
CHAPTER 8

THE PROGRAMMER’S ASSISTANT

8.1 INTRODUCTION

With any interactive computer language, the user interacts with the system through an ‘‘executive’’, which
interprets and executes typed- in commands. In most implementations of Lisp, the executive is a simple
‘‘read-eval-print’’ loop, which repeatedly reads a Lisp expression, evaluates it, and prints out the value of
the expression. Interlisp has an executive which allows a much greater range of inputs, other than just
regular Interlisp expressions.

In particular, the Interlisp executive implements a facility known as the ‘‘programmer’s assistant’’ (or
‘‘p.a.’’). The central idea of the programmer’s assistant is that the user is addressing an active intermediary,
namely his assistant. Normally, the assistant is invisible to the user, and simply carries out the user’s
requests. However, the assistant remembers what the user has done, so the user can give commands to
repeat a particular operation or sequence of operations, with possible modi�cations, or to undo the e�ect
of speci�ed operations. Like DWIM, the programmer’s assistant embodies an approach to system design
whose ultimate goal is to construct an environment that ‘‘cooperates’’ with the user in the development of
his programs, and frees him to concentrate more fully on the conceptual di�culties and creative aspects
of the problem at hand.

We will �rst discuss the various input formats, then the use of commands to the programmer’s assistant,
and �nally how to modify the programmer’s assistant for specialized uses.

8.1.1 Input Formats

The Interlisp executive accepts inputs in the following formats:

(1) A single litatom, followed by a carriage- return. The value of the litatom is returned. For the purposes
of this discussion, we will call this EVALV-format.

(2) A regular Interlisp expression, beginning with a left parenthesis or square bracket and terminated by
a matching right parenthesis or square bracket. A right bracket matches any number of left parentheses,
back to the last left bracket or the entire expression. Such an input is known as an ‘‘EVAL-format’’ input,
since the form is simply passed to for evaluation. Notice that it is not necessary to type a carriage
return at the end of such a form; Interlisp will supply one automatically. If a carriage- return is typed
before the �nal matching right parenthesis or bracket, it is treated as a space, and input continues. The
following examples are all interpreted the same:

8.1

EVAL

_(PLUS 1 (TIMES 2 3))

_(PLUS 1 (TIMES 2 3]

Examples

(3) Often, the user, typing at the keyboard, calls functions with constant argument values, which would
have to be quoted if the user typed it in ‘‘EVAL-format’’. For convience, if the user types a litatom
immediately followed by a list form, the litatom is ed to the elements within the list, unevaluated.
For example, typing is equivalent to typing , and is
equivalent to . The input is terminated by the matching right parenthesis or
bracket. We will call such input ‘‘APPLY-format.’’ APPLY- format input is useful in some situations, but
note that it may produce unexpected results when an function is called that explicitly evaluates
its arguments. For example, typing will set to the of , not to itself.

However, there are times when a user does not want to terminate the input when a closing parenthesis
is typed � especially when giving a command to the programmer’s assistant. This leads us to our fourth
format.

(4) A sequence of litatoms and lists a litatom and a space (to distinguish it from APPLY-
format), terminated by a carriage return or an extra right parenthesis or bracket. If a list is terminated
then Interlisp will type a carriage- return and to indicate that further input will be accepted. The
user can type further expressions or terminate the whole expression by a carriage- return.

Once the input is terminated, the programmer’s assistant decides how to evaluate the expression. This
determination relies on a heuristic that says ‘‘If there is only expression, then assume EVALV- format.
If there are two expressions, then assume APPLY- format. If there are three or more expressions, then
assume EVAL- format.’’ The following inputs are examples of this rule:

8.1.2 Examples

So far, we have dealt only with how the executive instructs Interlisp to evaluate input. However, the same
scheme also allows the user to give commands directly to the programmer’s assistant. In fact, in each
of the above cases, it is �rst determined whether the initial litatom is a command to the programmer’s
assistant. If so, the normal lisp evaluation process is bypassed. Note that this means that a function or
variable with the same name as a programmer’s assistant command will not be evaluated (in the normal
lisp sense) if it is the �rst litatom of an expression input to the executive.

The programmer’s assistant facility features the use of memory structures called ‘‘history lists.’’ A history
list is a list of the information associated with each of the individual ‘‘events’’ that have occurred in the

8.2

_(PLUS 1 (TIMES cr

2 3]

APPLY
LOAD(FOO) (LOAD ’FOO) GETPROP(X COLOR)

(GETPROP ’X ’COLOR)

nlambda
SETQ(FOO BAR) FOO value BAR BAR

beginning with

"..."

_FOO<space> cr

same as FOO cr � EVALV- format

_LIST (A B)
... cr

same as LIST(A B) � APPLY- format

_PLUS (TIMES 2 3)
...1 cr

same as (PLUS (TIMES 2 3) 1) � EVAL- format

THE PROGRAMMER’S ASSISTANT

system, where each event corresponds to one user input. Associated with each event on the history list is
the input and its value, plus other optional information such as side-e�ects, formatting information, etc.

The following dialogue, taken from an actual session at the terminal, contains illustrative (but not
necessarily useful) examples and gives the �avor of the programmer’s assistant facility in Interlisp. The
number before each prompt is the ‘‘event number’’ (see page 8.26).

8.3

12_(SETQ FOO 5)
5
13_(SETQ FOO 10)
(FOO reset)
10

The p.a. notices that the user has reset the value of FOO and informs the user.

14_UNDO
SETQ undone.
15_FOO cr

5

This is the �rst example of direct communication with the p.a. The user has said to UNDO the previous
input to the executive.

.

.

.

25_SET(LST1 (A B C))
(A B C)
26_(SETQ LST2 ’(D E F))
(D E F)
27_(FOR X IN LST1 DO (REMPROP X ’MYPROP]
NIL

The user asked to remove the property MYPROP from the atoms A, B, and C. Now lets assume that is not
what he wanted to do, but rather use the elements of LST2.

28_UNDO FOR
FOR undone.

First he undoes the REMPROP, by undoing the iterative statement. Notice the UNDO accepted an
‘‘argument,’’ although in this case UNDO by itself would be su�cient.

29_USE LST2 FOR LST1 IN 27
NIL

The user just instructed to go back to event number 27 and substitute LST2 for LST1 and then reexecute
the expression. The user could have also speci�ed -2 instead of 27 to specify a relative address.

.

.

.

Examples

As stated earlier, the most common interaction with the programmer’s assistant occurs at the top level
read- eval-print loop, or in a break, where the user types in expressions for evaluation, and sees the values
printed out. In this mode, the assistant acts much like a standard Lisp executive, except that before
attempting to evaluate an input, the assistant �rst stores it in a new entry on the history list. Thus if
the operation is aborted or causes an error, the input is still saved and available for modi�cation and/or
reexecution. The assistant also notes new functions and variables to be added to its spelling lists to enable
future corrections. Then the assistant executes the computation (i.e., evaluates the form or applies the
function to its arguments), saves the value in the entry on the history list corresponding to the input, and
prints the result, followed by a prompt character to indicate it is again ready for input.

If the input typed by the user is recognized as a p.a. command, the assistant takes special action.
Commands such as and are immediately performed. Commands that involved reexecution of
previous inputs, such as and , are achieved by computing the corresponding input expression(s)
and then them. The e�ect of this unreading operation is to cause the assistant’s input routine,

, to act exactly as though these expressions were typed in by the user. These expressions are
processed exactly as though they had been typed, except that they are not saved on new and separate
entries on the history list, but associated with the history command that generated them.

The net e�ect of this implementation of the programmer’s assistant is to provide a facility which is easily
inserted at many levels, and embodies a consistent set of commands and conventions for talking about
past events. This gives the user the subjective feeling that a single agent is watching everything he does
and says, and is always available to help.

8.4

47_(PUTHASH ’FOO (MKSTRING ’FOO) MYHASHARRAY)
"FOO"

If MKSTRING was a computationally expensive function (which it is not), then the user might be cacheing
its value for later use.

48_USE FIE FUM FOE FOR FOO IN MKSTRING
"FIE"
"FUM"
"FOE"

The user now decides he would like to redo the PUTHASH several times with di�erent values. He speci�es
the event by ‘‘IN MKSTRING’’ rather than PUTHASH.

49_?? USE

48. USE FIE FUM FOE FOR FOO IN MKSTRING
_(PUTHASH (QUOTE FIE) (MKSTRING (QUOTE FIE)) MYHASHARRAY)
"FIE"
_(PUTHASH (QUOTE FUM) (MKSTRING (QUOTE FUM)) MYHASHARRAY)
"FUM"
_(PUTHASH (QUOTE FOE) (MKSTRING (QUOTE FOE)) MYHASHARRAY)
"FOE"

Here we see the user ask the p.a. (using the ?? command) what it has on its history list for the last input
to the executive. Since the event corresponds to a programmer’s assistant command that evaluates several
forms, these forms are saved as the input, although the user’s actual input, the p.a. command, is also saved
in order to clarify the printout of that event.

UNDO ??
REDO USE

unreading
LISPXREAD

THE PROGRAMMER’S ASSISTANT

8.2 PROGRAMMER’S ASSISTANT COMMANDS

The programmer’s assistant recognizes a number of commands, which usually refer to past events on the
history list. These commands are treated specially; for example, they may not be put on the history list.

Note: If the user de�nes a function by the same name as a p.a. command, a warning message is printed
to remind him that the p.a. command interpretation will take precedence for type- in.

All programmer’s assistant commands use the same conventions and syntax for indicating which event
or events on the history list the command refers to, even though di�erent commands may be concerned
with di�erent aspects of the corresponding event(s), e.g., side-e�ects, value, input, etc. Therefore, before
discussing the various p.a. commands, the following section describes the types of event speci�cations
currently implemented.

8.2.1 Event Speci�cation

An event address identi�es one event on the history list. It consists of a sequence of ‘‘commands’’ for
moving an imaginary cursor up or down the history list, much in the manner of the arguments to the

break command (see page 9.3). The event identi�ed is the one ‘‘under’’ the imaginary cursor when
there are no more commands. (If any command fails, an error is generated and the history command is
aborted.) For example, the event address refers to the event with event number 42, refers to
the �rst event (searching back from event 42) whose input contains the word , and refers
to the event preceeding that event. Usually, an event address will contain only one or two commands.

Most of the event address commands perform searches for events which satisfy some condition. Unless
the command is given (see below), this search always goes backwards through the history list, from the
most recent event speci�ed to the oldest. Note that each search skips the current event. For example, if

refers to event , will refer to some event before event , even if there is a in event
.

The event address commands are interpreted as follows:

(an integer) If is the �rst command in an event address, refers to the event with event number
. Otherwise, refers to the event events forward (in direction of increasing event

number). If is negative, it always refers to the event - events backwards.

For example, refers to the previous event, refers to event number 42 (if
the �rst command in an event address), and refers to the event with event
number 45.

Speci�es the last event with an -format input whose matches
.

Note: There must not be a space between and .

Speci�es that the next search is to go forward instead of backward. If given as the
�rst event address command, the next search begins with last (oldest) event on the
history list.

Speci�es that the next object in the event address is to be searched for, regardless

8.5

@

42 42 FOO
FOO 42 FOO -1

_

FOO FOO FIE FIE

-1 42
42 3

_ APPLY function

_

_

F

N N

N

N N

N N

N N

LITATOM

LITATOM

LITATOM

Event Speci�cation

of what it is. For example, looks for an event containing .

Speci�es that the next object (presumably a pattern) is to be matched against the
of events, instead of the inputs.

Speci�es the event last located.

Speci�es an event for which the function returns true. should be a
function of two arguments, the input portion of the event, and the event itself. See
page 8.25 for a discussion of the format of events on the history list.

Any other event address command speci�es an event whose input contains an
expression that matches as described in page 17.13.

The matching is performed by the function (page 8.33), which is
initially de�ned to call but can be advised or rede�ned for specialized
applications.

Note: Symbols used below of the form refer to event addresses, described above. Since an
event address may contain multiple words, the event address is parsed by searching for the words which
delimit it. For example, in , the symbol corresponds
to all words between and in the event speci�cation, and to all words from
to the end of the event speci�cation.

Speci�es the sequence of events from the event with address through
the event with address . For example, speci�es
events 47, 48, and 49. can be more recent than . For
example, speci�es events 49, 48, and 47 (note reversal of
order).

