
1

1

CHAPTER 23

LISPUSERS PACKAGES

This chapter describes packages which are of su�cient utility that they would otherwise be included as
part of the Interlisp system, except for virtual address space limitations. These packages normally reside
on the directory .

23.1 PATTERN MATCH COMPILER

The pattern match compiler provides a fairly general pattern match facility within CLISP. This facility
allows the user to specify certain tests that would otherwise be clumsy to write, by giving a pattern which
the datum is supposed to match. Essentially, the user writes ‘‘Does the (expression) X look like (the
pattern) P?’’ For example, asks whether the second element of is an , and the
last element a . The implementation of the matching is performed by computing (once) the equivalent
Interlisp expression which will perform the indicated operation, and substituting this for the pattern, and

by invoking each time a general purpose capability such as that found in FLIP or PLANNER. For
example, the translation of is:

Thus the CLISP pattern match facility is really a Pattern Compiler, and the emphasis in its design and
implementation has been more on the e�ciency of object code than on generality and sophistication of
its matching capabilities. The goal was to provide a facility that could and would be used even where
e�ciency was paramount, e.g., in inner loops. As a result, the CLISP pattern match facility does not
contain (yet) some of the more esoteric features of other pattern match languages, such as repeated
patterns, disjunctive and conjunctive patterns, recursion, etc. However, the user can be con�dent that
what facilities it does provide will result in Interlisp expressions comparable to those he would generate
by hand.

The syntax for pattern match expressions is , where is a list as described below.
As with iterative statements, the translation of patterns, i.e., the corresponding Interlisp expressions,
are stored in the hash array (see page 16.19). The original expression, ,
is replaced by an expression of the form . CLISP also recognizes
expressions input in this form.

Wherever possible, already existing Interlisp functions are used in the translation, e.g., the translation of
uses , uses , etc.

23.1

<LISPUSERS>

Note: The pattern match compiler is a LispUsers package which can be loaded from the �le MATCH.DCOM.
The entries have a FILEDEF property (see page 15.8), so simply using a pattern match construct will cause
the �le to be loaded automatically.

X:(& ’A -- ’B) X A
B

not
X:(& ’A -- ’B)

(AND (EQ (CADR X) ’A)
(EQ (CAR (LAST X)) ’B))

:

CLISPARRAY :
(MATCH WITH)

($ ’A $) MEMB ($ (’A $) $) ASSOC

FORM PATTERN PATTERN

FORM PATTERN

FORM PATTERN

2

2

Pattern Elements

If appears more than once in the translation, and it is not either a variable, or an expression that
is easy to (re)compute, such as , etc., a dummy variable will be generated and
bound to the value of so that is not evaluated a multiple number of times. For example,
the translation of is simply , while the translation of

is:

In the interests of e�ciency, the pattern match compiler assumes that all lists end in , i.e., there are
no checks inserted in the translation to check tails. For example, the translation of

is , which will match with as well as
. Similarly, the pattern match compiler does not insert checks on elements, e.g.,

translates simply as , and as . Note
that the user can explicitly insert checks himself by using , as described below, e.g.,

translates as .

23.1.1 Pattern Elements

A pattern consists of a list of pattern elements. Each pattern element is said to match either an element
of a data structure or a segment. (cf. the editor’s pattern matcher, ‘‘ ’’ matches any arbitrary segment
of a list, while or a subpattern match only one element of a list.) Those patterns which may match a
segment of a list are called patterns; those that match a single element are called patterns.

23.1.2 Element Patterns

There are several types of element patterns, best given by their syntax:

or Matches an arbitrary element of a list.

Matches only an element which is equal to the given expression e.g., , .

, , and are automatically used in the translation when the quoted
expression is atomic, otherwise , , and .

Matches only an element which is to the value of , e.g., ,
.

Same as , but uses an check instead of .

The insertion of checks for is controlled by the variable . When
is , checks are inserted, e.g., translates as:

. is initially . Its value can be changed
within a particular function by using a local CLISP declaration (see page 16.10).

23.2

(CAR Y), (CDDR Z)

(FOO X):($ ’A $) (MEMB ’A (FOO X)) (FOO
X):(’A ’B --)

[PROG ($$2)
(RETURN

(AND (EQ (CAR (SETQ $$2 (FOO X)))
’A)

(EQ (CADR $$2) ’B]

NIL
LISTP X:(’A &

--) (AND (EQ (CAR X) (QUOTE A)) (CDR X)) (A B) (A
. B) LISTP X:((’A
--) --) (EQ (CAAR X) ’A) X:(($1 $1 --) --) (CDAR X)

LISTP @ X:(($1 $1
--)@LISTP --) (CDR (LISTP (CAR X)))

--
&

segment element

$1 &

’ ’A ’(A B)

EQ MEMB ASSOC
EQUAL MEMBER SASSOC

= EQUAL =X
=(REVERSE Y)

== = EQ EQUAL

LISTP elements PATLISTPCHECK
PATLISTPCHECK T LISTP X:((’A --) --) (EQ (CAR
(LISTP (CAR (LISTP X)))) ’A) PATLISTPCHECK NIL

FORM

FORM FORM

EXPRESSION

FORM FORM

FORM

LISPUSERS PACKAGES

The treatment depends on setting of . If is
or , same as . If is or , same as .
If is or , same as . If is or

, same as . is initially .

can be changed within a particular function by using a local
CLISP declaration (see page 16.10).

Note: numbers and strings are always interpreted as though
were , regardless of its setting. , , and are used for comparisons
involving small integers.

��� � 1
Matches a list which matches the given patterns, e.g., , .

Matches an element if matches it, and (name of a function
or a expression) applied to that element returns non- . For example,

matches a number and matches a list whose �rst
element is , and for which applied to that list is non- .

For ‘‘simple’’ tests, the function- object is applied before a match is attempted
with the pattern, e.g., translates as

, not the other way around. may also be
a in terms of the variable , e.g., is equivalent to .

Matches any arbitrary element. If the entire match succeeds, the element which
matched the will be returned as the value of the match.

Note: Normally, the pattern match compiler constructs an expression whose value
is guaranteed to be non- if the match succeeds and if it fails. However, if
a appears in the pattern, the expression generated could also return if the
match succeeds and was matched to . For example, translates
as , so if is equal to then

returns even though the match succeeded.

Matches an element if the element is matched by , e.g.,
, , .

���
Matches if any of the contained patterns match.

23.1.3 Segment Patterns

or Matches any segment of a list (including one of zero length).

The di�erence between and is in the type of search they generate. For example,
translates as , whereas translates as:

23.3

PATVARDEFAULT PATVARDEFAULT ’
QUOTE ’ PATVARDEFAULT = EQUAL =
PATVARDEFAULT == EQ == PATVARDEFAULT _

SETQ _& PATVARDEFAULT ’

PATVARDEFAULT

PATVARDEFAULT
= EQ MEMB ASSOC

()
(& &) (-- ’A)

@

LAMBDA NIL
&@NUMBERP (’A --)@FOO

A FOO NIL

((-- ’A --)@LISTP --) (AND (LISTP
(CAR X)) (MEMB ’A (CAR X)))

@ &@(EQ @ 3) =3

*
*

NIL NIL
* NIL

* NIL X:(’A * --)
(AND (EQ (CAR X) ’A) (CADR X)) X (A NIL B)

X:(’A * --) NIL

~
not

~’A ~=X ~(-- ’A --)

(*ANY*)

$ --

$ -- X:($ ’A ’B $)
(EQ (CADR (MEMB ’A X)) ’B) X:(-- ’A ’B $)

[SOME X

ATOM

ATOM ATOM

ATOM

ATOM

PATTERN 1 PATTERN N N

ELEMENT- PATTERN FN

ELEMENT- PATTERN FN

FN

FORM

ELEMENT- PATTERN

ELEMENT- PATTERN

ELEMENT- PATTERN ELEMENT- PATTERN

Segment Patterns

Thus, a paraphrase of would be ‘‘Is the element following the a ?’’, whereas a
paraphrase of would be ‘‘Is there immediately followed by a ?’’ Note that the
pattern employing will result in a more e�cient search than that employing . However,

will not match with , but will.

Essentially, once a pattern following a matches, the never resumes searching, whereas produces
a translation that will always continue searching until there is no possibility of success. However, if
the pattern match compiler can deduce from the pattern that continuing a search after a particular
failure cannot possibly succeed, then the translations for both and will be the same. For example,
both and translate as , because
if there are not three elements following the �rst , there certainly will not be three elements following
subsequent ’s, so there is no reason to continue searching, even for . Similarly,
and are equivalent.

, , etc. Matches a segment of the given length. Note that is not a segment pattern.

Matches any segment which would match as a list. For
example, if the value of is , will match the segment ���

��� etc. Note that is permissible and means , e.g.,
translates to .

Note: since appearing in front of the last pattern speci�es a match with some of the given
expression, it also makes sense in this case for a to appear in front of a pattern that can only match
with an atom, e.g., means match if of the expression is the atom . Similarly,

translates to .

treatment depends on setting of . If is or
, same as (see above discussion). If is or
, same as . If is or , same as . If

is or , same as .

The atom ‘‘ ’’ is treated like ‘‘ ’’. In addition, if a pattern ends in an atom,
the ‘‘ ’’ is �rst changed to ‘‘ ’’, e.g., and are equivalent,
even though the atom ‘‘ ’’ does not explicitly appear in the pattern.

One exception where ‘‘ ’’ is not treated like ‘‘ ’’: ‘‘ ’’ preceding an assignment
does not have the special interpretation that ‘‘ ’’ has preceding an assignment (see
below). For example, translates as:

but translates as:

23.4

(FUNCTION (LAMBDA ($$2 $$1)
(AND (EQ $$2 ’A)

(EQ (CADR $$1) ’B]

($ ’A ’B $) �rst A B
(-- ’A ’B $) any A B

$ -- ($ ’A ’B
$) (X Y Z A M O A B C) (-- ’A ’B $)

$ $ --

-- $
X:($ ’A $3 $) (-- ’A $3 --) (CDDDR (MEMB (QUOTE A) X))

A
A -- ($ ’A $ ’B $)

(-- ’A -- ’B --)

$2 $3 $1

!

FOO (A B C) !=FOO A B
C !* _$ X:($
’A !*) (CDR (MEMB ’A X))

! tail
!

($2 !’A) CDDR A X:($!
’A) (EQ (CDR (LAST X)) ’A)

! PATVARDEFAULT PATVARDEFAULT ’
QUOTE !’ PATVARDEFAULT =
EQUAL != PATVARDEFAULT == EQ !==
PATVARDEFAULT _ SETQ _$

. . exactly !
. ! ($1 . A) ($1 ! A)

.

. ! .
!

X:(’A . FOO_’B)

(AND (EQ (CAR X) ’A)
(EQ (CDR X) ’B)
(SETQ FOO (CDR X)))

X:(’A ! FOO_’B)

(AND (EQ (CAR X) ’A)
(NULL (CDDR X))

ELEMENT- PATTERN

ELEMENT- PATTERN

VAL UE-OF-MA TCH

ATOM

ATOM

ATOM ATOM

ATOM

3

3

LISPUSERS PACKAGES

Matches a segment if the segment- pattern matches it, and the function object
applied to the corresponding segment (as a list) returns non- . For example,

matches but not , since of
is .

Note: an pattern applied to a segment will require the corresponding
structure (with) each time the predicate is applied (except when the segment
in question is a tail of the list being matched).

23.1.4 Assignments

Any pattern element may be preceded by ‘‘ ’’, meaning that if the match succeeds (i.e.,
everything matches), is to be set to the thing that matches that pattern element. For example,
if is , will set to . Note that assignments are not performed
until the entire match has succeeded, so assignments cannot be used to specify a search for an element
found earlier in the match, e.g., will match with , unless,
of course, the value of was before the match started. This type of match is achieved by using
place-markers, described below.

If the variable is preceded by a , the assignment is to the of the list as of that point in the pattern,
i.e., that portion of the list matched by the remainder of the pattern. For example, if is

, sets to , i.e., of . In other words, when precedes an
assignment, it acts as a modi�er to the , and has no e�ect whatsoever on the pattern itself, e.g.,

and match identically, and in the latter case, will be set to of .

Note: and are acceptable, e.g.,
translates as:

23.1.5 Place-Markers

Variables of the form , a number, are called place-markers, and are interpreted specially by the
pattern match compiler. Place-markers are used in a pattern to mark or refer to a particular pattern
element. Functionally, they are used like ordinary variables, i.e., they can be assigned values, or used
freely in forms appearing in the pattern, e.g., will match the list .
However, they are not really variables in the sense that they are not bound, nor can a function called

The translation of this pattern is:
. The is used because if is , the pattern should match with , but

not with just . The is because might be .

23.5

(EQ (CADR X) ’B)
(SETQ FOO (CDR X)))

@

NIL
($@CDDR ’D $) (A B C D E) (A B D E) CDDR
(A B) NIL

@ computing
LDIFF

_

X (A B C D E) X:($2 Y_$3) Y (C D E)

X:(Y_$1 =Y --) not (A A B C ...)
Y A

! tail
X (A B C D

E) X:($!Y_’C ’D $) Y (C D E) CDDR X !
_ X:(’A

’B) X:(’A !FOO_’B) FOO CDR X

*_ !*_ X:($ ’A *_(’B --)
--)

[PROG ($$2)
(RETURN

(AND (EQ (CAADR (SETQ $$2 (MEMB ’A X))) ’B)
(CADR $$2]

#

X:(#1_$1 =(ADD1 #1)) (2 3)

(COND ((AND (CDR X) (EQUAL (CADR X) Y)) (SETQ Y
(CAR X)) T)) AND Y NIL (A NIL)

(A) T (CAR X) NIL

SEGMENT- PATTERN FUNCTION- OBJECT

VARIABLE

VARIABLE

PATTERN- ELEMENT PATTERN- ELEMENT

N N

4

4

Replacements

from within the pattern expect to be able to obtain their values. For convenience, regardless of the
setting of , the �rst appearance of a defaulted place-marker is interpreted as though

were . Thus the above pattern could have been written as .
Subsequent appearances of a place-marker are interpreted as though were . For
example, is equivalent to , and translates as

. (Note that would incorrectly match
with .)

23.1.6 Replacements

The construct speci�es that if the match succeeds, the part of the data that
matched is to be with the value of . For example, if ,

will replace the third element of with the value of . As with assignments, replacements are not
performed until after it is determined that the entire match will be successful.

Replacements involving segments splice the corresponding structure into the list being matched, e.g., if
is and is , after the pattern is matched with ,
will be , and will be to of , i.e., .

Note that is ambiguous, since it is not clear whether or is the pattern element,
i.e., whether speci�es assignment or replacement. For example, if is , this pattern
can be interpreted as , meaning search for the value of , and if found set to it,
or meaning search for the value of , and if found, store the value of into the
corresponding position. In such cases, the user should disambiguate by not using the
option, i.e., by specifying or .

Note: Replacements are normally done with or . The user can specify that
and should be used, or and , by means of CLISP declarations (see page
16.9).

23.1.7 Reconstruction

The user can specify a value for a pattern match operation other than what is returned by the match by
writing . For example, translates
as:

Place-markers in the pattern can be referred to from within , e.g., the above could also have been
written as . If is used in place of , the expression being

The original CLISP is replaced by an expression of the form
. CLISP also recognizes expressions input in this form.

23.6

PATVARDEFAULT
PATVARDEFAULT _ X:(1 =(ADD1 1))

PATVARDEFAULT =
X:(#1 #1 --) X:(#1_$1 =#1 --) (AND (CDR X)

(EQUAL (CAR X) (CADR X)) (EQUAL (CAR X) (CADR X))
(NIL)

_
replaced X =(A B C D E) X:($ ’C $1_Y

$1) X Y

X
(A B C D E F) FOO (1 2 3) (’A $_FOO ’D $) X X

(A 1 2 3 D E F) FOO EQ CDR X (1 2 3 D E F)

($ FOO_FIE $) FOO FIE
_ PATVARDEFAULT =

($ FOO_=FIE $) FIE FOO
($ =FOO_FIE $) FOO FIE

PATVARDEFAULT
’ =

RPLACA RPLACD /RPLACA
/RPLACD FRPLACA FRPLACD

: => X:(FOO_$ ’A --) => (REVERSE FOO)

[PROG ($$2)
(RETURN

(COND ((SETQ $$2 (MEMB ’A X))
(SETQ FOO (LDIFF X $2))
(REVERSE FOO]

X:(!#1 ’A --)=>(REVERSE #1) -> =>

(MATCH WITH =>
)

PATTERN- ELEMENT FORM

FORM

FORM 1 PATTERN FORM 2

FORM

FORM 1 PATTERN

FORM 2

LISPUSERS PACKAGES

matched is also to the value of . For example,
would remove the second element from , if it were equal to .

In general, is translated so as to compute if the match is successful,
and then smash its value into the �rst node of . However, whenever possible, the translation does
not actually require to be computed in its entirety, but instead the pattern match compiler uses

as an indication of what should be done to . For example,
translates as .

23.1.8 Examples

matches any arbitrary segment. matches only an , and the second again
matches an arbitrary segment; thus this translates to .

Again, matches an arbitrary segment; however, since there is no after the
, must be the last element of . Thus this translates to:

.

of must be , and must be , and there must be at least three
elements after the �rst , so the translation is:

Since does not end in or , must be .

is implicitly assigned to the �rst element in the list. The searches for the �rst
following . This must be followed by a , and the by an expression equal

to the �rst element.

23.7

physically changed X:(#1 ’A !#2) -> (CONS
#1 #2) X A

: ->

X:(#1 ’A !#2) -> (CONS
#1 #2) (AND (EQ (CADR X) ’A) (RPLACD X (CDDR X)))

X:(-- ’A --) -- ’A A --
(MEMB ’A X)

X:(-- ’A) -- --
’A A X (EQ (CAR (LAST
X)) ’A)

X:(’A ’B -- ’C $3 --)
CAR X A CADR B

C

(AND (EQ (CAR X) ’A)
(EQ (CADR X) ’B)
(CDDDR (MEMB ’C (CDDR X))))

X:((’A ’B) ’C Y_$1 $)
(’A ’B) $ -- (CDDAR X) NIL

(COND
((AND (EQ (CAAR X) ’A)

(EQ (CADAR X) ’B)
(NULL (CDDAR X))
(EQ (CADR X) ’C)
(CDDR X))

(SETQ Y (CADDR X))
T))

X:(#1 ’A $ ’B ’C #1 $)
#1 $
B A B C C

[PROG ($$2)
(RETURN

(AND (EQ (CADR X) ’A)
(EQ [CADR (SETQ $$2 (MEMB ’B (CDDR X] ’C)
(CDDR $$2)
(EQUAL (CADDR $$2) (CAR X]

X:(#1 ’A -- ’B ’C #1 $)

FORM

FORM 1 PATTERN FORM 2 FORM 2
FORM 1

FORM 2
FORM 2 FORM 1

Printing Reentrant and Circular List Structures

Similar to the pattern above, except that speci�es a search for followed
by a followed by the �rst element, so the translation is:

23.2 PRINTING REENTRANT AND CIRCULAR LIST STRUCTURES

23.2.1 CIRCLPRINT

(page 6.24) is designed primarily for dumping circular or reentrant list structures (as well as
other data structures for which is not an inverse of) so that they can be read back in by
Interlisp. The CIRCLPRINT package is designed for printing circular or reentrant structures so that the
user can look at them and understand them.

A reentrant list structure is one that contains more than one occurrence of the same () structure. For
example, (page 2.17) makes uses of reentrant list structure so that it does not have to search for
the end of the list each time it is called. Thus, if is a list of 3 elements, , being constructed
by , the reentrant list structure used by for this purpose is:

This structure would be printed by as . Note that would produce the same
output for the non- reentrant structure:

23.8

-- any B
C

[AND (EQ (CADR X) ’A)
(SOME (CDDR X)

(FUNCTION (LAMBDA ($$2 $$1)
(AND (EQ $$2 ’B)

(EQ (CADR $$1) ’C)
(CDDR $$1)
(EQUAL (CADDR $$1) (CAR X]

Note: CIRCLPRINT is a LispUsers package contained on the �le CIRCLPRINT.DCOM.

