
CHAPTER 14

MISCELLANEOUS

[Function]
The func tion is intended to allow pro grammers to write system-
dependent code. returns a litatom correspond ing to the implemen-
tation of Interlisp: (for Interlisp- D), , , , or .

In Interlisp- D (and Interlisp- 10), ��� expressions
are expanded at compile time so that this is an e�ective way to perform conditional
compilation.

[Function]
If = , returns login directory name; if = , returns connected directory
name; if is a number, returns the user name corresponding to that
user number.

The value is usually returned as a string. If is a string ptr, it is smashed. If
is not a string pointer and is non- , returns the value as an

atom.

[Function]
Prints the amount of storage used for various data types. The exact printout is
implementation- dependent. returns .

In Interlisp- 10, the storage used by a particular type is only accurate immediately
following a garbage collection of a related type. If = , will
perform the necessary garbage collections before printing its results. If = ,
includes storage used by and assigned to the system.

[Function]
In Interlisp- 10, dismisses the program for milliseconds, during which
time the program uses no CPU time. Can be aborted by control- D, control- E, or
control- B.

In Interlisp- D, dismisses the current process for milliseconds, using the
timer if given (see page 14.11).

[Function]
(Currently only in Interlisp- D) Prints information about all litatoms in the Interlisp
system which contain the string . will print the argument lists
of litatoms with function de�nitions, the values of litatoms with variable bindings,
and the property names de�ned for litatoms with property lists. If is ,
this scan does not include ‘‘system internal’’ litatoms; otherwise, all litatoms are
scanned.

14.1

(SYSTEMTYPE)
SYSTEMTYPE

SYSTEMTYPE
D TOPS-20 TENEX JERICO VAX

(SELECTQ (SYSTEMTYPE))

(USERNAME)
NIL T

USERNAME

NIL USERNAME

(STORAGE)

STORAGE NIL

T STORAGE
T

(DISMISS)

(APROPOS)

APROPOS

NIL

A FL G

A A

A

FL G

FL G

FL G GCFL G

GCFL G

FL G

MSECSW AIT TIMER

MSECSW AIT

MSECSW AIT

TIMER

STRING ALLFL G

STRING

ALLFL G

Saving Interlisp State

[Function]
Returns the negation of . For example:

The following two functions are useful writing programs that wish to reuse a scratch list to collect together
some result (Both of these compile open):

��� [NLambda NoSpread Function]
sets up a context in which the value of is used as a ‘‘scratch’’

list. The expressions , , ��� are evaluated in turn. During the course of
evaluation, any value passed to will be saved, reusing
cells from the value of . If the value of is not long enough, new
cells will be added onto its end. If the value of is , the entire value of

will be ‘‘new’’ (i.e. no cells will be reused).

[Function]
For use under calls to . is added on to the end of the value
being collected by . When returns, its value is a list
containing all of the things that has added.

14.1 SAVING INTERLISP STATE

[Function]
Stops Interlisp, and returns control to the operating system. From there, it is
possible to continue Interlisp as of the . will not a�ect the state
of open �les.

In Interlisp- D, writes out all altered pages from real memory to the �le
. This usually takes about 30 seconds on the Xerox 1100. If

is non- , Interlisp is stopped without updating . Note
that it will not be possible to restart Interlisp from the point of the , and
it may not be possible to restart it at all. Typing is preferable to
just booting the machine, because it also does other cleanup operations (closing
network connections, etc.).

In Interlisp- 10, if Interlisp was started as a subsidiary fork (see , page
22.21), control is returned to the higher fork.

The function saves the current state of the Interlisp virtual memory on a �le. The �le package
(page 11.1) can be used to save particular function de�nitions and other arbitrary objects on �les, but

saves the state of the system.

The �le produced by (known as ‘‘a sysout �le’’, or simply ‘‘a sysout’’) can be restarted from the
operating system (by typing in Interlisp- D or in Interlisp- 10). This

14.2

(NEGATE)

(NEGATE ’(MEMBER X Y)) => (NOT (MEMBER X Y))

(NEGATE ’(EQ X Y)) => (NEQ X Y)

(NEGATE ’(AND X (NLISTP X))) => (OR (NULL X) (LISTP X))

(SCRATCHLIST)
SCRATCHLIST

ADDTOSCRATCHLIST CONS
CONS

NIL
SCRATCHLIST CONS

(ADDTOSCRATCHLIST)
SCRATCHLIST

SCRATCHLIST SCRATCHLIST
ADDTOSCRATCHLIST

(LOGOUT)

LOGOUT LOGOUT

LOGOUT
Lisp.virtualmem

NIL Lisp.virtualmem
LOGOUT

(LOGOUT T)

SUBSYS

SYSOUT

SYSOUT total

SYSOUT
LISP RUN

X

X

LST X 1 X 2 X N
LST

X 1 X 2 X N

LST LST

LST

VAL UE

VAL UE

FAST

FAST

SYSOUTFILE SYSOUTFILE

MISCELLANEOUS

will restart Interlisp, and restore the virtual memory to the exact state that it had when the sysout �le was
made.

[Function]
Saves the current state of the Interlisp virtual memory on the �le , in a form
that can be subsequently restarted. The current state of program execution is saved
in the sysout �le, so will cause

to be printed after the sysout �le is restarted.

If is non- , the variable is set to the body of . If
is , then the value of instead. Therefore, will save
the current state on the next higher version of a �le with the same name as the
previous . Also, if the extension for is not speci�ed, the value of

is used. This is initially in Interlisp- D, in Tenex
Interlisp- 10, and in Tops- 20 Interlisp- 10.

sets to , the time and date that the was
performed.

If was not able to create the sysout �le, because of disk or computer error,
or because there was not enough space on the directory, returns .
Otherwise it returns the full �le name of .

Actually, ‘‘returns’’ twice; when the sysout �le is �rst created, and
when it is subsequently restarted. In the latter case, returns the list

, where is the sysout �le, and is the
original Interlisp makesys �le (see , below). For example,

will cause to be printed
when the sysout �le is restarted, but not when is initially performed.

Note: does not save the state of any open �les. (page 6.11)
can be used to associate certain operations with open �les so that when a
is started up, these �les will be reopened, and �le pointers repositioned.

In Interlisp- 10, a sysout �le only contains the parts of the virtual memory that the user has changed.
When the sysout �le is restarted, the other pages are taken from the makesys �le of the Interlisp system
within which the sysout �le was made (see , below). Therefore, whenever the Interlisp system
is reassembled and/or reloaded, old sysout �les are compatible with the new system.