Same as but does not include event .

Same as . For example, if the current event is
number 53, then speci�es events 49, 50, 51, and 52.

Same as . For example, if the current event is
number 53, then speci�es events 52, 51, 50, and 49 (note reversal of
order).

Same as .

Speci�es all events satisfying . For example, ,
.

empty If nothing is speci�ed, it is the same as specifying .

Note: In the special case that the last event was an , it is the same as
specifying . For example, if the user types , he can then
type , followed by .

8.6

F -2 -2

=
values

\

SUCHTHAT

HISTORYMATCH
EDITFINDP

FROM THRU
FROM THRU THRU

FROM THRU
THRU

FROM 47 THRU 49

FROM 49 THRU 47

FROM TO
TO

THRU

FROM FROM THRU -1
FROM 49

THRU FROM -1 THRU
THRU 49

TO FROM -1 TO

ALL ALL LOAD ALL
SUCHTHAT FOO

-1

UNDO
-2 (NCONC FOO FIE)

UNDO USE NCONC1

PRED PRED PRED

PAT

PAT

EventAddressi

EventAddress1 EventAddress2 EventAddress1
EventAddress2

EventAddress1 EventAddress2
EventAddress1 EventAddress2

EventAddress1
EventAddress2
EventAddress1 EventAddress2

EventAddress1 EventAddress2
EventAddress1 EventAddress2

EventAddress2

EventAddress1 EventAddress1

EventAddress2 EventAddress2

EventAddress2 EventAddress2

EventAddress1 EventAddress1

THE PROGRAMMER’S ASSISTANT

���
Each of the is an event speci�cation. The lists of events are concatenated.
For example, is the same as

.

If is the name of a command de�ned via the command (page 8.12),
speci�es the event(s) de�ning .

is an event speci�cation interpreted as above, but with respect to the
archived history list (see page 8.13).

If no events can be found that satisfy the event speci�cation, spelling correction on each word in the event
speci�cation is performed using as the spelling list. For example,

will work correctly. If the event speci�cation still fails to specify any events after spelling correction,
an error is generated.

8.2.2 Commands

All programmer’s assistant commands can be input as list forms, or as lines (see page 8.30). For example,
typing and are equivalent.

is used to denote an event speci�cation. Unless speci�ed otherwise, omitting is the
same as specifying = . For example, and are the same.

[Prog. Asst. Command]
Redoes the event or events speci�ed by . For example,
redoes the last three events.

[Prog. Asst. Command]
Redoes the event or events speci�ed by times. For example,

redoes the last event ten times.

[Prog. Asst. Command]
Redoes the speci�ed events as long as the value of is true. is evaluated
before each iteration so if its initial value is , nothing will happen.

[Prog. Asst. Command]
Same as .

[Prog. Asst. Command]
Same as . The event(s) are repeated until an error occurs,
or the user types control- E or control- D.

[Prog. Asst. Command]
[Prog. Asst. Command]

Same as .

For all history commands that perform multiple repetitions, the variable is initialized to 0 and
incremented each iteration. If the event terminates gracefully, i.e., is not aborted by an error or control- D,
the number of iterations is printed.

8.7

AND AND AND

FROM 30 THRU 32 AND 35 THRU 37 30 AND 31
AND 32 AND 35 AND 36 AND 37

@ NAME

@@

LISPXFINDSPLST REDO 3 THRUU
6

REDO 5 cr (REDO 5)

-1 REDO REDO -1

REDO
REDO FROM -3

REDO TIMES
REDO 10

TIMES

REDO WHILE

NIL

REDO UNTIL
REDO WHILE (NOT)

REPEAT
REDO WHILE T

REPEAT WHILE
REPEAT UNTIL

REDO

REDOCNT

EventSpec1 EventSpec2 EventSpecN
EventSpeci

LITATOM LITATOM

LITATOM

EventSpec EventSpec

EventSpec EventSpec

EventSpec

EventSpec

EventSpec

EventSpec N

EventSpecN

EventSpec FORM

FORM FORM

EventSpec FORM

EventSpec FORM

EventSpec

EventSpec

EventSpec FORM

EventSpec FORM

Commands

[Prog. Asst. Command]
Similar to except sets (page 9.11) so that any errors that occur
while executing will cause breaks.

[Prog. Asst. Command]
Substitutes for in , and redoes the result. Substitution is
done by (page 17.57), and is carried out as described below. and

can include non- atomic members.

For example, will
substitute for every occurrence of in the previous two events, and
substitute for every occurrence of , and reexecute them. Note that
these substitutions do not change the information saved about these events on the
history list.

Any expression to be substituted can be preceded by a , meaning that the
expression is to be substituted as a , e.g., followed by

will produce , and
will produce .

If is omitted, the �rst member of is used for . For
example, is equivalent to

. The is inserted to handle correctly the case where the �rst member of
could be interpreted as an event address command.

[Prog. Asst. Command]
If are omitted, and the event referred to was itself a command, the
arguments and expression substituted into are the same as for the indicated
command. In e�ect, this command is thus a continuation of the previous
command. For example, following , typing
is equivalent to .

If are omitted and the event referred to was a command, substitution
is for the ‘‘operator’’ in that command. For example followed by

is equivalent to .

If is omitted, it is the same as specifying .

���
[Prog. Asst. Command]

More general form of command. See description of the substitution algorithm
below.

Note: The command is parsed by a small �nite state parser to distinguish the
expressions and arguments. For example,

will be parsed correctly.

Every command involves three pieces of information: the expressions to be substituted, the arguments
to be substituted for, and an event speci�cation, which de�nes the input expression in which the substitution
takes place. If the command has the same number of expressions as arguments, the substitution

8.8

RETRY
REDO HELPCLOCK

USE FOR IN

ESUBST

USE LOG (MINUS X) FOR ANTILOG X IN -2 AND -1
LOG ANTILOG
(MINUS X) X

!
segment LIST(A B C) USE

! (X Y Z) FOR B LIST(A X Y Z C) USE ! NIL FOR B
LIST(A C)

IN
USE PUTD FOR @UTD USE PUTD FOR @UTD IN F

@UTD F

USE IN
USE

USE
USE USE

USE X FOR Y IN 50 USE Z IN -1
USE Z FOR Y IN 50

not USE
ARGLIST(FF)

USE CALLS IN -1 USE CALLS FOR ARGLIST IN -1

IN IN -1

USE FOR AND AND FOR IN

USE

USE
USE FOR FOR AND AND AND FOR

FOR

USE

USE

EventSpec

EventSpec

EXPRS AR GS EventSpec

EXPRS AR GS EventSpec

EXPRS

AR GS

EventSpec AR GS EventSpec

AR GS

EXPRS EventSpec

AR GS

AR GS

EventSpec

EXPRS 1 AR GS 1 EXPRS N AR GS N EventSpec

1

1

THE PROGRAMMER’S ASSISTANT

procedure is straightforward. For example, means substitute for and for ,
and is equivalent to . However, the command also permits distributive
substitutions, for substituting several expressions for the same argument. For example,

means �rst substitute for then substitute for (in a new copy of the expression), then substitute
for . The e�ect is the same as three separate commands. Similarly,

is equivalent to , followed by
, followed by . also corresponds

to three substitions, the �rst with for and for , the second with for , and for , and the third
with for , and again for . However, is ambiguous and will
cause an error. Essentially, the command operates by proceeding from left to right handling each
‘‘ ’’ separately. Whenever the number of expressions exceeds the number of expressions available,
multiple expressions are generated. Thus means substitute for at the
same time as substituting for , then in another copy of the indicated expression, substitute for
and for . Note that this is also equivalent to .

[Prog. Asst. Command]
Similar to except substitutes for the (�rst) .

For example, followed by is equivalent to
.

Note: In the following discussion, is used to represent the character <esc>, since this is how <esc> is
echoed.

[Prog. Asst. Command]
is a special form of the command for conveniently specifying

substitutions in litatoms or strings. In addition, it has a number of useful properties
in connection with events that involve errors (see below).

Equivalent to , which will do a character
substitution of the characters in for the characters in .

For example, if the user types , he can then type
to perform . Note that

would perform .

[Prog. Asst. Command]
[Prog. Asst. Command]
[Prog. Asst. Command]
[Prog. Asst. Command]

Abbreviated forms of the command: the same as ,
which changes s to s.

does event location the same as the command, i.e., if is not speci�ed, searches for
. However, unlike , can only be used to specify one substitution at a time. After �nds the event,

it looks to see if an error was involved in that event, and if the indicated character substitution can be
performed in the object of the error message, called the o�ender. If so, assumes the substitution refers

Except when one of the arguments and one of the expressions are the same, e.g., ,
or . This situation is noticed when parsing the command, and handled
correctly.

8.9

USE X Y FOR U V X U Y V
USE X FOR U AND Y FOR V USE

USE A B C FOR
X A X B X
C X USE USE A B C FOR D AND X
Y Z FOR W USE A FOR D AND X FOR W USE B FOR D AND Y FOR
W USE C FOR D AND Z FOR W USE A B C FOR D AND X FOR Y

A D X Y B D X Y
C D X Y USE A B C FOR D AND X Y FOR Z

USE
AND

USE USE A B C D FOR E F A E
B F C E

D F USE A C FOR E AND B D FOR F

...
USE operand

EXPRP(FOO) ... FIE FUM USE FIE
FUM FOR FOO

$

$ FOR IN
$ USE character

USE $ $ FOR $ $ IN

MOVD(FOO FOOSAVE T) $ FIE
FOR FOO IN MOVD MOVD(FIE FIESAVE T) USE FIE
FOR FOO MOVD(FIE FOOSAVE T)

$ IN
$ TO IN
$ = IN
$ -> IN

$ $ FOR IN

$ USE IN $
USE $ $

$

USE X Y FOR Y X
USE X FOR Y AND Y FOR X

VARS

X Y EventSpec

X Y EventSpec

X Y

Y X EventSpec

Y X EventSpec

Y X EventSpec

Y X EventSpec

X Y EventSpec

Y X

EventSpec

Y

Commands

to the o�ender, performs the indicated character substitution in the o�ender only, and then substitutes the
result for the original o�ender throughout the event. For example, suppose the user types

causing a error message. The user can now type
, which will change to , but change or .

If an error did occur in the speci�ed event, the user can also omit specifying the object of the substitution,
, in which case the o�ender itself is used. Thus, the user could have corrected the above example by

simply typing . Since is used for performing the substitution (see page 17.57), can
be used in to refer to the characters in . For example, if the user types ,
causing the error , he can request the �le to be loaded from ’s
directory by simply typing . This is equivalent to performing on
the event, and therefore replaces by .

Note that never for an error. Thus, if the user types causing a
error, types , and types , will complain that there is

no error in . In this case, the user would have to type , or
(which would cause a search for).

Note also that operates on , not on programs. If the user types , and within the call to
gets a error, he repair this by . will type

.

[Prog. Asst. Command]
Envokes the default program editor (Dedit or the teletype editor) on a copy of the
input(s) for . Whenever the user exits via , the result is unread and
reexecuted exactly as with .

is provided for those cases when the modi�cations to the input(s) are not simple substitutions of the
type that can be speci�ed by . For example, if the default editor is the teletype editor, then:

The user can also specify the edit command(s) to , by typing followed by the command(s) after
the event speci�cation, e.g., . In this case, the editor will not type , or wait for an

after executing the commands.

Note: calls the editor on the ‘‘input sequence’’ of an event, adjusting the editor so it is initially
editing the expression typed. However, the entire input sequence is being edited, so it is possible to give
editor commands that examine this structure further. For more information on the format of an event’s
input, see page 8.25.