HPRINT
READ PRINT

EQ
TCONC

X (A B C)
TCONC TCONC

|.|.|-----------------|
----- |

| |
V V

----- ----- -----
|A|.|---->|B|.|---->|C|/|
----- ----- -----

PRINT ((A B C) C) PRINT

----- -----
|.|.|---->|C|/|
----- -----

|
V

----- ----- -----
|A|.|---->|B|.|---->|C|/|
----- ----- -----

LISPUSERS PACKAGES

In other words, does not indicate the fact that portions of the structure in the �rst �gure are
identical. Similarly, if is applied to a circular list structure (a special type of reentrant structure)
it will never terminate.

For example, if is called on the structure:

it will print an endless sequence of left parentheses, and if applied to:

will print a left parenthesis followed by an endless sequence of ’s.

The function described below produces output that will exactly describe the structure of any
circular or reentrant list structure. This output may be in either single or double- line formats. Below are
a few examples of the expressions that would produce to describe the structures discussed
above.

First Figure, single line:

First Figure, double- line:

Third Figure, single-line:

Third Figure, double- line:

Forth Figure, single-line:

Forth Figure, double- line:

23.9

PRINT
PRINT

PRINT

. -----
|--->|.|/|
| -----

. -----
|--->|A|.|----|
| ----- |

A

CIRCLPRINT

CIRCLPRINT

((A B *1* C) {1})

((A B C) {1})
1

(*1* {1})

({1})
1

(*1* A . {1})

(A . {1})
1

CIRCLPRINT

The more complex structure:

is printed as follows:

Single- line:

Double- line:

In both formats, the reentrant nodes in the list structure are labeled by numbers. (A reentrant node is
one that has two or more pointers coming into it.) In the single-line format, the label is printed between
asterisks at the beginning of the node (list or tail) that it identi�es. In the double- line format, the label is
printed below the beginning of the node it identi�es. An occurrence of a reentrant node that has already
been identi�ed is indicated by printing its label in brackets.

[Function]
Prints an expression describing . If = , double- line format is
used, otherwise single-line format. �rst calls , and then
calls either (if =) or (if =). Finally,

is called to restore to its unmarked state. Returns .

[Function]
Marks each reentrant node in with a unique number, starting at +1
(or 1, if is). Value is (new) .

Marking physically alters it. However, the marking is performed undoably.
In addition, can always be restored by speci�cally calling .

[Function]
Prints an expression describing in the single-line format. Does not restore

to its un ed state. must previously have been ed
or an error is generated.

[Function]
Same as , except that the expression describing is printed in the
double- line format.

23.10

. -----
|-------->|.|.|--------------------------|
| ----- |
| | |
| V V
| ----- ----- ----- -----
| |--->|.|.|---->|.|.|---->|A|.|---->|B|.|
| | ----- ----- ----- -----
| | | |^ |
| |-----| ||-------------------|

(*2* (*1* {1} *3* {2} A *4* B . {3}) . {4})

(({1} {2} A B . {3}) . {4})
21 3 4

(CIRCLPRINT)
NIL

CIRCLPRINT CIRCLMARK
RLPRIN1 T RLPRIN2 NIL

RLRESTORE

(CIRCLMARK)

NIL

RLRESTORE

(RLPRIN1)

CIRCLMARK CIRCLMARK

(RLPRIN2)
RLPRIN1

LIST PRINTFL G RLKNT

LIST PRINTFL G

PRINTFL G PRINTFL G

LIST LIST

LIST RLKNT

LIST RLKNT

RLKNT RLKNT

LIST

LIST

LIST

LIST

LIST LIST

LIST

LIST

LISPUSERS PACKAGES

[Function]
Physically restores list to its original, unmarked state.

Note that the user can mark and print several structures which together share common substructures, e.g.,
several property lists, by making several calls to , followed by calls to or ,
and �nally to .

[Function]
may contain labels and references following the convention used by

for print ing reentrant struc tures in single line format, e.g., .
per forms the necessary ’s and ’s to make

correspond to the indicated struc ture. Value is (altered) .

[Function]
Does the work for . Uses free variables and .
is a list of dotted pairs of labels and correspond ing nodes. is a list of
nodes contain ing references to labels not yet seen. operates by
initializing and to , and then calling . It
generates an error if is not NIL when returns. The
user can call directly to ‘‘connect up’’ several struc tures that share
common substruc tures, e.g., several property lists.

23.2.2 PRINTL

The package uses a di�erent scheme than to present circular structures in an easily
readable format. uses indentation a la to make it easier for the user to see the
nesting of list structure, and prints index numbers for the beginning and ends of expressions so that the
user can �nd what is referred back to easily. Note that does not provide an output format which
can be read back in to reconstruct the original list structure; it is intended primarily as a debugging aid.

The following example illustrates the use of :

23.11

(RLRESTORE)

CIRCLMARK RLPRIN1 RLPRIN2
RLRESTORE

(CIRCLMAKER)
CIRCLPRINT

(*1* . {1})
CIRCLMAKER RPLACA RPLACD

(CIRCLMAKER1)
CIRCLMAKER LABELST REFLST LABELST

REFLST
CIRCLMAKER

LABELST REFLST NIL CIRCLMAKER1
REFLST CIRCLMAKER1

CIRCLMAKER1

Note: PRINTL is a LispUsers package contained on the �le PRINTL.COM.

PRINTL CIRCLPRINT
PRINTL PRETTYPRINT

PRINTL

PRINTL

32_(PRINTL (NCONC (SETQQ X (A B C D)) X))
1: (A B C D . {1}) :1

NIL
33_(PRINTL (LIST X (CDR X) (CDDR X) (CDDDR X]

1: ((A B C D . {2}) {3} {4} {5}) :1
NIL
34_(PRINTL (LIST X (CONS ’P (CDR X)) (CONS ’Q (CDDR X))
(CONS ’R (CDDDR X]

1: ((A B C D . {2}) :2
6: (P . {3}) :6
7: (Q . {4}) :7
8: (R . {5})) :1

NIL
35_USE LIST FOR CONS

1: ((A B C D . {2}) :2
6: (P {3}) :6

LIST

LIST

LIST

LIST

LIST

LIST

Indexing and Cross Referencing Files

uses the following algorithm: Each list node that is printed (or) is assigned a number.
The second and subsequent appearences of this list node are represented simply by printing the number
corresponding to the node in brackets. Every line on which the representation of a list begins shows
the corresponding number of the such list, i.e. this number corresponds to the �rst open parenthesis
on the line. Similarly, to the right of every line on which a list ends is printed the number that corresponds
to the close parenthesis on the line. The numbers for those list nodes which do not correspond to
the �rst open parentheses or the last close parentheses on a line can be obtained by simply counting from
the last numbered parenthesis. For example, in the line

2 is , 3 is , 4 is , and 5 is .

[Function]
Prints an item which is known to be, or suspected of being a circular list structure,
in the form described above. controls the depth of recursion in the

direction and defaults to the value of the varible (initially 4).
Elements of the structure at this depth are printed as ‘‘ ’’.

is the left margin. If , defaults to .
is the position at which the righthand column of numbers will be printed. If ,

defaults to -5.

Printing is to , which is opened if necessary.

[Variable]
The default argument for . Initially 4.

[Prog. Asst. Command]
Programmers Assistant command that performs provided

is not a number. If it is, or if = , the item to be printed is
taken to be the last event on the history list with a non- null value. Thus

will print the last non- null value with =6.

23.3 INDEXING AND CROSS REFERENCING FILES

23.3.1 SINGLEFILEINDEX

SINGLEFILEINDEX is a package for giving the user an alphabetical function index on the front of each
lisp �le listed by Interlisp. This package is similar to the MULTIFILEINDEX package described below,
except that SINGLEFILEINDEX provides a table of contents for functions only, and operates on one
�le at a time. However, SINGLEFILEINDEX is much simpler and faster than MULTIFILEINDEX and

23.12

8: (Q {4}) :8
10 (R {5})) :1

NIL

PRINTL CAR CDR

{}
�rst

last

1: ((A B C D . {2}) {3} {4} {5}) :1

(A B C D) (B C D) (C D) (D)

(PRINTL)

CAR PRINTDEPTH
{--}

NIL (POSITION)
NIL

(LINELENGTH)

PRINTDEPTH
PRINTL

(PRNTL)
(PRINTL .)

(CAR) NIL
PRNTL

6

Note: SINGLEFILEINDEX is a LispUsers package that is contained on the �le SINGLEFILEINDEX.DCOM.

ITEM DEPTH LMAR G RMAR G FILE

DEPTH

LMAR G LMAR G FILE RMAR G

RMAR G

FILE

DEPTH

AR GS

AR GS

AR GS AR GS

DEPTH

LISPUSERS PACKAGES

is useful every time a �le is made.

The �rst page gives the �lename, time of creation, and the time of the listing. Following that (on possibly
more than one page) are columns of function names and index numbers, where the index number
indicates the function’s linear occurrence within the �le. The number of columns is determined by the
length of the longest function name, as well as by the number of functions in the �le as described below.
The �le is then printed with the �lename and page number at the top of every page, and each function
is preceded by its index number right- justi�ed on the page.

When the SINGLEFILEINDEX package is �rst loaded, it rede�nes (page 11.9) so that all
�les listed by will be listed by calling . Note that
the �le being indexed does not have to be loaded, or even noticed in the �le package sense.

[Function]
is the lisp source �le. is the destina tion �le. If = ,

then the value of (initially) is used. = means each
func tion will be printed on a new page. The value of deter-
mines the position of the index num bers, as well as the placement of the columns.
The value of (initially 58) deter mines the num ber of lines per
page.

23.3.2 MULTIFILEINDEX

Many systems built in Interlisp consist of a number of symbolic source �les. Finding one’s way around
in the listings can often be very tedious, even for the implementor of the system, if you don’t know
the system and the structure of the �les intimately. The MULTIFILEINDEX package is an attempt
to help users deal with this problem by creating a listing of an entire system or set of �les, including
an alphabetized table of contents containing entries for each function on any of the �les. Information
(but not unique index numbers) is included for other entities in the �les such as records, blocks, and
properties. The function implements this mechanism.

[Function]
is a list of �le names (if atomic, is used). If

it is , returns immediately. If it is , the value of
is used (page 11.13). is the output �le. If is

, the value of is used (below). If = , each function
in the listing will be placed on a page by itself.

In the default case, does the following:

(1) Outputs an alphabetized table of contents (index) indicating the name of an object (function, record,
block, variable, and so on), the �le that it belongs to, and its type (property, variable (set or saved),
record, block, and so forth). If the object is the name of a function, then the information includes a
unique index in the listing for the function, its type (, , etc.), and its argument list. Note
that it handles functions/�les that use DECL (page 23.18). Otherwise, the index represents the index of
the function immediately preceeding the de�nition of the entity.

(2) Outputs a listing of the �les with each function being preceeded by its index number right- justi�ed

23.13

LISTFILES1
LISTFILES (SINGLEFILEINDEX NIL NIL)

(SINGLEFILEINDEX)
NIL

PRINTER LPT: T
FILELINELENGTH

LINESPERPAGE

Note: MULTIFILEINDEX is a LispUsers package that is contained on the �le MULTIFILEINDEX.DCOM.

MULTIFILEINDEX

(MULTIFILEINDEX)
(LIST)

NIL MULTIFILEINDEX T FILELST

NIL PRINTER T

MULTIFILEINDEX

EXPR FEXPR*

N

FILE

FILE OUTPUTFILE NEWP AGEFL G

FILE OUTPUTFILE OUTPUTFILE

NEWP AGEFL G

SOUR CEFILES DESTINA TIONFILE NEWP A GEFL G

SOUR CEFILES SOUR CEFILES

DESTINA TIONFILE DESTINA TIONFILE

NEWP AGEFL G

MULTIFILEINDEX

on the line. Header information is placed at the top of each page, and the pages are numbered.

(3) Undoably removes the names of the �les indexed from (page 11.9).

is e�ected by the following variables:

[Variable]
If , indicates that you want the �le index output. Initially .

[Variable]
If , indicates that you want the �le listings output to . Initially

.

[Variable]
If the argument to is , it defaults to the value of

. Initially in Interlisp- D, in Interlisp- 10.

[Variable]
The value of determines the number of lines per page. Initially
65 in Interlisp- D, 58 in Interlisp- 10.

[Variable]
If , page headings and the index numbers that preceed the de�nition of
each function are printed bold; that is, overprinted; otherwise, they are printed
using the (if doesn’t exist) in the current

(see page 6.55).

[Variable]
The value of determines the width of the page.

The following four parameters a�ect how the columns are placed:

[Variable]
[Variable]
[Variable]
[Variable]

The value of indicates how the other three are to be
interpreted. If is the atom (its initial
value), then an attempt is made to �t the columns onto the page in a way
that maximizes the amount of space for the type information (the amount of
space allocated for the type �eld must be at least 45% of in
this case). If is either or , then the value
of the other variables are treated as absolute column positions on the page. If

is either or , the columns will be
�oated, but will not be any smaller than the column positions de�ned by the other
variables.

The initial values of these four variables are , 0, 26 and 41, respectively.

has an interface to Masterscope. If the value of either of the next two variables is
, then assumes that the source�les have already been analyzed by Masterscope, and

calls .

23.14

NOTLISTEDFILES

MULTIFILEINDEX

MULTIFILEINDEXMAPFLG
T T

MULTIFILEINDEXFILESFLG
T

T

PRINTER
MULTIFILEINDEX NIL

PRINTER {LPT} LPT:

LINESPERPAGE
LINESPERPAGE

FONTCHANGEFLG
NIL

BOLDFONT PRETTYCOMFONT BOLDFONT
FONTPROFILE

FILELINELENGTH
FILELINELENGTH

MULTIFILEINDEXCOLS
MULTIFILEINDEXNAMECOL
MULTIFILEINDEXFILECOL
MULTIFILEINDEXTYPECOL

MULTIFILEINDEXCOLS
MULTIFILEINDEXCOLS FLOATCOLS

FILELINELENGTH
MULTIFILEINDEXCOLS T FIXCOLS

MULTIFILEINDEXCOLS NIL FIXFLOATCOLS

FLOATCOLS

MULTIFILEINDEX
T MULTIFILEINDEX

UPDATECHANGED

DESTINA TIONFILE

MAPFILE

LISPUSERS PACKAGES

[Variable]
If , indicates that you want the Masterscope information about each function
output. This includes who calls each function, who this function calls, and what
variables are set or referred to either locally or freely. Initially .

[Variable]
If , indicates that all variables used in the �les should have some information
output about them at the end of the listing. The list of variables to look at
is obtained by e�ectively asking Masterscope the question: ‘‘

’’. The listing will include information about
who binds, uses freely or locally, or smashes freely or locally each variable. The
variable map is case-independently sorted by the name of the variable. Initially

.

In order to make the index, or map, of the �les, the �lecoms for all the �les being listed need be
loaded (see page 11.21); does a on each �le (�le names are obtained using

) to obtain its �lecoms. As other indirections are noted, they also are obtained using .
For example, if you have a �le , and its �lecoms is , just doing a
on will not su�ce; as the expression is parsed, a is also done
to obtain the value of .

[Variable]
If , then a of all the on a particular �le is performed before
the �lecoms is loaded with . Initially .

[Variable]
If , will inform the user when it does s. Initially

.

23.4 DATABASEFNS

Databasefns is a very small package whose purpose is to make the construction and maintenance of
databases an essentially automatic process. It modi�es , , and

to behave in the following way:

A database will be maintained automatically for any �le (containing functions) whose �le name has the
property with value . Whenever such a �le is dumped via ,
will analyse any new or changed functions on the �le, and a database for all of the functions on the �le
will be written on a separate �le whose name is of the form . Whenever a �le which
has a property with value is loaded via or , then the corresponding

�le, if any, is also loaded. The database will not be dumped or loaded if the value of the
property for the �le is . The property is considered to be if the �le is loaded

with = .

If the property is not or , then for , , and will ask the user
whether he wants automatic database maintenance. The user’s answer will be stored on the
property so that he will not be asked again. Thus when a �le is dumped for the �rst time, the user will

23.15

MULTIFILEINDEXFNSMSFLG
T

NIL

MULTIFILEINDEXVARSMSFLG
T

WHO IS USED BY
ANY AND WHO IS SET BY ANY

NIL

MULTIFILEINDEX GETDEF
FINDFILE GETDEF

TEST ((FNS * TESTFNS)) GETDEF
TESTCOMS (FNS * TESTFNS) GETDEF

TESTFNS

MULTIFILEINDEXLOADVARSFLG
T LOADVARS VARS

GETDEF NIL

MULTIFILEINDEXGETDEFFLG
T MULTIFILEINDEX GETDEF

NIL

Note: Databasefns is a LispUsers package that is contained on the �le DATABASEFNS.DCOM.

MASTERSCOPE MAKEFILE LOAD LOADFROM

DATABASE YES MAKEFILE MASTERSCOPE

.DATABASE
DATABASE YES LOAD LOADFROM

.DATABASE
DATABASE NO DATABASE NO

SYSLOAD

DATABASE YES NO MAKEFILE LOAD LOADFROM
DATABASE

FILE

LDFL G

Lambdatran

be asked ‘‘Do you want a Masterscope Database for this �le?’’. Similarly, if the user loads a �le which
has an associated database, the user will be asked ‘‘load database for ?’’.

The above interactions may be controlled via the global variables and . When
a �le which has neither a or database property is being dumped, will assume (and
store) a value if the value of is , and a value if is . The user
will be queried only if is (its initial value). Similarly, if is , and

will automatically load an existing �le for a �le which does not have a or
value for its property. The database will not be loaded if is , and the user

will be interrogated as described above if is (its initial value).

The user can dump and restore databases explicitly via the following functions:

[Function]
Dumps a database for then sets the property to , so that
database maintenance for will subsequently be automatic.

[Function]
Loads the �le if one exists. After the database is loaded, the

property for is set to , so that maintenance will thereafter be
automatic.

Database �les include the date and full �lename of the �le to which they correspond.
will print out a warning message if it loads a database that does not

correspond to the in-core version of the �le.

Note that is the only approved way of loading a database: Attempting to
load a database �le will cause an error.

23.5 LAMBDATRAN

The purpose of this package is to facilitate de�ning new words in such a way that a variety of
other system packages will respond to them appropriately. A word is a word that can appear as

of a function de�nition, like and . New words are useful because they
enable the user to de�ne his own conventions about such things as the interpretation of arguments, and
to build in certain defaults about how values are returned. For example, the DECL package (page 23.18)
de�nes as a new word with unconventional arguments such as the following:

In order for such an expression to be executable and compilable, a mechanism must be provided for
translating this expression to an ordinary or , with the special behavior associated with
the arguments built into the function body. The lambdatran package accomplishes this via an appropriate
entry on (see page 15.10) that computes the translation.

Besides executing and compiling, Interlisp applies a number of other operations to function de�nitions
(e.g. breaking, advising), many of which depend on the system being able to determine certain properties

23.16

SAVEDBFLG LOADDBFLG
YES NO MAKEFILE

YES SAVEDBLFG YES NO SAVEDBFLG NO
SAVEDBFLG ASK LOADDBFLG YES LOAD

LOADFROM .DATABASE YES
NO DATABASE LOADDBFLG NO

LOADDBFLG ASK

(DUMPDB)
DATABASE YES

(LOADDB)
.DATABASE

DATABASE YES

LOADDB

LOADDB

Note: Lambdatran is a LispUsers package that is contained on the �le LAMBDATRAN.DCOM.

