
CHAPTER 6

INPUT/OUTPUT

6.1 FILES

All input/output functions in Interlisp can specify their source/destination �le with an optional extra
argument, which is the name of the �le, given as a litatom. These functions generally require that the �le
be . Files are opened and manipulated by the functions described below. The name designates
terminal input and output, and is always considered open. It is also possible to supply a string as an
input ‘‘�le’’, without needing to open it; input operations remove successive characters from the string.
Note that because of this feature, �le names must always be speci�ed as litatoms, not strings.

[Function]
Opens with access rights as speci�ed by , one of , ,

, or , and returns the full name of the �le. Causes error
if is not recognized by the �le system, or other errors if is

recognized but cannot be opened, e.g. if the �le is already
opened by someone else or is protected against the operation,

if there is no more room in the �le system.

For = , only input operations are permitted on the �le; for
= or = , only output operations are permitted.

Note: in Interlisp- 10 and Interlisp- D, = implies that one intends
to write a new or di�erent �le, even if a version number was speci�ed and
the corresponding �le already exists. Thus any previous contents of the �le are
discarded, and the �le is empty immediately after the . If it is desired
to write on an already existing �le while preserving the old contents, the �le must
be opened for access or .

speci�es the recognition mode of , as described on page 6.4. If
= , it defaults according to the value of : for = ,
= is used; for = , = is used; for the other

values of , = is used.

, if supplied, is the byte size in which to open the �le. If = ,
the bytesize used is the default for the implementation (8 for Interlisp- D, 7 for
Interlisp- 10).

is a list specifying additional open ing parameters.
In Interlisp- 10, this list may contain the following litatoms:

Wait if �le is busy.

6.1

open T

(OPENFILE)
INPUT OUTPUT

BOTH APPEND FILE NOT
FOUND

FILE WON’T OPEN
FILE SYSTEM

RESOURCES EXCEEDED

INPUT
OUTPUT APPEND

OUTPUT

OPENFILE

BOTH APPEND

NIL INPUT
OLD OUTPUT NEW

OLD/NEW

NIL

WAIT

DON’T.CHANGE.DATE

FILE ACCESS RECOG BYTESIZE MA CHINE.DEPENDENT.P ARAMETERS

FILE A CCESS

FILE FILE

ACCESS

A CCESS A CCESS

ACCESS

RECOG FILE

RECOG ACCESS A CCESS

RECOG A CCESS RECOG

ACCESS RECOG

BYTESIZE BYTESIZE

MA CHINE.DEPENDENT.P ARAMETERS

Files

Don’t change the access dates.

Open �le in ‘‘thawed’’ mode.

In Interlisp- D, should be a list of pairs
, where is any �le attribute that the �le system is willing

to allow the user to set (see , page 6.7).

If the argument to an input (output) function is not given (has value), the �le speci�ed as
‘‘primary’’ for input (output) is used. Normally these are both , for terminal input and output. However,
the primary input or output �le may be changed with the functions below.

[Function]
Sets as the primary input �le; returns the name of the old primary input
�le. must be open for input. can also be given a string as argument,
interpreted as described above.

returns the current primary input �le, which is not changed.

[Function]
Sets as the primary output �le; returns the name of the old primary output
�le. must be open for output. A string cannot be used as an output �le.

returns the current primary output �le, which is not changed.

[Function]
Opens for input, and sets it as the primary input �le. Equivalent to

[Function]
Opens for output, and sets it as the primary output �le. Equivalent to

.

[Function]
; opens for both input and output. Does

not a�ect the primary input or output �le.

[Function]
If = , returns the full name of if is open either for input or
for output; otherwise .

If is , or , returns the full name of if it is open
in that access mode; otherwise .

Note: If is not recognized, returns without generating an error.

returns a list of all �les open for input or output, excluding and the
current typescript (dribble) �le, if any (page 6.12).

