CHAPTER 4

CONDITIONALS AND ITERATIVE STATEMENTS

In order to do any but the simplest computations, it is necessary to test values and execute expressions
conditionally, and to execute expressions repeatedly. Interlisp supplies alarge number of useful conditional
and iterative constructs.

(COND CLAUSE; CLAUSE, CLA USE k) [NLambda NoSpread Function]

The conditional function of Interlisp, COND, takes an indenite number of
arguments, called clauses. Each CLA USE; is a list of the form (P; C;, CiN
where P; is the predicate, and c;; C;p are the consequents. The operation of
COND can be paraphrased as:

IF p; THEN c;; Cyy ELSEIF P, THEN C,; C,y ELSEIF Py

The clauses are considered in sequence as follows: the predicate P, of the clause
CLA USE; is evaluated. If the value of P is *‘true’’ (non-NI L), the consequents c; ;

Cj y are evaluated in order, and the value of the COND is the value of c;, the
last expression in the clause. If P, is ‘‘false’”’ (EQ to NI L), then the remainder of
CLA USE; isignored, and the next clause, CLA USE; ,;, is considered. If no p; istrue
for any clause, the value of the COND is NI L.

Note: If a clause has no consequents, and has the form (P;), then if P; evaluates
to non-NI L, it is returned as the value of the COND. It is only evaluated once.

Example:

_ (DEFI NEQ (DOUBLE (X)
(COND ((NUMBERP X) (PLUS X X))

((STRINGP X) (CONCAT X X))
((ATOM X) (PACK* X X))
(T (PRINT "unknown") X)
((HORRI BLE- ERROR))]

(DOUBLE)

_ (DOUBLE 5)

10

_ (DQOUBLE "FQO')

" FOOFOO!

_ (DQOUBLE ' BAR)

BARBAR

_ (DOUBLE ' (A B Q)

"unknown"

(ABO

A few points about this example: Notice that 5 is both a number and an atom,

but it is ‘‘caught’’ by the NUVBERP clause before the ATOM clause. Also notice
the predicate T, which is always true. This is the norma way to indicate a COND

4.1

clause which will always be executed (if none of the preceeding clauses are true).
(HORRI BLE- ERROR) will never be executed.

Note: The | F statement (page 4.4) provides an easier and more readable way of
coding conditional expressions than COND.

(AND X; X, XN) [NLambda NoSpread Function]
Takes an indenite number of arguments (including zero), that are evaluated in
order. If any argument evaluates to NI L, AND immediately returns NI L (without
evaluating the remaining arguments). If all of the arguments evaluate to non-NI L,
the value of the last argument isreturned. (AND) => T.

(OR X1 X, XN) [NLambda NoSpread Function]
Takes an indenite number of arguments (including zero), that are evaluated in
order. If any argument is non-NI L, the value of that argument is returned by OR
(without evaluating the remaining arguments). If al of the arguments evaluate to
NIL, NIL isreturned. (OR) => NIL.

AND and OR can be used as simple logical connectives, but note that they may not evaluate al of their
arguments. This makes a di erence if the evaluation of some of the arguments causes side-eects. Another
result of this implementation of AND and OR is that they can be used as simple conditional statements.
For examplee (AND (LI STP x) (CDR x)) returns the value of (CDR x) if x isalist cell, otherwise
it returns NI L without evaluating (CDR X). In general, this use of AND and OR should be avoided in
favor of more explicit conditional statements in order to make programs more readable.

(SELECTQ X CLAUSE; CLAUSE, CLAUSE DEFAULT) [NLambda NoSpread Function]
Selects a form or sequence of forms based on the value of its rst argument X.
Each clause cLA USE; isalist of the form (s; C; 4 C; Ny Where s; isthe selection
key. The operation of SELECTQ can be paraphrased as:

IF Xx= s; THEN ¢4y Cqy ELSEIF X = s, THEN ELSE DEFAULT.

If s is an atom, the value of x is tested to see if it is EQ to s; (which is not
evaluated). If so, the expressions c;; C;y are evaluated in sequence, and the
value of the SELECTQ is the value of the last expression evaluated, i.e, C;

If s; isalist, the value of X is compared with each element (not evaluated) of s,
and if X is EQto any one of them, then c;; c;yare evaluated as above.

If cLA USE; is not selected in one of the two ways described, CLA USE; .4 is tested,
etc., until al the clauses have been tested. If none isselected, DEF AUL T is evaluated,
and its value is returned as the value of the SELECTQ. DEFAULT must be present.

An example of the form of a SELECTQ is:

[SELECTQ MONTH
(FEBRUARY (if (LEAPYEARP) then 29 el se 28))
((APRI L JUNE SEPTEMBER NOVEMBER) 30)
31]

If the value of MONTH is the litatom FEBRUARY, the SELECTQ returns 28 or 29
(depending on (LEAPYEARP)); otherwise if MONTH is APRI L, JUNE, SEPTEMBER,

4.2

CONDITIONALS AND ITERATIVE STATEMENTS

or NOVEMBER, the SELECTQ returns 30; otherwise it returns 31.