LAMBDA
LAMBDA

CAR LAMBDA NLAMBDA LAMBDA

DLAMBDA LAMBDA

(DLAMBDA ((A FLOATP) (B FIXP) (RETURNS SMALLP)) (FOO A B))

LAMBDA NLAMBDA

DWIMUSERFORMS

FILE

FILE

FILE

FILE

FILE

FILE

FILE

LISPUSERS PACKAGES

of the function, such as the names of its arguments, their number, and the type of the function (,
, etc.). The lambdatran package also provides new de�nitions for the functions , ,
, and which can be told how to compute properties for the user’s -words.

A new -word is de�ned in the following way:

1. Add the -word itself (e.g. the atom) to the list . This suppresses
attempts to correct the spelling of the -word.

2. Add an entry for the -word to the association- list , which is a list of elements
of the form: , where

is the name of the -word (e.g.).

is a function of one argument that will be called whenever a real de�nition is needed for
the -word de�nition. Its argument is the -word de�nition, and its value should be a
conventional or expression which will become the translation of the -word
form. The free variable is bound to the name of the function in which the -word form
appeared (or if the form was typed in).

determines the function- type of a de�nition beginning with . It is consulted if the
de�nition does not already have a translation from which the function type may be deduced. If is
one of the atoms , , , , then all de�nitions beginning with -word are
assumed to have that type. Otherwise, is a function of one argument that will be applied to the

-word de�nition. Its value should be one of the above four function types.

determines the argument list of the de�nition if it has not already been translated (if it has,
the is simply the of the translation). It is also a function of one argument, the

-word de�nition, and its value should be the list of arguments for the function (e.g. in
the example above). If the -word de�nition is ill-formed and the argument list cannot
be computed, the function should return . If an entry is not provided in the
element, then the argument list defaults to the second element of the de�nition.

As an example, the entry for is ,
where and are functions of one argument.

Note: if the -word de�nition has an argument list with argument names appearing either as literal
atoms or as the �rst element of a list, the user should also put the property with value on
the property list of the -word in order to inform (page 16.14) to take notice of the
names of the arguments when ing.

23.6 PERMSTATUS

The function de�ned in this package can be used in conjunction with (page
6.11) to make a �le ‘‘permanently’’ open in the sense that as much of its status as possible will be
restored when a is resumed. This includes its access mode, �le- pointer position, bytesize, and
any pages mapped in by the page mapping facility (page 14.17). The desired e�ect is achieved by saying

23.17

EXPR
FEXPR FNTYP ARGLST
NARGS ARGTYPE LAMBDA

LAMBDA

LAMBDA DLAMBDA LAMBDASPLST
LAMBDA

LAMBDA LAMBDATRANFNS
()

LAMBDA DLAMBDA

LAMBDA LAMBDA
LAMBDA NLAMBDA LAMBDA

FAULTFN LAMBDA
TYPE-IN

EXPR FEXPR EXPR* FEXPR* LAMBDA

LAMBDA

LAMBDA (A B)
DLAMBDA LAMBDA

T LAMBDATRANFNS

LAMBDATRANFNS DLAMBDA (DLAMBDA DECL EXPR DLAMARGLIST)
DECL DLAMARGLIST

LAMBDA
INFO BINDS

LAMBDA DWIMIFY
DWIMIFY

Note: Permstatus is a LispUsers package that is contained on the �le PERMSTATUS.COM.

PERMSTATUS WHENCLOSE

SYSOUT

LAMBD A-W ORD TRANFN FNTYP AR GLIST

LAMBD A-W ORD

TRANFN

FNTYP LAMBD A-W ORD

FNTYP

FNTYP

AR GLIST

AR GLIST AR GLIST

AR GLIST

The Decl Package

after the �le has been opened.

Note that the permanency of �les is not guaranteed in that �les may be deleted or renamed, or their
contents changed, despite their permanent attribute in some . When restarting a , a
warning message will be printed if the �le cannot be found or restored. However, will not
be able to detect that the contents of a �le have been modi�ed since the was created. Note
also that ‘‘permanent’’ �les will still be closed by , and will not be immune to or to
closing on end- of-�le errors unless the appropriate attributes for and are
also established.

23.7 THE DECL PACKAGE

The Decl package extends Interlisp to allow the user to declare the types of variables and expressions
appearing in functions. It provides a convenient way of constraining the behavior of programs when the
generality and �exibility of ordinary Interlisp is either unnecessary, confusing, or ine�cient.

The Decl package provides a simple language for declarations, and augments the interpreter and the
compiler to guarantee that these declarations are always satis�ed. The declarations make programs more
readable by indicating the type, and therefore something about the intended usage, of variables and
expressions in the code. They facilitate debugging by localizing errors that manifest themselves as type
incompatibilities. Finally, the declaration information is available for other purposes: compiler macros
can consult the declarations to produce more e�cient code; coercions for arguments at user interfaces can
be automatically generated; and the declarations will be noticed by the Masterscope function analyzer.

The declarations interpreted by the Decl package are in terms of a set of declaration types called ,
each of which speci�es a set of acceptable values and also (optionally) other type speci�c behavior. The
Decl package provides a set of facilities for de�ning decltypes and their relations to each other, including
type valued expressions and a comprehensive treatment of union types.

The following description of the Decl package is divided into three parts. First, the syntactic extensions
which permit the concise attachment of declarations to program elements are discussed. Second, the
mechanisms by which new decltypes can be de�ned and manipulated are covered. Finally, some additional
capabilities based on the availability of declarations are outlined.

23.7.1 Using Declarations in Programs

Declarations may be attached to the values of arbitrary expressions and to and variables
throughout (or for part of) their lexical scope. The declarations are attached using constructs that resemble
the ordinary Interlisp , , and , but which also permit the expression of declarations.
The following examples illustrate the use of declarations in programs.

Consider the following de�nition for the factorial function :

23.18

(WHENCLOSE ’STATUS ’PERMSTATUS)

SYSOUT SYSOUT
PERMSTATUS

SYSOUT
CLOSEF CLOSEALL

WHENCLOSE CLOSEALL EOF

Note: Decl is a LispUsers package that is contained on the �le DECL.DCOM. The Decl package requires
the LAMBDATRAN package (section 23.5), so LAMBDATRAN.DCOM will automatically be loaded with Decl
if it is not already present.

decltypes

LAMBDA PROG

LAMBDA PROG PROGN

(FACT)

FILENAME

N

LISPUSERS PACKAGES

Obviously, this function presupposes that is a number, and the run- time checks in and
will cause an error if this is not so. For instance, will cause an error and print the message

. By de�ning as a , the Decl package analog of , this
presupposition can be stated directly in the code:

With this de�nition, will result in a error when the body of the
code is executed. Instead, the declaration will be checked when the function is �rst entered,
and a will occur. Thus, the message that the user will see will not dwell on the o�ending
value , but instead give a symbolic indication of what variable and declaration were violated, as follows:

The user is left in a break from which the values of variables, e.g. , can be examined to determine what
the problem is.

The function also makes other presuppositions concerning its argument, . For example, will
go into an in�nite recursive loop if is a number less than zero. Although the user could program an
explicit check for this unexpected situation, such coding is tedious and tends to obscure the underlying
algorithm. Instead, the requirement that not be negative can be succinctly stated by declaring it to
be a subtype of which is restricted to non- negative numbers. This can be done by adding a

clause to ’s type speci�cation:

The predicate in the clause will be evaluated after is bound and found to satisfy ,
but before the function body is executed. In the event of a declaration fault , the condition
will be included in the error message. For example, would result in:

The construct also permits the type of the value that is returned by the function to be declared
by means of the pseudo- variable . For example, the following de�nition speci�es that is
to return a positive integer:

23.19

[LAMBDA (N)
(COND

((EQ N 0) 1)
(T (ITIMES N (FACT (SUB1 N]

N ITIMES SUB1
(FACT T)

NON-NUMERIC ARG T FACT DLAMBDA LAMBDA

[DLAMBDA ((N NUMBERP))
(COND

((EQ N 0) 1)
(T (ITIMES N (FACT (SUB1 N]

(FACT T) not NON-NUMERIC ARG T
NUMBERP

declaration fault
T

DECLARATION NOT SATISFIED
((N NUMBERP) BROKEN)
:

N

FACT N FACT
N

N
NUMBERP

SATISFIES N

[DLAMBDA ([N NUMBERP (SATISFIES (NOT (MINUSP N])
(COND

((EQ N 0) 1)
(T (ITIMES N (FACT (SUB1 N]

SATISFIES N NUMBERP
SATISFIES

(FACT -1)

DECLARATION NOT SATISFIED
((N NUMBERP (SATISFIES (NOT (MINUSP N))) BROKEN)
:

DLAMBDA
RETURNS FACT

[DLAMBDA ([N NUMBERP (SATISFIES (NOT (MINUSP N]

5

5

DLAMBDAs

After the function body is evaluated, its value is bound to the variable and the
declaration is checked. A declaration fault will occur if the value is not satisfactory. This prevents a bad
value from propagating to the caller of , perhaps causing an error far away from the source of the
di�culty.

Declaring a variable causes its value to be checked not only when it is �rst bound, but also whenever
that variable is reset by within the . In other words, the type checking machinery will
not allow a declared variable to take on an improper value. An iterative version of the factorial function
illustrates this feature in the context of a , the Decl package analog of :

declarations are much like declarations, except that they also allow an initial value for
the variable to be speci�ed. In the above example, is declared to be a positive integer throughout
the computation and is declared to be non- negative. Thus, a bug which caused an incorrect value to
be assigned by one of the expressions would cause a declaration failure. Note that the
declaration for a is also useful in detecting the common bug of omitting an explicit .

23.7.2 DLAMBDAs

The Decl package version of a expression is an expression beginning with the atom
. Such an expression is a function object that may be used in any context where a

expression may be used. It resembles a expression except that it permits declaration expressions
in its argument list, as illustrated in the examples given earlier. Each element of the argument list of a

may be a literal atom (as in a conventional) or a list of the form
.

ful�lls the standard function of a parameter, i.e. providing a name to which the value of the
corresponding argument will be bound.

is either a Decl package type name or type expression. When the is entered, its arguments
will be evaluated and bound to the corresponding argument names, and then, after the argument names

Strictly, this would require a declaration with a clause to take the form
(page 23.27). However, due to the frequency with which this construction

is used, it may be written without the inner set of parentheses, e.g.
.

23.20

[RETURNS FIXP (SATISFIES (IGREATERP VALUE 0])
(COND

((EQ N 0) 1)
(T (ITIMES N (FACT (SUB1 N]

VALUE RETURNS

FACT

SETQ DLAMBDA

DPROG PROG

(DLAMBDA ([N NUMBERP (SATISFIES (NOT (MINUSP N]
[RETURNS FIXP (SATISFIES (IGREATERP VALUE 0])

[DPROG ([TEMP 1 FIXP (SATISFIES (IGREATERP TEMP 0]
[RETURNS FIXP (SATISFIES (IGREATERP VALUE 0])

LP (COND ((EQ N 0) (RETURN TEMP)))
(SETQ TEMP (ITIMES N TEMP))
(SETQ N (SUB1 N))
(GO LP]

DPROG DLAMBDA
TEMP

N
SETQ RETURNS

DPROG RETURN

LAMBDA
DLAMBDA LAMBDA

LAMBDA

DLAMBDA LAMBDA (.
)

DLAMBDA
all

SATISFIES (N (NUMBERP
(SATISFIES --)) --)

(N NUMBERP (SATISFIES --)
--)

NAME TYPE

EXTRAS

NAME

TYPE

6

6

LISPUSERS PACKAGES

have been bound, the declarations will be checked. The type checking is delayed so that
predicates can include references to other variables bound by the same . For example, one might
wish to de�ne a function whose two arguments are not only both required to be of some given type, but
are also required to satisfy some relationship (e.g., that one is less than the other).

allows some additional properties to be attached to a variable. One such property is the
accessibility of outside the current lexical scope. Accessibility speci�cations include the atoms

or , which indicate that this variable is to be compiled so that it is either a
or a , respectively. This is illustrated by the following example:

���

A more informative equivalent to the key word is the form, the tail of which can be
a list of the other functions which are expected to have access to the variable:

���

may also include a comment in standard format, so that descriptive information may be given
where a variable is bound:

���

As mentioned earlier, the value returned by a can also be declared, by means of the pseudo-
variable . The declaration is just like other declarations, except (1) in any

predicate, the value of the function is referred to by the distinguished name ; and (2)
it makes no sense to declare the return value to be or .

23.7.3 DPROG

Just as resembles , is analogous to . As for an ordinary , a variable
binding may be speci�ed as an atom or a list including an initial value form. However, a binding
also allows and information to appear following the initial value form. The format for these
augmented variable bindings is . The only di�erence between
a binding and a binding is that the second position is interpreted as the initial value
for the variable. Note that if the user wishes to supply a type declaration for a variable, an initial value

be speci�ed. The same rules apply for the interpretation of the type information for s as for
s, and the same set of optional s can be used. s may also declare the type of the

value they return, by specifying the pseudo- variable .

is mainly for documentation purposes, since there is no way for such a restriction to be
enforced.

23.21

SATISFIES
DLAMBDA

LOCAL SPECIAL LOCALVAR
SPECVAR

[DLAMBDA ((A LISTP SPECIAL)
(B FIXP LOCAL))
]

SPECIAL USEDIN

[DLAMBDA ((A LISTP (USEDIN FOO FIE))
(B FIXP LOCAL))
]

[DLAMBDA ((A LISTP (USEDIN FOO FIE) (* This is an important variable))
(B FIXP LOCAL))
]

DLAMBDA
RETURNS RETURNS DLAMBDA

SATISFIES VALUE
LOCAL SPECIAL

DLAMBDA LAMBDA DPROG PROG PROG
DPROG

(.)
DPROG DLAMBDA

must DPROG
DLAMBDA DPROG

RETURNS

USEDIN

EXTRAS

NAME

EXTRAS

TYPE EXTRAS

NAME INITIALVAL UE TYPE EXTRAS

EXTRA

Declarations in Iterative Statements

Just as for a , type tests in a are not asserted until all the variables have been
bound, thus permitting predicates to refer to other variables being bound by this . If appears
as the initial value for a binding (i.e. the atom actually appears in the code, not simply an expression
which evaluates to) the initial type test will be suppressed, but subsequent type tests, e.g. following
a , will still be performed.

A common construct in Lisp is to bind and initialize a variable to the value of a complicated
expression in order to avoid recomputing it, and then to use this value in initializing other variables,
e.g.

��� ���
��� ���

���

The ugliness of such constructions in conventional Lisp often tempts the programmer to loosen the scoping
relationships of the variables by binding them all at a single level and using ’s in the body of the

to establish the initial values for variables that depend on the initial values of other variables, e.g.

��� ���
��� ���

���

In the Decl package environment, this procedure undermines the protection o�ered by the type mechanism
by encouraging the use of uninitialized variables. Therefore, the o�ers a syntactic form to
encourage more virtuous initialization of its variables. A variable list may be segmented by
occurrences of the special atom , which causes the binding of its variables in stages, so that the
bindings made in earlier stages can be used in later ones, e.g.

���

Each stage is carried out as a conventional set of bindings (i.e., simultaneously, followed by the
appropriate type testing). This layering of the bindings permits one to gradually descend into a inner
scope, binding the local names in a very structured and clean fashion, with initial values type- checked as
soon as possible.

23.7.4 Declarations in Iterative Statements

The CLISP iterative statement (page 16.1) provides a very useful facility for specifying a variety of s
that follow certain widely used formats. The Decl package allows declarations to be made for the scope
of an iterative statement via the CLISP i.s.opr. can appear as an operator anywhere
in an iterative statement, followed by a list of declarations, for example:

���

Note that declarations do not bindings, but merely provide declarations for existing
bindings. For this reason, an initial value cannot be speci�ed and the form of the declaration is the same

23.22

DLAMBDA DPROG after
DPROG NIL

NIL
NIL

SETQ

PROG
PROG

[PROG ((A))
(RETURN (PROG ((B (A))

(C (A)))
]

SETQ
PROG

[PROG ((A) B C)
(SETQ B (A))
(SETQ C (A))

]

DPROG
DPROG

THEN

[DPROG ((A (LENGTH FOO) FIXP LOCAL)
THEN (B (SQRT A) FLOATP)
THEN (C (CONS A B) LISTP))
]

DPROG

PROG

DECLARE DECLARE

(for J from 1 to 10 declare (J FIXP) do

DECLARE create

EXPRESSION

EXPRESSION

7

7

LISPUSERS PACKAGES

as that of s, namely .

Note that variables bound of the scope of the iterative statement, i.e. a variable used freely in the
i.s, can also be declared using this construction. Such a declaration will only be in e�ect for the scope of
the iterative statement.

23.7.5 Declaring a Variable for a Restricted Lexical Scope

The Decl package also permits declaring the type of a variable over some restricted portion of its existence.
For example, suppose the variable is either a �xed or �oating number, and a program branches to treat
the two cases separately. On one path is known to be �xed, whereas on the other it is known to be
�oating. The Decl package construct can be used in such cases to state the type of the variable
along each path. is exactly like , except that the second element of the form is interpreted
as a list of format declarations. These declarations are added to any existing declarations in the
containing scope, and the composite declaration (created using the type expression, page 23.26) is
considered to hold throughout the lexical scope created by the . Thus, our example becomes:

���
���

Like and , the value of a may also be declared, using the pseudo- variable
.

may be used not only to restrict the declarations of local variables, but also to declare variables
which are being used freely. For example, if the variable is used freely inside a function but is known
to be , this fact could be noted by enclosing the body of the function in

. Instead of , the more speci�c construction
��� can be used. This not only states that the variable is used freely but also gives the names of the
functions which might have provided this binding.

Since the form introduces another level of parenthesization, which results in the enclosed forms
being prettyprinted indented, the Decl package also permits such declarations to be attached to their
enclosing or scopes by placing a expression, e.g.

, before the �rst executable form in that scope. Like ’s, declarations use
format.

23.7.6 Declaring the Values of Expressions

The Decl package allows the value of an arbitrary form to be declared with the Decl construct .
A expression is of the form , e.g. . are
evaluated in order, and the value of the one is checked to see if it satis�es , a type name or
type expression. If so, its value is returned, otherwise a declaration fault occurs.

Like declarations, and declarations cannot be checked, and are provided for
documentation purposes only.

23.23

DLAMBDA (.)

outside

X
X

DPROGN
DPROGN PROGN

DLAMBDA
ALLOF

DPROGN

(if (FIXP X)
then (DPROGN ((X FIXP)))
else (DPROGN ((X FLOATP))))

DPROG DLAMBDA DPROGN
RETURNS

DPROGN
A

FIXP (DPROGN ((A FIXP
FREE))) FREE (BOUNDIN

)

DPROGN

DLAMBDA DPROG DECL (DECL (A FIXP (BOUNDIN
FUM)) DPROGN DECL DLAMBDA

THE
THE (THE .) (THE FIXP (FOO X))

last

USEDIN FREE BOUNDIN

NAME TYPE EXTRAS

BOD Y FUNCTION 1 FUNCTION 2

TYPE FORMS FORMS

TYPE

8

8

Assertions

23.7.7 Assertions

The Decl package also allows for checking that an arbitrary predicate holds at a particular point in a
program’s execution, e.g. a condition that must hold at function entry but not throughout its execution.
Such predicates can be checked using an expression of the form ��� , in which
each is either a list (which will be evaluated) or a variable (whose declaration will be checked).
Unless all elements of the form are satis�ed, a declaration fault will take place.

ing a variable provides a convenient way of verifying that the value of the variable has not been
improperly changed by a lower function. Although a similar e�ect could be achieved for predicates by
explicit checks of the form , also provides the ability both to
check that a variable’s declaration is currently satis�ed and to remove its checks at compile time without
source code modi�cation (see page 23.25).

23.7.8 Using Type Expressions as Predicates

The Decl package extends the Record package construct so that it accepts decltypes, as well as
record names, e.g. . Thus, a
expression is exactly the same as a expression except that, rather than causing a declaration fault,

is a predicate which determines whether or not the value satis�es the given type.