In Interlisp- D, a sysout �le contains a copy of the entire allocated virtual memory, so it is very large. A
normal sized sysout �le contains about 4000 pages. Unlike in Interlisp- 10, a sysout �le is copied into the
virtual memory when it is restarted, to it is perfectly permissible to overwrite a sysout �le on top of the
currently running sysout, for example, to overwrite
on the local disk. Not only is this permissible, it is much faster than making a new sysout �le (almost
twice as fast, due to less disk overhead). Making a sysout �le on the Xerox 1100 currently takes at least
5 minutes.

evaluates the expressions on before creating the sysout �le. This variable
initially includes expressions to: (1) Set the variables and as described
above; (2) Default the sysout �le name according to the values of the variables and

, as described above; and (3) Perform any necessary operations on open �les as speci�ed
by calls to (page 6.11).

14.3

(SYSOUT)

(PROGN (SYSOUT ’FOO) (PRINT ’HELLO))
HELLO

NIL SYSOUTFILE
NIL SYSOUTFILE (SYSOUT)

SYSOUT
SYSOUT.EXT SYSOUT SAV

EXE

SYSOUT SYSOUTDATE (DATE) SYSOUT

SYSOUT
SYSOUT NIL

SYSOUT
SYSOUT

(.)
MAKESYS (if (LISTP

(SYSOUT ’FOO)) then (PRINT ’HELLO)) HELLO
SYSOUT

SYSOUT WHENCLOSE
SYSOUT

MAKESYS
not

(SYSOUT ’{DSK}FOO.SYSOUT;1) FOO.SYSOUT

SYSOUT BEFORESYSOUTFORMS
SYSOUTDATE SYSOUTFILE

SYSOUTFILE
SYSOUT.EXT

WHENCLOSE

FILE

FILE

FILE FILE FILE

FILE

FILE

FILE MAKESYSFILE FILE MAKESYSFILE

FILE

Saving Interlisp State

After a sysout �le is restarted (but when it is initially created), evaluates the expressions
on . This initially includes expressions to: (1) Perform any necessary operations on
previously- opened �les as speci�ed by calls to (page 6.11); (2) [Interlisp- 10 only] Reset the
terminal line length with (page 6.8); (3) [Interlisp- 10 only] Reset the terminal control
characters using (page 17.59) if the operating system has changed from Tenex to Tops- 20
or vice versa; (4) Possibly print a message, as determined by the value of (see below); and
(5) Call to reset the initials used for time- stamping (page 17.60).

[Variable]
The value of determines what is printed when a sysout �le is restarted.
If the value of is a list, the list is evaluated, and no additional message
is printed. This allows the user to print a message. If is non-
and not a list, no message is printed. Finally, if is (its initial
value), and the sysout �le is being restarted by the same user that made the sysout
originally, the user is greeted by printing the value of (see below)
followed by a greeting message. If the �le was made by a di�erent user, a
message is printed, warning that the user pro�les may be di�erent (see page 14.5);

[Function]
[Interlisp- 10 only] Restores the state of Interlisp from a sysout �le. This is essentially
the same as exiting Interlisp, and restarting a sysout �le from the operating system
executive. If returns , there was a problem in reading the �le. If
was not found, generates a error.

[Function]
[Interlisp- 10 only] Returns the name of the original Interlisp makesys �le (see

, below) if is a sysout �le, otherwise .

may also be a JFN.

[Function]
Used to store a new Interlisp system on the ‘‘makesys �le’’ . Before this is
done, the system is ‘‘initialized’’ by undoing the greet history, and clearing the
display [Interlisp- D].

When the system is �rst started up, a ‘‘herald’’ is printed identifying the system,
typically ‘‘ ’’. If is non- , will use
it instead of in the herald. sets to the
herald string printed out.

also sets the variable to , i.e. the time and date
the system was made.

In Interlisp- D, is almost the same as , except that it does some cleaning- up operations
(such as clearing the screen). In Interlisp- 10, however, is considerably di�erent from ,
because it saves of the pages in the Interlisp virtual memory, and allows the makesys �le to be shared
between multiple users.

The Interlisp- 10 system initially obtained by the user is shared; that is, all active users of Interlisp- 10
are actually using the same pages of memory. As a user adds to the system, private pages are added to
his memory. Similarly, if the user changes anything in the original shared Interlisp- 10, for example, by
advising a system function, a private copy of the changed page is created.

14.4

not SYSOUT
AFTERSYSOUTFORMS

WHENCLOSE
SETLINELENGTH

SETTERMCHARS
SYSOUTGAG

SETINITIALS

SYSOUTGAG
SYSOUTGAG

SYSOUTGAG
SYSOUTGAG NIL

SYSOUTGAG NIL

HERALDSTRING
SYSOUT

(SYSIN)

SYSIN NIL
FILE NOT FOUND

(SYSOUTP)

MAKESYS NIL

(MAKESYS)

Interlisp- ... NIL MAKESYS
Interlisp- MAKESYS HERALDSTRING

MAKESYS MAKESYSDATE (DATE)

MAKESYS SYSOUT
MAKESYS SYSOUT

all

FILE

FILE

FILE

FILE

FILE

FILE NAME

FILE

XX D ATE NAME

XX

MISCELLANEOUS

In addition to the swapping time saved by having several users accessing the same memory, the sharing
mechanism permits a large saving in garbage collection time, since it is not necessary to garbage collect
any data in the shared system, and thus Interlisp- 10 does not need to chase from any pointers on shared
pages during garbage collections.

This reduction in garbage collection time is possible because the shared system usually is not modi�ed
very much by the user. If the shared system is changed extensively, the savings in time will vanish,
because once a page that was initially shared is made private, every pointer on it must be assumed active,
because it may be pointed by something in the shared system. Since every pointer on an initially
shared but now private page can also point to data, they must always be chased.

A user may create his own shared system with the function . If several people are using the
same system, making the system be shared will result in a savings in swapping time. Similarly, if a system
is large and seldom modi�ed, making it be shared will result in a reduction of garbage collection time,
and may therefore be worthwhile even if the system is only being used by one user.

One problem with using in Interlisp- 10 is that it may protect large amounts of useless data from
being garbage collected. For example, suppose that during the course of building an Interlisp system,
a large number of list cells are used and discarded. If is now executed to store the system,
all of that list cell space is stored, and protected from garbage collection (unless the user changes those
pages, making a personal copy). To solve this problem, it is necessary to make sure that as little storage
as possible is allocated while creating a new system, perhaps by setting (page 22.10) to a very low
value. Of course, this will slow down Interlisp considerably, so making a new system will take a long
time.