8.10

(PRETTYDEF
FOOFNS ’FOO FOOOVARS) U.B.A. FOOOVARS $
OO O FOOOVARS FOOVARS not FOOFNS FOO

$ FOOVARS ESUBST $
LOAD(PRSTRUC PROP)

FILE NOT FOUND PRSTRUC LISP
$ <LISP>$ (R PRSTRUC <LISP>$)

PRSTRUC <LISP>PRSTRUC

$ searches LOAD(PRSTRUC PROP) FILE
NOT FOUND CLOSEALL() then $ <LISP>$ LISPX

CLOSEALL() $ <LISP>$ IN LOAD $ PRS
<LISP>PRS PRS

$ input FOO() FOO
U.D.F. CONDD cannot $ COND LISPX CONDD NOT FOUND

IN FOO()

FIX

OK
REDO

FIX
USE

_(DEFINEQ FOO (LAMBDA (X) (FIXSPELL SPELLINGS2 X 70]
INCORRECT DEFINING FORM
FOO
_FIX
EDIT
*P
(DEFINEQ FOO (LAMBDA & &))
*(LI 2)
*P
(DEFINEQ (FOO &))
*OK
(FOO)
_

LISPX -
FIX - (LI 2) EDIT

OK

FIX

Y

X Y

EventSpec

EventSpec

THE PROGRAMMER’S ASSISTANT

[Prog. Asst. Command]
Prints the speci�ed events from the history list. If is omitted, prints
the entire history list, beginning with most recent events. Otherwise prints only
those events speci�ed in (in the order speci�ed). For example, ,

, etc.

For each event speci�ed, prints the event number, the prompt, the input line(s),
and the value(s). If the event input was a p.a. command that ‘‘unread’’ some other
input lines, the p.a. command is printed without a preceding prompt, to show that
they are not stored as the input, and the input lines are printed with prompts.

Events are initially stored on the history list with their value �eld equal to the
character ‘‘bell’’ (control- G) . Thefore, if an operation fails to complete for any
reason, e.g., causes an error, is aborted, etc., will print a bell as its ‘‘value’’.

commands are not entered on the history list, and so do not a�ect relative
event numbers. In other words, an event speci�cation of typed following a
command will refer to the event immediately preceding the command.

is implemented via the function , page 8.35, which can also be
called directly by the user. Printing is performed via the function (page
6.17), so that if the value of = , events will be prettyprinted.

[Prog. Asst. Command]
Undoes the side e�ects of the speci�ed events. For each event undone,
prints a message: , etc. If nothing is undone
because nothing was saved, types . If nothing was undone
because the event(s) were already undone, types .

If is not given, searches back for the last event that contained side
e�ects, was not undone, and itself was not an command. Note that the
user can undo commands themselves by specifying the corresponding event
address, e.g., or .

In order to restore all pointers correctly, the user should events in the reverse order from which
they were executed. For example, to undo all the side e�ects of the last �ve events, perform

, . Undoing out of order may have unforseen e�ects if the operations
are . For example, if the user performed , followed by

, and then undoes the , he will also have undone the .
If he then undoes the , he will cause the to reappear, by virtue of restoring

to its state before the execution of . For more details, see page 8.23.

��� [Prog. Asst. Command]
Each is a pattern that is matched to a message printed by DWIM in the event(s)
speci�ed by . The side e�ects of the corresponding DWIM corrections,
and only those side e�ects, are undone.

For example, if DWIM printed the message ,
then or would undo the correction.

Some portions of the messages printed by DWIM are strings, e.g., the message
is printed by printing and then . Therefore, if

8.11

??
??

??
?? -1

?? 10 THRU 15

??

??

??
-1 ??

??

?? PRINTHISTORY
SHOWPRIN2

SYSPRETTYFLG T

UNDO
UNDO

RPLACA UNDONE REDO UNDONE
UNDO NOTHING SAVED

UNDO ALREADY UNDONE

UNDO
UNDO

UNDO
UNDO -7 UNDO UNDO

UNDO
UNDO

THRU -5 not UNDO FROM -5
dependent (NCONC1 FOO FIE) (NCONC1 FOO

FUM) (NCONC1 FOO FIE) (NCONC1 FOO FUM)
(NCONC1 FOO FUM) FIE

FOO (NCONC1 FOO FUM)

UNDO :

PRINTT [IN FOO] -> PRINT
UNDO : PRINTT UNDO : PRINT

FOO UNSAVED FOO " UNSAVED"

EventSpec

EventSpec

EventSpec

EventSpec

EventSpec

EventSpec X 1 X N
X i

EventSpec

Commands

the user types , the DWIM correction will not be found. He
should instead type or (<esc> <esc>,
see R command in editor, page 17.35).

[Prog. Asst. Command]
Saves the event(s) (including side e�ects) speci�ed by on the property list
of (under the property). For example,

. commands are undoable.

Events saved on a litatom can be retrieved with the event speci�cation .
For example, , , etc.

Commands de�ned by can also be typed in directly as though they were
built- in commands, e.g., is equivalent to . However, if is
the name of a variable, it would be evaluated, i.e., would return the value
of .

Commands de�ned by can also be de�ned to take arguments:

��� [Prog. Asst. Command]
��� [Prog. Asst. Command]

The arguments are interpreted the same as the arguments for a command.
When is invoked, the argument values are substituted for ���
using the same substitution algorithm as for .

is equivalent to . In either case, if
is invoked arguments, an error is generated.

For example, following the event , the user types
. Then typing would cause

to be executed, i.e., would be equivalent to typing
. Typing would cause two ’s to be executed.

Note that ’s and ’s can also be employed the same as with . For example, if following

the user performed , then would perform the indicated two
operations with replaced by .

[Prog. Asst. Command]
Retrieves and reenters on the history list the events named by . Causes
an error if was not named by a command.

For example, if the user performs , and at some time later types
, 6 events will be recorded on the history list (whether or not the corresponding events have been

forgotten yet). Note that does reexecute the events, it simply retrieves them. The user
can then , , , etc. any or all of these events. Note that the user can combine the e�ects
of a and a subsequent history command in a single operation, e.g., is equivalent
to , followed by an appropriate . Actually, is better than
followed by since in the latter case, the corresponding events would be entered on the history list

, once for the and once for the . Note that and are permitted.

8.12

UNDO : UNSAVED
UNDO : FOO UNDO : $UNSAVED$ UNSAVED

NAME

HISTORY NAME FOO 10 THRU
15 NAME

@
?? @ FOO REDO @ FOO

NAME
FOO cr REDO @ FOO FOO

FOO cr

FOO

NAME

NAME () :
NAME :

USE

USE

NAME FOO NAME FOO :
FOO with

(PUTD ’FOO (COPY (GETPROP ’FIE ’EXPR)))
NAME MOVE FOO FIE : PUTD MOVE TEST1 TEST2 (PUTD ’TEST1
(COPY (GETPROP ’TEST2 ’EXPR))) USE TEST1
TEST2 FOR FOO FIE IN MOVE MOVE A B C D PUTD

! $ USE

_PREPINDEX(<MANUAL>14LISP.XGP)
_FIXFILE(<MANUAL>14LISP.XGPIDX)

NAME FOO 14 : -2 AND -1 FOO 15
14 15

RETRIEVE

NAME

NAME FOO 10 THRU 15 RETRIEVE
FOO new

RETRIEVE not
REDO UNDO FIX

RETRIEVE REDO FOO
RETRIEVE FOO REDO REDO FOO RETRIEVE

REDO
twice RETRIEVE REDO UNDO FOO ?? FOO

LITATOM EventSpec

EventSpec

LITATOM

LITATOM

LITATOM AR G 1 AR G N EventSpec

LITATOM AR G 1 AR G N EventSpec

AR G i
LITATOM AR G 1 AR G N

EventSpec EventSpec

LITATOM

LITATOM

LITATOM

THE PROGRAMMER’S ASSISTANT

[Prog. Asst. Command]
Undoes the e�ects of the events named by .

[Prog. Asst. Command]
Undoes a .

and provide a convenient way of �ipping back and forth between two states, namely
the state a speci�ed event or events were executed, and that state execution. For example, if
the user has a complex data structure which he wants to be able to interrogate before and after certain
modi�cations, he can execute the modi�cations, name the corresponding events with the command,
and then can turn these modi�cations o� and on via or commands. Both and

are no-ops if the was already in the corresponding state; both generate errors if
was not named by a command.

The alternative to and for repeated switching back and forth involves typing ,
of the , of that etc. At each stage, the user would have to locate the correct event to undo,
and furthermore would run the risk of that event being ‘‘forgotten’’ if he did not switch at least once per
time- slice.

Note: Since , , , , and are recorded as inputs they can be referenced
by , , etc. in the normal way. However, the user must again remember that the context in
which the command is reexecuted is di�erent than the original context. For example, if the user types

, then types , the input that will be reread will be
as was intended, but both and , will refer to the

most recent event containing those atoms, namely the event consisting of
.

[Prog. Asst. Command]
Records the events speci�ed by on a permanent history list. This history
list can be referenced by preceding a standard event speci�cation with . For
example, prints the archived history list, will recover the
corresponding event from the archived history list and redo it, etc.

The user can also provide for automatic archiving of selected events by appropriately
de�ning , or by putting the property , value , on the
event. Events that are referenced by history commands are automatically marked
for archiving in this fashion (See page 8.19).

[Prog. Asst. Command]
Permanently erases the record of the side e�ects for the events speci�ed by .
If is omitted, forgets side e�ects for entire history list.

is provided for users with space problems. For example, if the user has just
performed s, s, s, , s, etc. to release storage,
the old pointers would not be garbage collected until the corresponding events age
su�ciently to drop o� the end of the history list and be forgotten. can
be used to force immediate forgetting (of the side-e�ects only). is not
undoable (obviously).

[Prog. Asst. Command]
Instructs the �le package to ‘‘remember’’ the events speci�ed by . These
events will be marked as changed objects of �le package type , which

8.13

BEFORE

AFTER
BEFORE

BEFORE AFTER
before after

NAME
BEFORE AFTER BEFORE

AFTER
NAME

BEFORE AFTER UNDO UNDO
UNDO UNDO

UNDO NAME RETRIEVE BEFORE AFTER
REDO USE

NAME FOO DEFINEQ THRU COMPILE ... FIE NAME
FIE DEFINEQ THRU COMPILE DEFINEQ COMPILE

NAME FOO DEFINEQ THRU
COMPILE

ARCHIVE

@@
?? @@ REDO @@ -1

ARCHIVEFN *ARCHIVE* T

FORGET

FORGET
SET RPLACA RPLACD PUTD REMPROP

FORGET
FORGET

REMEMBER

EXPRESSIONS

LITATOM

LITATOM

LITATOM

LITATOM

LITATOM LITATOM

EventSpec

EventSpec

EventSpec

EventSpec

EventSpec

EventSpec

EventSpec

Commands

can be written out via the �le package command . For example, after the user
types:

If the user calls , , or , the command
will be constructed by the �le

package and added to the �lecoms indicated by the user, unless the user has
already explicitly added the corresponding expression to some command himself.

Note that ‘‘remembering’’ an event like
will result in a command, because this will save
the current (at the time of the) value for the property,
which may or may not be . Thus, even if there is a command
which saves the property for in some , remem ber ing
this event will still require a
command to appear.

[Prog. Asst. Command]
‘‘Print Property List.’’ Prints out the property list of in a nice format,
with reset to . For example,

is implemented via the function .

[Prog. Asst. Command]
‘‘Print Bindings.’’ Prints the value of with reset to

. If is not bound, does not attempt spelling correction or generate an
error. is implemented via the function .

is also a break command (page 9.5). As a break command, it ascends the stack
and, for each frame in which is bound, prints the frame name and value
of . If typed in to the programmer’s assistant when not at the top level,
e.g. in the editor, a lower , etc., will also ascend the stack as it does
with a break. However, as a programmer’s assistant command, it is primarily used
to examine the top level value of a variable that may or may not be bound, or to
examine a variable whose value is a large list.

[Prog. Asst. Command]
Allows the user to type a line of text without having the programmer’s assistant
process it. Useful when linked to other users, or to annotate a dribble �le (page
6.12).

[Prog. Asst. Command]
Allows the user to evaluate an expression without having the programmer’s assistant

8.14

P

_MOVD?(DELFILE /DELFILE)
DELFILE
_REMEMBER -1
(MOVD? (QUOTE DELFILE) (QUOTE /DELFILE))
_

FILES? MAKEFILES CLEANUP (P (MOVD?
(QUOTE DELFILE) (QUOTE /DELFILE)))

P

(PUTPROP ’FOO ’CLISPTYPE)
not (PROP CLISPTYPE FOO)

MAKEFILE CLISPTYPE
PROP

CLISPTYPE FOO COMS
(P (PUTPROP ’FOO ’CLISPTYPE))

PL

PRINTLEVEL (2 . 3)

_PL +
CLISPTYPE: 12
ACCESSFNS: (PLUS IPLUS FPLUS)

PL PRINTPROPS

PB
PRINTLEVEL (2 .