23.7.9 Enforcement

The Decl package is a ‘‘soft’’typing system - that is, the data objects themselves are not inherently typed.
Consequently, declarations can only be enforced within the lexical scope in which the declaration takes
place, and then only in certain contexts. In general, changes to a variable’s value such as those resulting
from side e�ects to embedded structure (e.g., , , etc.) or free variable references from
outside the scope of the declaration cannot be, and therefore are not, enforced.

Declarations enforced i.e. checked, in three di�erent situations: when a declared variable is bound
to some value or rebound with or , when a declared expression is evaluated, and when
an expression is evaluated. In a binding context, the type check takes place the binding,
including any user- de�ned behavior speci�ed by the type’s binding function. Any failure of the declarations
causes a break to occur and an informative message to be printed. In that break, the name to which the
declaration is attached (or if no name is available) will be bound to the o�ending value. Thus, in
the example above, would be bound to . The problem can be repaired either by returning
an acceptable value from the break via the command, or by assigning an acceptable value to the
o�ending name and returning from the break via an or command. The unsatis�ed declaration will
be reasserted when the computation is continued, so an unacceptable value will be detected.

The automatic enforcement of type declarations is a very �exible and powerful aid to program development.
It does, however, exact a considerable run- time cost because of all the checking involved. Factors of two
to ten in running speed are not uncommon, especially where low level, frequently used functions employ
type declarations. As a result, it is usually desirable to remove the declaration enforcement code when

With this exception, assignments to variables from within the break are not considered to be in the scope
of the declarations that were in e�ect when the break took place, and so are not checked.

23.24

(ASSERT)

ASSERT

ASSERT

(OR (SHOULDNT)) ASSERT

TYPE?
(TYPE? (FIXP (SATISFIES (ILESSP VALUE 0)))) TYPE?

THE
TYPE?

RPLACA SETN

are
SETQ SETQQ

ASSERT after

(FACT T) N T
RETURN

OK GO

FORM 1 FORM 2
FORM i

PREDICA TE

EXPR

VAL UE

9

10

LISPUSERS PACKAGES

the system is believed to be bug- free and performance becomes more central. This can be done with the
variable :

[Variable]
Setting the value of the variable to (initially)
instructs the compiler not to insert declaration enforcement tests in the compiled
code. More selective removal can be achieved by setting
to a list of function names. Any function whose name is found on this list is
compiled without declaration enforcement.

[File Package Command]
Declaration enforcement may be suppressed selectively by �le using the
�le package command. If this appears in a �le’s �le commands, it rede�nes the
value of to for the compilation of this �le only.

23.7.10 Decltypes

A Decl package type, or decltype, speci�es a subset of data values to which values of this type are
restricted. For example, a ‘‘positive number’’ type might be de�ned to include only those values that are
numbers and greater than zero. A type may also specify how certain operations, such as assignment or
binding (see page 23.28), are to be performed on variables declared to be of this type.

The inclusion relations among the sets of values which satisfy the di�erent types de�ne a natural partial
ordering on types, bound by the universal type (which all values satisfy) and the empty type

(which no value satis�es). Each type has one or more (each type has at least as
a supertype) and one or more (each type has at least as a subtype). This structure is
important to the user of Decl as it provides the framework in which new types are de�ned. Typically,
much of the de�nition of a new type is defaulted, rather than speci�ed explicitly. The de�nition will be
completed by inheriting atttributes which are shared by all its immediate supertypes.

An initial set of decltypes which de�nes the Interlisp built- in datatypes and a few other commonly
used types is provided. Thereafter, new decltypes are created in terms of existing ones using the type
expressions described below. For conciseness, such new types can be associated with literal atoms using
the function (page 23.28).

23.7.11 Prede�ned Types

Some commonly used types, such as the Interlisp built- in data types, are already de�ned when the Decl
package is loaded. These types, indented to show subtype- supertype relations, are:

23.25

COMPILEIGNOREDECL

COMPILEIGNOREDECL
COMPILEIGNOREDECL T NIL

COMPILEIGNOREDECL

(IGNOREDECL .)
IGNOREDECL

COMPILEIGNOREDECL

ANY
NONE supertypes ANY

subtypes NONE

DECLTYPE

ANY
ATOM LST ARRAYP STRINGP FUNCTION STACKP

LITATOM ALIST HARRAYP
NIL LISTP READTABLEP

NUMBERP
FIXP

LARGEP
SMALLP

FLOATP

VAL

VAL

11

9

10

11

Type Expressions

Note that the de�nition of causes to have multiple supertypes, i.e. and , re�ecting
the duality of as an atom and a (degenerate) list.

In addition, declarations made using the Record package (page 3.1) also de�ne types which are attached
as subtypes to an appropriate existing type (e.g., a declaration de�nes a subtype of ,
a declaration a subtype of , etc.) and may be used directly in declaration contexts.

23.7.12 Type Expressions

Type expressions provide convenient ways for de�ning new types in terms of modi�cations to, or
compositions of one or more, existing types.

��� [Decl Type Expression]
Speci�es a type whose values can be any one of the �xed set of elements
��� . For example, the status of a device might be represented by a
datum restricted to the values and . Such a ‘‘device status’’ type could
be de�ned via . The new type will be a subtype of the
narrowest type which all of the alternatives satisfy (e.g., the ‘‘device status’’ type
would be a subtype of). The membership test uses if this supertype
is ; otherwise. Thus, lists, �oating point numbers, etc., can be
included in the set of alternatives.

��� [Decl Type Expression]
Speci�es a type which is the union of two or more other types. For example, the
notion of a possibly degenerate list is something that is either or . Such
a type can be (and the built- in type in fact is) de�ned simply as

. A union data type becomes a supertype of all of the alternative
types speci�ed in the expression, and a subtype of their lowest common
supertype. The type properties of a union type are taken from its alternative types
if they all agree, otherwise from the supertype.

��� [Decl Type Expression]
Speci�es a type which is the intersection of two or more other types. For example,
a variable may be required to satisfy both and also some type which is
de�ned as . The latter type will admit
numbers that are not , i.e. �oating point numbers; the former does not
include . Both restrictions can be obtained by using the type

.

is de�ned as either or , i.e. a list or . The name is used, because the name
is treated specially by clisp.

is de�ned as either , or a list of elements each of which is of type .

When a value is tested, the component type tests are applied from left to right.

23.26

NONE

LST NIL LITATOM LST
NIL

TYPERECORD LISTP
DATATYPE ANY

(MEMQ)
{

}
BUSY FREE

(MEMQ BUSY FREE)

LITATOM EQ
LITATOM EQUAL

(ONEOF)

LISTP NIL
LST (ONEOF

NIL LISTP)
ONEOF

(ALLOF)

FIXP
(NUMBERP (SATISFIES))

FIXP
(ALLOF

(NUMBERP (SATISFIES)) FIXP)

LST LISTP NIL NIL LST
LIST

ALIST NIL LISTP

VAL UE 1 VAL UE N
VAL UE 1

VAL UE N

TYPE 1 TYPE N

TYPE 1 TYPE N

PREDICA TE

PREDICA TE

PREDICA TE

12

13

12

13

LISPUSERS PACKAGES

[Decl Type Expression]
Speci�es a type which is an aggregate of values of some other type (e.g., list of
numbers, array of strings, etc.). must be a type which provides an

property (page 23.28). The is used to apply an arbitrary
function to each of the elements of a datum of the aggregate type, and check
whether the result is non- for each element. may be any type
expression. For example, the type ‘‘list of either strings or atoms’’ can be de�ned
as . The type test for the new type will
consist of applying the type test for to each element of the aggregate
type using the property. The new type will be a subtype of its aggregate
type.

��� [Decl Type Expression]
Speci�es a type whose values are a subset of the values of an existing type. The
type test for the new type will �rst check that the base type is satis�ed, i.e. that
the object is a member of , and then evaluate ��� . If each
form returns a non- value, the type is satis�ed.

The value that is being tested may be referred to in ��� by either
(a) the variable name if the type expression appears in a binding context such as

or (b) the distinguished atom for a clause on
the elements of an aggregate type, or (c) the distinguished atom , when
the type expression is used in a context where no name is available (e.g., a

declaration). For example, one might declare the program variable
to be a negative integer via , or declare
the value of a to be of type

. Note that more than one clauses may
appear in a single type expression attached to di�erent alternatives in a
type expression, or attached to both the elements and the overall structure of an
aggregate. For example,

speci�es a list of less than 7 integers each of which is no greater than the �rst
element of the list.

[Decl Type Expression]
Speci�es a subtype of with default binding behavior, i.e. the binding function
(see page 23.28), if any, will be suppressed. For example, if the type
were rede�ned so that and bindings of variables that were
declared to be copied their initial values (e.g., to allow s to be free
of side e�ects), then variables declared would be initialized
in the normal fashion, without copying their initial values.

The built- in aggregate types are , , , and (and their subtypes).

As no prede�ned type has a binding function, this is of no concern until the user de�nes or rede�nes
a type to have a binding function.

23.27

(OF)

EVERYFN EVERYFN

NIL

(LISTP OF (ONEOF STRINGP ATOM))

EVERYFN

((SATISFIES))

NIL

DLAMBDA DPROG ELT SATISFIES
VALUE

RETURNS A
(FIXP (SATISFIES (MINUSP A)))

DLAMBDA ((ONEOF FIXP FLOATP) (SATISFIES
(GREATERP VALUE 25))) SATISFIES

ONEOF

[LISTP OF [FIXP (SATISFIES (ILEQ ELT (CAR VALUE]
(SATISFIES (ILESSP (LENGTH VALUE) 7]

(SHARED)

FLOATP
DLAMBDA DPROG

FLOATP SETN
(SHARED FLOATP)

ARRAYP LISTP LST STRINGP

AGGREGA TE ELEMENT

AGGREGA TE

ELEMENT

ELEMENT

TYPE FORM 1 FORM N

TYPE FORM 1 FORM N

FORM 1 FORM N

TYPE

TYPE

14

15

1617

18

14

15

16

17

18

Named Types

23.7.13 Named Types

Although type expressions can be used in any declaration context, it is often desirable to save the de�nition
of a new type if it is to be used frequently, or if a more complex speci�cation of its behavior is to be
given than is convenient in an expression. The ability to de�ne a named type is provided by the function

.

��� [NLambda NoSpread Function]
Nlambda, nospread function. is a literal atom, is either the name
of an existing type or a type expression, and , , ��� , , is a
speci�cation (in property list format) of other attributes of the type.
derives a type from , associates it with , and then de�nes any
properties speci�ed with the values given.

The following properties are interpreted by the Decl package. Each of these properties can have as its
value either a function name or a expression.

will be used by the Decl package to test whether a given value satis�es this type.
The type is considered satis�ed if applied to the item is non- . For example,
one might de�ne the type with .

speci�es a mapping function which can apply a functional argument to each
‘‘element’’ of an instance of this type, and which will return unless the result
of every such application was non- . must be a function of two arguments:
the aggregate and the function to be applied. For example, the for the
built- in type is . As described on page 23.27, the Decl package uses
the property of the aggregate type to construct a type test for aggregate
type expressions. In fact, it is the presence of an property which allows
a type to be used as an aggregate type.

is used to compute from the initial value supplied for a or
variable of this type, the value to which the variable will actually be initialized.
must be a function of one argument which will be applied to the initial value,
and which should produce another value which is to be used to make the binding.
For example, a could be used to bind variables of some type so that new

Actually, any property can be attached to a type, and will be available for use by user functions via the
function , described below.

Typically, the for a type is derived from its type expression, rather than speci�ed explicitly. The
ability to specify the is provided for those cases where a predicate is available that is much more
e�cient than that which would be derived from the type expression. For example, the type is
de�ned to have the function as its , rather than

as would be derived from the subtype structure.

Note that a type’s is used in type tests for that type, but only in type tests for types
de�ned by expressions which used this type as the aggregate type. For example, is not used
in determining whether some value satis�es the type .

The Decl package never applies the of a type to a value without �rst verifying that the value
satis�es that type.

For a binding, will be applied to no arguments if the initial value is lexically .

23.28

DECLTYPE

(DECLTYPE)

DECLTYPE

LAMBDA

TESTFN
NIL

INTEGER TESTFN FIXP

EVERYFN
NIL

NIL
EVERYFN

LISTP EVERY
EVERYFN

EVERYFN

BINDFN DLAMBDA DPROG

BINDFN

GETDECLTYPEPROP

TESTFN
TESTFN

SMALLP
SMALLP TESTFN (LAMBDA (DATUM) (AND (NUMBERP

DATUM) (FIXP DATUM) (SMALLP DATUM)))

EVERYFN not
OF EVERY

LISTP

EVERYFN

DPROG NIL

TYPENAME TYPE PR OP 1 VAL 1 PR OP N VAL N
TYPENAME TYPE

PR OP 1 VAL 1 PR OP N VAL N

TYPE TYPENAME

FN

FN

FN

FN

19

20

19

20

LISPUSERS PACKAGES

bindings are copies of the initial value. Thus, if were given the
, any variable declared would be initialized with a new �oating

box, rather than sharing with that of the original initial value.

is used for performing a or of variables of this type. is a function
of two arguments, the name of the variable, and its new value. A is
typically used to avoid the allocation of storage for intermediate results. Note that
the is the mechanism for the enforcement of type compatibility, which
is checked the assignment has taken place. Also note that not all functions
which can change values are a�ected: in particular, and are not.

23.7.13.1 Manipulating Named Types

is a �le package type (page 11.1). Thus all of the operations relating to �le package types,
e.g. , , , , , etc., can be performed on decltypes.

The �le package command, , is provided to dump named decltypes symbolically. They will
be written as a series of forms which will specify only those �elds which di�er from the
corresponding �eld of their supertype(s). If the type depends on any unnamed types, those types will
be dumped (as a compound type expression), continuing up the supertype chain until a named type is
found. Care should be exercised to ensure that enough of the named type context is dumped to allow
the type de�nition to remain meaningful.

The functions and , de�ned analogously to the property list
functions for atoms, allow the manipulation of the properties of named types. Setting a property to
with removes it from the type.

23.7.14 Relations Between Types

The notion of equivalence of two types is not well de�ned. However, type equivalence is rarely of interest.
What is of interest is type , i.e. whether one type is a supertype or subtype of another. The
predicate can be used to determine whether the values of one type include those of another.

[Function]
is if can be found on some (possibly empty) supertype chain of ; else

. Thus, = , even though the of
4 is , not . The extremal cases are the obvious identities:

= = for any
type = .

allows declaration based transformations of a form which depend on elements of the form being
of a certain type to express their applicability conditions in terms of the weakest type to which they

The , if any, associated with a type may be suppressed in a declaration context by creating a
subtype with the type expression operator , as described on page 23.27.

Deleting a named type could possibly invalidate other type de�nitions that have the named type as a
subtype or supertype. Consequently, the deleted type is simply unnamed and left in the type space as
long as it is needed.

23.29

FLOATP BINDFN
FPLUS FLOATP

SETFN SETQ SETQQ
SETFN

SETFN not
after

SET SETN

DECLTYPE
GETDEF PUTDEF EDITDEF DELDEF SHOWDEF

DECLTYPES
DECLTYPE

GETDECLTYPEPROP SETDECLTYPEPROP
NIL

SETDECLTYPEPROP

inclusion
COVERS

(COVERS)
T

NIL (COVERS ’FIXP (DECLOF 4)) T DECLTYPE
SMALLP FIXP (COVERS

’ANY) (COVERS ’NONE) (COVERS)
T

COVERS

BINDFN
SHARED

FN

HI LO

HI LO

ANYTYPE ANYTYPE X X

X

21

21

The Declaration Database

apply, without explicit concern for other types which may be subtypes of it. For example, if a particular
transformation is to be applied whenever an element is of type , the program which applies that
transformation does not have to check whether the element is of type , , , ,
etc., but can simply ask whether the type of that element.

The elementary relations among the types, out of which arbitrary traversals of the type space can be
constructed, are made available via:

[Function]
Returns the list of types which are subtypes of .

[Function]
Returns the list of types which are supertypes of .

23.7.15 The Declaration Database

One of the primary uses of type declarations is to provide information that other systems can use to
interpret or optimize code. For example, one might choose to write all arithmetic operations in terms of
general functions like and and then use variable declarations to substitute more e�cient,
special purpose code at compile time based on the types of the operands. To this end, a data base of
declarations is made available by the Decl package to support these operations.

[Function]
Returns the type of in the current declaration context. If is
an atom, will look up that atom directly in its database of current
declarations. Otherwise, will look on the property list of for
a property, as described below. If there is no property,
will check if is one of a large set of functions of known result
type (e.g., the arithmetic functions). Failing that, if has a
property, will apply itself to the result of expanding (with ,
page 5.19) the macro de�nition. Finally, if is a Lisp program element that

‘‘understands’’ (e.g., a , , , etc.), applies itself
recursively to the part(s) of the contained form which will be returned as value.

[Property Name]
Allows the speci�cation of the type of the values returned by a particular function.
The value of the property can be either a type, i.e. a type name or a type
expression, or a list of the form , where is a function object.

will be applied (by) to the form whose has this property
on its property list. The value of this function application will then be considered
to be the type of the form.

The ‘‘current declaration context’’ is de�ned by the environment at the time that is called. Code
reading systems, such as the compiler and the interpreter, keep track of the lexical scope within which
they are currently operating, in particular, which declarations are currently in e�ect. Note that (currently)

does have access to any global data base of declarations. For example, does not
have information available about the types of the arguments of, or the value returned by, a particular
function, unless it is currently ‘‘inside’’of that function. However, the property (described below)
can be used to inform of the type of the value returned by a particular function.

23.30

NUMBERP
SMALLP LARGEP FIXP FLOATP

NUMBERP COVERS

(SUBTYPES)
immediate

(SUPERTYPES)
immediate

PLUS TIMES

(DECLOF)

DECLOF
DECLOF (CAR)

DECLOF DECLOF DECLOF
(CAR)

(CAR) MACRO
DECLOF EXPANDMACRO

DECLOF COND PROG SELECTQ DECLOF

DECLOF

DECLOF
(FUNCTION)

DECLOF CAR DECLOF

DECLOF

DECLOF not DECLOF

DECLOF
DECLOF

TYPE

TYPE

TYPE

TYPE

FORM

FORM FORM

FORM

FORM

FORM

FORM

FN FN

FN

LISPUSERS PACKAGES

As an example of how declarations can be used to automatically generate more e�cient code, consider
an arithmetic package. Declarations of numeric variables could be used to guide code generation to
avoid the ine�ciencies of Interlisp’s handling of arithmetic values. Not only could the generic arithmetic
functions be automatically specialized, as suggested above, but by rede�ning the and the
properties for the types and to re-use storage in the appropriate contexts (i.e., when the
new value can be determined to be of the appropriate type), tremendous economies could be realized by
not allocating storage to intermediate results which must later be reclaimed by the garbage collector. The
Decl package has been used as the basis for several such code optimizing systems.

23.7.16 Declarations and Masterscope

The Decl package noti�es about type declarations and de�nes a new
relation, , which depends on declarations. Thus, the user can ask questions such as ‘‘

,’’ ‘‘ ,’’ and so on.

23.8 TRANSOR

TRANSOR is a LISP- to-LISP translator intended to help the user who has a program coded in one
dialect of LISP and wishes to carry it over to another. The user loads TRANSOR along with a �le
of transformations. These transformations describe the di�erences between the two LISPs, expressed in
terms of Interlisp editor commands needed to convert the old to new, i.e. to edit forms written in the
source dialect to make them suitable for the target dialect. TRANSOR then sweeps through the user’s
program and applies the edit transformations, producing an object �le for the target system. In addition,
TRANSOR produces a �le of translation notes, which catalogs the major changes made in the code as
well as the forms that require further attention by the user. Operationally, therefore, TRANSOR is a
facility for conducting massive edits, and may be used for any purpose which that may suggest.