14.2 GREETING AND USER PROFILES

Many of the features of Interlisp are parameterized to allow the user to adjust the system to his or her own
tastes. Among the more commonly adjusted parameters are (page 8.18), (page
15.11), (page 8.18), (page 16.21), (page 8.33),
(page 17.60), etc. In addition, the user can modify the action of system functions in ways not speci�cally
provided for by using (page 10.9).

In order to encourage this procedure, and to make it as painless and automatic as possible, the
programmeer’s assistant includes a facility for both a site-de�ned pro�le and a user- de�ned pro�le.
When Interlisp is �rst run, it calls the function (see below). This provides a way of setting defaults
for a particular community of users, patching bugs, etc.

Greeting (i.e., the initialization) is undoable, and is stored as a separate event on the history list (page
8.25). The user can explicitly invoke the greeting operation at any time via the function . This can
also be use to e�ect another user’s initialization.

[Function]
Performs the greeting for the user whose username is (if = , uses
the login name). When Interlisp �rst starts up, it performs .

Before performs the indicated initialization, it �rst undoes the e�ects of the
previous greeting. The side e�ects of the greeting operation are stored on a global
variable as well as the history list, thus enabling the previous greeting to be undone

14.5

to
private

MAKESYS

MAKESYS

MAKESYS

MINFS

PROMPT#FLG DWIMWAIT
CHANGESLICE LOWERCASE #UNDOSAVES INITIALSLST

ADVISE

GREET

GREET

(GREET)
NIL

(GREET)

GREET

NAME _

NAME NAME

1

1

Manipulating File Directories

even if it is no longer on the history list. In addition, is advised to undo
the e�ects of the previous greeting, thereby returning the system to a pristine state.

initializes in the following way: It �rst evaluates each item in the list
, then it loads the �le returned from ,

then it loads the �le returned from , then it
evaluates each item on , and �nally it prints a greeting such
as ‘‘ ’’, where is the component of the user’s entry
on (page 17.60). The loads are performed ‘‘silently’’ by rebinding

(page 11.36) to .

[Function]
is a system-dependent function. Its purpose is to locate existing

�les used for greeting and return them. If is , then it returns the �lename
of the site-de�ned pro�le (if it exists). Otherwise, is interpreted to be a user’s
system name, and it returns the �lename for the user- de�ned pro�le (if it exists).

[Variable]
The value of can be used to specify special greeting messages for
various dates. is a list of elements of the form

, e.g. . The user can add entries
to this list in his/her �le by using a �le package command
like . On
the speci�ed date, the will use the indicated salutation.

14.3 MANIPULATING FILE DIRECTORIES

The following function allows the user to conveniently specify and/or program a variety of directory
operations:

[Function]
is either [1] (which is equivalent to); or [2] an atom which can

contain ’s or ’s (equivalent) which match any number of characters or ’s which
match a single character, or else [3] is a list of the form ,

, or , e.g., will match with any
�le beginning with or ending in , matches all �les that begin
with and are not �les.

For each �le that matches, each command in is executed with the following interpretation:

Print �le name.

Print �le name (except for version number).

a string Prints the string.

can be used for , and for .

14.6

MAKESYS

GREET
PREGREETFORMS (GREETFILENAME T)

(GREETFILENAME)
POSTGREETFORMS

Hello, .
INITIALSLST

PRETTYHEADER NIL

(GREETFILENAME)
GREETFILENAME

T

GREETDATES
GREETDATES

GREETDATES (.
) ("25-DEC" . "Merry Christmas")

INIT.LISP ADDVARS
(ADDVARS (GREETDATES ("8-FEB" . "Happy Birthday")))

GREET

(DIRECTORY)
NIL *.*;*

$ * ?
(+)

(-) (*) (T$ + $L)
T L (T$ - *.DCOM)

T .DCOM

P

PP

OR + AND *

USERNAME

XXX XXX FIRSTNAME

USER

USER

USER

D ATESTRING

STRING

FILES COMMANDS DEF A UL TEXT DEF AUL TVERS

FILES

FILES FILES FILES

FILES FILES FILES FILES

COMMANDS

MISCELLANEOUS

, ,
, ,

, ,
Prints the appropriate information returned by (page 6.6).

The value of will be a list of �le names; add the complete �le name
of this �le to that list.

The value of will be a sum; add the size of this �le to that sum.

Wait until the user types any char before proceeding with the rest of the commands
(good for display if you want to ponder).

Prompts with ; if user responds with o, abort command processing for this
�le.

Continue command processing if the �le hasn’t been referenced (read or written)
in days.

Continue command processing if there are at least more recent versions of the
same �le.

Continue command processing if the �le was last written by the given user.

is either a function of one argument (), a function of two arguments (
) or an arbitrary expression which uses the variablers and/or the

variables freely. If returns , abort command processing for this
�le.

Allows to examine deleted �les (normally, they are not mapped over.

Directs output to .

Attempt to format output in columns (rather than just 1).

Deletes all but versions of �le (� 0).

Deletes �le. If this is speci�ed, the value of is if no
command is speci�ed, otherwise the list of �les deleted.

Undeletes the indicated �les that have been deleted.

uses to correct spelling, which also provides a way of de�ning abbreviations
and synonyms (page 15.13). Currently the following abbreviations are recognized:

14.7

READDATE WRITEDATE CREATIONDATE
SIZE LENGTH BYTESIZE
PROTECTION AUTHOR TYPE

GETFILEINFO

COLLECT DIRECTORY

COUNTSIZE DIRECTORY

PAUSE

PROMPT N

OLDERTHAN

OLDVERSIONS

BY

@
JFN

FILENAME NIL

DELETED DIRECTORY

OUT

COLUMNS

TRIMTO

DELETE DIRECTORY NIL COLLECT

UNDELETE

DIRECTORY DIRCOMMANDS

AU => AUTHOR

- => PAUSE

COLLECT? => PROMPT " ? " COLLECT

DA
TI => WRITEDATE

MESS MESS

N

N

N N

USER

X X JFN JFN

FILENAME

X

FILE FILE

N N

N N N

Sorting Lists

[Function]
is a �le group descriptor, i.e., it can contain stars. returns

a list of the �les which match , a la the function, e.g.,
.

There is also a programmer’s assistant command which calls the function :

[Prog. Asst. Command]
Calls the function with as the command list and

and as the default extension and default version respectively.

For example, to only those �les which you ok, do .