[Function]
Closes . Generates an error, , if is not open. If is

, it attempts to close the primary input �le if other than terminal. Failing that,
it attempts to close the primary output �le if other than terminal. Failing both, it

6.2

THAWED

()
SETFILEINFO

NIL
T

(INPUT)

INPUT

(INPUT)

(OUTPUT)

(OUTPUT)

(INFILE)
(INPUT

(OPENFILE ’INPUT ’OLD))

(OUTFILE)

(OUTPUT (OPENFILE ’OUTPUT ’NEW))

(IOFILE)
(OPENFILE ’BOTH ’OLD)

(OPENP)
NIL

NIL

INPUT OUTPUT BOTH
NIL

OPENP NIL

(OPENP) T

(CLOSEF)
FILE NOT OPEN

NIL

MA CHINE.DEPENDENT.P ARAMETERS

ATTRIB VAL UE ATTRIB

FILE

FILE

FILE

FILE

FILE

FILE

FILE

FILE

FILE

FILE

FILE

FILE

FILE

FILE

FILE FILE

FILE A CCESS

ACCESS FILE FILE

A CCESS FILE

FILE

FILE

FILE FILE FILE

INPUT/OUTPUT

returns . If it closes any �le, it returns the name of that �le. If it closes either
of the primary �les, it resets that primary �le to terminal.

(page 6.11) allows the user to ‘‘advise’’ to perform various
operations when a �le is closed.

[Function]
Closes if it is open, otherwise does nothing. Returns .

[Function]
Closes all open �les, except and the current typescript �le, if any. Returns a list
of the �les closed.

(page 6.11) allows certain �les to be ‘‘protected’’ from .
overrides this protection.

[Function]
Deletes if possible. Returns if deleted, else .

[Function]
Renames to be . Returns if successful, else .

6.1.1 File Naming and Recognition

In Interlisp, a �le name is a literal atom composed of one or more , separated by suitable
punctuation. The precise �elds and their interpretation is dependent on the implementation; the functions

and (page 6.6) are used to construct and take apart �lenames in an
implementation- independent way.

Depending on the �le system implementation, �le names given to input/output functions may be
incompletely speci�ed, with the �le system handling the task of obtaining a speci�c �le from a partial
name, or the �le. For example, in �le systems that support version numbers, one can call

giving a �le name without a version number, and the �le system will supply a default version
number based on the context (opening a new �le for output vs. an old �le for input). Internally, however,
each open �le has associated with it a completely- speci�ed �lename, one that uniquely identi�es the �le
to the �le system in any context. It is this ‘‘full’’ �le name that is returned from and other
functions that return names of open �les. For example, might return

. Any time that an input/output function is called with a �le name other than the full
�le name, Interlisp must perform recognition on the partial �le name in order to determine which open
�le is intended. Thus if repeated operations are to be performed, it is considerably more e�cient to use
the full �le name returned from than to repeatedly use the possibly incomplete name that
was used to open the �le.

In Interlisp- 10, �lenames follow the conventions of the operating system (either TENEX or TOPS- 20),
i.e., can be pre�xed by a directory name enclosed in angle brackets, can contain <esc>s or control-
F’s, and can include su�xes and/or version numbers. When a �le is opened for input and no version
number is given, the highest existing version number is used. Similarly, when a �le is opened for
output and no version number is given, a new �le is created with a version number one higher than the
highest one currently in use with that �le name. The full �lename in Interlisp- 10 consists of directory,
name, extension, and version. In Interlisp- D, it also includes a device or host name in brackets, i.e,

6.3

NIL

WHENCLOSE CLOSEF

(CLOSEF?)

(CLOSEALL)
T

WHENCLOSE CLOSEALL
(CLOSEALL T)

(DELFILE)
NIL

(RENAMEFILE)
NIL

�elds

PACKFILENAME UNPACKFILENAME

recognizing
OPENFILE

OPENFILE
(OPENFILE ’FOO ’OUTPUT)

<LISP>FOO.;3

OPENFILE

FILE

FILE FILE

ALLFL G

FILE

FILE FILE

OLDFILE NEWFILE

OLDFILE NEWFILE NEWFILE

FILE

File Naming and Recognition

).