Since the edit transformations are fundamental to this process, let us begin with a de�nition and some
examples. A transformation is a list of edit commands associated with a literal atom, usually a function
name. TRANSOR conducts a sweep through the user’s code, until it �nds a form whose is a
literal atom which has a transformation. The sweep then pauses to let the editor execute the list of
commands before going on. For example, suppose the order of arguments for the function must
be reversed for the target system. The transformation for would then be: . When
the sweep encounters the form , this transformation would be retrieved and executed,
converting the expression to . Then the sweep would locate the next form, in this
case , and any transformations for would be executed, etc.

Most instances of would be successfully translated by this transformation. However, if there were
no second argument to , e.g. the form to be translated was , the command

would cause an error, which TRANSOR would catch. The sweep would go on as before, but a note
would appear in the translation listing stating that the transformation for this particular form failed to
work. The user would then have to compare the form and the commands, to �gure out what caused the
problem. One might, however, anticipate this di�culty with a more sophisticated transformation:

, which tests for a third element and does or
as appropriate. It should be obvious that the translation process is no more sophisticated than the

23.31

BINDFN SETFN
FLOATP LARGEP

MASTERSCOPE MASTERSCOPE
TYPE WHO USES

MUMBLE AS A TYPE? DOES FOO USE FIXP AS A TYPE?

Note: TRANSOR is a LispUsers package contained on the �le TRANSOR.DCOM.

CAR

TCONC
TCONC ((SW 2 3))

(TCONC X (FOO))
(TCONC (FOO) X)

(FOO) FOO

TCONC
TCONC (TCONC X) (SW 2

3)

((IF
(## 3) ((SW 2 3)) ((-2 NIL)))) (SW 2 3) (-2
NIL)

Using TRANSOR

transformations used.

This documentation is divided into two main parts. The �rst describes how to use TRANSOR assuming
that the user already has a complete set of transformations. The second documents , an
interactive routine for building up such sets. contains commands for writing and editing
transformations, saving one’s work on a �le, testing transformations by translating sample forms, etc.

Two transformations �les presently exist for translating programs into Interlisp.
is for old BBN LISP (SDS 940) programs, and is for Stanford AI LISP 1.6
programs. A set for LISP 1.5 is planned.

23.8.1 Using TRANSOR

The �rst and most exasperating problem in carrying a program from one implementation to another is
simply to get it to read in. For example, SRI LISP uses exactly as Interlisp uses , i.e. as an escape
character. The function exists to help with these problems: the user uses to perform
an initial scan to dispose of these di�culties, rather than attempting to TRANSOR the foreign source�les
directly.

copies a �le, performing character- for-character substitutions. It is hand- coded and is much
faster than either ’s or text-editors.

[Function]
Makes a new version of , performing substitutions according to .
Each element of must be a dotted pair of two character codes,

.

For example, SRI �les are ed with = , which exchanges
slash (47) and percent- sign (37).

The user should also make sure that the treatment of double quotes by the source and target systems is
similar. In Interlisp, an unmatched double- quote (unless protected by the escape character) will cause the
rest of the �le to read in as a string.

Finally, the lack of a at the end of a �le is harmless, since TRANSOR will suppress
errors and exit normally.

23.8.2 Translating

is the top- level function of the translator itself, and takes one argument, a �le to be translated.
The �le is assumed to contain a sequence of forms, which are read in, translated, and output to a
�le called . The translation notes are meanwhile output to . Thus the
usual sequence for bring a foreign �le to Interlisp is as follows: the �le; examine code and
transformations, making changes to the transformations if needed; the �le; and clean up
remaining problems, guided by the notes. The user can now make a pretty �le and proceed to exercise
and check out his program. To export a �le, it is usually best to TRANSOR it, then it, and
perform clean-up on the foreign system where the �le can be loaded.

23.32

TRANSORSET
TRANSORSET

<LISP>SDS940.XFORMS
<LISP>LISP16.XFORMS

/ %
PRESCAN PRESCAN

PRESCAN
READC

(PRESCAN)

(
.)

PRESCAN ((37 . 47) (47 . 37))

STOP END OF FILE

TRANSOR

{FILE}.TRAN {FILE}.LSTRAN
PRESCAN

TRANSOR

PRESCAN

FILE CHARLST

FILE CHARLST

CHARLST OLD-

CHAR- CODE NEW- CHAR- CODE

CHARLST

LISPUSERS PACKAGES

[Function]
Translates . Prettyprints translation on ; translation listing on

.

[Function]
is a LISP form. Returns the (destructively) translated form. The translation

listing is dumped to the primary output �le.

[Function]
is a list of function names whose interpreted de�nitions are destructively

translated. Listing to primary output �le.

and can be used to translate expressions that are already in core, whereas
itself only works on �les.

23.8.3 The Translation Notes

The translation notes are a catalog of changes made in the user’s code, and of problems which require,
or may require, further attention from the user. This catalog consists of two cross-indexed sections: an
index of forms and an index of notes. The �rst tabulates all the notes applicable to any form, whereas
the second tabulates all the forms to which any one note applies. Forms appear in the index of forms in
the order in which they were encountered, i.e. the order in which they appear on the source and output
�les. The index of notes shows the name of each note, the entry numbers where it was used, and its text,
and is alphabetical by name. The following sample was made by translating a small test �le written in
SRI LISP.

23.33

(TRANSOR)
{FILE}.TRAN

{FILE}.LSTRAN

(TRANSORFORM)

(TRANSORFNS)

TRANSORFORM TRANSORFNS
TRANSOR

LISTING FROM TRANSORING OF FILE TESTFILE.;7
DONE ON 1-NOV-71 20:10:47

INDEX OF FORMS
1. APPLY/EVAL at

[DEFINEQ
(FSET (LAMBDA &

(PROG ...3...
(SETQ Z (COND

((ATOM (SETQ --))
(COND

((ATOM (SETQ Y (NLSETQ "(EVAL W)")))
--)

--))
--))

--]
2. APPLY/EVAL at

[DEFINEQ
(FSET (LAMBDA &

(PROG ...3...
(SETQ Z (COND

((ATOM (SETQ --))
(COND

((ATOM (SETQ --))

FILE

FILE

FORM

FORM

FNLST

FNLST

Errors and Messages

The translation notes are generated by the transformations used, and therefore re�ect the judgment of their
author as to what should be included. Straightforward conversions are usually made without comment;
for example, the s in this �le were quietly changed to s. TRANSOR found four
noteworthy forms on the �le, and printed an entry for each in the index of forms, consisting of an entry
number, the name of the note, and a printout showing the precise location of the form. The form appears
in double- quotes and is the last thing printed, except for closing parentheses and dashes. An ampersand
represents one non- atomic element not shown, and two or more elements not shown are represented as

, where is the number of elements. Note that the printouts describe expressions on the output
�le rather than the source �le; in the example, the s of SRI LISP have been replaced with

s.

23.8.4 Errors and Messages

TRANSOR records its progress through the source �le by terminal printouts which identify each expression
as it is read in. Progress within large expressions, such as a long , is reported every three minutes

23.34

"(EVAL (NCONS W))")
--))

--))
--]

3. MACHINE-CODE at
[DEFINEQ

(LESS1 (LAMBDA &
(PROG ...3...

(COND
...2...
((NOT (EQUAL (SETQ X2 "(OPENR (MAKNUM & -))"

)
--))

--))
--]

4. MACHINE-CODE at
[DEFINEQ

(LESS1 (LAMBDA &
(PROG ...3...

(COND
...2...
((NOT (EQUAL & (SETQ Y2

"(OPENR (MAKNUM & --))")))
--))

--]

INDEX OF NOTES
APPLY/EVAL at 1, 2.

TRANSOR will translate the arguments of the APPLY or EVAL expression, but
the user must make sure that the run-time evaluation of the arguments returns
a BBN-compatible expression.
MACHINE-CODE at 3, 4.

Expression dependent on machine-code. User must recode.

DEFPROP DEFINEQ

... ...
DEFPROP

DEFINEQ

DEFINEQ

N N

LISPUSERS PACKAGES

by a printout showing the location of the sweep.

If a transformation fails, TRANSOR prints a diagnostic to the teletype which identi�es the faulty
transformation, and resumes the sweep with the next form. The translation notes will identify the form
which caused this failure, and the extent to which the form and its arguments were compromised by the
error.

If the transformation for a common function fails repeatedly, the user can type control- H. When the
system goes into a break, he can use to repair the transformation, and even test it out (see

command, page 23.36). He may then continue the main translation with .

23.8.5 TRANSORSET

To use , type to Interlisp. will respond with a sign, its
prompt character, and await input. The user is now in an executive loop which is like with
some extra context and capabilities intended to facilitate the writing of transformations.
will thus progress and input, and execute history commands just as would. Edit
commands, however, are interpreted as additions to the transformation on which the user is currently
working. always saves on a variable named the name of the last function
whose transformation was altered or examined by the user. thus represents the function
whose transformation is currently being worked on. Whenever edit commands are typed to the
sign, will add them to the transformation for . This is the basic mechanism for
writing a transformation. In addition, contains commands for printing out a transformation,
editing a transformation, etc., which all assume that the command applies to if no function
is speci�ed. The following example illustrates this process.

23.35

TRANSORSET
TEST OK

TRANSORSET (TRANSORSET) TRANSORSET +
EVALQT
TRANSORSET

APPLY EVAL EVALQT

TRANSORSET CURRENTFN
CURRENTFN

+
TRANSORSET CURRENTFN

TRANSORSET
CURRENTFN

_TRANSORSET()
+FN TCONC [1]
TCONC
+(SW 2 3) [2]
+TEST (TCONC A B) [3]
P
(TCONC B A)
+TEST (TCONC X) [4]
TRANSLATION ERROR: FAULTY TRANSFORMATION
TRANSFORMATION: ((SW 2 3)) [5]
OBJECT FORM: (TCONC X)

1. TRANSFORMATION ERROR AT [6]
"(TCONC X)"

(TCONC X)
+(IF (## 3) ((SW 2 3)) ((-2 NIL] [7]
+SHOW
TCONC

[(SW 2 3)
(IF (## 3) [8]

((SW 2 3))
((-2 NIL]

TCONC

TRANSORSET Commands

In this example, the user begins by using the command to set to . He then
adds to the (empty) transformation for a command to switch the order of the arguments and
tests the transformation . His second fails, causing an error diagnostic and a translation
note . He writes a better command but forgets that the original command is still in the way

. He therefore deletes the entire transformation and redoes the . This time, the works
.

23.8.6 TRANSORSET Commands

The following commands for manipulating transformations are all Prog. Asst. commands which treat the
rest of their input line as arguments. All are undoable.

[Transorset Command]
Resets to its argument, and returns the new value. In e�ect says
you are done with the old function (as least for the moment) and wish to work
on another. If the new function already has a transformation, the message

is printed, and any editcommands typed in will be added
to the end of the existing commands. followed by a carriage return will return
the value of without changing it.

[Transorset Command]
Command to prettyprint a transformation. followed by a carriage return
will show the transformation for , and return as its value.

followed by one or more function names will show each one in turn, reset
to the last one, and return the new value of .

[Transorset Command]
Command to edit a transformation. Similar to except that instead of
prettyprinting the transformation, gives it to . The user can then work
on the transformation until he leaves the editor with .

[Transorset Command]
Command to delete a transformation. Otherwise similar to .

[Transorset Command]
Command for checking out transformations. takes one argument, a form

23.36

+ERASE [9]
TCONC
+REDO IF [10]
+SHOW
TCONC

[(IF (## 3)
((SW 2 3))
((-2 NIL]

TCONC
+TDST
=TEST [11]
(TCONC NIL X)
+

FN CURRENTFN TCONC [1]
TCONC [2]

[3] TEST [4] [5]
[6] [7] SW

[8] [9] IF [10] TEST
[11]

FN
CURRENTFN FN

(OLD
TRANSFORMATIONS)

FN
CURRENTFN

SHOW
SHOW

CURRENTFN CURRENTFN
SHOW
CURRENTFN CURRENTFN

EDIT
SHOW

EDIT EDITE
OK

ERASE
SHOW

TEST
TEST

22

22

LISPUSERS PACKAGES

for translation. The translation notes, if any, are printed to the teletype, but
in an abbreviated format which omits the index of notes. The value returned
is the translated form. saves a copy of its argument on the free variable

, and if no argument is given, it uses , i.e. tries the previous
test again.

[Transorset Command]
Command to save your work on a �le. takes one argument, a �lename. The
argument is saved on the variable , so that if no argument is provided,
a new version of the previous �le will be created.

The command creates �les by . Normally will be
unbound, but the user may set it himself; functions called from a transformation
by the command may be saved in this way. makes sure that the necessary
command is included on the to save the user’s transformations. The user
may add anything else to his that he wishes. When a transformation �le
is loaded, all previous transformations are erased unless the variable is set
to .

[Transorset Command]
Exits , returning .

23.8.7 The REMARK Feature

The translation notes are generated by those transformations that are actually executed via an edit macro
called . takes one argument, the name of a note. When the macro is executed, it saves
the appropriate information for the translation notes, and adds one entry to the index of forms. The
location that is printed in the index of forms is the editor’s location when the macro is executed.

To write a transformation which makes a new note, one must therefore do two things: de�ne the note,
i.e. choose a new name and associate it with the desired text; and call the new note with the
macro, i.e. insert the edit command in some transformation. The command,
described below, is used to de�ne a new note. The call to the note may be added to a transformation like
any other edit command. Once a note is de�ned, it may be called from as many di�erent transformations
as desired.

The user can also specify a remark with a new text, without bothering to think of a name and perform
a separate de�ning operation, by calling with more than one argument, e.g.

. This is interpreted to mean that the arguments are the text. notices all
such expressions as they are typed in, and handles naming automatically; a new name is generated and
de�ned with the text provided, and the expression itself is edited to be .
The following example illustrates the use of .

The name generated is the value of su�xed with a colon, or with a number and a colon.

23.37

TEST
TESTFORM TESTFORM

DUMP
DUMP

DUMPFILE

DUMP MAKEFILE FNS

E DUMP
VARS
VARS

MERGE
T

EXIT
TRANSORSET NIL

REMARK REMARK

REMARK

REMARK
(REMARK) NOTE

REMARK (REMARK
) TRANSORSET

(REMARK)
REMARK

_TRANSORSET()
+NOTE GREATERP/LESSP (BBN’S GREATERP AND LESSP ONLY TAKE TWO ARGUMENTS, WHEREAS
SRI’S FUNCTIONS TAKE AN INDEFINITE NUMBER. AT THE PLACES NOTED HERE, THE SRI
CODE USED MORE THAN TWO ARGUMENTS, AND THE USER MUST RECODE.] [1]

CURRENTFN

FILE

FILE

FILE

NAME

TEXT-

OF-REMARK

GENERA TED- NAME

The REMARK Feature

In this example, the user de�nes a note named by using the command , and
writes transformations which call this note whenever the sweep encounters a or with
more than two arguments and . Next, the implicit naming feature is used to add a
command to the transformation for ASCII, which has already been partly written. The user realizes he
mistyped part of the text, so he uses the command to �nd the name chosen for the note . Then
he uses the command on this name, ASCII:, to edit the note .

[Transorset Command]
First argument is note name and must be a literal atom. If already de�ned,
edits the old text; otherwise it de�nes the name, reading the text either from the
rest of the input line or from the next line. The text may be given as a line or as
a list. Value is name of note.

23.38

GREATERP/LESSP
+FN GREATERP
GREATERP
+(IF (IGREATERP (LENGTH (##))3) NIL ((REMARK GREATERP/LESSP] [2]
+FN LESSP
LESSP
+REDO IF [3]
+SHOW
LESSP

[(IF (IGREATERP (LENGTH (##))
3)

NIL
((REMARK GREATERP/LESSP]

LESSP
+FN ASCII
(OLD TRANSFORMATIONS)
ASCII
+(REMARK ALTHOUGH THE SRI FUNCTION ASCII IS IDENTICAL TO THE BBN FUNCTION CHARACTER,
THE USER MUST MAKE SURE THAT THE CHARACTER BEING CREATED SERVES THE SAME PURPOSE
ON BOTH SYSTEMS, SINCE THE CONTROL CHARACTERS ARE ALL ASSIGNED DIFFRENTLY.] [4]

+SHOW [5]
ASCII

((1 CHARACTER)
(REMARK ASCII:))

ASCII
+NOTE ASCII: [6]
EDIT
*NTH -2
*P
... ASSIGNED DIFFRENTLY.)
*(2 DIFFERENTLY.)
OK
ASCII:
+

GREATERP/LESSP NOTE [1]
GREATERP LESSP

[2] [3] [4] REMARK

SHOW [5]
NOTE [6]

NOTE
NOTE

23

24

23

24

LISPUSERS PACKAGES

The text is actually stored. as a comment, i.e. a and are added in front when the note is �rst
de�ned. The text will therefore be lower-cased the �rst time the user s (see page 6.52).

[Transorset Command]
Deletes a note completely (although any calls to it remain in the transformations).

23.8.8 Controlling the Sweep

TRANSOR’s sweep searches in print- order until it �nds a form for which a transformation exists. The
location is marked, and the transformation is executed. The sweep then takes over again, beginning
from the marked location, no matter where the last command of the transformation left the editor.
User transformations can therefore move around freely to examine the context, without worrying about
confusing the translator. However, there are many cases where the user wants his transformation to guide
the sweep, usually in order to direct the processing of special forms and s. For example, the
transformation for has only one objective: to tell the sweep to skip over the argument to ,
which is (presumably) not a LISP form. is an edit macro that permits this.

[Transorset Command]
An atomic edit macro which sets a �ag which causes the sweep to skip the arguments
of the current form when the sweep resumes.

Special forms such as , , , etc., present a more di�cult problem. For example,
is processed just like : i.e. after the transformation for �nishes, the sweep

will locate the ‘‘next form,’’ , retrieve the transformation for the function , if any, and execute
it. Therefore, special forms must have transformations that preempt the sweep and direct the translation
themselves. The following two atomic edit macros permit such transformations to process their forms,
translating or skipping over arbitrary subexpressions as desired.

[Transorset Command]
Translates the editor’s current expression, treating it as a single form.

[Transorset Command]
Translates the editor’s current expression, treating it as a list of forms.

For example, a transformation for might be . This translates the second argument
to a without translating the �rst. For , one might write , which
locates each clause of the in turn, and translates it as a list of forms, instead of as a single form.

The user who is starting a completely new set of transformations must begin by writing transformations
for all the special forms. To assist him in this and prevent oversights, the �le
contains a set of transformations for LISP special forms, as well as some other transformations which
should also be included. The user will probably have to revise these transformations substantially, since
they merely perform sweep control for Interlisp, i.e. they make no changes in the object code. They
are provided chie�y as a checklist and tutorial device, since these transformations are both the �rst to be
written and the most di�cult, especially for users new to the Interlisp editor.

On the global list .

Recall that a transformation is a list of edit commands. In this case, there are two commands, and
.

23.39

* %%
DUMP

DELNOTE

FEXPR
QUOTE QUOTE

NLAM

NLAM

COND PROG SELECTQ (COND
(A B)) (FOO (A B)) COND

(A B) A

DOTHIS

DOTHESE

SETQ (3 DOTHIS)
SETQ COND (1 (LPQ NX DOTHESE))

COND

<LISP>SPECIAL.XFORMS

USERNOTES

3
DOTHIS

WHEREIS Package

When the sweep mechanism encounters a form which is not a list, or a form of which is not an
atom, it retrieves one of the following special transformations.

[Variable]
Global value is used as a transformation for any form which is not a list.

For example, if the user wished to make sure that all strings were quoted, he might set to
.

[Variable]
Global value is used as a transformation for any form, of which is not an
atom.

These variables are initialized by and are saved by the command.
is initially , making it a NO- OP. is initialized to check �rst for open

expressions, processing them without translation notes unless the expression is badly formed.
Any other forms with a non- atomic are simply treated as lists of forms and are always mentioned
in the translation notes. The user can change or add to this algorithm simply by editing or resetting

.

23.9 WHEREIS PACKAGE

This package extends the function (page 11.10) such that, when asked about a given name as a
function, will consult not only the commands of �les that have been noticed by the �le package
(page 11.1) but also a hash�le database (page 23.41) that associates function names with �lenames.