14.4 SORTING LISTS

[Function]
is a list of items to be sorted using , a predicate function of two

arguments which can compare any two items on and return if the �rst
one belongs before the second. If is , is used; thus

will alphabetize a list. If is , ’s of items that
are lists are given to , otherwise the items themselves; thus

will alphabetize an assoc list by the of each item.
will sort a list of integers.

The value of is the sorted list. The sort is destructive and uses no extra
storage. The value returned is to but elements have been switched
around. Interrupting with control D, E, or B may cause loss of data, but control
H may be used at any time, and will break at a clean state from which ^ or
control characters are safe. The algorithm used by is such that the maximum
number of compares is *log2 , where is .

Note: if = , then the ordering of and
may or may not be preserved.

For example, if appears before in ,
may or may not reverse the order of these two elements. Of course, the user can
always specify a more precise .

14.8

DEL => DELETE

DEL?
DELETE? => PROMPT " delete? " DELETE

OLD => OLDERTHAN 90

PR => PROTECTION

SI => SIZE

(FILDIR)
FILDIR

DIRECTORY
(FILDIR ’*.COM;0)

DIR DIRECTORY

DIR .
DIRECTORY (P .)

* *

DELVER DIR PROMPT "?" TRIMTO 1

(SORT)

T
NIL ALPHORDER

(SORT) T CAR
ALPHORDER (SORT

A-LIST T) CAR (SORT X
’ILESSP)

SORT
EQ

SORT
SORT

(LENGTH)

(A B) (B A) A
B

(FOO . FIE) (FOO . FUM) X (SORT X T)

FILEGR OUP _

FILEGR OUP

FILEGR OUP

FILES COMMANDS

COMMANDS

FILES

D ATA COMP AREFN

D ATA COMP AREFN

DATA

COMP AREFN

DATA COMP AREFN

DATA

N N N D ATA

COMP AREFN COMP AREFN

COMP AREFN

MISCELLANEOUS

[Function]
and are lists which have previously been sorted using and .

Value is a destructive merging of the two lists. It does not matter which list is
longer. After merging both and are equal to the merged list. (In fact,

is to). may be aborted after control- H.

[Function]
A predicate function of two arguments, for alphabetizing. Returns if its arguments
are in order, i.e., if does not belong before . Numbers come before literal atoms,
and are ordered by magnitude (using). Literal atoms and strings are
ordered by comparing the character codes in their pnames. Thus

is , whereas is , because the character
code for the digit 2 is greater than the code for 1.

Atoms and strings are ordered before all other data types. If neither nor are
atoms or strings, the value of is , i.e., in order.

Note: does no s, s, es or s. It is several
times faster for alphabetizing than anything that can be written using these other
functions.

[Function]
is or a list of partially sorted items. tries to �nd the

‘‘best’’ place to (destructively) insert , e.g.,

Returns . is undoable.

If = and is already a member of , does nothing
and returns .

is used by (page 11.33) to insert the name of a new function into a list of
functions. The algorithm is essentially to look for the item with the longest common leading sequence of
characters with respect to , and then merge in starting at that point.

[Function]
Compares and and prints their di�erences, i.e., is essentially
a for list structures.

14.5 DATE/TIME FUNCTIONS

[Function]
Obtains date and time, returning it as a single string with format

, where is day, is month, year, hours, minutes,
seconds, e.g., .

In Interlisp- 10, will accept as an argument, which can be used

14.9

(MERGE)
SORT

(CDR
) EQ (CDR) MERGE

(ALPHORDER)
T

GREATERP
(ALPHORDER 23

123) T (ALPHORDER ’A23 ’A123) NIL

ALPHORDER T

ALPHORDER UNPACK CHCON CONS NTHCHAR

(MERGEINSERT)
NIL MERGEINSERT

(MERGEINSERT ’FIE2 ’(FOO FOO1 FIE FUM))
=> (FOO FOO1 FIE FIE2 FUM)

MERGEINSERT

T MERGEINSERT

MERGEINSERT ADDTOFILE

(COMPARELISTS)
COMPARELISTS

SRCCOM

(DATE)
" - -

: : "
"14-MAY-71 14:26:08"

DATE

A B COMP AREFN

A B COMP AREFN

A B

A B

A B

B A

A B

NEW LST ONEFL G

LST

NEW

LST

ONEFL G NEW LST

LST

NEW NEW

X Y

X Y

_

DD MM YY

HH MMM SS DD MM YY HH MMM

SS

FORMA TBITS

2

2

Timers and Duration Functions

to specify other formats, e.g., day of week, time zone, etc., as described in the
JSYS manual.

[Function]
is a date and time string. Value of is converted to a number

such that if is before (earlier than) , then <
. returns .

[Function]
Interlisp- 10 function for obtaining time- date formatted string, is in internal
date- and- time format. If , current time and date is used, i.e. value of

. is 36 bit quantity to be passed to TENEX/TOPS 20
time- date conversion routines (see JSYS manual). For example, =- 1
gives a ‘‘long’’ date, e.g. . If

= , defaults to a value which will produce the same format as that
of , i.e. . is an optional string pointer
to be reused. In this case, the string characters are stored in an internal scratch
string, , so that a subsequent call to will overwrite
the characters returned by this one. Note that this internal scratch string is also
used by several other functions in this section.

The dateformat package (page 23.57) provides a convenient way of specifying the
format bits in terms of keywords.

[Function]

For =0, returns the current value of the time of day clock i.e., number of
milliseconds since last system start up.

For =1, returns the value of the time of day clock when the user started up
this Interlisp, i.e., di�erence between and

is number of milliseconds (real time) since this Interlisp was
started.

For =2, returns the number of milliseconds of time since user
started up this Interlisp (garbage collection time is subtracted o�).

For =3, returns the number of milliseconds of compute time spent in
garbage collections (all types).

14.6 TIMERS AND DURATION FUNCTIONS

Often one needs to loop over some code, stopping when a certain interval of time has passed. Some
systems provide an ‘‘alarmclock’’ facility, which provides an asynchronous interrupt when a time interval
runs out. This is not particularly feasible in the current Interlisp- D envirornment, so the following facilities
are supplied for e�ciently testing for the expiration of a time interval in a loop context.

In Interlisp- 10, this number is directly accessible via the .