SELECTQ compiles open, and is therefore very fast; however, it will not work if
the value of X is alist, a large integer, or oating point number, since SELECTQ
uses EQ for al comparisons.

Note: The function SELCHARQ (page 2.13) is a version of SELECTQ that recognizes CHARCODE litatoms.

(SELECTC X CLAUSE; CLAUSE, CLAUSE DEFAULT) [NLambda NoSpread Function]
“SELECTQ-on-Constant.”” Similar to SELECTQ except that the selection keys are
evaluated, and the result used as a SELECTQ-style selection key.

SELECTC is compiled as a SELECTQ, with the selection keys evaluated at compile-
time. Therefore, the selection keys act like compile- time constants (see page 12.5).
For example:

[SELECTC NuM
((for Xfrom1l to 9 collect (TIMES X X)) "SQUARE")
"H P"]

compiles as:

[SELECTQ NUM
((149 16 25 36 49 64 81) "SQUARE")
n HI PII]

(PROGL x; X, XN) [NLambda NoSpread Function]
Evaluates its arguments in order, and returns the value of its rst argument x,. For
example, (PROGL X (SETQ X Y)) sets Xto Y, and returns X'sorigina value.

(PRO&Z x;1 X5 XN) [Function]
Similar to PROGL. Evaluates its arguments in order, and returns the value of its
second argument X..

(PROGN X1 X5 XN) [NLambda NoSpread Function]
PROCN evaluates each of its arguments in order, and returns the value of its last
argument. PROGN is used to specify more than one computation where the syntax
alows only one, eg., (SELECTQ (PROGN)) dlows evauation of several
expressions as the default condition for a SELECTQ.

(PROG VARLST E; E, En) [NLambda NoSpread Function]
This function alows the user to write an ALGOL- like program containing Interlisp
expressions (forms) to be executed. The rst argument, VARLST , is a list of local
variables (must be NI L if no variables are used). Each atom in VARLST is treated
as the name of a local variable and bound to NI L. VARLST can also contain lists
of the form (at om forn) . In this case, at omis the name of the variable and is
bound to the value of f orm The evaluation takes place before any of the bindings
are performed, eg., (PROG ((X Y) (Y X))) will bind loca variable X to
the value of Y (evaluated outside the PROG) and loca variable Y to the value of
X (outside the PROG). An attempt to use anything other than a litera atom as a
PROG variable will cause an error, ARG NOT LI TATOM. An attempt to use NI L
or T as a PROG variable will cause an error, ATTEMPT TO BIND NIL OR T.

4.3

(GO x)

(RETURN X)

The IF Statement

The rest of the PROG is a sequence of non-atomic statements (forms) and litatoms
(Iabels). The forms are evaluated sequentialy; the labels serve only as markers.
The two special functions GO and RETURN alter this ow of control as described
below. The value of the PROG is usually speci ed by the function RETURN. If no
RETURN is executed before the PROG *‘fallso the end,”’ the value of the PROG is
NI L.

[NLambda NoSpread Function]
GO isused to cause atransfer in a PROG. (GO L) will cause the PROG to evaluate
forms starting at the label L (GO does not evaluate its argument). A GO can be
used at any level in a PROG. If the label is not found, GO will search higher progs
within the same function, e.g., (PROG A (PROG (GO A))). If the
label isnot found in the function in which the PROG appears, an error is generated,
UNDEFI NED OR | LLEGAL GO

[Function]
A RETURN is the norma exit for a PROG. Its argument is evaluated and is
immediately returned the value of the PROG in which it appears.

Note: If a GO or RETURN is executed in an interpreted function which is not a PROG, the GO or RETURN
will be executed in the last interpreted PROG entered if any, otherwise cause an error.

GO or RETURN inside of a compiled function that is not a PROG is not alowed, and will cause an error

at compile time.

As a corollary, GO or RETURN in a functional argument, e.g., to SORT, will not work compiled. Also,
since NLSETQ' sand ERSETQ' s compile as separate functions, a GO or RETURN cannot be used inside of a
compiled NLSETQ or ERSETQ if the corresponding PROG is outside, i.e., above, the NLSETQ or ERSETQ.

4.1 THE IF STATEMENT

The | F statement provides a way of way of specifying conditional expressions that is much easier and
readable than using the COND function directly. CLISP trandates expressions employing | F, THEN,
ELSEI F, or ELSE into equivalent COND expressions. In general, statements of the form:

(I'F aasa THEN BBB ELSEIF ccc THEN bbb ELSE EEE)

are trandated to:

(COND (AaA BBB)
(ccc obop)
(T Eee))

The segment between | F or ELSElI F and the next THEN corresponds to the predicate of a COND clause,
and the segment between THEN and the next ELSE or ELSEI F as the consequent(s). ELSE isthe same as
ELSEI F T THEN. These words are spelling corrected using the spelling list CLI SPI FWORDSPLST . Lower
case versions (i f, t hen, el sei f, el se) may aso be used.