3)
PB PRINTBINDINGS

PB

USEREXEC PB

;

SHH

EXPRESSION

EXPRESSION

FILE

EXPRESSION

LITATOM

LITATOM

LITATOM

LITATOM

LITATOM

LITATOM

LITATOM

FORM

FORM

THE PROGRAMMER’S ASSISTANT

process it or record it on a history list. Useful when one wants to bypass a
programmer’s assistant command or to keep the evaluation o� the history list.

[Prog. Asst. Command]
(Interlisp- 10) Calls (page 22.21) to descend to lower exec.

Rather than start up a new fork each time the user types , the command
will save the old fork handle upon return from an command, and, if the fork
handle is still active, reuse it for the next command, i.e. an followed
by another is equivalent to an followed by a .

[Prog. Asst. Command]
(Interlisp- 10) Performs to continue the last call to (page
22.21).

[Prog. Asst. Command]
A command that allows the user to type- ahead an inde�nite number of inputs.

The assistant responds to with a prompt character of . The user can now type in an
inde�nite number of lines of input, under protection. The input lines are saved and unread
when the user exits the type- ahead loop with the command (). While in the type- ahead loop,

can be used to print the type- ahead, to edit the type- ahead, and () to erase the last
input (may be used repeatedly). The command may be aborted by ();
control- E simply aborts the current line of input.

For example:

8.15

EXEC
SUBSYS

EXEC EXEC
EXEC

EXEC EXEC
EXEC EXEC CONTIN

CONTIN
(SUBSYS T) SUBSYS

TYPE-AHEAD

TYPE-AHEAD >
ERRORSET

$GO <esc>GO
?? FIX $Q <esc>Q

TYPE-AHEAD $STOP <esc>STOP

_TYPE-AHEAD
>SYSOUT(TEM)
>MAKEFILE(EDIT)
>BRECOMPILE((EDIT WEDIT))
>F
>$Q
\\F
>$Q
\\BRECOMPILE
>LOAD(WEDIT PROP)
>BRECOMPILE((EDIT WEDIT))
>F
>MAKEFILE(BREAK)
>LISTFILES(EDIT BREAK)
>SYSOUT(CURRENT)
>LOGOUT]
>??

>SYSOUT(TEM)
>MAKEFILE(EDIT)
>LOAD(WEDIT PROP)
>BRECOMPILE((EDIT WEDIT))
>F
>MAKEFILE(BREAK)
>LISTFILES(EDIT BREAK)
>SYSOUT(CURRENT)

Commands

Note that type- ahead can be addressed to the compiler, since it uses for input. Type- ahead
can also be directed to the editor, but type- ahead to the editor and to cannot be intermixed.

The following are some useful functions and variables:

[NLambda NoSpread Function]
An nlambda function for obtaining the value of a particular event, e.g.,

, . The value of an event consisting of several operations
is a list of the values for each of the individual operations.

Note: The value �eld of a history entry is initialized to bell (control- G) . Thus a
value of bell indicates that the corresponding operation did not complete, i.e., was
aborted or caused an error (or else it returned bell).

Note: Although the input for is entered on the history list before
is called, still refers to the value of the expression

immediately before the input, because e�ectively backs the
history list up one entry when it retrieves the speci�ed event. Similarly,

will �nd the �rst event before this one that contains a .

[Variable]
The value of the variable is always the value of the last event executed, i.e.

. For example,

If the last event was a multiple event, e.g. , is set to value
of the last of these events. Following a command, is set to value of the last
event printed. In other words, in all cases, is set to the last value printed on
the terminal.

control- U When typed in at any point during an input being read by , permits
the user to edit the input before it is returned to the calling function.

Note: control- N for Interlisp on TOPS- 20.

This feature is useful for correcting mistakes noticed in typing the input is executed, instead of
waiting till after execution and then performing an and a . For example, if the user types

8.16

>LOGOUT]
>FIX
EDIT
*(R BRECOMPILE BCOMPL)
*P
((LOGOUT) (SYSOUT &) (LISTFILES &) (MAKEFILE &) (F) (BCOMPL &)
(LOAD &) (MAKEFILE &) (SYSOUT &))
*(DELETE LOAD)
*OK
>$GO

LISPXREAD
LISPX

(VALUEOF)
(VALUEOF

-1) (VALUEOF _FOO -2)

VALUEOF
VALUEOF (VALUEOF -1)

VALUEOF VALUEOF
(VALUEOF

FOO) FOO

IT
IT

(VALUEOF -1)

_(SQRT 2)
1.414214
_(SQRT IT)
1.189207

REDO -3 THRU -1 IT
?? IT

IT

LISPXREAD

before
UNDO FIX

LINE

THE PROGRAMMER’S ASSISTANT

‘‘ ’’ and at that point notices the missing left parenthesis,
instead of completing the input and allowing the error to occur, and then �xing the input, he can simply
type control- U, and �nish typing normally. Control- U can be typed at any point, even in the middle of
an atom; it simply sets a variable checked by .

When the line is �nished, the editor is called on ��� ,
which the user can then �x. If the user exits from the editor via , the (corrected) expression will be
returned to whoever called exactly as though it had been typed. If the user exits via ,
the expression is returned so that it can be stored on the history list. However it will be executed. In
other words, the e�ect is the same as though the user had typed control- E at exactly the right instant.

Control- U also works for calls to (page 8.30), i.e., for line commands.

8.2.3 P.A. Commands Applied to P.A. Commands

Programmer’s assistant commands that unread expressions, such as , , etc. do not appear in
the input portion of events, although they are stored elsewhere in the event. They do not interfere with
or a�ect the searching operations of event speci�cations. As a result, p.a. commands themselves cannot
be recovered for execution in the normal way. For example, if the user types and
follows this with , he will not produce the e�ect of , but instead will
simply cause to be substituted for in the last event containing a . To produce the desired e�ect, the
user should type . The appearance of the word , or in an event
address speci�es a search for the corresponding programmer’s assistant command. It also speci�es that
the text of the programmer’s assistant command itself be treated as though it were the input. However,
the user must remember that the in which a history command is reexecuted is that of the current
history, not the original context. For example, if the user types , and then
later types , the will refer to the event before the , not before the .

The one exception to the statement that programmer’s assistant commands ‘‘do not interfere with or
a�ect the searching operations of event speci�cations’’ occurs when a p.a. command fails to produce
any input. For example, suppose the user types ,
mispelling the second . This will cause an error, . Since the command did not produce
any input, the user can repair it by typing , without having to specify .
This latter command will invoke a search for , which �nd the bad command. The
programmer’s assistant then performs the indicated substitution, and unreads

. In turn, this command invokes a search for , which, because it
was not typed in but reread, ignores the bad command which was found by the earlier search for

, and which is still on the history list. In other words, p.a. commands that fail to produce input
are visible to searches arising from event speci�cations typed in by the user, but not to secondary event
speci�cations.

In addition, if the most recent event is a history command which failed to produce input, a secondary
event speci�cation will e�ectively back up the history list one event so that relative event numbers for
that event speci�cation will not count the bad p.a. command. For example, suppose the user types

, and after the p.a. types
, the user types . He thus causes the command

to be constructed and unread. In the normal case, would refer
to the last event, i.e., the ‘‘bad’’ command, and to the event before it. However, in this case,
refers to the event before the bad command, and the to the event before that. In short, the caveat
above that ‘‘the user must remember that the context in which a history command is reexecuted is that of

8.17

(DEFINEQ FOO (LAMBDA (X) (FIXSPELL X

LISPXREAD

(DEFINEQ FOO (LAMBDA (X) (FIXSPELL X]
OK

LISPXREAD STOP
not

READLINE

REDO USE

USE A B C FOR D
USE E FOR D USE A B C FOR E

E D D
USE D FOR E IN USE REDO USE FIX

context
USE FOO FOR FIE IN -1

REDO USE -1 REDO USE

USE LOG FOR ANTILOG AND ANTILOG FOR LOGG
LOG LOGG ? USE

USE LOG FOR LOGG IN USE
USE LOGG will USE

USE LOG FOR ANTILOG
AND ANTILOG FOR LOG USE ANTILOG

USE
LOGG

USE LOG FOR ANTILOG AND ANTILOG FOR LOGG IN -2 AND -1 LOGG
? USE LOG FOR LOGG USE LOG FOR ANTILOG AND
ANTILOG FOR LOG IN -2 AND -1 -1

USE -2 -1
USE -2

Changing The Programmer’sAssistant

the current history, not the original context’’ does not apply if the correction is performed immediately.

8.3 CHANGING THE PROGRAMMER’S ASSISTANT

[Function]
Changes the time- slice of the history list to (see page 8.25). If
is , changes both the top level history list and the edit history
list .

Note: The e�ect of the time- slice is gradual: the history list is simply
allowed to grow to the corresponding length before any events are forgotten.

the time- slice will immediately remove a su�cient number of the older
events to bring the history list down to the proper size. However, is
undoable, so that these events are (temporarily) recoverable. Therefore, if the user
wants to recover the storage associated with these events without waiting more
events until the event drops o� the history list, he must perform a

command (page 8.13).

[Variable]
When this variable is set to , the current event number to be printed before each
prompt character. See , page 8.31. is initially .

[Variable]
The value of is a list of expression which are evaluated
each time (page 8.31) is called to print the prompt character. If

is going to print something, it �rst maps down
evaluating each expression under an .

These expressions can access the special variables (the current history
list), (the prompt character to be printed), and , which is what

will print before , if anything. When is ,
will be the event number. The expressions on

can change the shape of a cursor, update a clock, check for mail, etc. or change
what is about to print by resetting and/or . After the
expressions on have been evaluated, is printed
if it is (still) non- , and then is printed, if it is (still) non- .

[Variable]
The value of is a list of expressions that are evaluated under
errorset protection each time (page 8.32) creates a new event. This
happens each time there is an interaction with the user, but not when performing
an operation that is being redone.

The expressions on are presumably executed for e�ect, and
can access the special variables (the current history list), (the current
prompt character), and (the current event which is going
to return).

Note that and together enable bracketing each interaction

8.18

(CHANGESLICE)

NIL LISPXHISTORY
EDITHISTORY

increasing

Decreasing
CHANGESLICE

CHANGESLICE
FORGET

PROMPT#FLG
T

PROMPTCHAR PROMPT#FLG T

PROMPTCHARFORMS
PROMPTCHARFORMS

PROMPTCHAR
PROMPTCHAR PROMPTCHARFORMS

ERRORSET

HISTORY
ID PROMPTSTR

PROMPTCHAR ID PROMPT#FLG T
PROMPTSTR PROMPTCHARFORMS

PROMPTCHAR ID PROMPTSTR
PROMPTCHARFORMS PROMPTSTR

NIL ID NIL

HISTORYSAVEFORMS
HISTORYSAVEFORMS

HISTORYSAVE

HISTORYSAVEFORMS
HISTORY ID

EVENT HISTORYSAVE

PROMPTCHARFORMS HISTORYSAVEFORMS

N HISTOR Y _

HISTOR Y N HISTOR Y

N

THE PROGRAMMER’S ASSISTANT

with the user. These can be used to measure how long the user takes to respond, to use a di�erent
readtable or terminal table, etc.

[Variable]
The value of is a list of forms that are evaluated at each , i.e.
when user types control- D, calls function , or types control- C followed by

.

[Variable]
If the of is , and an event is about to drop o� the end of
the history list and be forgotten, is called as a function with two
arguments: the input portion of the event, and the entire event (see page 8.25
for the format of events). If returns , the event is archived on a
permanent history list (see page 8.13). Note that must be set
and de�ned. is initially and unde�ned.

For example, de�ning as
will keep a record of all calls to .

[Variable]
If the value of is non- , the system automatically marks all events
that are referenced by history commands so that they will be archived when they
drop o� the history list. is initially , so once an event is redone, it
is guaranteed to be saved.

An event is ‘‘marked for archiving’’ by putting the property , value ,
on the event (see page 8.25). The user could do this by means of an appropriately
de�ned (see below).

[Variable]
provides a macro facility that allows the user to de�ne his own

programmer’s assistant commands. It is a list of elements of the form
. Whenever appears as the �rst expression on a line in a

input, the variable is bound to the rest of the line, the event is
recorded on the history list, is evaluated, and ’s value is stored as the
value of the event. Similarly, whenever appears as of a form in a

input, the variable is bound to of the form, the event is
recorded, and is evaluated.