14.10

(IDATE)
IDATE

(IDATE) (IDATE
) (IDATE) (IDATE (DATE))

(GDATE)

NIL
(IDATE)

"FRIDAY, JUN 16, 1978, 23:41:52-PDT"
NIL

(DATE) " - - : : "

MACSCRATCHSTRING GDATE

(CLOCK)

(CLOCK 0) (CLOCK
1)

compute

COREVAL GCTIM

STR

STR STR

D ATE 1 D ATE 2 D ATE 1
D ATE 2

D ATE FORMA TBITS STRPTR

D ATE

FORMA TBITS

FORMA TBITS

FORMA TBITS

DD MM YY HH MMM SS STRPTR

N _

N

N

N

N

MISCELLANEOUS

Three functions are provided: , , and . Also several
new i.s.oprs have been de�ned: , , , , ,
and (reasonable variations on upper/lower case are permissible).

These functions use an object called a Timer, which encodes a future clock time at which a signal is
desired. A Timer is constructed by the functions and , and is created
with a basic clock ‘‘unit’’ selected from among , , or . The �rst two timer
units provide a machine/system independent interface, and the latter provides access to the ‘‘real’’, basic
strobe unit of the machine’s clock on which the program is running. The default unit is .

Currently, the unit is the same as the unit for Interlisp- 10 and Interlisp/VAX.
In Interlisp- D, the unit is a function of the particular machine that Interlisp- D is running on: The
Xerox 1100 and 1132 have about 0.5952 microseconds per tick (1680 ticks per millisecond); The Xerox
1108 has about 28.78 microseconds per tick (34.746 ticks per millisecond). The advantage of using
rather than one of the uniform interfaces is primarily speed; e.g., on a Xerox 1100, it may take as much as
400 microseconds to interface the milliseconds clock (a software facility actually based over the real clock),
whereas reading the real clock itself should take less than about ten microseconds. The disadvantage
of the unit is its short roll-over interval (about 20 minutes) compared to the
roll-over interval (about about two weeks), and also the dependency on particular machine parameters.

[Function]
returns a Timer that will ‘‘go o�’’ (as tested by)

after a speci�ed time- interval measured from the current clock time.
has one required and three optional arguments:

must be a integer specifying how long an interval is desired.
speci�es the units of measure for the interval (defaults to).

If is a Timer, it will be reused and returned, rather than allocating
a new Timer. speci�es the units in which the is
expressed (defaults to the value of .

[Function]
returns a Timer (using the time unit) that will ‘‘go

o�’’ at a speci�ed date and time. is a Date/Time string such as accepts
(page 14.10). If is a Timer, it will be reused and returned, rather than
allocating a new Timer.

operates by �rst subtracting from ,
so there may be some large integer creation involved, even if is given.

[Function]
If is a Timer, and is the time- unit of ,

returns true if has ‘‘gone o�’’.

can also be a Timer, in which case
compares the two timers (using the same time units). If and are Timers, then

is true if is set for a time than .

There are a number of i.s.oprs that make it easier to use Timers in iterative statements (page 4.5). These
i.s.oprs are given below in the ‘‘canonical’’ form, with the second ‘‘word’’ capitalized, but the all-caps and
all-lower-case versions are also acceptable.

14.11

SETUPTIMER SETUPTIMER.DATE TIMEREXPIRED?
forDuration during untilDate timerUnits usingTimer

resourceName

SETUPTIMER SETUPTIMER.DATE
SECONDS MILLISECONDS TICKS

MILLISECONDS

TICKS MILLISECONDS
TICKS

TICKS

TICKS MILLISECONDS

(SETUPTIMER)
SETUPTIMER TIMEREXPIRED?

SETUPTIMER

MILLISECONDS

(SETUPTIMER.DATE)
SETUPTIMER.DATE SECONDS

IDATE

SETUPTIMER.DATE (IDATE) (IDATE)

(TIMEREXPIRED?)

TIMEREXPIRED?

TIMEREXPIRED?
X Y

(TIMEREXPIRED? X Y) X later Y

INTER VAL OLDTIMER? TIMER UNITS INTER VAL UNITS

INTER VAL TIMER UNITS

OLDTIMER?

INTER VAL UNITS OLDTIMER?

TIMER UNITS

DTS OLDTIMER?

DTS

OLDTIMER?

DTS

OLDTIMER?

TIMER CL OCKV AL UE.OR.TIMER UNITS

TIMER CL OCKV AL UE.OR.TIMER UNITS TIMER

TIMER

CL OCKV AL UE.OR.TIMER UNITS

Timers and Duration Functions

[I.S. Operator]
[I.S. Operator]

is an integer specifying an interval of time during which the iterative
statement will loop.

[I.S. Operator]
speci�es the time units of the speci�ed in .

[I.S. Operator]
is a Date/Time string (such as accepts) specifying when the iterative

statement should stop looping.

[I.S. Operator]
If is given, is reused as the timer for or

, rather than creating a new timer. This can reduce allocation if one
of these i.s.oprs is used within another loop.

[I.S. Operator]
speci�es a name to be used as the timer storage.

If = , it will be converted to a common internal name.

Some examples:

This humorous little example shows that how is is possible to have two termination condition: (1) when the
time interval of has elapsed, or (2) when the predicate
becomes true. Note that the ‘‘�nally’’ clause is executed regardless of which termination condition caused
it.

This in�nite loop breaks out with a warning message every 10 days. One could question whether the
millisecond clock, which is used by default, is appropriate for this loop, since it rolls-over about every
two weeks.

Here we see a usage of an explicit date for the time interval; also, the user has squirreled away some
storage (as the value of) for use by the call to in this loop.

14.12

forDuration
during

timerUnits
forDuration

untilDate
IDATE

usingTimer
usingTimer forDuration

untilDate

resourceName
GLOBALRESOURCES

T

(during 6MONTHS timerUnits ’SECS
until (TENANT-VACATED? HouseHolder)
do (DISMISS <for-about-a-day>)

(HARRASS HouseHolder)
finally (if (NOT (TENANT-VACATED? HouseHolder))

then (EVICT-TENANT HouseHolder)))

6MONTHS (TENANT-VACATED? HouseHolder)

(do (forDuration (CONSTANT (ITIMES 10 24 60 60 1000))
do (CARRY.ON.AS.USUAL)
finally (PROMPTPRINT "Have you had your 10-day check-up?")))

(SETQ \RandomTimer (SETUPTIMER 0))
(untilDate "31-DEC-83 23:59:59" usingTimer \RandomTimer

when (WINNING?) do (RETURN)
finally (ERROR "You’ve been losing this whole year!"))