If there is nothing following a THEN, or THEN is omitted entirely, then the resulting COND clause has a

4.4

CONDITIONALS AND ITERATIVE STATEMENTS

predicate but no consequent. For example, (1 F X THEN ELSEI F) and (I F X ELSEI F) both
trandate to (COND (X)), which means that if X isnot NI L, it isreturned as the value of the COND.

CLISP considers | F, THEN, ELSE, and ELSEI F to have lower precedence than al inx and prex
operators, as well as Interlisp forms, so it is sometimes possible to omit parentheses around predicate or
consequent forms. For example, (I F FOO X Y THEN) is equivalent to (I F (FOO X Y) THEN

y,and (I1F X THEN FOO X Y ELSE) asequivalent to (1F X THEN (FOO X Y) ELSE).
Essentially, CLISP determines whether the segment between THEN and the next ELSE or ELSEI F
corresponds to one form or several and acts accordingly, occasionally interacting with the user to resolve
ambiguous cases. Note that if FOO is bound as a variable, (1 F FOO THEN) istrandated as (COND
(FOO)), soif acall to the function FOO is desired, use (I F (FOO) THEN).

4.2 THE ITERATIVE STATEMENT

The iterative statement (i.s) in its various forms permits the user to specify complicated iterative
statements in a straightforward and visible manner. Rather than the user having to perform the mental
transformations to an equivalent Interlisp form using PROG, MAPC, MAPCAR, etc., the system does it for
him. The goa was to provide arobust and tolerant facility which could ‘‘make sense’” out of a wide class
of iterative statements. Accordingly, the user should not feel obliged to read and understand in detail the
description of each operator given below in order to use iterative statements.

An iterative statement is a form consisting of a number of specia words (known as i.s. operators or
i.s.oprs), followed by operands. Many i.s.oprs (FOR, DO, WHI LE, etc.) are similar to iterative statements
in other programming languages; other i.s.oprs (COLLECT, JAO N, | N, etc.) specify useful operations in a
Lisp environment. Lower case versions of i.s.oprs (do, col | ect , etc.) can aso be used. Here are some
examples of iterative statements:

_ (for Xfrom1l to 5 do (PRINT 'FQOO)

FOO

FOO

FOO

FOO

FOO

NI L

_ (for Xfrom2 to 10 by 2 collect (TIMES X X))
(4 16 36 64 100)

_(for Xin ' (AB1CG®6.5 NL (45)) count (NUVBERP X))
2

Iterative statements are implemented through CLISP, which trandates the form into the appropriate
PROG, MAPCAR, etc. Iterative statement forms are trandated using al CLISP declarations in eect
(standard/fast/undoable/ etc.); see page 16.9. Misspelled i.s.oprs are recognized and corrected using the
spelling list CLI SPFORWORDSPLST . The order of appearance of operators is never important; CLISP
scans the entire statement before it begins to construct the equivalent Interlisp form. New i.s.oprs can be
dened as described on page 4.13.

If the user denes a function by the same name as an i.s.opr (WHI LE, TO, etc.), the i.s.opr will no longer
have the CLISP interpretation when it appears as CAR of a form, athough it will continue to be treated

4.5

|.stypes

as an i.s.opr if it appears in the interior of an iterative statement. To alert the user, a warning message is
printed, eg., (WHI LE DEFI NED, THEREFORE DI SABLED I N CLI SP) .

421 |.stypes

The following i.s.oprs are examples of a certain kind of iterative statement operator caled an i.stype. The
i.stype speci es what is to be done at each iteration. Its operand is called the ‘‘body’’ of the iterative
statement. Each iterative statement must have one and only one i.s.type.

DO FORM [I.S. Operator]
Speci es what isto be done at each iteration. DO with no other operator speci es
an innite loop. If some explicit or implicit terminating condition is speci ed, the
value of the i.s. is NI L. Trandates to MAPC or MAP whenever possible.

COLLECT FORM [I.S. Operator]
Speci es that the value of FORM at each iteration isto be collected in a list, which
is returned as the value of the i.s. when it terminates. Trandates to MAPCAR,
MAPLI ST or SUBSET whenever possible.

When COLLECT trandates to a PROG (e.g., if UNTI L, WHI LE, etc. appear in the
i.s), the trandation employs an open TCONC using two pointers similar to that
used by the compiler for compiling MAPCAR. To disable this translation, perform
(CLDI SABLE ' FCOLLECT) .

JO N FORM [1.S. Operator]
Similar to COLLECT, except that the values of FORM at each iteration are NCONCed.
Trandates to MAPCONC or MAPCON whenever possible. / NCONC, / MAPCONC, and
/ MAPCON are used when the CLISP declaration UNDOABLE isin eect.