[Function]
Behaves exactly like the de�nition on page 11.10 un less = (or) and

= . In this case, will consult, in addition to the �les on ,
the hash�le that is the value of (initially).

Note: Most system functions call with = , so loading this package automatically makes
the information contained in the database available throughout the system.

Information may be added to a WHEREIS hash�le by explicitly calling the following function:

[Function]
Inserts the information about all of the functions on the �les in into
the data base contained on (the value of) .
is given as a �legroup argument to (page 14.6), so , , etc. may be
used. If = , a new version of will be created containing
the database for the functions speci�ed in .

23.40

CAR

NLISTPCOMS

NLISTPCOMS
((IF (STRINGP (##)) ((ORR ((_ QUOTE))((MBD QUOTE)))) NIL))

LAMBDACOMS
CAR

<LISP>SPECIAL.XFORMS DUMP
NLISTPCOMS NIL LAMBDACOMS
LAMBDA

CAR

LAMBDACOMS

Note: The WHEREIS is a LispUsers package that is contained on the �le WHEREIS.COM. WHEREIS
requires the hash �le package (page 23.41). Loading WHEREIS.COM will also load HASH.COM, if it has
not already been loaded.

WHEREIS
WHEREIS

(WHEREIS)
FNS NIL

T WHEREIS FILELST
WHEREIS.HASH <LISPUSER>WHEREIS.HASH

WHEREIS T
WHEREIS

(WHEREISNOTICE)

WHEREIS WHEREIS.HASH
DIRECTORY & $

T WHEREIS.HASH

NAME TYPE FILES FN

TYPE

FILES

FILES

FILEGR OUP NEWFL G

FILEGR OUP

FILEGR OUP

NEWFL G

FILEGR OUP

LISPUSERS PACKAGES

23.10 HASH FILES

The hash �le facility permits information associated with string or atom ‘‘keys’’ to be stored on and
retrieved from �les. The information (or ‘‘values’’) associated with the keys in a �le may be numbers,
strings, or arbitary Interlisp expressions. The associations are maintained by a hashing scheme that
minimizes the number of page-maps it takes to access a value from its key.

A hash�le may contain information other than key-value associations. The user may print on the �le using
ordinary printing functions (e.g. ,), and he may also store non- character information
(e.g. binary data) formatted to suit his particular applications. This information is stored in regions of
the �le distinct from the hash index. The hash index can be used to locate non- hash information, if the
necessary �le addresses are stored as hash values.

A hash�le is created by the function :

q [Function]
A new version of is opened and initialized as a hash�le. is an
atom interpreted as follows:

The values are 24-bit unsigned integers.

The values are strings with less than 128 characters.

The values are arbitrary Interlisp expressions. The values are stored
by printing them in the �le with readtable , initially

.

The values are arbitrary Interlisp expressions such that
is less than 128. Storing and retrieving

is more e�cient than if = .

The values are 24-bit un signed integers, as when = ,
except that the num bers are treated as the addresses of ‘‘symbols’’ lo-
cated on non- hash pages in the �le. See the discussion of symbol- tables
below.

The other arguments to are optional. is the user’s
estimate of the average number of characters in the entries he expects to store in
the hash�le (= the average key length plus the average number of characters in
the values for or). q is an estimate
of the the total number of key-value associations he is likely to store. These
two arguments determine how many pages in the �le will be initially allocated as
hash- pages; accurate estimates can reduce the number of times that the �le must be
rehashed as information is stored in it. If these arguments are not given, reasonable
defaults are supplied.

After being initialized, is left open and returns as its value

23.41

Note: The hash �le facility is a LispUsers package that is contained on the �le HASH.COM. It currently
only works in Interlisp- 10.

PRIN1 PRINTDEF

CREATEHASHFILE

(CREATEHASHFILE)

NUMBER

STRING

EXPR
HASHFILERDTBL

ORIG

SMALLEXPR
(NCHARS

T HASHFILERDTBL)
EXPR

SYMBOLTABLE
NUMBER

CREATEHASHFILE

STRING SMALLEXPR

CREATEHASHFILE

FILE VAL UETYPE ITEMLENGTH ENTRIES

FILE VAL UETYPE

VAL UE

VAL UETYPE

VAL UETYPE

ITEMLENGTH

VAL UETYPE ENTRIES

FILE

Hash Files

a ‘‘hash�le datum,’’ a handle on the hash�le that may be used as an argument for
most of the functions described below.

[Function]
Re-opens the previously existing hash�le . may be (or),
in which case is opened for reading only, or , in which case is
open for both input and output. Causes an error , if is
not recognized as a hash�le.

If is and is a hash�le open for reading only,
attempts to close it and re-open it for writing. Otherwise, if designates an
already open hash�le, is a no-op.

returns a hash�le datum.

[Function]
Returns if is a hash�le datum (i.e., a value returned by
or). If is , returns if it is a hash�le datum.
If is the name of an open hash�le, returns the corresponding hash�le datum.
Otherwise, returns .

The following functions require an open hash�le as an argument, i.e. an object for which is
non- .

[Function]
Puts in , indexed under . If is , any previous entry
for is deleted.

[Function]
Returns the value corresponding to in . For �les where
is , , or , the value returned by is
temporary in that any subsequent calls to a hash�le or page mapping function may
smash it. or must be applied if the value is a string, or
if it is a number, in order to make the value permanent.

[Function]
Returns the value of the property of . The recognized s and
the values returned are:

One of , , , , or .

The full name of the �le.

if �le is open for writing, if it is read- only.

[Function]
Same as .

[Function]
Same as .

The function can be used as a function for (page 6.11) to restore

23.42

(OPENHASHFILE)
INPUT NIL

BOTH
NOT A HASHFILE

BOTH OPENHASHFILE

OPENHASHFILE

OPENHASHFILE

(HASHFILEP)
CREATEHASHFILE

OPENHASHFILE NIL SYSHASHFILE

NIL

HASHFILEP
NIL

(PUTHASHFILE)
NIL

(GETHASHFILE)

STRING NUMBER SYMBOLTABLE GETHASHFILE

CONCAT MKATOM IPLUS

(HASHFILEPROP)

VALUETYPE
NUMBER STRING EXPR SMALLEXPR SYMBOLTABLE

NAME

ACCESS BOTH INPUT

(HASHFILENAME)
(HASHFILEPROP ’NAME)

(CLOSEHASHFILE)
(CLOSEF (HASHFILEPROP ’NAME))

HASHSTATUS STATUS WHENCLOSE

FILE A CCESS

FILE ACCESS

FILE FILE

FILE

ACCESS FILE

FILE

X

X X

X

X

KEY VAL UE HASHFILE

VAL UE HASHFILE KEY VAL UE

KEY

KEY HASHFILE

KEY HASHFILE VAL UETYPE

HASHFILE PR OP

PR OP HASHFILE PR OP

HASHFILE

HASHFILE

HASHFILE

HASHFILE

LISPUSERS PACKAGES

the state of a hash�le when a is resumed. If is used, the package
(page 23.17) must also be loaded.

[Function]
For each entry in , performs

. If is a function of only one argument, performs
thereby avoiding the call to needed to obtain the value.

is temporary, as for . is also temporary, for ,
, and �les.

[Function]
After many insertions and deletions much of the space in a hash�le may be
unusable. reclaims that space by rehashing all the keys. The
information on non- hash pages in the �le is not altered or moved, except that the
print name pointers in a �le are updated (see below).

[Function]
Calls to open as a hash�le, with ,

and q determined by examining the open hash�le .
Then maps through all the keys in , doing the equivalent of:

for each key . In essence, copies the hash portion of
to .

If is given, then it is applied to the successive values of , the old
, and the new hash�le, and the value returned is used as the value in the

new �le. In e�ect,

is evaluated for each key. Thus, the user can intervene as each key is processed in
order to copy information associated with the key that resides on non- hash pages.

For example, an �le could be implemented by printing the full expressions
in a �le’s printing region (see below) and storing their byte- positions as
hash values. Instead of reading an expression into internal data structures before
writing it out to the new �le, a could be given that transferred the expression
to the new �le more e�ciently, via . The function would return the
byte- position on the new �le where the expression ended up. (Actually, this is the
way �les are copied if is not speci�ed.)

If is given, then , if speci�ed, is a temporary valuetype (,

23.43

SYSOUT HASHSTATUS PERMSTATUS

(MAPHASHFILE)
((GETHASHFILE

)) (
) GETHASHFILE

GETHASHFILE STRING
NUMBER SYMBOLTABLE

(REHASHFILE)

REHASHFILE

SYMBOLTABLE

(COPYHASHFILE)
CREATEHASHFILE

(PUTHASHFILE

(GETHASHFILE)
)

COPYHASHFILE

(PUTHASHFILE

((GETHASHFILE)

)
)

EXPR
NUMBER

COPYBYTES

EXPR

NUMBER

HASHFILE MAPFN

HASHFILE MAPFN KEY KEY

HASHFILE MAPFN MAPFN

KEY

KEY VAL UE

HASHFILE

HASHFILE NEWNAME FN VTYPE

NEWNAME VAL UETYPE

ITEMLENGTH ENTRIES HASHFILE

HASHFILE

KEY

KEY HASHFILE

NEWHASHFILE

KEY HASHFILE

NEWNAME

FN HASHFILE

HASHFILE

KEY

FN KEY HASHFILE

HASHFILE

NEWHASHFILE

NEWHASHFILE

FN

FN

FN VTYPE

Hash Files

, etc.) to be used during copying. This permits the user to force the
valuetype of both �les to one more suited for , e.g. to
or to , as in the example. does not a�ect the permanent
valuetype of either �le.

[Function]
Returns a ‘‘generator’’ for the keys in that is acceptable as an argument to

(page 15.18). Thus,
will spelling correct a word using the keys in .

[Function]
A generalized entry for inserting and retrieving values; provides certain options
not available with or . looks up

in . is an atom or a list of atoms. These keywords are
interpreted as follows:

If is found, then if is or contains , the old
value is returned from ; otherwise returns .

If is or contains , the value associated with is
deleted from the �le.

If is or contains , the old value is replaced with
.

If is or contains , inserts value
as the value associated with .

If is not found, returns .

Examples:

To either return an old value or insert a new value in the �le if one does not already exist, perform
. The value returned will

be if was inserted, or the old value if was found.

To merely check whether exists in the �le without actually retrieving its value (which may be
expensive for the more general valuetypes), perform .

The function is de�ned as:

And is de�ned as:

23.44

STRING
SMALLEXPR STRING

EXPR NUMBER

(HASHFILESPLST)

FIXSPELL (FIXSPELL BADWORD 70 (HASHFILESPLST
))

(LOOKUPHASHFILE)

GETHASHFILE PUTHASHFILE LOOKUPHASHFILE

RETRIEVE
RETRIEVE

LOOKUPHASHFILE T

DELETE DELETE

REPLACE REPLACE

INSERT INSERT LOOKUPHASHFILE

LOOKUPHASHFILE NIL

(LOOKUPHASHFILE ’(INSERT RETRIEVE))
NIL

(LOOKUPHASHFILE NIL NIL)

PUTHASHFILE

(LAMBDA (KEY VALUE HASHFILE)
(if VALUE=NIL

then (LOOKUPHASHFILE KEY NIL HASHFILE ’DELETE)
else (LOOKUPHASHFILE KEY VALUE HASHFILE ’(INSERT REPLACE))

VALUE))

GETHASHFILE

(LAMBDA (KEY HASHFILE)
(LOOKUPHASHFILE KEY NIL HASHFILE ’RETRIEVE))

FN

VTYPE

HASHFILE

HASHFILE

HASHFILE HASHFILE

KEY VAL UE HASHFILE CALL TYPE

KEY HASHFILE CALL TYPE

KEY CALL TYPE

CALL TYPE KEY

CALL TYPE

VAL UE

CALL TYPE

KEY

KEY

KEY NEWV AL UE HASHFILE

NEWV AL UE KEY

KEY

KEY HASHFILE

25

25

LISPUSERS PACKAGES

23.10.1 Unstructured Pages and Symbol Tables

The non- hash information in a hash- �le may be formatted as printed character strings or binary data.
Printed information resides in a �le’s ‘‘printing region’’, while binary data is stored on ‘‘unstructured
pages’’.

Unstructured pages in a �le are allocated and deallocated by the hash package so that they do not encroach
on hash or printing pages. Other than that, the user has complete freedom to map them in for arbitrary
reading and writing. The primitive operations are:

[Function]
Returns the page number of a free page in . If is given, then the user
is guaranteed that the page returned is the �rst of contiguous pages all of which
are free.

q [Function]
Removes page q from . q should be the number of an
unstructured page, either a value of or within the block of free pages
guaranteed by . The contents of the page in the �le are lost, and the
page itself becomes available for re-allocation either by or internally as
a hash page. If q happens to be the number of a hash page, the hashing
information will be destroyed.

Unstructured pages are available on hash�les so that the user can link hash keys to data in special formats.
For example, the user might associate lists of properties with a key by writing the properties on an
unstructured page, and then storing the �le address of the properties as the value of the key in a
�le.

A hash�le provides an additional feature that makes it possible to implement arbitrary
�le- resident symbol processing systems. The user may store the data to be associated with a key on
unstructured pages, and he can then link the �le address to the key via , as described
above. The di�erence between a and �le is that for a , the hash
package also stores the reverse link from the �le address to the key. This makes it possible to obtain a
‘‘print-name’’ for an address on an unstructured page, via the function :

[Function]
Returns a temporary string containing the characters of the key whose hash value is
the 24-bit unsigned . Causes an error if is not a
�le.

The hash package automatically updates the print- name information for the �le address if the key is
relocated by rehashing, and it destroys the back- link if the value for the key is deleted. A
�le imposes one restriction on the way unstructured pages are treated: If a �le address is stored as a
hash- value for some key, then the right- most 24 bits of the word at that location in the �le are reserved
for the use of the hash mechanism. The user must not write into it.

With these primitives, a list-processing system with a 24-bit non- resident address space is easy to build.
The user is responsible for allocating ‘‘atoms’’ on unstructured pages, and updating the ‘‘atom hash table’’

The left-most 12 bits are available and can be used for a number of applications, e.g. to store type- bits.

23.45

(GETPAGE)

(DELPAGE)

GETPAGE
GETPAGE

GETPAGE

NUMBER

SYMBOLTABLE

PUTHASHFILE
NUMBER SYMBOLTABLE SYMBOLTABLE

GETPNAME

(GETPNAME)

SYMBOLTABLE

SYMBOLTABLE

HASHFILE N

HASHFILE N

N

PAGE HASHFILE

PAGE HASHFILE PA GE

PA GE

FILEADR HASHFILE

FILEADR HASHFILE

The Printing Region

with . The second (and subsequent) words after an atom address may be used to store
the atom’s ‘‘property list’’, containing other atom addresses, or other addresses interpreted as pointers to
‘‘cons’’ cells. These can also be allocated on unstructured pages. It is a simple matter to implement the
equivalent of , , , and .

23.10.2 The Printing Region

Hash�les are organized so that it is always permissible to print at the end of the �le with ordinary Interlisp
output functions. That is, the �le is arranged so that the hash and unstructured pages are always located
before the end- of-�le for sequential reading and writing. This is accomplished by creating the �le with
the end- of-�le some number of free pages past the last hash or unstructured page. When all free pages
below the end- of-�le have been used, the end- of-�le is moved so that there are again a reservoir of free
pages before it.

Thus, the printing region may shift as a result of calls to or , and the user
cannot rely on the output from two di�erent printing operations being located at adjacent positions in
the �le. The expressions printed cannot be retrieved by successive calls to standard reading functions.
Instead, the user should record the byte position of each printed expression as a hash value or on an
unstructured page so that he may use to position the �le properly. If he does change the
�le’s byte- pointer, he must be sure to reset it to the end- of-�le (e.g.) before
more printing is done.

23.11 EDITA

EDITA is an editor for arrays. However, its most frequent application is in editing compiled functions
(which are also arrays in Interlisp- 10), and a great deal of e�ort in implementing EDITA, and most of its
special features, are in this area. For example, EDITA knows the format and conventions of Interlisp- 10
compiled code, and so, in addition to decoding instructions a la DDT (one of the oldest debugging
systems still around), EDITA can �ll in the appropriate COREVALS, symbolic names for index registers,
references to literals, linked function calls, etc. The following output shows a sequence of instructions in
a compiled function �rst as they would be printed by DDT, and second by EDITA.

23.46

PUTHASHFILE

CAR CDR RPLACA RPLACD

GETPAGE PUTHASHFILE

SETFILEPTR
(SETFILEPTR -1)

Note: EDITA is a LispUsers package contained on the �le EDITA.COM. That portion of EDITA relating
to compiled code may not be available in implementations of Interlisp other than Interlisp- 10. EDITA also
has a FILEDEF property so that the user can simply call EDITA and the �le will be automatically loaded.

FILE

26

26

LISPUSERS PACKAGES

Therefore, rather than presenting EDITA as an array editor with some extensions for editing compiled
code, we prefer to consider it as a facility for editing compiled code, and point out that it can also be
used for editing arbitrary arrays.

23.11.1 Overview

EDITA is envoked by calling the function :

[Function]
Envokes EDITA to edit the function . To the user, EDITA looks very much
like DDT with Interlisp- 10 extensions. If is given, it should be a list of
commands for EDITA. These are then executed exactly as though they had been
typed. EDITA can be exited with the command .

Individual registers or cells in the function may be examined by typing their address followed by a slash,
e.g.

Note that EDITA prints the addresses of cells contained the function relative to the origin of the
function.

23.47

466716/ PUSH 16,LISP&KNIL 3/ PUSH PP,KNIL
466717/ PUSH 16,LISP&KNIL 4/ PUSH PP,KNIL
466720/ HRRZ 1,-12(16) 5/ HRRZ 1,-10(PP)
466721/ CAME 1,LISP&KNIL 6/ CAME 1,KNIL
466722/ JRST 466724 7/ JRST 9
466723/ HRRZ 1,@467575 8/ HRRZ 1,@’BRKFILE
466724/ PUSH 16,1 9/ PUSH PP,1
466725/ LISP&IOFIL,,467576 10/ PBIND ’BRKZ
466726/ -3,,-3 11/ -524291
466727/ HRRZ 1,-14(16) 12/ HRRZ 1,-12(PP)
466730/ CAMN 1,467601 13/ CAMN 1,’OK
466731/ JRST 466734 14/ JRST 17
466732/ CAME 1,467602 15/ CAME 1,’STOP
466733/ JRST 466740 16/ JRST 21
466734/ PUSH 16,467603 17/ PUSH PP,’BREAK1
466735/ PUSH 16,467604 18/ PUSH PP,’(ERROR!)
466736/ LISP&FILEN,,467605 19/ CCALL 2,’RETEVAL
466737/ JRST 467561 20/ JRST 422
466740/ CAME 1,467606 21/ CAME 1,’GO
466741/ JRST 466754 22/ JRST 33
466742/ HRRZ 1,@-12(16) 23/ HRRZ 1,@-10(PP)
466743/ PUSH 16,1 24/ PUSH PP,1

EDITA

(EDITA)

OK

in

FN COMS

FN

COMS

27

28

29

30

31

27

28

29

30

31

Input Protocol

The slash is really a command to EDITA to open the indicated register. Only one register at a time
can be open, and only open registers can be changed. To change the contents of a register, the user �rst
opens it, types the new contents, and then closes the register with a carriage- return, e.g.

If the user closes a register without specifying the new contents, the contents are left unchanged. Similarly,
if an error occurs or the user types control- E, the open register, if any, is closed without being changed.

23.11.2 Input Protocol

EDITA processes all inputs not recognized as commands in the same way. If the input is the name of an
instruction (i.e., an atom with a numeric property), the corresponding number is added to the input
value being assembled, and a �ag is set which speci�es that the input context is that of an instruction.