\RandomTimer SETUPTIMER

(forDuration SOMEINTERVAL
resourcename ’\INNERLOOPBOX

INTER VAL

INTER VAL

INTER VAL

UNITS

UNITS INTER VAL

DTS

DTS

TIMER

TIMER

RESOUR CE

RESOUR CE

RESOUR CE

MISCELLANEOUS

For this loop, the user doesn’t want any ing to take place, so will be de�ned as
a which ‘‘caches’’ a timer cell (if it isn’t already so de�ned), and wraps the entire
statement in a call. Furthermore, he has speci�ed a time unit of , for lower
overhead in this critical inner loop. In fact specifying a of would have been the same as
specifying it to be ; this is just a simpler way to specify that a
is wanted, without having to think up a name.

14.7 GAINSPACE

For users with large programs and data bases, the user may sometimes �nd himself in a situation where
he needs to obtain more space, and is willing to pay the price of eliminating some or all of the context
information that the various user- assistance facilities such as the programmer’s assistant, �le package,
CLISP, etc., have accumulated during the course of his session. The following function is available for
this purpose.

[Function]
Prints a list of deletable objects, allowing the user to specify at each point what
should be discarded and what should be retained.

For example:

is driven by the list . Each element on is of the
form . If , when evaluated, returns ,
skips to the next entry. For example, the user will not be asked whether or not to purge the history
list if it is not enabled. Otherwise, (page 6.57) is called with the indicated and the
(optional) . If the user responds o, i.e., returns , skips to the next entry.
Otherwise, is evaluated with the variable bound to the value of . In the
above example, the for the ‘‘ ’’ question calls to ask ‘‘

��� ’’ only if the user had responded es. If the user had responded with verything, the
second question would not have been asked.

The ‘‘ ’’ question is driven by a list . Each element on this list
is of the form . The user is prompted with (by), and if he

14.13

timerunits ’TICKS
do (CRITICAL.INNER.LOOP))

CONS \INNERLOOPBOX
GLOBALRESOURCES

GLOBALRESOURCE TICKS
resourcename T

\ForDurationOfBox GLOBALRESOURCE

(GAINSPACE)

_ (GAINSPACE)
purge history lists ? Yes
purge everything, or just the properties, e.g., SIDE, LISPXPRINT, etc. ?
just the properties
discard definitions on property lists ? Yes
discard old values of variables ? Yes
erase properties ? No
erase CLISP translations? Yes

.

.

.

GAINSPACE GAINSPACEFORMS GAINSPACEFORMS
() NIL GAINSPACE

ASKUSER
N ASKUSER N GAINSPACE

RESPONSE ASKUSER
purge history lists ASKUSER purge

everything, Y E

erase properties SMASHPROPSMENU
(.) ASKUSER

PRECHECK MESSA GE FORM KEYLST PRECHECK

MESSA GE

KEYLST

FORM

FORM

MESSA GE PR OPS MESSA GE

Performance Measuring Functions

responds es, is added to the list . The ‘‘
’’ and ‘‘ ’’ questions also add to . The user

will not be prompted for any entry on for which all of the corresponding properties
are already on . is initially set to the value of . This permits
the user to specify in advance those properties which he always wants to be discarded, and not be asked
about them subsequently. After �nishing all the entries on , checks to
see if the value of is non- , and if so, does a , i.e., looks at every atom in
the system, and erases the indicated properties.

Note that the user can change or add new entries to or , so that
can also be used to purge structures that the user’s programs have accumulated.

14.8 PERFORMANCE MEASURING FUNCTIONS

[Function]
returns the number of es since Interlisp started up. If is

not , resets to .

[Function]
Returns the number of boxing operations for the data type (see page 2.36)
since Interlisp started up. If is not , the corresponding counter is reset to .

In Interlisp- 10, if = , returns the number of large integer
boxes; if is non- , it returns the number of �oating boxes. These counters
are directly accessible via the s and .

In Interlisp- D, can be any datatype name, in addition to and .

[Function]
Returns the number of page faults since Interlisp started up.

[NLambda Function]
An nlambda function. It executes the computation , and prints out the
number of conses and computation time. Garbage collection time is subtracted
out. For example, in Interlisp- 10:

If is greater than 1 (= is equivalent to =1),
is executed times, and prints out (number of conses)/ , and
(computation time)/ . This is useful for more accurate measurement on small
computations, e.g.

14.14

Y SMASHPROPS discard definitions on property
lists discard old values of variables SMASHPROPS

SMASHPROPSMENU
SMASHPROPS SMASHPROPS SMASHPROPSLST

GAINSPACEFORMS GAINSPACE
SMASHPROPS NIL MAPATOMS

GAINSPACEFORMS SMASHPROPSMENU
GAINSPACE

(CONSCOUNT)
(CONSCOUNT) CONS

NIL CONSCOUNT

(BOXCOUNT)

NIL

NIL BOXCOUNT
NIL

COREVAL IBOXCN FBOXCN

FIXP FLOATP

(PAGEFAULTS)

(TIME)

_TIME((LOAD (QUOTE PRETTY) (QUOTE PROP]
FILE CREATED 1-AUG-78 14:56:12
PRETTYCOMS
collecting lists
582, 10291 free cells
13169 CONSES
29.484 SECONDS
PRETTY

NIL
TIME

PR OPS

N

N

N

TYPE N

TYPE

N N

TYPE

TYPE

TYPE

TIMEX TIMEN TIMETYPE

TIMEX

TIMEN TIMEN TIMEN TIMEX

TIMEN TIMEN

TIMEN

MISCELLANEOUS

If is 0, measures and prints total time as well as computation
time, e.g.

If = 3, measures and prints garbage collection time as well as
computation time, e.g.

Another option is = , in which case measures and prints the
number of pagefaults.

The value of is the value of the last evaluation of .

14.8.1 BREAKDOWN

collects statistics for whole computations. is available to analyze the breakdown of
computation time (or any other measureable quantity) function by function.

��� [NLambda NoSpread Function]
The user calls giving it a list of function names (unevaluated). These
functions are modi�ed so that they keep track of various statistics.

