
or there is more than one variable speci�ed by a operator, or a , , or a reference to the
variable appears in any of the operands. When a is used, the form of the translation is:

where corresponds to that portion of the loop that tests for termination and also for those
iterations for which is not going to be executed, (as indicated by a or);
corresponds to the operand of the i.s.type, e.g., , , etc.; corresponds to those
tests for termination speci�ed by or ; and corresponds to that
part that resets the tail, increments the counter, etc. in preparation for the next iteration. ,

, and correspond to the operands of , , and , if
any.

Note that since always appears at the top level of the , the user can insert labels in ,
and to them from within or from other i.s. operands, e.g.,

. However, since is dwimi�ed as a list of forms, the label(s) should be

4.12

PROG RETURN
not GO

$$LP $$ITERATE $$OUT

FIRST FINALLY EACHTIME DECLARE: DO COLLECT
SUM COLLECT (PRINT X:1) X:2

PROGN

(FOR X
IN Y DO PRINT WHEN NUMBERP) (FOR X IN Y DO (PRINT X) WHEN (NUMBERP
X)) (IN Y DO PRINT WHEN NUMBERP)

DO COLLECT JOIN
(IN Y AS I FROM 1 TO 10 DO PRINT)

Y

FOR OLD BIND IN ON

BY IN tail FOR X IN Y
BY CDDR ... FOR X IN Y BY (CDDR X)...

PROG BIND
FOR GO RETURN

$$VAL PROG

(PROG
{initialize}

$$LP {eachtime}
{test}
{body}

$$ITERATE
{aftertest}
{update}
(GO $$LP)

$$OUT {finalize}
(RETURN $$VAL))

{test}
{body} WHEN UNLESS {body}

DO COLLECT {aftertest}
REPEATWHILE REPEATUNTIL {update}

{initialize}
{finalize} {eachtime} FIRST FINALLY EACHTIME

{body} PROG {body}
GO {body} (FOR X IN Y FIRST (GO A)

DO (FOO) A (FIE)) {body}

VARIABLES

3

3

CONDITIONALS AND ITERATIVE STATEMENTS

added to the dummy variables for the iterative statement in order to prevent their being dwimi�ed and
possibly ‘‘corrected’’, e.g., . The user
can also to , , or , or explicitly set .

4.2.6 Errors in Iterative Statements

An error will be generated and an appropriate diagnostic printed if any of the following conditions hold:

1. Operator with null operand, i.e., two adjacent operators, as in

2. Operand consisting of more than one form (except as operand to , , or one of the
i.s.types), e.g., .

3. , , , , or appear twice in same i.s.

4. Both and used on same i.v.

5. or used with or on same i.v.

6. More than one i.s.type, e.g., a and a .

In 3, 4, or 5, an error is not generated if an intervening occurs.

If an error occurs, the i.s. is left unchanged.

If no , , or any of the other i.s.types are speci�ed, CLISP will �rst attempt to �nd an
operand consisting of more than one form, e.g., , and in this
case will insert a after the �rst form. (In this case, condition 2 is not considered to be met, and an
error is not generated.) If CLISP cannot �nd such an operand, and no or appears in the
i.s., a warning message is printed: followed by the i.s.

Similarly, if no terminating condition is detected, i.e., no , , , , , or a or ,
a warning message is printed: followed
by the iterative statement. However, since the user may be planning to terminate the i.s. via an error,
control- E, or a from a lower function, the i.s. is still translated.

4.2.7 De�ning New Iterative Statement Operators

The following function is available for de�ning new or rede�ning existing iterative statement operators:

[Function]
is the name of the new i.s.opr. If is a list, will be a new
(see page 4.6), and its body.

is an (optional) list of additional i.s. operators and operands which will
be added to the i.s. at the place where appears. If is , is
a new i.s.opr de�ned entirely by .

unless the value of is (initially).

4.13

(FOR X IN Y BIND A FIRST (GO A) DO (FOO) A (FIE))
GO $$LP $$ITERATE $$OUT $$VAL

FOR X IN Y UNTIL DO --

FIRST FINALLY
FOR X IN Y (PRINT X) COLLECT --

IN ON FROM TO BY

IN ON

FROM TO IN ON

DO SUM

AS

DO COLLECT JOIN
FOR X IN Y (PRINT X) WHEN ATOM X

DO
WHILE UNTIL

NO DO, COLLECT, OR JOIN:

IN ON WHILE UNTIL TO RETURN GO
POSSIBLE NON-TERMINATING ITERATIVE STATEMENT:

RETFROM

(I.S.OPR)

i.s.type

NIL

CLISPI.S.GAG T NIL

NAME FORM OTHERS EVALFL G

NAME FORM NAME

FORM

OTHERS

NAME FORM NAME

OTHERS

4

5

4

5

De�ning New Iterative Statement Operators

In both and , the atom can be used to reference the value to
be returned by the i.s., to reference the current i.v., and to reference

’s operand. In other words, the current i.v. will be substituted for all
instances of and ’s operand will be substituted for all instances of

throughout and .