SUM FORM [I.S. Operator]
Speci es that the values of FORM at each iteration be added together and returned
as the value of the is, eg., (FORI FROM 1 TO 5 SUM I"2) is equa to
1+4+9+16+25. | PLUS, FPLUS, or PLUS will be used in the trandation depending
on the CLISP declarations in eect.

COUNT FORM [I.S. Operator]
Counts the number of times that FORM istrue, and returns that count as its value.

ALWAYS FORM [I.S. Operator]
Returns T if the value of FORM is non-NI L for al iterations. (Note: returns NI L
as soon as the value of FORM is NI L).

NEVER FORM [I.S. Operator]
Similar to ALWAYS, except returns T if the value of FORM is never true. (Note:
returns NI L as soon as the value of FORM is non-NI L).

The following i.stypes explicitly refer to the iteration variable (i.v.) of the iterative statement, which isa
variable set at each iteration. This is explained below under FOR.

THEREI S FORM [I.S. Operator]
Returns the rst value of the i.v. for which ForRm isnon-NI L, eg.,, (FOR X IN Y

4.6

LARGEST FORM
SMALLEST FORM

CONDITIONALS AND ITERATIVE STATEMENTS

THEREI S (NUMBERP X)) returns the rst number in Y. (Note: returns the value
of the i.v. as soon as the vaue of FORM isnon-NI L).

[I.S. Operator]

[I.S. Operator]
Returns the value of the i.v. that provides the largest/smallest value of FORM .
$SEXTREME is always bound to the current greatest/smallest value, $$VAL to the
value of the i.v. from which it came.

422 Iteration Variablel.s.oprs

FOR vAR

FOR vARS

FOR OLD vAR

Bl ND vaArR
Bl ND VARS

[I.S. Operator]
Speci es the iteration variable (i.v.) which is used in conjunction with I N, ON,
FROM, TO, and BY. The variable is rebound within the i.s., so the value of the
variable outside the i.s. isnot eected. Example:

_ (SETQ X 55)

55

_ (for Xfrom1l to 5 collect (TIMES X X))
(1 49 16 25)

_ X

55

[I.S. Operator]
VARS a list of variables, eg., (FOR (X Y Z) IN). The rst variable is the
i.v., the rest are dummy variables. See Bl ND below.

[I.S. Operator]
Similar to FOR, except that vArR is not rebound within the i.s., so the value of the
i.v. outside of the i.s. is changed. Example:

_ (SETQ X 55)

55

_ (for old Xfrom1l to 5 collect (TIMES X X))

(1 4 9 16 25)

_ X

6
[I.S. Operator]
[I.S. Operator]

Used to specify dummy variables, which are bound locally within the i.s.

Note: FOR, FOR CLD, and BI ND variables can be initialized by using the form VAR _FORM :

(FOR OLD (X_FOrRM) BIND (Y_FORM))

IN FORM

[I.S. Operator]
Speci es that the i.s. is to iterate down a list with the i.v. being reset to the
corresponding element at each iteration. For example, (FOR X IN Y DO)
corresponds to (MAPC Y (FUNCTI ON (LAMBDA (X)))). If noiv. has
been speci ed, a dummy is supplied, e.g., (IN Y COLLECT CADR) is equivalent

4.7

ON FORM

Iteration Variablel.s.oprs

to (MAPCAR Y (FUNCTI ON CADR)) .

[I.S. Operator]
Same as | N except that the i.v. isreset to the corresponding tail at each iteration.
Thus | N corresponds to MAPC, MAPCAR, and MAPCONC, while ON corresponds to
MAP, MAPLI ST, and MAPCON.

Note: for both | N and ON, FOrRM is evaluated before the main part of the i.s. is entered, i.e. outside of
the scope of any of the bound variables of the i.s. For example, (FOR X BIND (Y_'(1 2 3)) INY
) will map down the list which isthe value of Y evaluated outside of the i.s, not (1 2 3).

IN OLD vaAR [I.S. Operator]
Speci es that the i.s. is to iterate down vaArR, with VAR itself being reset to the
corresponding tail at each iteration, e.g., after (FOR X IN OLD L DO UNTI L

) nishes, L will be some tail of its origina value.

IN OLD (VAR _FORM) [I.S. Operator]
Same as | N OLD VAR, except VAR is rst set to value of FORM .

ON OLD vAR [I.S. Operator]
Same as | N OLD VAR except the i.v. isreset to the current value of varR at each
iteration, instead of to (CAR VAR).

ON OLD (VAR _FORM) [I.S. Operator]
Same as ON OLD VAR, except VAR is rst set to value of FORM .

I NSI DE FORM [I.S. Operator]
Similar to I N, except treats rst non-list, non-NI L tail as the last element of the
iteration, eg., INSIDE ' (A B C D . E) iterates ve times with the i.v. set to
E on the last iteration. | NSI DE ’ A is equivalent to | NSI DE ’ (A), which will
iterate once.