To remove functions from those being monitored, simply (page 10.6)
the functions, thereby restoring them to their original state. To add functions,
call on the new functions. This will not reset the counters for any
functions not on the new list. However will zero the counters of

14.15

_TIME((COPY (QUOTE (A B C))) 10)
30/10 = 3 CONSES
.055/10 = .0055 SECONDS
(A B C)

TIME real

_TIME((LOAD (QUOTE PRETTY) (QUOTE PROP)) 1 0]
FILE CREATED 7-MAY-71 12:47:14
GC: 8
582, 10291 FREE WORDS
PRETTYFNS
PRETTYVARS
3727 CONSES
11.193 SECONDS
27.378 SECONDS, REAL TIME
PRETTY

TIME

_TIME((LOAD (QUOTE PRETTY) (QUOTE PROP)) 1 3]
FILE CREATED 7-MAY-71 12:47:14
GC: 8
582, 1091 FREE WORDS
PRETTYFNS
PRETTYVARS
3727 CONSES
10.597 SECONDS
1.487 SECONDS, GARBAGE COLLECTION TIME
PRETTY

T TIME

TIME

TIME BREAKDOWN

(BREAKDOWN)
BREAKDOWN

UNBREAK

BREAKDOWN
(BREAKDOWN)

TIMETYPE

TIMETYPE

TIMETYPE

TIMEX

FN 1 FN N

BREAKDOWN

all functions being monitored.

The procedure used for measuring is such that if one function calls other and both
are ‘‘broken down’’, then the time (or whatever quantity is being measured) spent
in the inner function is charged to the outer function as well.

Note: will give accurate results if a function being measured is
not returned from normally, e.g., a lower (or) bypasses it. In this
case, all of the time (or whatever quantity is being measured) between the time
that function is entered and the time the next function being measured is entered
will be charged to the �rst function.

[Function]
prints the analysis of the statistics requested as well as the number

of calls to each function. If is non- ,
will not to print the results, but instead return them in the form of a list of elements
of the form q .

Example:

can be used to measure other statistics, by setting the following variables:

[Variable]
To use to measure other statistics, before calling , set the
variable to the quantity of interest, e.g., , , etc, or a
list of such quantities. Whenever is called with not

, performs the necessary changes to its internal state to conform
to the new analysis. In particular, if this is the �rst time an analysis is being run
with a particular statistic, a measuring function will be de�ned, and the compiler
will be called to compile it. The functions being broken down will be rede�ned
to call this measuring function. When is through initializing, it sets

back to . Subsequent calls to will measure the new
statistic until is again set and a new performed.

[Variable]
The list contains the information used to analyze new statistics.
Each entry on should be of the form ,
where is a statistic name (as would appear in),

14.16

not

BREAKDOWN not
RETFROM ERROR

(BRKDWNRESULTS)
BRKDWNRESULTS

NIL BRKDWNRESULTS

()

_ (BREAKDOWN SUPERPRINT SUBPRINT COMMENT1)
(SUPERPRINT SUBPRINT COMMENT1)
_ (PRETTYDEF ’(SUPERPRINT) ’FOO)
FOO.;3
_ (BRKDWNRESULTS)
FUNCTIONS TIME #CALLS PER CALL %
SUPERPRINT 8.261 365 0.023 20
SUBPRINT 31.910 141 0.226 76
COMMENT1 1.612 8 0.201 4
TOTAL 41.783 514 0.081
NIL
_ (BRKDWNRESULTS T)
((SUPERPRINT 365 8261) (SUBPRINT 141 31910) (COMMENT1 8 1612))

BREAKDOWN

BRKDWNTYPE
BREAKDOWN BREAKDOWN

BRKDWNTYPE TIME CONSES
BREAKDOWN BRKDWNTYPE

NIL BREAKDOWN

BREAKDOWN
BRKDWNTYPE NIL BREAKDOWN

BRKDWNTYPE BREAKDOWN

BRKDWNTYPES
BRKDWNTYPES

BRKDWNTYPES ()
BRKDWNTYPE

RETURNV AL UESFL G

RETURNV AL UESFL G

FNNAME CALLS VAL UE

TYPE FORM FUNCTION

TYPE FORM

MISCELLANEOUS

computes the statistic, and (optional) converts the value of form to
some more interesting quantity. For example,

measures computation time and reports the result
in seconds instead of milliseconds. currently contains entries for

, , , , and .

Example:

Occasionally, a function being analyzed is su�ciently fast that the overhead involved in measuring it
obscures the actual time spent in the function. If the user were using , he would specify a value
for greater than 1 to give greater accuracy. A similar option is available for . The
user can specify that a function(s) be executed a multiple number of times for each measurement,
and the average value reported, by including a number in the list of functions given to ,
e.g., means normal breakdown for and

but executes (the body of) and 10 times each time they are called. Of course, the
functions so measured must not cause any harmful side e�ects, since they are executed more than once
for each call. The printout from will look the same as though each function were run
only once, except that the measurement will be more accurate.

Another way of obtaining more accurate measurement is to expand the call to the measuring function
in-line. If the value of is non- (initially), then whenever a function is broken-
down, it will be rede�ned to call the measuring function, and then recompiled. The measuring function is
expanded in-line via an appropriate macro. In addition, whenever is reset, the compiler is
called for functions for which was set at the time they were originally broken- down,
i.e. the setting of the �ag at the time a function is broken- down determines whether the call to the
measuring code is compiled in-line.

14.9 PAGE MAPPED FILES

This facility allows paged access to �les. It manages a set of paging bu�ers as a least-recently- used queue,
with each bu�er being a full-page block. Facilities are provided for allocating and deallocating bu�ers,

14.17

(TIME (CLOCK 2) (LAMBDA
(X) (FQUOTIENT X 1000)))

BRKDWNTYPES
TIME CONSES PAGEFAULTS BOXES FBOXES

_ (SETQ BRKDWNTYPE ’(TIME CONSES))
(TIME CONSES)
_ (BREAKDOWN MATCH CONSTRUCT)
(MATCH CONSTRUCT)
_ (FLIP ’(A B C D E F G H C Z) ’(.. $1 .. #2 ..) ’(.. #3 ..))
(A B D E F G H Z)
_ (BRKDWNRESULTS)
FUNCTIONS TIME #CALLS PER CALL %
MATCH 0.036 1 0.036 54
CONSTRUCT 0.031 1 0.031 46
TOTAL 0.067 2 0.033
FUNCTIONS CONSES #CALLS PER CALL %
MATCH 32 1 32.000 40
CONSTRUCT 49 1 49.000 60
TOTAL 81 2 40.500
NIL

TIME
BREAKDOWN

BREAKDOWN
BREAKDOWN(EDITCOM EDIT4F 10 EDIT4E EQP) EDITCOM

EDIT4F EDIT4E EQP

BRKDWNRESULTS

BRKDWNCOMPFLG NIL NIL

BRKDWNTYPE
all BRKDWNCOMPFLG

FUNCTION

TIMEN

Page Mapped Files

locking down pages, mapping a given page of the �le into core, and getting the in-core location to which
a given word of the �le has been mapped. Any number of �les can be mapped in at one time.