An element of the form is interpreted to mean bind
and evaluate as described above, except do save the event

on the history list.

[Variable]
allows the user to de�ne pro grammer’s assistant com-

mands that re-execute other events. is interpreted the
same as , except that the result of evaluat ing is treated as a list
of expres sions to be , exactly as though the expressions had been retrieved
by a command, or computed by a command. Note that return ing

means noth ing else is done. This provides a mechanism for de�ning
commands which are executed for e�ect only.

8.19

RESETFORMS
RESETFORMS RESET

RESET
START

ARCHIVEFN
value ARCHIVEFN T

ARCHIVEFN

ARCHIVEFN T
ARCHIVEFN both

ARCHIVEFN NIL

ARCHIVEFN (LAMBDA (X Y) (EQ (CAR X) ’LOAD))
LOAD

ARCHIVEFLG
ARCHIVEFLG NIL

ARCHIVEFLG T

ARCHIVE T

LISPXUSERFN

LISPXMACROS
LISPXMACROS

(
) LISPX

LISPXLINE

CAR
LISPX LISPXLINE CDR

(NIL)
LISPXLINE not

LISPXHISTORYMACROS
LISPXHISTORYMACROS

LISPXHISTORYMACROS
LISPXMACROS

unread
REDO USE

NIL LISPX

COMMAND

DEF COMMAND

DEF DEF

COMMAND

DEF

COMMAND DEF

DEF

DEF

Changing The Programmer’sAssistant

Many programmer’s assistant commands, such as , , , etc. are implemented
through or .

Note: De�nitions of commands on or can be saved on �les with
the �le package command (see page 11.24).

[Variable]
When is set to , it is applied as a function to all inputs
not recognized as a programmer’s assistant command, or on or

. If decides to handle this input, it simply
processes it (the event was already stored on the history list before
was called), sets to the value for the event, and returns . The
programmer’s assistant will then know not to call or , and will simply
store into the value slot for the event, and print it. If
returns , or is called in the usual way. Note that
must be both set and de�ned.

is given two arguments: and . is the �rst expression typed,
and is the rest of the line, as read by (page 8.30). For example, if
the user typed , = , and = ; if the user typed

, = , and = ; and if the user typed
, = and = .

By appropriately de�ning (and setting) , the user can with a
minimum of e�ort incorporate the features of the programmer’s assistant into his
own executive (actually it is the other way around). For example,
could be de�ned to parse all input (other than p.a. commands) in an alternative
way. Note that since is called for each input (except for p.a.
commands), it can also be used to monitor some condition or gather statistics.

[Function]
[Function]
[Function]
[Function]
[Function]
[Function]
[Function]

In addition to saving inputs and values, the programmer’s assistant saves most
system messages on the history list. For example, ��� ,

, , output of , , , DWIM
messages, etc. When prints the event, the output is also printed. This facility
is implemented via these functions.

These functions print exactly the same as their non- counterparts. Then,
they put the output on the history list under the property (see
page 8.25).

If is non- , these fuctions do not print, but only put their output on
the history list.

To perform output operations from user programs so that the output will appear
on the history list, the program needs simply to call the corresponding

8.20

RETRIEVE BEFORE AFTER
LISPXMACROS LISPXHISTORYMACROS

LISPXMACROS LISPXHISTORYMACROS
LISPXMACROS

LISPXUSERFN
LISPXUSERFN T

LISPXMACROS
LISPXHISTORYMACROS LISPXUSERFN

LISPXUSERFN
LISPXVALUE T

EVAL APPLY
LISPXVALUE LISPXUSERFN

NIL EVAL APPLY LISPXUSERFN

LISPXUSERFN
READLINE

FOO(A B C) FOO ((A B C))
(FOO A B C) (FOO A B C) NIL FOO
A B C FOO (A B C)

LISPXUSERFN

LISPXUSERFN

LISPXUSERFN

(LISPXPRINT)
(LISPXPRIN1)
(LISPXPRIN2)
(LISPXSPACES)
(LISPXTERPRI)
(LISPXTAB)
(LISPXPRINTDEF)

FILE CREATED (
REDEFINED) (RESET) TIME BREAKDOWN STORAGE

??

LISPX
LISPXPRINT

NIL

LISPX

X LINE X

LINE

X LINE

X LINE

X LINE

X Y Z NODOFL G

X Y Z NODOFL G

X Y Z NODOFL G

X Y Z NODOFL G

X Y Z NODOFL G

X Y Z NODOFL G

EXPR FILE LEFT DEF TAIL NODOFL G

FN

VAR

NODOFL G

THE PROGRAMMER’S ASSISTANT

printing function.

[Function]
The function is available to permit the user to de�ne additional

printing functions. If the user has a function that takes three or fewer
arguments, and the second argument is the �le name, he can de�ne a
printing function by simply giving the de�nition of ,
for example, with . is
de�ned to look back on the stack, �nd the name of the calling function, strip o�
the leading ‘‘ ’’, perform the appropriate saving information, and then call
the function to do the actual printing.

[Variable]
If = , the printing functions will not store their output
on the history list. is initially .

8.4 STATISTICS

The programmer’s assistant keeps various statistics about system usage, e.g., number of user inputs,
number of undo saves, number of calls to editor, number of edit commands, number of p.a. commands,
cpu time, console time, etc. These can be viewed via the function . The user can de�ne add
new statistics to the p.a. statistics via the function , and increment them with .

Note: The collection of programmer’s assistant statistics is not supported in Interlisp- D. and
are de�ned with null de�nitions, so programs can be transferred.

[Function]
Prints programmer’s assistant statistics. If = , returns the
statistics as a list of elements of the form .

��� [NLambda NoSpread Function]
Each is a list of the form . Each is
de�ned as the name of a new statistic.

For example,
will de�ne two new statistics, named and

.

[Function]
Increments the statistic with name by (or 1 if =).

has a (see page 12.14).

The user can save his statistics for loading into a new system by performing .
After the �le is loaded, the statistics printed by will be the same as those that
would be printed following the .

8.21

(USERLISPXPRINT)
USERLISPXPRINT

LISPX
LISPX

LISPX USERLISPXPRINT
MOVD(USERLISPXPRINT LISPX) USERLISPXPRINT

LISPX

LISPXPRINTFLG
LISPXPRINTFLG NIL LISPX

LISPXPRINTFLG T

LISPXSTATS
ADDSTATS LISPXWATCH

ADDSTATS
LISPXWATCH

(LISPXSTATS)
T

(.)

(ADDSTATS)
(.)

(ADDSTATS (EDITCALLS CALLS TO EDITOR) (UNDOSTATS
CHANGES UNDONE) EDITCALLS
UNDOSTATS

(LISPXWATCH)
NIL

LISPXWATCH BLKLIBRARYDEF

MAKEFILE(DUMPSTATS)
DUMPSTATS LISPXSTATS

MAKEFILE

X FILE Z NODOFL G

FN

FN

FN

RETURNV AL UESFL G

RETURNV AL UESFL G

VAL UE EXPLANA TION

STAT 1 STAT N
STAT i STAT-NAME MESSA GE STAT-NAME

STAT N

STAT N N

2

2

Undoing

8.5 UNDOING

Note: This discussion only applies to undoing under the executive and break; the editors handles undoing
itself in a slightly di�erent fashion.

The capability of the programmer’s assistant is implemented by requiring that each operation that
is to be undoable be responsible itself for saving on the history list enough information to enable reversal
of its side e�ects. In other words, the assistant does not ‘‘know’’when it is about to perform a destructive
operation, i.e., it is not constantly checking or anticipating. Instead, it simply executes operations, and
any undoable changes that occur are automatically saved on the history list by the responsible functions.
The command, which involves recovering the saved information and performing the corresponding
inverses, works the same way, so that the user can an , and that etc.

At each point, until the user speci�cally requests an operation to be undone, the assistant does not know,
or care, whether information has been saved to enable the undoing. Only when the user attempts to
undo an operation does the assistant check to see whether any information has been saved. If none has
been saved, and the user has speci�cally named the event he wants undone, the assistant types

. (When the user simply types , the assistant searches for the last undoable event, ignoring
events already undone as well as operations themselves.)

This implementation minimizes the overhead for undoing. Only those operations which actually make
changes are a�ected, and the overhead is small: two or three cells of storage for saving the information, and
an extra function call. However, even this small price may be too expensive if the operation is su�ciently
primitive and repetitive, i.e., if the extra overhead may seriously degrade the overall performance of
the program. Hence not every destructive operation in a program should necessarily be undoable; the
programmer must be allowed to decide each case individually.

Therefore for each primitive destructive function, Interlisp has de�ned an undoable version which always
saves information. By convention, the name of the undoable version of a function is the function name,
preceeded by ‘‘ .’’ For example, there is and , and , etc. The
‘‘slash’’ functions that are currently implemented can be found as the value of .

The various system packages use the appropriate undoable functions. For example, uses and
so as to be undoable, and DWIM uses and , when it makes a correction.

Similarly, the user can simply use the corresponding function if he wants to make a destructive
operation in his own program undoable. When the function is called, it will save the information
in the current event on the history list.

The programmer’s assistant cannot know whether e�ciency and overhead are serious considerations for
the execution of an expression in a user , so the user must decide if he wants these operations
undoable by explicitly calling , etc. However, expressions rarely involve iterations or
lengthy computations . Therefore, before evaluating the user input, the programmer’s assistant
substitutes the corresponding undoable function for any destructive function (see , page 8.34).
For example, if the user types ��� , it is actually ��� that
is evaluated. Obviously, with a more sophisticated analysis of both user input and user programs, the

The e�ects of the following functions are always undoable: , , (used to give
a function a compiled code de�nition), , , , , , ,

, , , , , , , , , ,
, , , , , plus any changes caused by DWIM.

8.22

UNDO

UNDO
UNDO UNDO UNDO

NOTHING
SAVED UNDO

UNDO

/ RPLACA /RPLACA REMPROP /REMPROP
/FNS

BREAK /PUTD
/REMPROP /RPLACA /RPLACD

/
/ UNDO

program
/MAPCONC typed-in

directly
LISPX/

(MAPCONC NASDIC) (/MAPCONC NASDIC)

DEFINE DEFINEQ DEFC
DEFLIST LOAD SAVEDEF UNSAVEDEF BREAK UNBREAK

REBREAK TRACE BREAKIN UNBREAKIN CHANGENAME EDITFNS EDITF EDITV EDITP EDITE
EDITL ESUBST ADVISE UNADVISE READVISE

THE PROGRAMMER’S ASSISTANT

decision concerning which operations to make undoable could be better advised. However, we have
found the con�guration described here to be a very satisfactory one. The user pays a very small price for
being able to undo what he types in, and if he wishes to protect himself from malfunctioning in his own
programs, he can have his program explicitly call undoable functions.

8.5.1 Undoing Out of Order

operates undoably by saving (on the history list) the list cell that is to be changed and its
original . Undoing a simply restores the saved . This implementation can produce
unexpected results when multiple s are done on the same list cell, and then undone out of order.
For example, if the user types , followed by , then undoes both
events by undoing the most recent event �rst, then undoing the older event, will be restored to its
state before either operated. However if the user undoes the �rst event, the second event,

will be , since this is what was in of before was executed.
Similarly, if the user types , followed by , undoing just

will remove both and from . The problem in both cases is that the two operations are
not ‘‘independent.’’ In general, operations are always independent if they a�ect di�erent lists or di�erent
sublists of the same list. Undoing in reverse order of execution, or undoing independent operations, is
always guaranteed to do the ‘‘right’’ thing. However, undoing dependent operations out of order may not
always have the predicted e�ect.

Property list operations, (i.e., , and) are handled specially, so that operations
that a�ect di�erent properties on the same property list are always independent. For example, if the user
types then , then undoes the �rst event, the

property will remain, even though it may not have been on the property list of at the time the
�rst event was executed.

8.5.2 SAVESET

Typed- in s are made undoable by substituting a call to . is made undoable by
substituting , and by , both of which are implemented in terms of

.

In addition to saving enough information on the history list to enable undoing, operates in a
manner analogous to (page 11.18) when it resets a top level value: when it changes a top level
binding from a value other than to a new value that is not to the old one,
saves the old value of the variable being set on the variable’s property list under the property , and
prints the message . The old value can be restored via the function , which
also saves the current value (but does not print a message). Thus can be used to �ip back and
forth between two values.