The following functions can be used to perform �le recognition without opening a �le:

[Function]
Returns full �le name of if is recognized as specifying the name of an
existing �le that could potentially be opened for input, otherwise. Recognition
is in input context, i.e., in Interlisp- 10, if no version number is given, the highest
existing version number is returned.

[Function]
Similar to , except recognition is in output context, i.e., in Interlisp- 10, if
no version number is given, a version number one higher than the highest existing
version number is returned. Roughly speaking, returns the full name
of the �le that would be created if were called with the same argument.

A more general version of and is provided by the function :

[Function]
If is recognized in the recognition mode speci�ed by as an abbreviation
for some �le, returns the �le’s full name, otherwise . can be ,
meaning choose the (newest) existing version of the �le; , meaning make the
full �le name one which does not yet exist (version number one higher than
highest existing version); , meaning choose the existing �le with the lowest
version number; or , meaning to recognize an existing version if possible,
otherwise a new version (useful only for writing a �le). = defaults to

. For all other values of , generates an error . If is not
a literal atom, generates an error, .

For example, could be de�ned as and
as .

The argument is used only for defaulting unspeci�ed parts of the �lename
(in Interlisp- 10 and Interlisp- D, the version), not to pass judgment on the speci�ed
parts. In particular, = does not require that the �le be new. For
example, may return if that
�le already exists, even though would default the
version to a new number, perhaps returning .

Note that , and do not open any �les, or change the primary �les; they
are pure predicates. In general they are also only hints, as they do not necessarily imply that the caller
has access rights to the �le. For example, might return non- , but might fail for
the same �le because the �le is read- protected against the user, or the �le happens to be open for output
by another user at the time. Similarly, could return non- , but could fail with
a error. Note also that in a multi- user �le system, intervening
�le operations by another user could contradict the information returned by recognition. For example,
a �le that was might be deleted, or between an and the subsequent ,

6.4

{PHYLUM}<LISP>FOO.;3

Warning: In some implementations of Interlisp (such as Interlisp- D), it may not be possible to determine
the full name of a new �le without trying to open it. In this case, OUTFILEP and FULLNAME may not
always return the correct value. These functions should not be used in general, because the idea ‘‘what a �le
would be named if it were opened’’ is not well de�ned in some �le systems.

(INFILEP)

NIL

(OUTFILEP)
INFILEP

OUTFILEP
OUTFILE

INFILEP OUTFILEP FULLNAME

(FULLNAME)

NIL OLD
NEW

OLDEST
OLD/NEW

NIL
OLD ILLEGAL ARG

ARG NOT LITATOM

INFILEP (FULLNAME ’OLD)
OUTFILEP (FULLNAME ’NEW)

NEW
(FULLNAME ’FOO.;2 ’NEW) <MASINTER>FOO.;2

(FULLNAME ’FOO ’NEW)
<MASINTER>FOO.;5

INFILEP OUTFILEP FULLNAME

INFILEP NIL OPENFILE

OUTFILEP NIL OPENFILE
FILE SYSTEM RESOURCES EXCEEDED

INFILEP OUTFILEP OPENFILE

FILE

FILE FILE

FILE

X RECOG

X RECOG

RECOG

RECOG

RECOG X

FILE

FILE

RECOG

RECOG

1

1

INPUT/OUTPUT

another user might create a new version or delete the highest version, causing the names returned by
and to have di�erent version numbers. Thus, in general, the ‘‘truth’’ about a �le

can only be obtained by actually opening the �le; in particular, creators of �les should rely on the name
returned from , not from .

If the �le system does not successfully recognize an incomplete �le name, a error
is generated (except for , , and , which in this case return).
As described on page 9.16, before a error occurs, it is intercepted via an entry on

, which causes (page 15.20) to be called. will search alternate
directories and possibly attempt spelling correction on the �le name. Only if is unsuccessful
will the error actually occur.

Note that recognition is performed on the user’s entire directory, not just the open �les, which can result
in certain anomalies. Thus, even if only one �le is open, say , the name (<esc>) will not
be recognized if the user’s directory also contains the �le . Similarly, it is possible for a �le
name that was previously recognized to become ambiguous. For example, a program performs

, opening , and reads several expressions from . Then the user interrupts the program,
creates a and reenters his program. Now a call to giving it as its argument will
generate a error, because will be recognized as .