FROM FORM [1.S. Operator]
Used to specify an initial value for a numerica i.v. The i.v. is automatically
incremented by 1 after each iteration (unless BY is speci ed). If no i.v. has been
speci ed, adummy i.v. issupplied and initialized, e.g., (FROM 2 TO 5 COLLECT
SQRT) returns (1.414 1.732 2.0 2.236).

TO FORM [I.S. Operator]

Used to specify the nal value for a numerical i.v. If FROMis not speci ed, the
i.v. isinitialized to 1. If no i.v. has been specied, a dummy i.v. is supplied
and initialized. If BY is not speci ed, the i.v. is automatically incremented by 1
after each iteration. * When the i.v. is denitely being incremented, i.e, either BY is
not speci ed, or its operand is a positive number, the i.s. terminates when the i.v.
exceeds the value of ForRM eg., (FOR X FROM 1 TO 10 --) is equivdent to
(FOR X FROM 1 UNTIL (X GTI 10) --). Similarly, when the i.v. isdenitely

lexcept when both the operands to TO and FROM are numbers, and TO's operand is less than FROMs
operand, e.g., FROM 10 TO 1, in which case the i.v. is decremented by 1 after each iteration. In this
case, the i.s. terminates when the i.v. becomes less than the value of FORM .

4.8

CONDITIONALS AND ITERATIVE STATEMENTS

being decremented the i.s. terminates when the i.v. becomes lessthan the vaue of
FORM (see description of BY).

Note: FORM is evaluated only once, when the i.s. is rst entered, and its value
bound to atemporary variable against which the i.v. is checked each interation. If
the user wishes to specify an i.s. in which the value of the boundary condition is
recomputed each iteration, he should use WHI LE or UNTI L instead of TO.

BY Forv (with | N/ ON) [I.S. Operator]

If I N or ON have been specied, the value of FORM determines the tail for
the next iteration, which in turn determines the value for the i.v. as described
earlier, i.e, the new i.v. is CAR of the tail for I N, the tall itself for ON. In
conjunction with I N, the user can refer to the current taill within FORM by using
the i.v. or the operand for INJON, eg.,, (FOR Z IN L BY (CDDR 2))
oo (FOR Z INL BY (CDDR L)). At trandation time, the name of the
internal variable which holds the value of the current tail is substituted for the i.v.
throughout FoOrRM . For example, (FOR X IN Y BY (CDR (MEMB ' FOO (CDR
X))) COLLECT X) species that after each iteration, CDR of the current tail is
to be searched for the atom FQOO, and (CDR of) this latter tail to be used for the
next iteration.

BY ForM (without | N/ ON) [I.S. Operator]

AS VAR

2EORM

If I N or ON have not been used, BY speci es how the i.v. itself is reset at each
iteration. If FROM or TO have been speci ed, the i.v. is known to be numerical,
so the new i.v. is computed by adding the value of FORM (which is reevaluated
each iteration) to the current vaue of the i.v., eg., (FOR N FROM 1 TO 10 BY
2 COLLECT N) makes alist of the rst ve odd numbers.

If FORV isa positive number, 2 the i.s. terminates when the value of the i.v. exceeds
the value of TOsoperand. If FORM is a hegative number, the i.s. terminates when
the value of the i.v. becomes lessthan TOsoperand, eg., (FOR | FROM N TO M
BY -2 UNTIL (I LT M ...). Otherwise, the terminating condition for each
iteration depends on the value of FORM for that iteration: if FORM <0, the test is
whether the i.v. isless than TOs operand, if FORM >0 the test is whether the i.v.
exceeds TO soperand, otherwise if FORM =0, the i.s. terminates unconditionally.

If FROM or TO have not been specied and FORM is not a number, the i.v. is
simply reset to the value of FORM after each iteration, eg., (FOR | FROM N BY
M...) isequivdent to (FOR I_N BY (IPLUS I M ...).

[I.S. Operator]
Used to specify an iterative statement involving more than one iterative variable,
eg, (FOR XINY AS UIN YV DO --) corresponds to MAP2C. The i.s. ter-
minates when any of the terminating conditions are met, eg., (FOR X IN Y AS
| FROM 1 TO 10 COLLECT X) makes a list of the rst ten elements of Y, or
however many elements there are on Y if less than 10.

The operand to AS, VAR, species the new i.v. For the remainder of the i.s,
or until another AS is encountered, al operators refer to the new i.v. For

itself, not its value, which in general CLISP would have no way of knowing in advance.

4.9

Condition |.s.oprs

example, (FOR'1 FROM 1 TO N1 AS J FROM 1 TO N2 BY 2 AS K FROM
N3 TO 1l BY -1 --) terminates when | exceeds N1, or J exceeds N2, or K
becomes less than 1. After each iteration, | isincremented by 1, J by 2, and K by
-1

OUTOF FORM [I.S. Operator]
For use with generators (page 7.13). On each iteration, the i.v. is set to successive
values returned by the generator. The i.s. terminates when the generator runs out.