The general form of a machine instruction is as described on
page 22.15. Therefore, in instruction context, EDITA evaluates all atoms (if the atom has a
property, the value of the is used), and then if the atom corresponds to an , shifts it left
23 bits and adds it to the input value, otherwise adds it directly to the input value, but performs the
arithmetic in the low 18 bits. Lists are interpreted as specifying index registers, and the value of
of the list (again s are permitted) is shifted left 18 bits. Examples:

EDITA cannot in general know whether an address �eld in an instruction that is typed in is relative or
absolute. Therefore, the user must add , the origin of the function, to the address �eld himself. Note
that EDITA would this instruction, , as

The user can also specify the address of a literal via the command, see page 23.50. For example, if the
literal is in cell 85672, is equivalent to .

EDITA also converts absolute addresses of cells within the function to relative address on input. Thus,
if the de�nition of begins at , typing is the same as typing .

Since carriage- return has a special meaning, EDITA indicates the balancing of parentheses by typing a
space.

The input value is initially 0.

i.e., if a ‘‘ ’’ has not been seen, the value of the atom is less than 16, the low 18 bits of the
input value are all zero.

If the absolute value of the atom is greater than , full word arithmetic is used. For example,
the indirect bit is handled by simply binding to .

23.48

6/ HRRZ 1,-10(PP)

7/ CAME 1,’^ CAMN 1,’^ cr

OPD

(, @ ())
COREVAL

COREVAL

CAR
COREVAL

PUSH PP, KNIL
HRRZ 1,-10(PP)
CAME 1, ’GO
JRST 33 ORG

ORG
print JRST 53 ORG JRST 53.

’
" UNBROKEN" HRRZ 1,’" UNBROKEN" HRRZ 1, 85672

FOO 85660 6/ exactly 85666/

, and and

1000000Q
@ 20000000Q

OPCODE AC ADDRESS INDEX

A C

32

33

32

33

LISPUSERS PACKAGES

When the input context is that of an instruction, i.e., no has been seen, all inputs are evaluated
(the value of an atom with a property is the .) Then numeric values are simply added
to the previous input value; non- numeric values the input value.

The only exception to the entire procedure occurs when a register is open that is in the pointer region
of the function, i.e., literal table. In this case, atomic inputs are evaluated. For example, the user
can change the literal to by simply opening that register and then typing followed by
carriage- return, e.g.

Note that this is equivalent to

23.11.3 EDITA Commands and Variables

(carriage- return) If a register is open and an input was typed, store the input in the register and
close it.

If a register is open and nothing was typed, close the register without changing it.

If a register is not open and input was typed, type its value.

Has the value of the address of the �rst instruction in the function. i.e., of
of the function.

Opens the register speci�ed by the low 18 bits of the quantity to the left of the ,
and types its contents. If nothing has been typed, it uses the last thing typed by
EDITA, e.g.,

If a register was open, closes it without changing its contents.

After a / command, EDITA returns to that state of no input having been typed.

tab (control- I) Same as carriage- return, followed by the address of the quantity to the left of the
tab, e.g.,

Note that if a register was open and input was typed, tab will change the open
register before closing it, e.g.,

Presumably there is only one input in this case.

If the register is in the unboxed region of the function, the unboxed value is stored in the register.

23.49

not OPD
COREVAL COREVAL

become

not
FOO FIE FIE

’FOO/ FOO FIE cr

’FOO/ FOO (QUOTE FIE) cr

cr

ORG LOC
GETD

/ /

35/ JRST 53 / CAME 1,’RETURN / RETURN

/

35/ JRST 53 <tab>
53/ CAME 1,’RETURN

EDITA Commands and Variables

(period) Has the value of the address of the current (last) register examined.

line- feed Same as carriage- return followed by i.e. closes any open register and
opens the register.

Same as carriage- return followed by

(<esc>Q) Has as its value the last quantity typed by EDITA e.g.

Has as value the (relative) address of the �rst literal.

Same as

(dollar) Has as value the relative address of the last literal in the function.

Sets (page 6.19) to -8 and types the quantity to the left of the sign, i.e.,
if anything has been typed, types the input value, otherwise, types , e.g.

Following , is restored and EDITA returns to the no input state.

Exits EDITA.

Returns to ‘‘no input’’ state. is a ‘‘weak’’ control- E, i.e., it negates any input
typed, but does not close any registers.

Prints the contents of registers through . is set to
after the completion.

Output goes to , initially set to . The user can also set (while in
EDITA) to the name of a disc �le to redirect the output. (The user is responsible for
opening and closing .) Note that only a�ects output for the

command.

Corresponds to the in LAP. The next expression is read, and if it is a small
number, the appropriate o�set is added to it. Otherwise, the literal table is searched
for , and the value of is the (absolute) address of that cell. An error is
generated if the literal is not found, i.e., cannot be used to literals.

De�nes to an address: (1) the value of if a register is open, (2) the input
if any input was typed, otherwise (3) the value of ‘‘ ’’ (Only the low 18 bits are
used and converted to a relative address whenever possible). For example:

23.50

35/ JRST 53 JRST 54 TAB
54/ JRST 70 cr

35/ JRST 54

.

(ADD1 .)/
next

^ (SUB1 .)/

$Q

35/ JRST 53 $Q 1 cr

./ JRST 54

LITS

BOXED LITS

$

= RADIX =
$Q

35/ JRST 54 =254000241541Q
JRST 54=254000000066Q

= RADIX

OK

? ?

, /
.

FILE T FILE

FILE FILE ,
/

’ ’

’
’ create

: $Q
.

35/ JRST 54 :FOO cr

ADDRESS 1 ADDRESS 2
ADDRESS 1 ADDRESS 2 ADDRESS 2

ADDRESS 1
ADDRESS 2

X

X X

ATOM ATOM

34

35

36

37

34

35

36

37

LISPUSERS PACKAGES

EDITA keeps its symbol tables on two free variables, and . is a list of
elements of the form and is used for input, i.e., all variables on
are bound to their corresponding values during evaluation of any expression inside EDITA. is a
list of elements of the form and is used for addresses. is initially

, while is set to a list of all the . Since the command adds the appropriate
information to both these two lists, new de�nitions will remain in e�ect even if the user exits from EDITA
and then reenters it later.

Note that the user can e�ectively de�ne symbols without using the command by appropriately binding
and/or before calling EDITA. Also, he can thus use di�erent symbol tables for

di�erent applications.

(<esc>W) Search command.

Searching consists of comparing the object of the search with the contents of each register, and printing
those that match, e.g.,

The command can be used to search either the unboxed portion of a function, i.e., instructions, or
the pointer region, i.e., literals, depending on whether or not the object of the search is a number. If
any input was typed before the , it will be the object of the search, otherwise the next expression is
read and used as the object. The user can specify a starting point for the search by typing an address
followed by a ‘‘ ’’ before calling , e.g., . If no starting point is speci�ed, the search will
begin at 0 if the object is a number, otherwise at , the address of the �rst literal. After the search
is completed, ‘‘ ’’ is set to the address of the last register that matched.

If the search is operating in the unboxed portion of the function, only those �elds (i.e., , ,
, , and) of the object that contain one bits are compared. For example,

will �nd all instances of indirect, regardless of , , and �elds. Similarly,
will �nd all instructions that reference the literal .

Note that inputs typed before the will have been processed according to the input protocol, i.e.,
evaluated; inputs typed after the will not. Therefore, the latter form is usually used to specify searching
the literals, e.g., is equivalent to

Thus the only way the user can search the pointer region for a number is to specify the starting point
via ‘‘ ’’.

Alternately, the user can specify his own mask by setting the variable (while in EDITA), to the
appropriate bit pattern.

The user may need to establish instruction context for input without giving a speci�c instruction. For
example, suppose the user wants to �nd all instructions with =1 and = . In this case, the user
can give as a pseudo- instruction, e.g., type .

23.51

:FIE cr

FIE/ JRST FOO .=35

USERSYMS SYMLST USERSYMS
(.) encoding USERSYMS

SYMLST
(.) decoding USERSYMS

NIL SYMLST COREVALS :

:
USERSYMS SYMLST

$W

HRRZ @ $W cr

8/ HRRZ 1,@’BRKFILE
23/ HRRZ 1,@-10(PP)
28/ HRRZ 1,@-12(PP)

$W

$W

, $W 1, JRST $W
LITS

.

HRRZ
@ $W HRRZ
’PRINT $W PRINT

$W
$W

$W FOO (QUOTE FOO) $W.

,

MASK

PP
& & 1, (PP)

NAME VAL UE

VAL UE NAME

INSTR UCTION AC

INDIRECT INDEX ADDRESS

A C INDEX ADDRESS

AC INDEX

38

38

Editing Arrays

If the search is operating in the pointer region, a ‘‘match’’ is as de�ned in the editor. For example,
will �nd all registers that contain a list consisting of a single expression.

(<esc>C) Like except only prints the �rst match, then prints the number of matches
when the search �nishes.

23.11.4 Editing Arrays

is called to edit a function by giving it the name of the function. can also be called to
edit an array by giving it the array as its �rst argument, in which case the following di�erences are to
be noted:

1. decoding - The contents of registers in the unboxed region are boxed and printed as numbers, i.e.,
they are never interpreted as instructions, as when editing a function.

2. addressing convention - Whereas 0 corresponds to the �rst instruction of a function, the �rst element
of an array by convention is element number 1.

3. input protocols - If a register is open, lists are evaluated, atoms are not evaluated (except for which
is always evaluated). If no register is open, all inputs are evaluated, and if the value is a number, it is
added to the ‘‘input value’’.

4. left half - If the left half of an element in the pointer region of an array is not all 0’s or , it is
printed followed by a ‘‘ ’’, e.g.

Similarly, if a register is closed, either its left half, right half, or both halves can be changed, depending
on the presence or absence, and position of the ‘‘ ’’ e.g.

If ‘‘ ’’ is used in the unboxed portion of an array, an error will be generated.

the array itself, a variable whose value is an array, e.g., , not .

23.52

$W
(&)

$C $W

EDITA EDITA

$Q

NIL
;

10/ (A B) ; T

;

10/ (A B) ; T B; cr [changes left]
./ B ; T NIL cr [changes right]
./ B ; NIL A ; C cr [changes both]
./ A ; C

;

not (EDITA FOO) (EDITA ’FOO)

LISPUSERS PACKAGES

The command will look at both halves of elements in the pointer region, and match if either half
matches. Note that is not allowed.

23.12 CJSYS

This package provides assistance to Interlisp- 10 users who wish to make direct calls on the operating system
(via JSYSes). It also makes the coding of certain common constructions more convenient.
The package de�nes the following functions:

[NLambda Function]
All arguments are evaluated except for . Like (see page 22.6),
loads the unboxed values of , , and into the appropriate registers, and
executes the JSYS . di�ers from in that the JSYS may be
indicated by its name, not just by its number. also generates slightly
cleaner code than . also di�ers from in that:

(a) if any argument is supplied as , then it is not loaded at all, i.e. the
corresponding will contain garbage. (loads the with 0.)

(b) if is , then no value is loaded (interpreted, returns the string
).

(c) can be , meaning return if the JSYS skips, if not.

Because of these di�erences, caution must be exercised in turning calls into
calls.

The symbolic JSYS name is looked up on the list , an association- list with
elements of the form q . If no entry is found,
then the �le (or for Tops- 20) is scanned.

Examples: returns the value of after doing a from
the JFN of . sends a control- C to . The value of this call
is garbage.

[Function]
Returns , i.e. the word with

in the left half and in the right.

q [NoSpread Function]
If is not speci�ed, simply returns a number with bit q set to 1 and
all other bits 0. If is given, then is a predicate that returns if q
is set in . Bits are numbered from left to right.

Examples: is 8 (=10Q), is .

23.53

$W
$W A ; B

Note: Cjsys is a LispUsers package that is contained on the �le CJSYS.COM. It only works with Interlisp- 10.

ASSEMBLE

(JS)
JSYS

JS JSYS
symbolic JS

JSYS JS JSYS

NIL
AC JSYS AC

NIL JS
"garbage result from JS"

T T NIL

JSYS
JS

JSYSES
()

STENEX.MAC SYS:MONSYMS.MAC

(JS BIN (OPNJFN) NIL NIL 2) AC2 BIN
(JS BOUT (OPNFJN) 3) JS

(XWD)
(LOGOR (LLSH 18) (LOGAND 777777Q))

(BIT)

BIT T

(BIT 32) (BIT 32 8) T

JSYSNAME AC1 AC2 A C3 RESUL T

JSYSNAME

AC1 AC2 AC3

JSYSNAME

RESUL T

RESUL T

JSYSNAME JSYSNUMBER SKIPS

FILE

FILE FILE FILE

N 1 N 2
N 1 N 2

N 1 N 2

BIT W ORD

W ORD BIT BIT

W ORD BIT

W ORD

Nobox

[NLambda Function]
Returns the TENEX/TOPS- 20 error num ber for . For example,

is . compiles open as a constant.

This package also de�nes the following macros:

Can be used in statements instead of .

Expands to , which unboxes to .

Expands to , which unboxes to , saving
.

23.13 NOBOX

This package contains facilities for subverting the normal manner of dynamically allocating and collecting
cells, large integer boxes, and �oating boxes in Interlisp- 10 by using static, compile- time allocation.

Storage allocation is controlled by allocating the memory for temporary results (e.g. a list that will be
thrown away or a �oating number that will not exist outside a local computational context) at compile- time
or load- time. This ‘‘static’’storage will be reused whenever the given line of code is re-executed. Because
functions which use these facilities may exhibit bizarre behaviour if they are called recursively or if values
escape outside of them, these facilities must be used with extreme caution, and should be reserved for
those cases where the normal method of storage allocation and garbage collection is not workable or
practical. Note: compiled functions need no run- time support for these facilities, i.e. does not
have to be loaded to execute compiled code.

23.13.1 CONS Cells

The function may be used to avoid allocation of cells. When run interpreted, is exactly
equivalent to the function . Compiled, operates like , except that the cell returned
is constructed (once) at compile or load time. New values for and are smashed into the cell at
each execution.

The function performs an analagous role for . When run interpreted, is exactly equivalent
to . Compiled, the corresponding cells are allocated at compile or load time. For example,

will cause a 3-element static list to be included with a compiled function’s literals. Each
time the corresponding compiled code is executed, those three cells will be returned containing the current
values of the variables , , and .

allocates as many cells as there are arguments in the corresponding form, i.e. the number of scratch
cells is determined at compile time. The iterative statement operator enables avoiding

es when the length of a list is not known at compile- time. is used in iterative
statements exactly as . Each time it is executed, it reuses the cells that it returned on previous
executions, which it remembers as an internal scratch list. The length of this scratch list is always the

23.54

(JSYSERROR)
(JSYSERROR

GJFX23) 600103Q JSYSERROR

ASSEMBLE

(JS) ASSEMBLE (JSYS)

(CV) (CQ (VAG (FIX))) AC1

(CV2) (CQ2 (VAG (FIX))) AC2
AC1

Note: Nobox is a LispUsers package that is contained on the �le NOBOX.COM. It only works with
Interlisp- 10.

CONS

NOBOX

CBOX CONS CBOX
CONS CBOX CONS CONS

CAR CDR

LBOX LIST LBOX
LIST CONS

(LBOX A B C)

A B C

LBOX
SCRATCHCOLLECT

CONS SCRATCHCOLLECT
COLLECT

ERR ORN

ERR ORN

JSYSNAME JSYSNUMBER

EXPR EXPR EXPR

EXPR EXPR EXPR

39

39

LISPUSERS PACKAGES

length of the longest value that was ever returned; new cells are allocated whenever the scratch list runs
out, and they are permanently remembered.

The i.s.opr and the function (page 14.2) have similar applications.
With , the user makes explicit the origin of the list getting smashed, while with the

i.s.opr, the scratch list is hidden (and there is a di�erent scratch- list for each occurence
of the i.s.opr).

23.13.2 Number Boxes

The functions , , and , and the record declarations and are provided to
improve the e�ciency of arithmetic computations. They permit information to be given to the Interlisp- 10
compiler that will inhibit the allocation (and subsequent collection) of number boxes needed for holding
temporary results of numeric computations. In addition, access time to variable- values that are known
to be large integers or �oating point numbers is improved.

The records and essentially describe the structure of large integer and �oating point boxes
respectively. consists of a single �eld, called , which corresponds to the actual contents of the large
integer box. consists of a single �eld, called , which corresponds to the contents of the �oating
point box. For example, the user can create a large integer box containing a given value and assign it to

by saying . Even if the value of is a integer,
the result will be stored in a new, large number box. This seeming ine�ciency is important because if

values of might be large, making values large means that the compiler can be told how
to treat all references to without generating run- time tests to discover how to do the unboxing. Thus,
wherever the value of is to be referenced, the user simply writes . In compiling this
expression, the compiler generates a single instruction without any type- testing whatsoever. The
user can reuse that number box by saying , which is equivalent to,
but much more e�cent than, . In other words, once it is known that is bound to a
large integer, ��� can be used in all number- contexts to inform the compiler of that
fact.

The facilities described so far do nothing to suppress the creation of unnecessary boxes; indeed, the
will produces boxes for small numbers that would not be allocated otherwise. The

functions (not records) , , and are used to suppress unnecessary boxing of temporaries.
E�ectively, they cause ‘‘constant’’ or ‘‘static’’boxes of the appropriate type to be allocated and stored in a
function’s literals when a function is compiled or loaded. Those boxes can be used (and reused) to hold
temporary results.

and can be called with 0 or 1 arguments. If no arguments are speci�ed (as opposed to a
single argument whose value is), then the value of the function is a large- integer or �oating number
box which is allocated statically. For example, these might be used to construct an initial binding for a
variable into which temporary values will be stored using the or assignments. For example:

���

In the latter respect, these duplicate some of what (page 22.5) does, except that they are more
convenient to use and are executed with less run- time checking (i.e. will never smash random
memory locations).

23.55

SCRATCHCOLLECT SCRATCHLIST
SCRATCHLIST

SCRATCHCOLLECT

IBOX FBOX NBOX IBOX FBOX

IBOX FBOX
IBOX I
FBOX F

X (SETQ X (create IBOX I _)) small

some all
X

X (fetch I of X)
MOVE

(replace I of X with (FOO))
(SETN X (FOO)) X

(replace I of)

(create IBOX --)
IBOX FBOX NBOX

IBOX FBOX
NIL

I F

(PROG ((X (IBOX))) (replace I of X with (FOO)))

SETN
SETN

FORM FORM

FORM

Cautions

.

If an argument is speci�ed for or , then a static box of the appropriate type will be allocated
at compile- or load- time, and the value of the argument will be stored in that box whenever the
statement is executed. For example, suppose the user wanted to set a �le pointer to 1 past a given byte
position. The expression

would generate a new number box on each execution for which happened to be a large number.
That box would be passed into and then returned as its value. Since the value is not saved,
the box would be thrown away, to be collected later. The expression

would store the desired position in a constant box, and no allocations would take place.

As another example, consider a complicated integer expression whose value must be saved in a variable
to be used a little further down in a program:

The Interlisp- 10 compiler is smart enough to suppress the boxing inside the expression,
but it will generate a box when it comes to do the . This box can be suppressed by writing

Furthermore, since it is known that is bound to a large integer, the assignment can be speeded up
by writing

The function behaves the same as , except that it uses constant �oating boxes. Note that if
the argument of is , then it will be ed; if the argument of is , it will be

ed.

The function is a generic function for copying unknown values into constant number boxes. It
allocates two constant boxes, one integer and one �oating, and stores the value of its argument in the one
compatible with the value’s type. is useful if the argument value is a constant number box (but
one of unknown type) that needs to be copied (see caution (2) below).