6.1.2 Manipulating File Names

Di�erent operating systems have di�erent conventions for naming �les. However, it is desirable for
Interlisp to be as implementation independent as possible. Therefore, all programs that need to reference
parts of a �lename, or construct new �le names from existing ones, should use the functions described
below. The implementation of these functions obviously is dependent on the operating system they will
run under, but as far as the programs that use them are concerned, they permit expressing operations
that are implementation independent.

Every �le name is composed of a collection of which have di�erent semantic interpretations. A
is a literal atom which is the name of a �le- name �eld. Interlisp assumes that and

are valid �eld names; the implementor is free to allow other �elds. In Interlisp- 10, allowable
�eld names are: , , , , , , , and

. Interlisp- D allows , , , , and .

[Function]
Returns the contents of the �eld of .

[Function]
Returns a list of alternating �eld names and �eld contents.

Examples from Interlisp- D:

In particular, the Interlisp- 10 implementation recognizes �le names in both Tenex and TOPS- 20 format,
and builds new names as appropriate.

6.5

OUTFILEP OPENFILE

OPENFILE OUTFILEP

FILE NOT FOUND
INFILEP OUTFILEP FULLNAME OPENP NIL

FILE NOT FOUND
ERRORTYPELST SPELLFILE SPELLFILE

SPELLFILE

FOO.;1 F$ F
FIE.;1

(INFILE
’FOO) FOO.;1 FOO

FOO.;2 READ FOO
FILE NOT OPEN FOO FOO.;2

�elds
�eld name NAME
EXTENSION

DEVICE DIRECTORY NAME EXTENSION VERSION PROTECTION ACCOUNT
TEMPORARY HOST DIRECTORY NAME EXTENSION VERSION

(FILENAMEFIELD)

(UNPACKFILENAME)

_ (UNPACKFILENAME ’FOO.BAR)
(NAME FOO EXTENSION BAR)
_ (UNPACKFILENAME ’{PHYLUM}<SANNELLA>LISP>IMTRAN.DCOM;21)

FILE

FILENAME FIELDNAME

FIELDNAME FILENAME

FILENAME _

File Attributes

Examples from Interlisp- 10 on Tenex:

Note: In Interlisp- 10, returns
, i.e. the is left in. This is so may be distinguished

from .

���
[NoSpread Function]

Takes a list of alternating �eld names and �eld contents (atoms or strings),
and returns the corresponding �le name. For example,

returns .

If the same �eld name is given twice, the occurrence is used.

If the ‘‘�eld name’’ is given, this means that the operand to should
itself be unpacked and spliced into the argument list at that point. This is useful
for providing default �eld names, or to change just one �eld in an existing name.

For example, to take a �le name and change the �eld, perform
. Alternatively,

to provide a default for the �eld, perform
. This uses as the extension unless one is

already speci�ed in .

Note that a null �eld is a �eld that been speci�ed, e.g., if = in the
above example, the default extension will be used, but if = , it will
not, because a null extension has been speci�ed.

If the �rst argument to is a list, is called on that
argument. Thus and operate as inverses.

6.1.3 File Attributes

Any �le has a number of ‘‘�le attributes’’, such read date, protection, and bytesize. The exact attributes
that a �le can have is implementation- dependent. The functions and
allow the user to conveniently access �le attributes:

[Function]
Returns the current setting of the attribute of . In Interlisp- 10,
may also be a as returned by (page 22.22).