4.2.3 Condition |.s.oprs

WHEN FORM [I.S. Operator]
Provides a way of excepting certain iterations. For example, (FOR X IN Y
COLLECT X WHEN (NUMBERP X)) collects only the elements of Y that are

numbers.

UNLESS FORM [I.S. Operator]
Same as WHEN except for the di erence in sign, i.e, WHEN Z isthe same as UNLESS
(NOT 2).

VWHI LE FORM [I.S. Operator]

Provides a way of terminating the i.s. WHI LE FORM evaluates FORM before each
iteration, and if the value is NI L, exits.

UNTIL FORM [I.S. Operator]
Same as WHI LE except for di erence in sign, i.e, WHI LE X isequivalent to UNTI L
(NOT X).

UNTIL N (N a nunber) [1.S. Operator]

Equivalent to UNTIL (1.v.GT N).

REPEATWHI LE FORM [I.S. Operator]
Same as WHI LE except the test is performed after the evalution of the body, but
before the i.v. is reset for the next iteration.

REPEATUNTI L FORM [I.S. Operator]
Same as UNTI L, except the test is performed after the evaluation of the body.

REPEATUNTIL N (N a nunber) [I.S. Operator]
Equivalent to REPEATUNTI L (1.v. Gl N).

424 Other |.s.oprs

FI RST FOrRm [I.S. Operator]
FORM isevaluated once before the rst iteration, eg., (FOR X Y Z IN L FI RST
(FOO Y 2)), and FQOO could be used to initidize Y and Z.

FI NALLY FORM [I.S. Operator]
FORM is evaluated after the i.s. terminates. For example, (FOR X I N

4.10

EACHTI ME FORM

DECLARE: DECL

CONDITIONALS AND ITERATIVE STATEMENTS

L BIND Y. 0 DO (I F ATOM X THEN Y_Y+1) FINALLY (RETURN Y)) will
return the number of atoms in L.

[I.S. Operator]
FORM isevaluated at the beginning of each iteration before, and regardless of, any
testing. For example, consider,

(FOR | FROM1 TO N
DoO((FOOI1))
UNLESS ((FOO1))
UNTIL ((FOO 1))

The user might want to set a temporary variable to the value of (FOO |) in order
to avoid computing it three times each iteration. However, without knowing the
trandation, he would not know whether to put the assignment in the operand to
DO, UNLESS, or UNTI L, i.e.,, which one would be executed rst. He can avoid this
problem by simply writing EACHTI ME (SETQ J (FOO 1)).

[I.S. Operator]
Inserts the form (DECLARE DecL) immediately following the PROG variable list in
the trandation, or, in the case that the trandation isa mapping function rather than
a PROG, immediately following the argument list of the lambda expression in the
trandation. This can be used to declare variables bound in the iterative statement
to be compiled as local or special variables (see page 12.4). For example (FOR X
IN Y DECLARE: (LOCALVARS X)). Severad DECLARE: s can apppear in
the same i.s.; the declarations are inserted in the order they appear.

DECLARE DECL [I.S. Operator]
Same as DECLARE: .
Note that since DECLARE is aso the name of a function, DECLARE cannot be used
as an i.s. operator when it appears as CAR of a form, i.e. asthe rst i.s. operator
in an iterative statement. However, decl ar e (lower-case version) can be the rst
i.S. operator.

ORI G NAL 1.S. OPR OPERAND [I.S. Operator]

I.S. oPrwill be trandated using its original, built-in interpretation, independent of
any user dened i.s. operators. See page 4.13.

There are also a number of i.s.oprs that make it easier to create iterative statements that use the clock,
looping for a given period of time. See Timers, page 14.11.

425 Miscellaneous

Lowercase versions of al i.s. operators are equivalent to the uppercase, eg., (for X in Y).

Each i.s. operator is of lower precedence than al Interlisp forms, so parentheses around the operands
can be omitted, and will be supplied where necessary, eg., BIND (X Y Z) can be written BIND X Y
Z, OLD (X_ForRM) as OLD X_ForM , WHEN (NUMBERP X) as WHEN NUMBERP X, etc.

RETURN or GO may be used in any operand. (In this case, the trandation of the iterative statement will

411

Miscellaneous

always be in the form of a PROG, never a mapping function.) RETURN means return from the i.s. (with
the indicated value), not from the function in which the i.s appears. GO refers to a label elsewhere in
the function in which the i.s. appears, except for the labels $$LP, $$1 TERATE, and $$SOUT which are
reserved, as described below.

In the case of FI RST, FI NALLY, EACHTI ME, DECLARE: or one of the i.stypes, eg., DO, COLLECT,
SUM etc., the operand can consist of more than one form, eg., COLLECT (PRI NT X: 1) X 2, in which
case a PROGN is supplied.