Of course, can be used as long as the event containing this call to is still active. Note
however that the old value will remain on the property list, and therefore be recoverable via , even
after the original event has been forgotten.

and are implemented via calls to . Thus old values will be saved and messages
printed for any variables that are reset as the result of loading a �le.

For top level variables, also adds the variable to the appropriate spelling list, thereby noticing

8.23

/RPLACA
CAR /RPLACA CAR

/RPLACA
(RPLACA FOO 1) (RPLACA FOO 2)

FOO
RPLACA then

(CAR FOO) 1 CAR FOO (RPLACA FOO 2)
(NCONC1 FOO 1) (NCONC1 FOO 2) (NCONC1

FOO 1) 1 2 FOO

PUTPROP ADDPROP REMPROP

(PUTPROP ’FOO ’BAR 1) (PUTPROP ’FOO ’BAZ 2)
BAZ FOO

SET SAVESET SETQ
SAVESETQ SETQQ SAVESETQQ

SAVESET

SAVESET
SAVEDEF

NOBIND EQUAL SAVESET
VALUE

(RESET) UNSET
UNSET

UNDO SAVESET
UNSET

RPAQ RPAQQ SAVESET

SAVESET

VARIABLE

UNDONLSETQ and RESETUNDO

variables set in �les via or , as well as those set via type- in.

[Function]
An undoable . scans the stack looking for the last binding of ,
sets to , and returns .

If the binding changed was a top level binding, is added to the spelling list
(see page 15.14). Furthermore, if the old value was not ,

and was also not to the new value, calls the �le package to
update the necessary �le records. Then, if is not equal to ,
prints , and saves the old value on the property list of ,
under the property .

If = , operates as above except that it always uses ’s
top- level value cell. When is , and is and the old
value was not , simply stores on the property list of
under the property , and returns . This option is used for loading �les
without disturbing the current value of variables (see page 5.9).

If = , saves the old value, but does not print the message.
This option is used by .

If = , does save the old value on the property list,
nor does it add to . However, the call to is still
undoable. This option is used by .

If = , is undoable only if the binding being changed is
a top- level binding, i.e. this says when resetting a variable that has been rebound,
don’t bother to make it undoable. This option is used by , , and

.

[Function]
If does not contain a property , generates an error. Otherwise

calls with , the property value, = , and = .

8.5.3 UNDONLSETQ and RESETUNDO

The function provides a limited form of backtracking: if an error occurs under the
, all undoable side e�ects executed under the are undone. , used

in conjunction with and (page 9.19), provides a more general undo capability
where the user can specify that the side e�ects be undone after the speci�ed computation �nishes, is
aborted by an error, or by a control- D.

[NLambda Function]
An nlambda function similar to (page 9.15). evaluates

, and if no error occurs during the evaluation, returns
and passes the undo information from (if any) upwards.

If an error does occur, the returns , and any undoable changes
made during the evaluation of are undone.

Any undo information is stored directly on the history event (if is

8.24

RPAQ RPAQQ

(SAVESET)
SET SAVESET

SPELLINGS3 NOBIND
EQUAL SAVESET

DFNFLG T SAVESET
(RESET)

VALUE

T SAVESET
T DFNFLG ALLPROP

NOBIND SAVESET
VALUE

NOPRINT SAVESET
UNSET

NOSAVE SAVESET not
SPELLINGS3 SAVESET

/SET

NOSTACKUNDO SAVESET

RPAQ RPAQQ
ADDTOVAR

(UNSET)
VALUE UNSET

UNSET SAVESET T NOPRINT

UNDONLSETQ
UNDONLSETQ UNDONLSETQ RESETUNDO

RESETLST RESETSAVE

(UNDONLSETQ)
NLSETQ UNDONLSETQ

(LIST (EVAL
))

UNDONLSETQ NIL

LISPXHIST

NAME VAL UE TOPFL G FL G

NAME

NAME VAL UE VAL UE

NAME

NAME NAME

TOPFL G NAME

TOPFL G

VAL UE NAME

VAL UE

FL G

FL G

NAME

FL G

NAME

NAME

NAME TOPFL G FL G

UNDOF ORM _

UNDOF ORM

UNDOF ORM UNDOF ORM

UNDOF ORM

THE PROGRAMMER’S ASSISTANT

not), so that if the user control- D’s out of the , the event is still
undoable.

will operate correctly if is or has been exceeded for
this event, or is exceeded while under the scope of the .

Note: Caution must be exercised in using coroutines or other non- standard means
of exiting while under an . See discussion in page 9.19.

[Function]
For use in conjunction with (page 9.19). initializes
the saving of undo information and returns a value which when given back
to undoes the intervening side e�ects. For example,

will undo the side e�ects of
on normal exit, or if an error occurs or a control- D is typed.

If = , stops accumulating undo information it is saving on
. Note that this has no bearing on the saving of undo information on higher

’s, or on being able to undo the entire event.

For example,

���

would cause the advice to be undone, but any of the side e�ects in .

8.6 FORMAT AND USE OF THE HISTORY LIST

The system currently uses three history lists, for the top- level Interlisp executive,
for the editors, and for archiving events (see page 8.13). All history

lists have the same format, use the same functions, , for recording events, and use the
same set of functions for implementing commands that refer to the history list, e.g., ,

, , etc.

Each history list is a list of the form q , where is the list of events with
the most recent event �rst, q is the event number for the most recent event on , is
the size of the time- slice (below), i.e., the maximum length of , and is the highest possible
event number. and are both initialized to .
Setting or to disables all history features, so
and act like �ags as well as repositories of events.

Each history list has a maximum length, called its ‘‘time-slice.’’ As new events occur, existing events are
aged, and the oldest events are ‘‘forgotten.’’ For e�ciency, the storage used to represent the forgotten
event is reused in the representation of the new event, so the history list is actually a ring bu�er. The

8.25

NIL UNDONLSETQ

UNDONLSETQ #UNDOSAVES
UNDONLSETQ

UNDONLSETQ

(RESETUNDO)
RESETLST (RESETUNDO)

RESETUNDO (RESETLST
(RESETSAVE (RESETUNDO)) .)

T RESETUNDO

RESETUNDO

(RESETLST
(SETQ FOO (RESETUNDO))
(RESETSAVE NIL (LIST ’RESETUNDO FOO))
(ADVISE)
(RESETUNDO FOO T)
.)

not

LISPXHISTORY
EDITHISTORY ARCHIVELST

HISTORYSAVE
HISTORYFIND

PRINTHISTORY UNDOSAVE

()

LISPXHISTORY EDITHISTORY (NIL 0 100 100)
LISPXHISTORY EDITHISTORY NIL LISPXHISTORY

EDITHISTORY

X STOPFL G

FORMS FORMS

STOPFL G

X

FORMS

FORMS

L EVENT SIZE MOD L

EVENT L SIZE

L MOD

3

4

3

4

Format and Use of the History List

time- slice of a history list can be changed with the function , page 8.18. Larger time- slices
enable longer ‘‘memory spans,’’ but tie up correspondingly greater amounts of storage. Since the user
seldom needs really ‘‘ancient history,’’ and a facility is provided for saving and remembering selected
events (see and , page 8.12), a relatively small time- slice such as 30 events is more than
adequate, although some users prefer to set the time- slice as large as 100 events.

If (page 8.18) is set to , an ‘‘event number’’ will be printed before each prompt. More
recent events have higher numbers. When the event number of the current event is 100, the next event
will be given number 1. If the time- slice is greater than 100, the ‘‘roll-over’’ occurs at the next highest
hundred, so that at no time will two events ever have the same event number. For example, if the
time- slice is 150, event number 1 will follow event number 200.

Each individual event on is a list of the form . is the prompt character
for this event, e.g., , , , etc. is the value of the event, and is initialized to bell. is a
property list used to associate other information with the event (described below).

is the input sequence for the event. Normally, this is just the input that the user typed- in. For an
format input, this is a list consisting of two expressions; for an format input, this is a list

of just one expression; for an input entered as list of atoms, is simply that list. For example,

User Input is:

If the user types in a programmer’s assistant command that ‘‘unreads’’ and reexecutes other events (,
,, etc.), contains a ‘‘sequence’’ of the inputs from the redone events. Speci�cally, the

�elds from the speci�ed events are concatenated into a single list, seperated by special markers called
‘‘pseudo-carriage returns,’’ which print out as the string . When the result of this concatenation
is ‘‘reread,’’ the pseudo- carriage- returns are treated by and exactly as real carriage
returns, i.e., they serve to distinguish between and formats on inputs to , and to
delimit line commands to the editor.

The same convention is used for representing multiple inputs when a command involves sequential
substitutions. For example, if the user types and then , the input
sequence that will be constructed is , which is the result of
substituting for in concatenated with the result of substituting for in

.

Note that once a multiple input has been entered as the input portion of a new event, that event can
be treated exactly the same as one resulting from type- in. In other words, no special checks have to
be made when an event, to see if it is simple or multiple. This implementation permits an

On , this �eld is used to save the side e�ects of each command. See page 8.35.

The value of the variable is used to represent a pseudo- carriage return. This is initially
the string . Note that the functions that recognize pseudo- carriage returns compare them to

using , so this marker will never be confused with a string that was typed in by the user.

8.26

CHANGESLICE

NAME RETRIEVE

PROMPT#FLG T

(.)
_ : *

APPLY EVAL

PLUS[1 1] (PLUS (1 1))

(PLUS 1 1) ((PLUS 1 1))

PLUS 1 1 cr (PLUS 1 1)

REDO
USE

"<c.r.>"
LISPXREAD READLINE

APPLY EVAL LISPX

USE
GETD(FOO) USE FIE FUM FOR FOO

(GETD (FIE) "<c.r.>" GETD (FUM))
FIE FOO (GETD (FOO)) FUM FOO

(GETD (FOO))

referencing

EDITHISTORY

HISTSTR0
"<c.r.>"

HISTSTR0 EQ

L INPUT ID VAL UE PR OPS ID

VAL UE PR OPS

INPUT

INPUT

INPUT

INPUT INPUT

5

5

THE PROGRAMMER’S ASSISTANT

event speci�cation to refer to a single simple event, or to several events, or to a single event originally
constructed from several events (which may themselves have been multiple input events, etc.) without
having to treat each case separately.

, , , , and commands, i.e., those commands that reexecute previous events, are
not stored as inputs, because the input portion for these events are the expressions to be ‘‘reread’’. The
history commands , , , , and recorded as inputs, and prints
them exactly as they were typed.

is a property list of the form ��� , that can be used
to associate arbitrary information with a particular event. Currently, the following properties are used by
the programmer’s assistant:

A list of the side e�ects of the event. See , page 8.33.

Used by the command when special formatting is required, for example, when
printing events corresponding to the break commands , , , and .

The and properties are used to save the arguments and
expression for the corresponding history command.

and are used to save information when errors occur for
subsequent use by the command. Whenever an error occurs, the o�ender is
automatically saved on that event’s entry in the history list, under the
property.

Used to record calls to , , etc. (see page 8.20).

The property on an event causes the event to be automatically archived
when it ‘‘falls o� the end’’ of the history list (see page 8.13).

The and properties are used for commands that reexecute
previous events, i.e., , , , , and . The value of the

property is the history command that the user actually typed, e.g.,
. This is used by the command when printing the event. The

value of the property is a structure containing the side e�ects, etc. for
the individual inputs being reexecuted. This structure is described below.

When is given an input, it calls (page 8.32) to record the input in a new event.
Normally, creates and returns a new event. binds the variable to
the value of , so that when the operation has completed, knows where to store
the value. Note that by the time it completes, the operation may no longer correspond to the most
recent event on the history list. For example, all inputs typed to a lower break will appear later on the

The commands , , , , and are executed immediately, and are
not recorded on the history list.

8.27

REDO RETRY USE ... FIX

UNDO NAME RETRIEVE BEFORE AFTER are ??

()

SIDE UNDOSAVE

PRINT ??
OK GO EVAL ?=

USE-ARGS
...ARGS USE-ARGS ...ARGS

ERROR
CONTEXT *ERROR* *CONTEXT*

$
ERROR

LISPXPRINT LISPXPRINT LISPXPRIN1

ARCHIVE *ARCHIVE*

GROUP
HISTORY *HISTORY* *GROUP*

REDO RETRY USE ... FIX
HISTORY
REDO FROM F ??