In Interlisp- 10, takes an optional third argument, , which
is analogous to the third argument of (page 14.10): a string pointer to reuse

6.6

(HOST PHYLUM DIRECTORY SANNELLA>LISP NAME IMTRAN
EXTENSION DCOM VERSION 21)

_ (UNPACKFILENAME ’<LISP>MAC.COM;3)
(DIRECTORY LISP NAME MAC EXTENSION COM VERSION 3)
_ (UNPACKFILENAME ’WORK.;T)
(NAME WORK EXTENSION NIL TEMPORARY T)

(UNPACKFILENAME ’DSK:FOO) (DEVICE DSK:
NAME FOO) : (DEVICE NIL:)

(DEVICE NIL)

(PACKFILENAME)

(PACKFILENAME
’DIRECTORY ’LISP ’NAME ’NET) <LISP>NET

�rst

BODY BODY

DIRECTORY
(PACKFILENAME ’DIRECTORY ’BODY)

EXTENSION (PACKFILENAME ’BODY
’EXTENSION)

has FOO;1
FOO.;1

PACKFILENAME PACKFILENAME
PACKFILENAME UNPACKFILENAME

GETFILEINFO SETFILEINFO

(GETFILEINFO)

JFN GTJFN

GETFILEINFO
GDATE

FIELDNAME 1 FIELDCONTENTS 1 FIELDNAME N FIELDCONTENTS N

FILE

NEWDIRECTOR Y FILE

FILE DEF AUL T DEF A UL T

FILE

FILE

FILE

FILE ATTRIB

ATTRIB FILE FILE

SCRA TCH

INPUT/OUTPUT

for those ’s which return string values.

[Function]
Sets the attribute of to be . returns if it
is able to change the attribute , and if unsuccessful (some attributes
cannot be changed, e.g. it doesn’t make sense to change the of a �le without
writing something on it).

and currently recognize the following values for :

The current access mode of (e.g. , , ,) or
if is not open.

The byte size of the �le.

The byte position of the end- of-�le. Like , but does not
have to be open.

The size of in pages.

, ,
The date (and time) as a string that was respectively last written, last read,
and originally created.

, ,
The respective date in integer form, as (page 14.10) would return.

(Interlisp- D) Either or .

(Interlisp- 10) It is possible that the byte size for the ‘‘opening’’ of a �le might di�er
from the ‘‘permanent’’ bytesize. For example, a 7-bit text �le can be opened in
36-bit mode. To obtain the ‘‘open’’ bytesize, use attribute .

(Interlisp- 10) The ‘‘protection code’’ of , as an integer.

(Interlisp- 10) if is the name of a deleted �le, otherwise.

Additional attributes which are available for Interlisp- 10 on TOPS- 20 systems (DEC release 4 or later)
are:

if has the invisible attribute, otherwise.

if has been archived, otherwise.

if the contents of are o�- line (i.e. has been archived and its contents
�ushed), otherwise.

[Function]
Returns the column number at which the next character will be read or printed.
After a end of line, the column number is 0. If is non- , the column
number to be .

Note that is the same as which
gives the position in the , not on the .

6.7

(SETFILEINFO)
SETFILEINFO T

NIL
SIZE

GETFILEINFO SETFILEINFO

ACCESS INPUT OUTPUT BOTH APPEND NIL

BYTESIZE

LENGTH (GETEOFPTR)

SIZE

WRITEDATE READDATE CREATIONDATE

IWRITEDATE IREADDATE ICREATIONDATE
IDATE

TYPE TEXT BINARY

OPENBYTESIZE

OPENBYTESIZE

PROTECTION

DELETED T NIL

INVISIBLE T NIL

ARCHIVED T NIL

OFF-LINE T
NIL

(POSITION)

NIL resets

(POSITION) not (GETFILEPTR)
�le line

ATTRIB

FILE ATTRIB VAL UE

ATTRIB FILE VAL UE

ATTRIB

ATTRIB

FILE

FILE

FILE FILE

FILE

FILE

FILE

FILE

FILE

FILE

FILE FILE

FILE N

N

N

FILE FILE

Randomly Accessible Files

[Function]
Sets the length of the print line for the output �le to ; returns the former
setting of the line length. defaults to the primary output �le.

returns the current setting for . When a �le is �rst opened, its
linelength is set to the value of the variable .

Whenever printing an atom or string would increase a �le’s position the
line length of the �le, an end of line is automatically inserted �rst. This action can
be defeated by using and (page 6.17).

[Function]
If is , interrogates the operating system for the line length of the terminal
device, and sets the variable to this value. If is not ,
instructs the operating system to set the terminal line length to , and also sets

to . Then, in either case, performs (and
returns as its value) .