Each operand can be the name of a function, in which case it is applied to the (last) i.v., eg., (FOR X
IN Y DO PRI NT WHEN NUMBERP) isthe sameas(FOR X IN Y DO (PRI NT X) WHEN (NUMBERP
X)) . Note that the i.v. need not be explicitly specied, eg., (IN Y DO PRI NT WHEN NUVBERP) will
work.

For i.stypes, eg., DO, COLLECT, JA N, the function is always applied to the rst i.v. in the i.s., whether
explicity named or not. For example, (IN Y AS 1 FROM 1 TO 10 DO PRI NT) prints elements on
Y, not integers between 1 and 10.

Note that this feature does not make much sense for FOR, OLD, BI ND, I N, or ON, since they ‘‘operate’”’
before the loop starts, when the i.v. may not even be bound.

In the case of BY in conjunction with I N, the function is applied to the current tail eg., FOR X IN Y
BY CDDR ... isthe same as FOR X IN Y BY (CDDR X)... .

While the exact form of the trandation of an iterative statement depends on which operators are present,
a PROG will aways be used whenever the i.s. speci es dummy variables, i.e, if a Bl ND operator appears,
or there is more than one variable speci ed by a FOR operator, or a GO, RETURN, or a reference to the
variable $$VAL appears in any of the operands. When a PROG is used, the form of the trandlation is:

(PROG VARI ABLES
{initialize}
$SLP {eachtine}
{test}
{ body}
$$| TERATE
{aftertest}
{updat e}
(GO $$LP)
$$OUT {finalize}
(RETURN $$VAL))

where {test} corresponds to that portion of the loop that tests for termination and aso for those
iterations for which { body} isnot going to be executed, (as indicated by a WHEN or UNLESS); { body}
corresponds to the operand of the i.stype, eg., DO, COLLECT, etc.; {aftertest} corresponds to those
tests for termination speci ed by REPEATWHI LE or REPEATUNTI L ; and {updat e} corresponds to that
part that resets the tail, increments the counter, etc. in preparation for the next iteration. {initiali ze},
{finalize}, and {eachti nme} correspond to the operands of FI RST, FI NALLY, and EACHTI ME, if
any.

Note that since { body} aways appears at the top level of the PROG, the user can insert labels in { body} ,
and GO to them from within { body} or from other i.s. operands, eg., (FOR X IN Y FIRST (GO A)
DO (FOO) A (FIE)). However, since { body} isdwimied as a list of forms, the label(s) should be

412

CONDITIONALS AND ITERATIVE STATEMENTS

added to the dummy variables for the iterative statement in order to prevent their being dwimi ed and
possibly ‘‘corrected’’, e.g., (FOR X IN Y BIND A FIRST (GO A) DO (FOO A (FIE)). The user
can also GO to $$LP, $31 TERATE, or $$OUT, or explicitly set $$VAL.

4.2.6 Errorsin lterative Statements

An error will be generated and an appropriate diagnostic printed if any of the following conditions hold:
1. Operator with null operand, i.e., two adjacent operators, asin FOR X IN Y UNTIL DO - -

2. Operand consisting of more than one form (except as operand to FI RST, FI NALLY, or one of the
i.stypes), eg., FOR X IN Y (PRINT X) COLLECT --.

3. IN, ON, FROM TO, or BY appear twice in same i.s.

4. Both Nand ON used on same i.v.

5. FROMor TO used with I N or ON on same i.v.

6. More than one i.stype, eg., aDOand a SUM

In 3, 4, or 5, an error is not generated if an intervening AS occurs.
If an error occurs, the i.s. is left unchanged.

If no DO, COLLECT, JO N or any of the other i.stypes are speci ed, CLISP will rst attempt to nd an
operand consisting of more than one form, eg., FOR X IN Y (PRINT X) WHEN ATOM X, and in this
case will insert a DO after the rst form. (In this case, condition 2 is not considered to be met, and an
error is not generated.) If CLISP cannot nd such an operand, and no WHI LE or UNTI L appears in the
i.s., a warning message is printed: NO DO, COLLECT, OR JO N. followed by the i.s.

Similarly, if no terminating condition is detected, i.e., no | N, ON, WHI LE, UNTI L, TO, or a RETURN or GO,
a warning message is printed: 3 POSSI BLE NON- TERM NATI NG | TERATI VE STATEMENT: followed
by the iterative statement. However, since the user may be planning to terminate the i.s. via an error,
control- E, or a RETFROM from a lower function, the i.s. is still translated.

427 Dening New lterative Statement Operators

The following function is available for dening new or redening existing iterative statement operators:

(1.S.OPR NAME FORM OTHERS EVALFL G) [Function]
NAME is the name of the new i.sopr. If FORM is a list, NaVvE will be a new
i.s.type (see page 4.6), and FORM its body.

OTHERS is an (optional) list of additional i.s. operators and operands which will
be added to the i.s. a the place where NavE appears. If FORM iS NI L, NAME is
anew i.sopr dened entirely by OTHERS .