GROUP

LISPX HISTORYSAVE
HISTORYSAVE LISPX LISPXHIST

HISTORYSAVE LISPX

?? FORGET TYPE-AHEAD $BUFS ARCHIVE

PR OPS PR OPER TY 1 VAL UE 1 PR OPER TY 2 VAL UE 2

6

6

Programmer’sAssistant Functions

history list. After binding , executes the input, stores its value in the value �eld of
the event, prints the value, and returns.

When the input is a , , , , or command, the procedure is similar, except that
the event is also given a property, initially , and a property, and
simply unreads the input and returns. When the input is ‘‘reread’’, it is , not ,
that notices this fact, and �nds the event from which the input originally came. then
adds a new entry to the property for this event, and returns
this entry as the ‘‘new event.’’ then proceeds exactly as when its input was typed directly, i.e.,
it binds to the value of , executes the input, stores the value in of

, prints the value, and returns. In fact, never notices whether it is working on freshly
typed input, or input that was reread. Similarly, will store undo information on
the same as always, and does not know or care that is not the entire event, but one of the
elements of the property. Thus when the event is �nished, its entry will look like:

���

In this case, the value �eld of the event with the property is not being used; instead
returns a list of the values from the property. Similarly, operates by collecting the
properties from each of the elements of the property, and then undoing them in reverse order.

This implementation removes the burden from the function calling of distinguishing
between new input and reexecution of input whose history entry has already been set up.

8.7 PROGRAMMER’S ASSISTANT FUNCTIONS

[Function]
is the primary function of the programmer’s assistant. takes

one user input, saves it on the history list, evaluates it, saves its value, and
prints and returns it. also interpretes p.a. commands, ,

, and .

If is a list, it is interpreted as the input expression. Otherwise,
calls , and uses plus the value of as the input for
the event. If is a list of which is or , calls

to obtain the arguments.

is the prompt character to print before accepting user input. A user can
call specifying any prompt character as except for , since in

If cannot �nd the event, for example if a user program unreads the input directly, and
not via a history command, proceeds as though the input were typed.

8.28

LISPXHIST LISPX
LISPXHIST

REDO RETRY USE ... FIX
GROUP NIL *HISTORY* LISPX

HISTORYSAVE LISPX
HISTORYSAVE

(.) *GROUP*
LISPX

LISPXHIST HISTORYSAVE CADDR
LISPXHIST LISPX

UNDOSAVE LISPXHIST
LISPXHIST

GROUP

(
HISTORY

GROUP
((SIDE)

(SIDE)
))

GROUP VALUEOF
GROUP UNDO SIDE

GROUP

HISTORYSAVE

(LISPX)
LISPX LISPX

LISPX LISPXMACROS
LISPXHISTORYMACROS LISPXUSERFN

LISPX
READLINE READLINE

CAR LAMBDA NLAMBDA LISPX
LISPXREAD

LISPX *

HISTORYSAVE
HISTORYSAVE

INPUT ID VAL UE PR OPS

INPUT ID VAL UE

COMMAND

INPUT 1 ID1 VAL UE 1 SIDE1
INPUT 2 ID2 VAL UE 2 SIDE2

LISPXX LISPXID LISPXXMA CR OS LISPXXUSERFN LISPXFL G

LISPXX

LISPXX

LISPXX

LISPXID

LISPXID

THE PROGRAMMER’S ASSISTANT

certain cases must use the value of to tell whether or not it was
called from the editor.

If is not , it is used as the list of macros, otherwise the
top level value of the variable is used.

If is not , it is used as the . In this case, it is
not necessary to both set and de�ne as described on page 8.20.

is used by the command in the editor (see page 8.35).

Note that the history is one of the arguments to , i.e., the editor must
bind (reset) to before calling to carry out
a history command. will continue to operate as an / function
if is . Only those functions and commands that involve the
history list will be a�ected.

performs spelling corrections using , a list of its commands, as
a spelling list whenever it is given an unbound atom or unde�ned function, before
attempting to evaluate the input.

is responsible for rebinding , used by (page 9.10)
for computing the amount of time spent in a computation, in order to determine
whether to go into a break if and when an error occurs.

[Function]
Repeatedly calls under errorset protection specifying and

, and using (or if =) as a prompt character.
is exited via the command , or else with a .

[Function]
Evaluates (using) the same as though it were typed in to ,
i.e., the event is recorded, and the evaluation is made undoable by substituting
the slash functions for the corresponding destructive functions (see page 8.22).

returns the value of the form, but does not print it.

When recieves an ‘‘input,’’ it may come from the user typing it in, or it may be an input that
has been ‘‘unread.’’ handles these two cases by getting inputs with and ,
described below. These functions use the variable to store the expressions that have been
unread. When is not , and ‘‘read’’ expressions from
until is , or until they read a pseudo- carriage return (see page 8.26). Both functions return
a list of the expressions that have been ‘‘read.’’ (The pseudo- carriage return is not included in the list.)

When is , both and actually obtain their input by performing
, where is initially set to . The user can make

, the editor, break, etc. do their reading via a di�erent input function by simply setting
to the name of that function (or an appropriate expression).

Note: The user should only add expressions to using the function (page 8.31),
which knows about the format of .

8.29

LISPX

NIL LISPX
LISPXMACROS

NIL LISPXUSERFN
LISPXUSERFN

E

not LISPX
LISPXHISTORY EDITHISTORY LISPX

LISPX EVAL APPLY
LISPXHISTORY NIL

LISPX LISPXCOMS

LISPX HELPCLOCK BREAKCHECK

(USEREXEC)
LISPX

_ NIL
USEREXEC OK RETFROM

(LISPXEVAL)
EVAL LISPX

LISPXEVAL

LISPX
LISPX LISPXREAD READLINE

READBUF
READBUF NIL READLINE LISPXREAD READBUF

READBUF NIL

READBUF NIL LISPXREAD READLINE
(APPLY* LISPXREADFN) LISPXREADFN READ
LISPX
LISPXREADFN LAMBDA

READBUF LISPXUNREAD
READBUF

LISPXID

LISPXXMA CR OS

LISPXXUSERFN

LISPXFL G

LISPXID LISPXXMA CR OS LISPXXUSERFN

LISPXXMA CR OS

LISPXXUSERFN LISPXID LISPXID

LISPXF ORM LISPXID

LISPXF ORM

FILE

Programmer’sAssistant Functions

[Function]
Reads a line from the terminal, returning it as a list. If is ,

returns . Otherwise it reads expressions by performing
(is initially set to) until it encounters

either:

� a carriage- return (typed by the user) that is not preceded by any spaces, e.g.,

and returns

� a list terminating in a ‘‘ ’’, in which case the list is included in the value of
, e.g.,

and returns .

� an unmatched right parentheses or right square bracket, which is not included in
the value of , e.g.,

and returns .

In the case that one or more spaces precede a carriage- return, or a list is terminated
with a ‘‘ ’’, will type ‘‘ ’’ and continue reading on the next line,
e.g.,

and returns .

If the user types another carriage- return after the ‘‘ ’’, the line will terminate,
e.g.,

and returns .

Note that carriage- return, i.e., the character, can be rede�ned with
(page 6.34). actually checks for the character, whatever that may
be. The same is true for right parenthesis and right bracket.

When is called from , it operates di�erently in two respects:

(1) If the line consists of a single or , returns instead of
, i.e., the or included in the line. This permits the user to type

or , meaning call the function with no arguments, as opposed to

8.30

(READLINE)
(READP T) NIL

READLINE NIL (APPLY*
LISPXREADFN T) LISPXREADFN READ

A B C cr

READLINE (A B C)

]
READLINE

A B (C D]

READLINE (A B (C D))

READLINE

A B C]

READLINE (A B C)

) READLINE ...

A B C cr

...(D E F)

...(X Y Z]

READLINE (A B C (D E F) (X Y Z))

...

A B C cr

... cr

READLINE (A B C)

EOL SETSYNTAX
READLINE EOL

READLINE LISPX

)] READLINE (NIL)
NIL)] is FOO)

FOO] FOO FOO cr

RDTBL _ _

THE PROGRAMMER’S ASSISTANT

(<carriage- return>), meaning evaluate the variable .

(2) If the �rst expression on the line is a list that is not preceded by any spaces,
the list terminates the line regardless of whether or not it is terminated by . This
permits the user to type as a single input.

Note that if any spaces are inserted between the atom and the left parentheses or
bracket, will assume that the list does not terminate the line. This is to
enable the user to type a line command such as . Therefore,
if the user accidentially puts an extra space between a function and its arguments,
he will have to complete the input with another carriage return, e.g.,

[Function]
A general ized . If = , per forms

, which it returns as its value. If is not , ‘‘reads’’
and returns the next expres sion on .

Note: If the user types control- U during the call to , calls the
editor and returns the edited value.

also sets to when it reads via , and sets
to the value of when rereading.

[Function]
A generalized . If = , returns if there is any input
waiting to be ‘‘read’’, in the manner of . If = ,
returns only if there is any input waiting to be ‘‘read’’ In both cases,
leading spaces are ignored, i.e., skipped over with , so that if only spaces
have been typed, will return .

[Function]
Unreads , a list of expressions.

[Function]
Called by to print the prompt character before each input.
will not print anything when the next input will be ‘‘reread’’, i.e., when
is not .

will not print when = , unless is . The editor calls
with = so that extra ’s are not printed when the user

types several commands on one line. However, calls with
= , since it always wants the printed (except when ‘‘rereading’’).

If (page 8.18) is and is not , prints
the current event number (of) before printing .

The value of (page 8.18) is a list of expressions that are
evaluated by before, and if, it does any printing.

8.31

FOO FOO

]
EDITF(FOO)

READLINE
USE (FOO) FOR FOO

_EDITF (FOO)
... cr

EDIT
*

(LISPXREAD)
READ READBUF NIL LISPXREAD (APPLY* LISPXREADFN

) READBUF NIL LISPXREAD
READBUF

READ LISPXREAD

LISPXREAD REREADFLG NIL READ
REREADFLG READBUF

(LISPXREADP)
READP T LISPXREADP T

LISPXREAD NIL LISPXREADP
T on this line.

READC
LISPXREADP NIL

(LISPXUNREAD)

(PROMPTCHAR)
LISPX PROMPTCHAR

READBUF
NIL

PROMPTCHAR (READP) T T
PROMPTCHAR NIL *

EVALQT PROMPTCHAR
T _

PROMPT#FLG T NIL PROMPTCHAR

PROMPTCHARFORMS
PROMPTCHAR

FILE RDTBL

FILE

FL G

FL G

FL G

LST _

LST

ID FL G HISTOR Y

ID

FL G

FL G

FL G

HISTOR Y

HISTOR Y ID

Programmer’sAssistant Functions

[Function]
Records one event on .

If is not , the input is of the form . If
is , and is not , the input is of the form
. Otherwise, the input is just .

creates a new event with the corresponding input, , value �eld
initialized to bell, and . If the has reached its full size, the last
event is removed and cannibalized.

The value of is the new event. However, if is not
, and the most recent event on the history list contains the history command

that produced this input, does not create a new event, but simply
adds an entry to the property for that
event and returns that entry. See discussion on page 8.28.

(page 8.18) is a list of expressions that are evaluated under
errorset protection each time creates a new event.

[Function]
Used by for storing the value of an event. Can be advised by user to watch
for particular values or perform other monitoring functions.

[Function]
is an event speci�cation, speci�es the format of the value to be returned

by , and can be either , , , , , or
. parses , and uses to �nd the corresponding

events. then assembles and returns the appropriate structure.

incorporates the following special features:

(1) if = , interprets in the context of the history list
the current event was added. This feature is used, for example, by ,

so that will not refer to the event itself.

(2) if = and the last event is an , the next to the last event is taken.
This permits the user to type followed by or .

(3) recognizes , and substitutes for (see
page 8.13).

(4) recognizes , and retrieves the corresponding event(s) from the
property list of the atom following (see page 8.12).

[Function]
Searches and returns the tails of beginning with the event corresponding
to . , , and are the �rst three elements of a ‘‘history
list’’ structure (see page 8.25). is an event address (see page 8.5)
e.g., , , , , etc. If cannot
�nd , it generates an error.

8.32

(HISTORYSAVE)

NIL (.)
NIL NIL (.