Both and (page 8.19) contain a so that when
the user �rst runs a , or types control- D, the system obtains the latest information about the
terminal.

6.1.4 Randomly Accessible Files

For most applications, �les are read starting at their beginning and proceeding sequentially, i.e., the
next character read is the one immediately following the last character read. Similarly, �les are written
sequentially. However, it is also possible to read/write characters at arbitrary positions in a �le, essentially
treating the �le as a large block of auxiliary storage. For example, one application might involve writing
an expression at the of the �le, and then reading an expression from a speci�ed point in its

. This particular example requires the �le be open for input and output. However, random
�le input or output can also be performed on �les that have been opened for only input or only output.

Associated with each �le is a ‘‘�le pointer’’ that points to the location where the next character is to be
read from or written to. The �le pointer to a �le is automatically advanced after each input or output
operation. This section describes functions which can be used to the �le pointer on those �les
that can be randomly accessed. A �le used in this fashion is much like an array in that it has a certain
number of addressable locations that characters can be put into or taken from. However, unlike arrays,
�les can be enlarged. For example, if the �le pointer is positioned at the end of a �le and anything is
written, the �le ‘‘grows.’’ It is also possible to position the �le pointer the end of �le and then
to write. (If the program attempts to beyond the end of �le, an error occurs.) In
this case, the �le is enlarged, and a ‘‘hole’’ is created, which can later be written into. Note that this
enlargement only takes place at the of a �le; it is not possible to make more room in the middle of
a �le. In other words, if expression begins at position 1000, and expression at 1100, and the program
attempts to overwrite with expression , which is 200 characters long, part of will be altered.

The address of a character (byte) is the number of characters (bytes) that precede it in the �le, i.e., 0 is
the address of the beginning of the �le. However, the user should be careful about computing the space
needed for an expression, since end- of-line may be represented by a di�erent number of characters in
di�erent implementations, even though only counts it as one; e.g., end- of-line in Interlisp- 10
�les is represented as the two characters carriage- return, line- feed. Output functions may also introduce
end- of-line’s as a result of considerations.

6.8

(LINELENGTH)

(LINELENGTH
NIL)

FILELINELENGTH

beyond

PRIN3 PRIN4

(SETLINELENGTH)
NIL

TTYLINELENGTH NIL

TTYLINELENGTH SETLINELENGTH
(LINELENGTH TTYLINELENGTH T)

AFTERSYSOUTFORMS RESETFORMS (SETLINELENGTH)
SYSOUT

beginning
middle both

reposition

beyond
read END OF FILE

end
A B

A C B

NCHARS

LINELENGTH

N FILE

FILE N

FILE

FILE FILE

N

N

N

N

N

2

2

INPUT/OUTPUT

[Function]
Returns the current position of the �le pointer for , i.e., the byte address at
which the next input/output operation will commence.

[Function]
Sets the �le pointer for to the position ; returns . The special value

= is interpreted to mean the address of the end of �le.

[Function]
Returns the byte address of the end of �le, i.e., the number of bytes in the �le.
Equivalent to performing and returning

except that it does not change the current �le pointer.

[Function]
Returns if the �le pointer to is pointing to the end of �le; otherwise.

must be open for (at least) input, or an error is generated, .

[Function]
Returns if is randomly accessible, otherwise. The �le is not
randomly accessible, nor are the �les , in Interlisp- 10, or certain network
�le connections in Interlisp- D. must be open or an error is generated,

.

[Function]
Copies bytes (characters) from to , starting from position
and up to but not including position . Both and must be open.
Returns .

If = , is interpreted as the number of bytes to copy (starting at the
current position). If is also , bytes are copied until the end of the �le
is reached.

[Function]
Analogous to (page 2.31), but searches a �le rather than a string.
searches for the string . Search begins at (or the current
position of the �le pointer, if =), and goes to (or the end of ,
if =). Returns the address of the start of the match, or if not found.

can be used to specify a character which matches any character in the �le. If
is , and the search is successful, the value is the address of the �rst character
the sequence of characters corresponding to , instead of the starting

address of the sequence. In either case, the �le is left so that the next i/o operation
begins at the address returned as the value of .