Sunless the value of CLI SPI . S. GAG is T (initialy NI L).

4.13

Dening New lterative Statement Operators

In both FORM and OTHERS |, the atom $$VAL can be used to reference the value to
be returned by the i.s, | . V. to reference the current i.v., and BODY to reference
NAME 's operand. In other words, the current i.v. will be substituted for al
instances of 1.V. and NaME 's operand will be substituted for al instances of
BODY throughout FORM and OTHERS .

If EVALFL G is T, FORM and OTHERS are evaluated at trandation time, and their
values used as described above. LSTVARS is a list of dummy variable names
used by the iterative statement translator. If the user wishes to obtain a dummy
variable for use in trandation, and be sure it does not clash with a dummy variable
already used by some other i.s. operators, he can use CAR of LSTVARS, and reset
LSTVARS to (CDR LSTVARS) .

If NAME was previously an i.sopr and is being redened, the message (NAME
REDEFI NED) will be printed (unless DFNFLG= T), and al expressions using the
i.sopr Nave that have been trandated will have their translations discarded.

For example, for COLLECT, ForRM would be (SETQ $$VAL (NCONC1 $$VAL BODY)).

For SUM Forv would be ($$VAL_$$VAL+BODY) 4 orHERs would be (FI RST $$VAL_0) .

For NEVER, Forv would be (I F BODY THEN $$VAL _NIL (GO $$QUT))) .5

For THEREI S, Forv would be (1 F BODY THEN $$VAL |.V. (GO $$OUT)) .

Examples:

To dene RCOLLECT, a version of COLLECT which uses CONS instead of NCONC1 and then reverses the

list of values:

(1.S.OPR ’ RCOLLECT
' ($$VAL_(CONS BODY $$VAL))
' (FINALLY (RETURN (DREVERSE $$VAL)))]

To dene TCOLLECT, a version of COLLECT which uses TCONC:

(1.S.OPR ' TCOLLECT
" (TOONC $$VAL BODY)
" (FIRST $$VAL_(CONS) FINALLY (RETURN (CAR $$VAL)))]

To dene PRODUCT:

(1.S. OPR ' PRODUCT
' ($$VAL_SVAL* BODY)
' (FIRST $$VAL_1)]

To dene UPTO, a version of TO whose operand is evaluated only once:

4$$VAL+BODY is used instead of (1 PLUS $$VAL BODY) so that the choice of function used in the
trandation, i.e, | PLUS, FPLUS, or PLUS, will be determined by the declarations then in eect.

5(1 F BODY THEN RETURN NI L) would exit from the i.s. immediately and therefore not execute the
operations speci ed via a FI NALLY (if any).

4.14

CONDITIONALS AND ITERATIVE STATEMENTS

(1.S.OPR ' UPTO
NI L
' (BIND $$FOO BODY TO $$FQO)]

To redene TO so that instead of recomputing FORM each iteration, a variable is bound to the value of
FORM , and then that variable is used:

(1.S.OPR ' TO
NI L
' (BIND $$END FI RST $$END BODY ORI G NAL TO $$END)]

Note the use of ORI G NAL to redene TO in terms of its origina denition. ORI G NAL is intended
for use in redening built-in operators, since their denitions are not accessible, and hence not directly
modi able. Thus if the operator had been dened by the user vial.S. OPR, ORI G NAL would not
obtain its original denition. In this case, one presumably would simply modify the i.s.opr denition.

|.S. OPR can aso be used to dene synonyms for aready dened i.s. operators by caling | . S. OPR
with FORM an atom, eg., (I.S. OPR ' WHERE ' WHEN) makes WHERE be the same as WHEN. Similarly,
following (I.S. OPR ' | STHERE ' THEREI S) , one can write (| STHERE ATOM I N Y), and following
(1.S.OPR "FIND "FOR) and (I.S. OPR ' SUCHTHAT ' THEREI S) , one can write (FIND X IN Y
SUCHTHAT X MEMBER Z). In the current system, WHERE is synonymous with WHEN, SUCHTHAT and
| STHERE with THEREI S, FI ND with FOR, and THRU with TO.

If FORM isthe atom MODI FI ER, then NaME isdened asan i.s.opr which can immediately follow another
i.s. operator (i.e., an error will not be generated, as described previously). Nave will not terminate the
scope of the previous operator, and will be stripped o when DW M FY is called on its operand. OLD
is an example of a MODI FI ER type of operator. The MODI FI ER feature alows the user to dene i.s.
operators similar to OLD, for use in conjunction with some other user dened i.s.opr which will produce
the appropriate trandation.

The le package command |.S. OPRS(page 11.25) will dump the denition of i.soprs. (1.S. OPRS
PRODUCT UPTO) as a le package command will print suitable expressions so that these iterative
statement operators will be (re)dened when the le is loaded.

4.15

Dening New lterative Statement Operators

4.16