If is , and are evaluated at translation time, and their
values used as described above. is a list of dummy variable names
used by the iterative statement translator. If the user wishes to obtain a dummy
variable for use in translation, and be sure it does not clash with a dummy variable
already used by some other i.s. operators, he can use of , and reset

to .

If was previously an i.s.opr and is being rede�ned, the message
will be printed (unless =), and all expressions using the

i.s.opr that have been translated will have their translations discarded.

For example, for , would be .

For , would be , would be .

For , would be .

For , would be .

Examples:

To de�ne , a version of which uses instead of and then reverses the
list of values:

To de�ne , a version of which uses :

To de�ne :

To de�ne , a version of whose operand is evaluated only once:

is used instead of so that the choice of function used in the
translation, i.e., , , or , will be determined by the declarations then in e�ect.

would exit from the i.s. immediately and therefore not execute the
operations speci�ed via a (if any).

4.14

$$VAL
I.V. BODY

I.V.
BODY

T
LSTVARS

CAR LSTVARS
LSTVARS (CDR LSTVARS)

(
REDEFINED) DFNFLG T

COLLECT (SETQ $$VAL (NCONC1 $$VAL BODY))

SUM ($$VAL_$$VAL+BODY) (FIRST $$VAL_0)

NEVER (IF BODY THEN $$VAL_NIL (GO $$OUT)))

THEREIS (IF BODY THEN $$VAL_I.V. (GO $$OUT))

RCOLLECT COLLECT CONS NCONC1

(I.S.OPR ’RCOLLECT
’($$VAL_(CONS BODY $$VAL))
’(FINALLY (RETURN (DREVERSE $$VAL)))]

TCOLLECT COLLECT TCONC

(I.S.OPR ’TCOLLECT
’(TCONC $$VAL BODY)
’(FIRST $$VAL_(CONS) FINALLY (RETURN (CAR $$VAL)))]

PRODUCT

(I.S.OPR ’PRODUCT
’($$VAL_$$VAL*BODY)
’(FIRST $$VAL_1)]

UPTO TO

$$VAL+BODY (IPLUS $$VAL BODY)
IPLUS FPLUS PLUS

(IF BODY THEN RETURN NIL)
FINALLY

FORM OTHERS

NAME

NAME

FORM OTHERS

EVALFL G FORM OTHERS

NAME NAME

NAME

FORM

FORM OTHERS

FORM

FORM

CONDITIONALS AND ITERATIVE STATEMENTS

To rede�ne so that instead of recomputing each iteration, a variable is bound to the value of
, and then that variable is used:

Note the use of to rede�ne in terms of its original de�nition. is intended
for use in rede�ning built- in operators, since their de�nitions are not accessible, and hence not directly
modi�able. Thus if the operator had been de�ned by the user via , would not
obtain its original de�nition. In this case, one presumably would simply modify the i.s.opr de�nition.

can also be used to de�ne synonyms for already de�ned i.s. operators by calling
with an atom, e.g., makes be the same as . Similarly,
following , one can write , and following

and , one can write
. In the current system, is synonymous with , and

with , with , and with .

If is the atom , then is de�ned as an i.s.opr which can immediately follow another
i.s. operator (i.e., an error will not be generated, as described previously). will not terminate the
scope of the previous operator, and will be stripped o� when is called on its operand.
is an example of a type of operator. The feature allows the user to de�ne i.s.
operators similar to , for use in conjunction with some other user de�ned i.s.opr which will produce
the appropriate translation.

The �le package command (page 11.25) will dump the de�nition of i.s.oprs.
as a �le package command will print suitable expressions so that these iterative

statement operators will be (re)de�ned when the �le is loaded.

4.15

(I.S.OPR ’UPTO
NIL
’(BIND $$FOO_BODY TO $$FOO)]

TO

(I.S.OPR ’TO
NIL
’(BIND $$END FIRST $$END_BODY ORIGINAL TO $$END)]

ORIGINAL TO ORIGINAL

I.S.OPR ORIGINAL

I.S.OPR I.S.OPR
(I.S.OPR ’WHERE ’WHEN) WHERE WHEN

(I.S.OPR ’ISTHERE ’THEREIS) (ISTHERE ATOM IN Y)
(I.S.OPR ’FIND ’FOR) (I.S.OPR ’SUCHTHAT ’THEREIS) (FIND X IN Y
SUCHTHAT X MEMBER Z) WHERE WHEN SUCHTHAT
ISTHERE THEREIS FIND FOR THRU TO

MODIFIER

DWIMIFY OLD
MODIFIER MODIFIER
OLD

I.S.OPRS (I.S.OPRS
PRODUCT UPTO)

FORM

FORM

FORM

FORM NAME

NAME

De�ning New Iterative Statement Operators

4.16