)

HISTORYSAVE

HISTORYSAVE REREADFLG
NIL

HISTORYSAVE
(bell .) *GROUP*

HISTORYSAVEFORMS
HISTORYSAVE

(LISPXSTOREVALUE)
LISPX

(LISPXFIND)

LISPXFIND ENTRY ENTRIES COPY COPIES INPUT
REDO LISPXFIND HISTORYFIND

LISPXFIND

LISPXFIND

T LISPXFIND
before VALUEOF

(VALUEOF -1) VALUEOF

NIL UNDO
UNDO REDO USE

LISPXFIND @@ ARCHIVELST

LISPXFIND @
@

(HISTORYFIND)

(43) (-1) (FOO FIE) (LOAD _ FOO) HISTORYFIND

HISTOR Y ID INPUT1 INPUT2 INPUT3 PR OPS

HISTOR Y

INPUT1 INPUT 1 INPUT 2 INPUT 3
INPUT 1 INPUT 2 INPUT 2
INPUT 3 INPUT 3

ID

PR OPS HISTOR Y

INPUT ID PR OPS

EVENT VAL UE

HISTOR Y LINE TYPE BA CKUP _

LINE TYPE

LINE

BA CKUP LINE

LINE

HISTOR Y

LST INDEX MOD EVENT ADDRESS _

LST LST

EVENT ADDRESS LST INDEX MOD

EVENT ADDRESS

EVENT ADDRESS

7

7

THE PROGRAMMER’S ASSISTANT

[Function]
Used by for ‘‘matching’’ when speci�es a pattern.
Matches against , the input portion of the history event , as
matching is de�ned on page 17.13. Initially de�ned as

, but can be advised or rede�ned by the user.

[Function]
is a history list (see page 8.25). is to one of the events on .

returns the event number for .

[Function]
adds the ‘‘undo information’’ to the property of the

history event . If there is no property, one is created. If the value
of the property is , the information is not saved.

speci�es an event. If = , the value of is
used. If both and are , is a no-op. Note
that (or) can either be a ‘‘real’’ event, or an event within
the property of another event (see page 8.28).

The form of is . Undoing is done by per form-
ing . For example, if the
de�nition of is , will cause a call to
with = .

of the property of an event is a count of the number of s
saved for this event. Each call to increments this count. If this count
is set to -1, then it is never incremented, and any number of s can
be saved. If this count is a positive number, restricts the number of

s saved to the value of , described below. initializes
the count to -1, so that regardless of the value of , no message will
be printed, and the will be undoable.

[Variable]
The value of is the maximum number of s to be saved for
a single event. When the count of s reaches this number,
prints the message , asking the user if he wants to continue
saving. If the user answers or defaults, discards the previously
saved information for this event, and makes be the value of the property

, which disables any further saving for this event. If the user answers ,
changes the count to -1, which is then never incremented, and continues

saving. The purpose of this feature is to avoid tying up large quantities of storage
for operations that will never need to be undone.

If is negative, then when the count reaches - ,
simply stops saving without printing any messages or interacting with the

In the special case of and , the format of is
. When is undone, this form is recognized and handled specially. This

implementation saves space.

8.33

(HISTORYMATCH)
HISTORYFIND

(EDITFINDP
T)

(ENTRY#)
EQ ENTRY#

(UNDOSAVE)
UNDOSAVE SIDE

SIDE
SIDE NOSAVE

NIL LISPXHIST
LISPXHIST NIL UNDOSAVE

LISPXHIST
GROUP

(.)
(APPLY (CAR) (CDR))

FOO (/PUTD FOO) UNDOSAVE
(/PUTD FOO)

CAR SIDE
UNDOSAVE

UNDOSAVE
#UNDOSAVES LOAD

#UNDOSAVES
LOAD

#UNDOSAVES
#UNDOSAVES

UNDOSAVE
CONTINUE SAVING?

NO UNDOSAVE
NOSAVE

SIDE YES
UNDOSAVE

#UNDOSAVES #UNDOSAVES
UNDOSAVE

/RPLNODE /RPLNODE2 (.
)

INPUT PAT EVENT

EVENT ADDRESS

PAT INPUT EVENT

INPUT PAT

HIST X

HIST X HIST

X

UNDOF ORM HISTENTR Y

UNDOF ORM

HISTENTR Y

HISTENTR Y HISTENTR Y

HISTENTR Y

HISTENTR Y

UNDOF ORM FN AR GS

UNDOF ORM UNDOF ORM

DEF NEWDEF

UNDOF ORM DEF

UNDOF ORM

UNDOF ORM

UNDOF ORM

UNDOF ORM

UNDOF ORM

UNDOF ORM X OLDCAR

OLDCDR UNDOF ORM

Programmer’sAssistant Functions

user. = is equivalent to =in�nity.
is initially .

[Function]
performs the necessary housekeeping operations to make be translated

to the undoable version when typed- in. For example, can be made
undoable when typed- in by performing:

[Function]
performs the substitution of functions for destructive functions that are

typed- in. If is not , it is the name of a function, and is its argument list.
If is , is a form. In both cases, returns with the appropriate
substitutions. is a list of bound variables (optional).

incorporates information about the syntax and semantics of Interlisp
expressions. For example, it does not bother to make undoable operations involving
variables bound in . It does not perform substitution inside of expressions of
which is an nlambda function (unless of the form has the property value

, see page 5.4). For example, typed to , will break on
, not . Similarly, substitution be performed in the arguments

for functions like , , etc., since these contain expressions that will be
evaluated or applied. For example, if the user types

the must be replaced by .

[Function]
is an event speci�cation. is the function that executes

commands by calling on the appropriate entry(s).

[Function]
Undoes one event. returns if there is nothing to be undone.
If the event is already undone, prints and
returns . Otherwise, undoes the event, prints a message, e.g.,

, and returns .

If = and the event is already undone, or is an undo command,
takes no action and returns . uses this option to search for the
last event to undo. Thus when = , simply searches history
until it �nds an event for which returns .

Undoing an event consists of mapping down (of) the property value for ,
and for each element, applying to , and then marking the event undone
by attaching (with) a to the front of its property. Note that
the undoing of each element on the property will usually cause undosaves to
be added to the , thereby enabling the e�ects of
to be undone.

8.34

#UNDOSAVES NIL #UNDOSAVES #UNDOSAVES
NIL

(NEW/FN)
NEW/FN

/ RADIX

_ (DEFINEQ (/RADIX (X)
(UNDOSAVE (LIST ’/RADIX (RADIX X))

(/RADIX)
_ (NEW/FN ’RADIX)

(LISPX/)
LISPX/ /

NIL
NIL LISPX/

LISPX/

CAR
CAR INFO

EVAL (BREAK PUTD) LISPX
PUTD /PUTD should

MAPC RPTQ
(MAPC ’(FOO1 FOO2

FOO3) ’PUTD) PUTD /PUTD

(UNDOLISPX)
UNDOLISPX UNDO

UNDOLISPX1

(UNDOLISPX1)
UNDOLISPX1 NIL

UNDOLISPX1 ALREADY UNDONE
T UNDOLISPX1 SETQ

UNDONE T

T UNDOLISPX1
NIL UNDOLISPX

NIL UNDOLISPX
UNDOLISPX1 T

CDR SIDE
CAR CDR

/ATTACH NIL SIDE
SIDE

current LISPXHIST UNDOLISPX1

FN

FN

FN

X FN VARS

FN X

FN X X

VARS

X

LINE

LINE

EVENT FL G _

FL G

LINE

8

8

THE PROGRAMMER’S ASSISTANT

[Function]
is an event speci�cation. prints the events on

speci�ed by , e.g., . Printing is performed via the
function , so that if the value of = , events will
be prettyprinted.

is an (optional) functional argument that is applied to each event before
printing. If it returns non- , the event is skipped, i.e., not printed.

If = , or applied to the corresponding event is true, the
value is not printed. For example, is when printing events on

.

For example, the following will de�ne as a command for
printing the history list while skipping all ‘‘large events’’ and not printing any
values.

8.8 THE EDITOR AND THE PROGRAMMER’S ASSISTANT

As mentioned earlier, all of the remarks concerning ‘‘the programmer’s assistant’’ apply equally well to
user interactions with , or the editor. The di�erences between the editor’s implementation
of these features and that of are mostly obvious or inconsequential. However, for completeness,
this section discusses the editor’s implementation of the programmer’s assistant.

The editor uses to print its prompt character, and , , and
for obtaining inputs. When the editor is given an input, it calls to record the

input in a new event on its history list, . follows the same conventions
and format as . However, since edit commands have no value, the editor uses the value
�eld for saving side e�ects, rather than storing them under the property .

The editor recognizes and processes the four commands , , , and which refer to previous
events on . The editor also processes itself, as described below. All other history

Except that the atomic commands , , , , , and are not recorded. In addition,
number commands are grouped together in a single event. For example, is considered as one
command for changing position.

8.35

(PRINTHISTORY)
PRINTHISTORY

(-1 THRU -10)
SHOWPRIN2 SYSPRETTYFLG T

NIL

T
T

EDITHISTORY

LISPXMACRO ??’

(??’ (PRINTHISTORY
LISPXHISTORY
LISPXLINE
(FUNCTION (LAMBDA (X)

(IGREATERP (COUNT (CAR X)) 5)))
T
T))

EVALQT BREAK
LISPX

PROMPTCHAR LISPXREAD LISPXREADP
READLINE HISTORYSAVE

EDITHISTORY EDITHISTORY
LISPXHISTORY

SIDE

DO !E !F !N
EDITHISTORY UNDO

OK STOP SAVE P ? PP E
3 3 -1

HISTOR Y LINE SKIPFN NO VAL UES FILE

LINE HISTOR Y

LINE

SKIPFN

NO VAL UES NO VAL UES

NO VAL UES

9

9

The Editor and the Programmer’sAssistant

commands are simply given to for execution, after �rst binding (resetting) to
. The editor also calls when given an command (page 17.45). In this case, the

editor uses the �fth argument to , , to specify that any history commands are to be
executed by a recursive call to , rather than by unreading. For example, if the user types
in the editor, he wants the last event on processed as input, and not to be unread
and processed by the editor.

The major implementation di�erence between the editor and occurs in undoing.
is a list of only the last commands, where is the value of the time- slice. However the editor provides
for undoing changes made in a single editing session, even if that session consisted of more than
edit commands. Therefore, the editor saves undo information independently of the on
a list called , (although it also stores each entry on in the �eld of the corresponding
event on .) Thus, the commands , , and , are not dependent on

, and in fact will work if = , or even in a system which does not
contain at all. For example, speci�es undoing the last command on , even if that
event no longer appears on . The only interaction between and the history list occurs
when the user types followed by an event speci�cation. In this case, the editor calls
to �nd the event, and then undoes the corresponding entry on . Thus the user can only undo
a command within the scope of the . (Note that this is also the only way
commands themselves can be undone, that is, by using the history feature, to specify the corresponding
event, e.g., .)

The implementation of the actual undoing is similar to the way it is done in : each command that
makes a change in the structure being edited does so via a function that records the change on a variable.
After the command has completed, this variable contains a list of all the pointers that have been changed
and their original contents. Undoing that command simply involves mapping down that list and restoring
the pointers.

as indicated by their appearance on , a list of the history commands. in-
ter rogates before attempt ing spelling correction. (All of the commands on
are also on and so that they can be corrected if misspelled in the editor.) Thus
if the user de�nes a and wishes it to operate in the editor as well, he need simply add it
to . For example, is imple mented as a and works equally well
in and the editor.

8.36

LISPX LISPXHISTORY
EDITHISTORY LISPX E

LISPX
LISPX E REDO

LISPXHISTORY LISPX

LISPX EDITHISTORY

all
EDITHISTORY

UNDOLST UNDOLST
EDITHISTORY UNDO !UNDO UNBLOCK

EDITHISTORY EDITHISTORY NIL
LISPX UNDO UNDOLST

EDITHISTORY UNDO
UNDO LISPXFIND

UNDOLST
speci�ed EDITHISTORY UNDO

UNDO UNDO

LISPX

HISTORYCOMS EDITDEFAULT
HISTORYCOMS HISTORYCOMS

EDITCOMSA EDITCOMSL
LISPXMACRO

HISTORYCOMS RETRIEVE LISPXMACRO
LISPX

LISPXFL G

N N

N