Note: Interlisp- D implements the page-mapping primitives of Interlisp- 10 with some notable di�erences
that might require major reworking of programs that rely on these facilities. The major di�erence is that
an Interlisp- D page contains 256 16-bit words, rather than the 512 36-bit words of Interlisp- 10. A given
page number or �le address for or will correspond to a very di�erent number of
bits from the beginning of the �le, and and move smaller amounts
of information. A second di�erence is that bu�ers are completely integrated into the Interlisp- D storage
management system so that a page is guaranteed to be locked down as long as the user holds a pointer to
it. The functions and are therefore unnecessary, but for compatibility are de�ned
with dummy de�nitions.

The following scenario illustrates the use of these facilities: The user �rst opens the �le (or �les) that
he wants to access by page-mapping using any of the ordinary �le- opening functions. Then, to examine
a particular word in one of the �les, the user simply gives the word number and the �le’s name to the
function , which returns a pointer to the in-core location that that word is mapped to (i.e. the
address as an unboxed number). When he has �nished processing, the user simply closes the �le (e.g.
using) and the bu�ers are automatically unmapped.

The basic functions are:

[Function]
Initially, a single bu�er is allocated, so that page-mapping may be done without
further initialization. More bu�ers can be allocated by , which may
help to avoid thrashing. attempts to allocate a single new bu�er,
and returns non- if successful. If there is not enough space to allocate a new
bu�er, then if is , simply returns . Otherwise,

causes an error .

If = , the bu�ers are allocated on a ‘‘temporary’’ basis: allocation takes place
via a whose restoration form will de-allocate the bu�ers.

[Function]
Returns the number of bu�ers currently allocated. If = , counts
only unlocked bu�ers; otherwise, counts all bu�ers. Thus, to insure that at
least 3 (unlocked) bu�ers are allocated, the user could perform

.

q [Function]
The primitive function for mapping in pages from into the queue of bu�ers.

q is a page number in . The value of is a pointer to the word
in memory at which the �rst word of the page is located, which will always be at
a page-boundary.

If is , the value of is used.

searches the bu�ers to see if the given page for the given �le has already
been mapped in. If so, it returns the core address to which it was previously
mapped. Otherwise, it replaces the previous contents of the least-recently- used
bu�er with the speci�ed �le page. It is important to note that the contents of a
given core bu�er are not guaranteed across calls to , unless the page has

14.18

MAPPAGE MAPWORD
WORDCONTENTS SETWORDCONTENTS

LOCKMAP UNLOCKMAP

MAPWORD

CLOSEF

(ADDMAPBUFFER)

ADDMAPBUFFER
ADDMAPBUFFER

NIL
NIL ADDMAPBUFFER NIL

ADDMAPBUFFER UNABLE TO ALLOCATE PMAP BUFFER

T
RESETSAVE

(MAPBUFFERCOUNT)
T

(while (LESSP
(MAPBUFFERCOUNT T) 3) do (ADDMAPBUFFER NIL T))

(MAPPAGE)

MAPPAGE

NIL DEFAULTMAPFILE

MAPPAGE

MAPPAGE

TEMP ERR ORFL G

ERR ORFL G

TEMP

ONL YUNL OCKED

ONL YUNL OCKED

PAGE FILE _

FILE

PAGE FILE

FILE

MISCELLANEOUS

been locked down via . compiles open, and in the case where
the desired page is already in the bu�er it is quite e�cient.

will allocate an additional bu�er if no unlocked bu�ers are available
(and the desired page is not already mapped in).

In Interlisp- 10, may also be a fork handle (i.e. a value of , page
22.21), in which case the speci�ed page from that fork will be mapped in.

[Function]
Like , except that it allows the speci�cation of a word- address in ,
not just a page number. determines what page that address is on, maps
that page into a bu�er (using), and returns a pointer into the middle
of the bu�er where the indicated word appears. The rest of the words on the
same �le page appear at the appropriate word o�sets from the value returned by

.

[Function]
If is a pointer into a bu�er as returned by or ,

returns a pointer to the th following word. compiles
open.

[Function]
Returns the contents of the word at as an integer. For example,

will return the value stored in word 10 of a (binary) �le.
compiles open.

[Function]
Sets the contents of the word pointed to by to be the number . Interpreted,

checks that actually is a pointer as returned by
or . compiles open with no error checks.

[Function]
speci�es a �le or fork as for , or it is . is a single page number

or a list of page numbers. unmaps any of those pages that are currently
mapped in, making those bu�ers available for other mappings. = means all
�les; = means all pages. Thus will completely clear
the bu�ers.

Note that unmaps any pages, whether or not they are currently locked,
i.e., takes precedence over .

If = , then not only will the bu�ers containing the speci�ed pages be
unmapped, but the bu�ers themselves will be released, i.e. returned to the Interlisp
storage manager.

[Function]
For those situations in which a program needs prolonged access to a particular �le
page, can be used to prevent from shifting or unmapping the
contents of the given core page. is a pointer into a mapped page (i.e. a value
of or). locks the indicated page in core until a
corresponding has been performed. If a page has been locked twice,

14.19

LOCKMAP MAPPAGE

MAPPAGE

SUBSYS

(MAPWORD)
MAPPAGE

MAPWORD
MAPPAGE

MAPWORD

(WORDOFFSET)
MAPPAGE MAPWORD

WORDOFFSET WORDOFFSET

(WORDCONTENTS)
(WORDCONTENTS

(MAPWORD 10))
WORDCONTENTS

(SETWORDCONTENTS)

SETWORDCONTENTS MAPPAGE
MAPWORD SETWORDCONTENTS

(CLEARMAP)
MAPPAGE T

CLEARMAP
T

NIL (CLEARMAP T)

CLEARMAP
CLEARMAP LOCKMAP

T

(LOCKMAP)

LOCKMAP MAPPAGE

MAPWORD MAPPAGE LOCKMAP
UNLOCKMAP

FILE

FILEADR FILE

FILE

PTR N

PTR

N

PTR

PTR

FILE

PTR N

PTR N

PTR

FILE PAGES RELEASE

FILE PAGES

FILE

PA GES

RELEASE

PTR

PTR

Page Mapped Files

it must be unlocked twice before it is available for reuse. Returns .

[Function]
is a pointer into a mapped page. removes the most recent lock

for that page.

14.20

(UNLOCKMAP)
UNLOCKMAP

PTR

PTR

PTR