Note: If a �le is opened for output only, the end of �le is initially zero, even if an old �le by the same
name had existed (see , page 6.1). If a �le is opened for both input and output, the initial �le
pointer is the beginning of the �le, but will set it to the end of the �le. If
the �le had been opened in append mode by , the �le pointer right after
opening would be set to the end of the existing �le, in which case a to position the �le at
the end would be unnecessary.

6.9

(GETFILEPTR)

(SETFILEPTR)

-1

(GETEOFPTR)

(SETFILEPTR -1) (GETFILEPTR
)

(EOFP)
T NIL

FILE NOT OPEN

(RANDACCESSP)
NIL T

LPT: NIL:
FILE

NOT OPEN

(COPYBYTES)

T

NIL
NIL

(FILEPOS)
STRPOS FILEPOS

NIL
NIL NIL

T
after

FILEPOS

OPENFILE
(SETFILEPTR -1)

(OPENFILE ’APPEND)
SETFILEPTR

FILE

FILE

FILE ADR

FILE ADR ADR

ADR

FILE

FILE

FILE

FILE

FILE

FILE

FILE

FILE FILE

FILE

SR CFIL DSTFIL STAR T END

SR CFIL DSTFIL STAR T

END SR CFIL DSTFIL

END STAR T

STAR T

PATTERN FILE STAR T END SKIP TAIL CASEARRA Y

FILE PATTERN STAR T

STAR T END FILE

END

SKIP

TAIL

PATTERN

FILE

FILE

3

3

Randomly Accessible Files

should be a ‘‘casearray’’ that speci�es that certain characters should
be transformed to other characters before matching. Casearrays are returned by

or below. = means no transformation
will be performed.

A casearray is an implementation- dependent object that is logically an array of
character codes with one entry for each possible character. maps
each character in the �le ‘‘through’’ in the sense that each character
code is transformed into the corresponding character code from
before matching. Thus if two characters map into the same value, they are
treated as equivalent by . and provide an
implementation- independent interface to casearrays.

For example, to search without regard to upper and lower case di�erences,
would be a casearray where all characters map to themselves, except

for lower case characters, whose corresponding elements would be the upper case
characters. To search for a delimited atom, one could use ‘‘ ’’ as the pattern,
and specify a in which all of the break and separator characters
mapped into the same code as space.

For applications calling for extensive �le searches, the function is often faster than .

[Function]
Like , except much faster in most applications. is an
implementation of the Boyer-Moore fast string searching algorithm . This algorithm
preprocesses the string being searched for and then scans through the �le in steps
usually equal to the length of the string. Thus, speeds up roughly in
proportion to the length of the string, e.g., a string of length 10 will be found twice
as fast as a string of length 5 in the same position.

Because of certain �xed overheads, it is generally better to use for short
searches or short strings.

[Function]
Creates and returns a new casearray, with all elements set to themselves, to indicate
the identity mapping.

(Interlisp- D) If is given, it is reused.

[Function]
Modi�es the casearray so that character code is mapped
to character code .

[Function]
Returns a new casearray suitable for use by or in which all
of the break/separators of are mapped into character code zero. If

is non- , then all CLISP characters will be mapped into this character as
well. This is useful for �nding a delimited atom in a �le. For example, if

In Interlisp- 10, a speedup of 10 to 50 times is typical. In Interlisp- D the speedup is much smaller.

6.10

CASEARRAY SEPRCASE NIL

FILEPOS

FILEPOS CASEARRAY SETCASEARRAY

FFILEPOS FILEPOS

(FFILEPOS)
FILEPOS FFILEPOS

FFILEPOS

FILEPOS

(CASEARRAY)

(SETCASEARRAY)

(SEPRCASE)
FILEPOS FFILEPOS

FILERDTBL
NIL

CASEARRA Y

CASEARRA Y

CASEARRA Y

CASEARRA Y

CASEARRA Y

ATOM

CASEARRA Y

PATTERN FILE STAR T END SKIP TAIL CASEARRA Y

OLD ARRA Y

OLD ARRA Y

CASEARRA Y FR OMCODE TOCODE

CASEARRA Y FR OMCODE

TOCODE

CLFL G

CLFL G

PATTERN

INPUT/OUTPUT

is , and is used for , then will
�nd .