23.13.3 Cautions

There are some dangers in using these facilities. The user of this package should be particularly aware of
the following:

(1) The and �elds aim at e�ciency more than validity. This means that they of

23.56

IBOX FBOX
IBOX

(SETFILEPTR FILE (ADD1 POS))

POS
SETFILEPTR

(SETFILEPTR FILE (IBOX (ADD1 POS)))

(SETQ X (IPLUS 2000 (ITIMES FOO (IQUOTIENT FUM 5))))
.
.
.
(SETQ Z (IPLUS X (GETFILEPTR FILE)))

(IPLUS 2000 &)
SETQ

(SETQ X (IBOX (IPLUS 2000 (ITIMES FOO (IQUOTIENT FUM 5)))))

X Z

(SETQ Z (IPLUS X:I (GETFILEPTR FILE)))

FBOX IBOX
IBOX FLOATP FIX FBOX FIXP

FLOAT

NBOX

NBOX

F I do not check the type

LISPUSERS PACKAGES

the pointer that they smash into. For example, if is bound to , the expression
will clobber and of ! The user must be very careful that the arguments given for

replacing do indeed point to cells that unboxed numbers can be smashed into. Note: the package
(page 23.18) can be used to generate the s, es, es automatically in a safe and e�cient
way.

(2) , , , , and all allocate constant boxes, and those boxes will
be reused (i.e. smashed with new values) every time the code containing that function call is executed.
If that box is saved in a variable or data- structure (e.g. by a) as a way of preserving the value it
contains, and then the code is re-executed, the value that was saved will be smashed. Thus, the user must
beware of using constant boxes to save information in loops or recursions that can get back to the same
statement. In these situations, the values must be copied into other cells, perhaps a constant associated
with some other line of code, or into cells allocated in the ordinary way. The user must also be careful
about returning a constant box as the value of a function, since the caller might unknowingly save the
value and re-invoke the box-returner.

(3) Because the constant boxes are allocated only in compiled code,
. Side e�ects which occur because of inadvertent smashing of shared

structures will only occur when running compiled de�nitions and will not be detectable when running
interpreted.

23.14 DATEFORMAT

Dateformat is a small �le (one function) which provides assistance for constructing format bits for the
JSYS (output date/time) as required by and (page 14.9).

��� [NLambda NoSpread Function]
��� are a set of keywords (unevaluated). returns a num ber

suitable as a parameter to and . The variable is
the num ber used as the initial value to work with. Therefore, to switch any of
the defaults, set the variable to be the value of a call to

with the appropriate keys.

The keywords are given below (usually in pairs) and can be thought of as switches (i.e. turn on or o� a
particular format feature). If no keyword is given for a particular pair, the default is used.

The variable is a list of the keywords used for spelling correction.

(default)
Do/don’t include the date information.

(default)

Show the month as a name () or a num ber ().

23.57

X NIL (replace I of X
with Z CAR CDR NIL

DECL
replace IBOX FBOX

CBOX LBOX SCRATCHCOLLECT IBOX FBOX

SETQ

these functions will work quite
di�erently compiled and interpreted

Note: Dateformat is a LispUsers package that is contained on the �le DATEFORMAT.COM. It only works
in Interlisp- 10.

ODTIM DATE GDATE

(DATEFORMAT)
DATEFORMAT

DATE GDATE DATEFORMAT.DEFAULT

DATEFORMAT.DEFAULT
DATEFORMAT

DATEFORMAT.KEYS

DATE
NO.DATE

NAME.OF.MONTH
NUMBER.OF.MONTH

NAME.OF.MONTH NUMBER.OF.MONTH

MONTH.LONG

KEY 1 KEY N
KEY 1 KEY N

Dateformat

(default)
If the name of the month was requested, spell it out () or abbreviate
it ().

(default)
Print four digit year, e.g. 1978 () or two digit year, e.g. 78
().

(default)
Do/Don’t include the day of the week in the date information.

(default)
If the day of the week was included, spell it out () or abbreviate it
().

(default)

Separate the <day>, <month>, and <year> �elds with dashes/slashes/spaces.

(default)
Print the date in the order <month> <day> <year> () or in the order
<day> <month> <year> ().

(default)

If is speci�ed, the <day> �eld will always be two characters
long. If , the <day> �eld can be one character for dates
earlier than the 10th.

(default)
Do/Don’t include the time information.

(default)
Do/Don’t include the time zone in the time speci�cation.

(default)
Do/Don’t include the seconds.

(default)
Use 12 hour time with AM or PM () or 24 hour time

23.58

MONTH.SHORT
MONTH.LONG

MONTH.SHORT

YEAR.LONG
YEAR.SHORT

YEAR.LONG
YEAR.SHORT

DAY.OF.WEEK
NO.DAY.OF.WEEK

DAY.LONG
DAY.SHORT

DAY.LONG
DAY.SHORT

DASHES
SLASHES
SPACES

USA.FORMAT
EUROPE.FORMAT

USA.FORMAT
EUROPE.FORMAT

LEADING.SPACES
NO.LEADING.SPACES

LEADING.SPACES
NO.LEADING.SPACES

TIME
NO.TIME

TIME.ZONE
NO.TIME.ZONE

SECONDS
NO.SECONDS

CIVILIAN.TIME
MILITARY.TIME

CIVILIAN.TIME

LISPUSERS PACKAGES

().

23.15 EXEC

This package de�nes a set of programmer’s assistant commands which resemble features of the Tenex
EXEC. It also de�nes functions that provide certain EXEC capabilities for Interlisp programs, e.g. changing
the connected directory, detaching the job, etc.

23.15.1 Exec Commands

[Exec Command]
Prints out the current time and date.

[Exec Command]
[Exec Command]
[Exec Command]

Prints SYSTAT information, just like the subsystem. Jobs are sorted in inverse
order of CPU utilization.

[Exec Command]
Prints information for the speci�ed user only.

[Exec Command]
Like , but includes system jobs.

[Exec Command]
Detaches the current job.

[Exec Command]
Does a . Does not go on history list.

[Exec Command]
[Exec Command]

Mimics the exec link command. If has multiple jobs logged in, asks which
tty to link to.

[Exec Command]
Breaks links.

[Exec Command]
Connects to the directory . If the password is not given and is required,

will prompt. can be abbreviated; if omitted, it defaults to the user’s login

23.59

MILITARY.TIME

Note: The Exec package is a LispUsers package that is contained on the �le EXEC.COM. The Exec package
uses the passwords package (see page 23.62). Loading EXEC.COM will load PASSWORDS.COM if it has
not already been loaded. Note: some of the facilities described below will work correctly only on TENEX
systems, others only on TOPS- 20. The system will inform the user when he attempts to use a facility not
supported by his particular operating system.

DA

LD
SY
WHE

LD

LD

LD ALL
LD

DET

QU
(LOGOUT)

LINK
TALK

BR

CONN

CONN

USERNAME

USER

USER

USER

DIR PWD

DIR PWD

DIR

EXEC Functions

directory. If is given in command line, it is removed from the history list so
that will not print it out. Password prompting is handled by
from the passwords package (page 23.62).

[Exec Command]
Prints the �les in in a multi- column format.

[Exec Command]
Deletes speci�ed �les. Uses (page 14.6). Note that if <esc> is speci�ed,

�les that match will be deleted. This command is undoable.

[Exec Command]
Undeletes the speci�ed �les (undoably).

[Exec Command]
Deletes all but 1 version of the �legroup speci�ed. Uses (page
14.6), so may utilize any of the options allowed for directory �legroup
speci�cations.

[Exec Command]
Expunges directory . If the user does not have access to , a message is
printed.

[Exec Command]
[Exec Command]

Copies to , or to if is not given. Assumes that the bytes
of are bits wide (= defaults to 7). Suppresses blank
lines and control character sequences used to indicate font changes.

[Exec Command]
Prints out disk allocation and usage for the directory using . Also
prints total size of �les untouched in days (90 if not speci�ed).

[Exec Command]
Like the EXEC command, prints out status of all currently assigned
JFNS for the current job.

[Exec Command]
Prints information for only.

23.15.2 EXEC Functions

[Function]
Returns the job number for the logged in job.

[Function]
Returns the teletype- number of the current job.

[Function]
Detaches the current job.

23.60

?? GETPASSWORD

NDIR

NDIR
DIRECTORY

all

UND

DELVER
DIRECTORY

EXP

TY
SEE

T OUTFILE
NIL

DSK
DSKSTAT

FI
FILESTAT

FI

(JOB#)

(TTY#)

(DETACH)

PWD

FILEGR OUP

FILEGR OUP

FILEGR OUP

FILEGR OUP

FILEGR OUP

FILEGR OUP

DIR

DIR DIR

FILE OUTFILE BYTESIZE

FILE OUTFILE BYTESIZE

FILE OUTFILE

FILE BYTESIZE BYTESIZE

DIR DAYS

DIR

DAYS D AYS

JFN

JFN

LISPUSERS PACKAGES

[Function]
Returns if the current program is running detached.

q [Function]
Generates a two-way link between the controlling terminal of the user’s job and

q . Returns if the link was successful, otherwise prints an error message and
returns .

[Function]
Links the controlling terminal to a terminal associated with . Generates an
error if the user is not logged in or not attached. If has more than one
attached job, then a systat of his jobs is printed, and the user is asked to provide
the proper tty number for the job. Returns if successful.

[Function]
Breaks all links to the user’s controlling terminal.

[Function]
Implements the command.

[Function]
Undoable version of .

[Function]
Undeletes a single �le (undoably).

[Function]
Expunges directory . On TENEX, is ignored. and the connected directory
is expunged. On TOPS20, if the user does not have access to , a message is
printed.

[Function]
Implements the command.

[Function]
Prints disk usage statistics for directory (either a name or number).

If is , this means always print. If is , this means
only print if is over allocation. If is a number, this means only
print if has more than that many pages in use.

If is , this means print system disk statistics too.

If is , this means print total size of deleted �les for (this is slow).

If is or a number, this means print total size of �les untouched in 90
(or) days.

[Function]
Prints the status of the memory pages (0 if =) to (the last page
of memory if) in fork . is either , meaning the current fork,

23.61

(DETACHEDP)
T

(LINKTOTTY)

T
NIL

(LINKTOUSER)

T

(BREAKLINKS)

(CNDIR)
CONN

(/DELFILE)
DELFILE

(/UNDELFILE)

(EXPUNGE)

(COPYALLBYTES)
SEE

(DSKSTAT)

NIL T

T

T

T

(MEMSTAT)
NIL

NIL NIL

TTY

TTY

USER

USER

USER

DIR PASSW ORD

FILE

FILE

DIR

DIR DIR

DIR

FR OMFILE TOFILE BYTESIZE

DIR PRINTIF O VER PRINTSYS PRINTDEL PRINTOLD

DIR

PRINTIF O VER PRINTIF O VER

DIR PRINTIF O VER

DIR

PRINTSYS

PRINTDEL DIR

PRINTOLD

PRINTOLD

PG1 PGN FORK

PG1 PG1 PGN

FORK FORK

Passwords

or a fork handle.

23.16 PASSWORDS

[Function]
Prompts the user for the password for the given directory. The user’s response
is not echoed. remembers the password so that it need not ask
again; however, saved information is cleared before , so that the
contains no passwords.

23.17 TELNET

This package makes it possible to interact with connections created via the net package (page 23.64)
without leaving Interlisp. In addition, all typeout is included in the �le. It permits connections
to ARPANET hosts (a la TELNET).

[Function]
may be an instance of a record (as created by

, page 23.64). Alternatively, if is a litatom,
uses for the con-

nection. In any case, returns the connection as an instance of the
record, so that it is possible to back.

23.18 FTP

The ftp package makes it possible to deal with �les at other hosts on the Arpa network almost as if they
were �les on the user’s local machine, i.e. the �les can be opened via , , ,
read from and printed to by the ordinary reading and printing functions, and closed in the standard way.

Files on remote hosts are designated by including the host name between curly brackets, {}, at the
front of the ordinary �le name. Since curly brackets are illegal characters in regular �le names, a

23.62

Note: Passwords is a LispUsers package that is contained on the �le PASSWORDS.COM. It only works with
Interlisp- 10.

(GETPASSWORD)

GETPASSWORD
SYSOUT SYSOUT

Note: Telnet is a LispUsers package that is contained on the �le TELNET.COM. It only works with
Interlisp- 10. Since the telnet package uses the net package, loading TELNET.COM will also load NET.COM
unless it has already been loaded.

DRIBBLE

(TELNET)
CONNECTION

MAKENEWCONNECTION
TELNET (MAKENEWCONNECTION)

TELNET
CONNECTION TELNET

Note: Ftp is a LispUsers package that is contained on the �le FTP.COM. It only works with Interlisp- 10.
Since the Ftp package uses the net and passwords packages, loading FTP.COM will also load NET.COM and
PASSWORDS.COM if they are not already loaded.

INFILE OUTFILE OPENFILE

BAD

DIRECTOR YNAME

CONNECTION TYPE SKT _

CONNECTION

CONNECTION

CONNECTION TYPE SKT

40

41

42

43

40

41

42

43

LISPUSERS PACKAGES

error is generated. This error is intercepted by an entry on (see page
9.16) which then establishes the appropriate network connections. For example,

will open the �le on the host and make it be
the primary input �le. The user could then say to obtain the �rst expression on that �le. The
ftp package extends the functions , , and so that
they will associate the curly bracket syntax with the new �le �eld . Thus,

will return .

Remote �les have certain properties that limit how they may be used:

(1) is for such �les, and may not be applied to them. This means, for
example, that functions and variables may not be loaded from such �les via .

(2) The open bytesize of a remote �le may not be changed (e.g. by). This means that
Interlisp- 10 compiled �les may not be loaded from remote hosts.

(3) The remote host may close the connection spontaneously (e.g. because of a timeout if the �le is not
referenced for some length of time, or because of a crash). If this happens, the next attempt at reading
or writing on the �le will generate . Note: it is unwise to keep a remote �le open
for long periods of time.

When the connection for the remote �le is �rst established, a password for the remote machine/directory
may be required. The user will be asked to supply one via the passwords package (page 23.62).
Alternatively, if the host name has on its property list the property with value of the form

, then the indicated , , and will be used to log the user
into the remote host.

[Function]
Opens a network connection to the ftp server at . If =
or , works like : value is a literal atom of the form

which can then be used as a �le name by all Interlisp input and output
functions, e.g. , , , etc. For example,

will allow the Stanford Restraurant Guide to be
read. Note that must satisfy the �le name conventions of the remote host.

Note: it is fairly expensive to open a network connection as compared with the time to open a local
�le, e.g. an order of magnitude slower.

For input �les, these limita tions may be skirted conveniently in the following way: if a colon appears be-
tween the last charac ter of the host name and the right curly bracket (e.g.),
then the remote �le will be copied to a temporary �le when it is opened, and all subsequent references
will be to that local �le.

If the value is of the form , then will be used for
the password. If the �eld is , no account will be supllied to the remote host. If no
property is supplied, will be used as the user name.

In reality, this ‘‘�le’’ is a network connection to the host’s ftp server. This ‘‘�le’’ has a
attribute (page 6.11) associated with it so that when Interlisp closes the �le, the correct terminating
sequence will be performed.

23.63

FILE NAME ERRORTYPELST
(INFILE ’{BBN-

D}<LEWIS>INIT.LISP) <LEWIS>INIT.LISP BBN-D
(READ)

PACKFILENAME UNPACKFILENAME FILENAMEFIELD
HOST (PACKFILENAME ’HOST

’BBND ’NAME ’INIT) {BBND}INIT

RANDACCESSP NIL SETFILEPTR
LOADFNS

SETFILEINFO

FILE DATA ERROR

LOGIN (
)

(FTP)
INPUT

OUTPUT FTP OPENFILE
{ }

READ PRINT COPYBYTES (FTP ’SU-AI
’YUMYUM%[P,DOC%] ’INPUT)

{BBND:}<LEWIS>INIT.LISP
local

(NIL) (GETPASSWORD)
NIL LOGIN

ANONYMOUS

WHENCLOSE

NAME

PASSW ORD ACCOUNT NAME PASSW ORD A CCOUNT

HOST FILE A CCESS USER PASSW ORD A CCOUNT BYTESIZE

HOST A CCESS

HOST FILE

FILE

NAME ACCOUNT NAME

ACCOUNT

Net

If = , then will print on the terminal the names of
all �les which match , e.g.

.

, , and are used for logging in to the remote host. If not
supplied, the values are obtained from the property (if any) as described
above. is the byte size in which to open the connection. Byte sizes of 7,
8, 16, 32 and 36 are supported. = defaults to 7.

23.19 NET

This package contains functions for establishing ARPANET connections from an Interlisp- 10 job. A
connection is described by and is an instance of the record . The only �elds of interest to
the user in this record are and , which are guaranteed to be and , respectively. is a
�le name which can be read from, a �le name which can be printed to.

[Function]
Makes a connection to . For = , is the name of the host
to which the connection is to be made. For = (the normal case), the
connection will be to the telnet server of ; connections to other servers can
be made by supplying the appropriate value for .

The value of is a . If is non- ,
waits until its request for connection is acknowledged.

Otherwise, must be called on the result before it is used
(this allows additional processing to be done while waiting for the remote host to
respond).

If is non- , it is a scratch connection which is reused.

For example, makes an ARPA connection to BBND,
makes a connection to the Stanford service.

[Function]
Closes the given and replaces the and �elds with .

[Function]
Checks to make sure that the given connection is still open (e.g. it hasn’t been
closed remotely). If the connection is valid, is returned. If the
connection is in an in-between state, i.e. in the process of being opened or
closed, waits to see what happens before returning. Otherwise
the connection is cleaned up (as if a were performed) and

returns .

q [Function]
Initiates a ‘‘server’’ connection. This is a connection which will talk to a ‘‘user’’
connection. If is non- , waits for a user to connect; if = ,

23.64

DIRECTORY FTP
(FTP ’PARC-MAXC2 ’<NETLISP>*.SAV

’DIRECTORY)

LOGIN

NIL

Note: Net is a LispUsers package that is contained on the �le NET.COM. It only works with Interlisp- 10.

CONNECTION
IN OUT CAR CADR IN

OUT

(MAKENEWCONNECTION)
ARPA

NIL

MAKENEWCONNECTION CONNECTION NIL
MAKENEWCONNECTION

CHECKCONNECTION

NIL

(MAKENEWCONNECTION ’BBND) (MAKENEWCONNECTION
’SU-AI ’ARPA ’FINGER) WHEREIS

(CLOSECONNECTION)
IN OUT NIL

(CHECKCONNECTION)

CHECKCONNECTION
CLOSECONNECTION

CHECKCONNECTION NIL

(NETSERVER)

NIL NIL

ACCESS

FILE

USER PASSW ORD A CCOUNT

BYTESIZE

BYTESIZE

HOST TYPE SKT SCRA TCHCONN W AITFL G

HOST TYPE HOST

SKT

HOST

SKT

W AITFL G

SCRA TCHCONN

CONNECTION

CONNECTION

CONNECTION

CONNECTION

ARP A W AITFL G

W AITFL G W AITFL G

LISPUSERS PACKAGES

returns immediately (and must be called on the connection
before the connection is actually used). q defaults to 0.

q [Function]
Initiates the other half of an Arpa connection. q defaults to 0 and must be
the same as the argument given the corresponding call to . must
be the (directory number) under which the server job is logged in.

For example, to establish an ARPANET connection between two Interlisp jobs (which can then be
written to and read from like �les), do in one job and

in the other job, where is the machine on which the �rst job is
running and is the directory number under which the �rst job is logged in (obtainable through the
function). Then, perform in each job; when these return,
the connection is ready to be used.

[Function]
Normally, characters sent to the of a connection are bu�ered locally. The
function can be used to force partially �lled packets of bytes to be sent
across the connection. The argument to can either be the
record or the �lename.

23.65

CHECKCONNECTION

(NETUSER)

NETSERVER
USERNUMBER

(SETQ CONN (NETSERVER)) (SETQ CONN
(NETUSER))

USERNUMBER (CHECKCONNECTION CONN)

(FORCEOUT)
"OUT"

FORCEOUT
FORCEOUT CONNECTION

OUT

ARP A

HOST USER ARP A W AITFL G

ARP A

USER

HOST USER HOST

USER

CONNECTION/FILE

Net

23.66