6.1.5 Closing and Reopening Files

The function permits the user to associate certain operations with open �les that govern how
and when the �le will be closed, and how the �le’s status will be restored when a is started up.
The user can specify that certain functions will be executed before closes the �le and/or after

closes the �le. The user can make a particular �le be invisible to , so that it will
remain open across user invocations of . Finally, the user can associate a status- saving function
with a �le which will be called before and which can specify what to do when a is
restarted.

��� [NoSpread Function]
must specify the name of an open �le other than (defaults to the

primary input �le, if other than , or primary output �le if other than). The
remaining arguments specify properties to be associated with the full name of .

returns the full name of as its value.

recognizes the following property names:

is a function that will apply to the full name of just before it is
closed. This might be used, for example, to copy information about the �le from an
in-core data structure to the �le just before it is closed.

is a function that will apply to the full name of just after it is
closed. This capability permits in-core data structures that know about the �le to be
cleaned up when the �le is closed.

and di�er in their behavior with respect to . If a �le that
was open before does not have a function associated with it that
causes the �le to be successfully restored after the is started, then the �le
is considered to have been ‘‘closed’’ by the , and its function will be
executed after the starts.

This property provides a way of restoring the status of �les when a is
resumed. is a function that will be applied to the full name of just before
a . is expected to return a list, of which is a function which will
be ’d to the when the is started up and which will restore the
status of . If the value of the is , it is assumed the �le could not be
successfully restored, a warning message is printed, and then any functions
associated with the �le are executed.

The function (page 23.17) produces an expression for re-opening a �le
after and restoring as many of its attributes as possible.

is either or and determines whether will be closed by
() or whether will ignore it (). uses , so that
any functions will be executed if the �le is in fact closed.

is a function that will be applied to the full name of when an end- of-�le

6.11

" FOO " (SEPRCASE T) FILEPOS
"(FOO_"

WHENCLOSE
SYSOUT

CLOSEF
CLOSEF CLOSEALL

CLOSEALL
SYSOUT SYSOUT

(WHENCLOSE)
T NIL

T T

WHENCLOSE

WHENCLOSE

BEFORE CLOSEF

AFTER CLOSEF

BEFORE AFTER SYSOUT
SYSOUT STATUS

SYSOUT
SYSOUT AFTER

SYSOUT

STATUS SYSOUT

SYSOUT CAR
APPLY CDR SYSOUT

APPLY NIL
AFTER

PERMSTATUS
SYSOUT

CLOSEALL YES NO CLOSEALL
YES CLOSEALL NO CLOSEALL CLOSEF

AFTER

EOF

CASEARRA Y

FILE PR OP 1 VAL 1 PR OP N VAL N
FILE

FILE

FILE

VAL FILE

VAL FILE

VAL FILE

VAL

FILE

VAL FILE

VAL FILE

Dribble Files

error occurs, and the entry for that error, if any, returns . The
function can examine the context of the error, and can decide whether to close the
�le, some function, or perform some other computation. If the function
supplied returns normally (i.e. does not some function), the normal error
machinery will be invoked (but will not be automatically closed if the
function did not close it).

Note that multiple and functions may be associated with a �le; they are executed
in sequence with the most recently associated function executed �rst. However, a second
speci�cation will supercede an earlier one. The and values will also override earlier
values, so only the last value speci�ed will have an e�ect. Files are initialized with - ,

- .

6.1.6 Dribble Files

A dribble �le is a ‘‘transcript’’ of all of the input and output on a terminal. The following function
enables dribble �les for Interlisp:

[Function]
Opens and begins recording the typescript. Returns the old dribble
�le if any, otherwise . If = , the typescript will be appended to
the end of . If = , the �le will be opened in ‘‘thawed’’
mode, for those implementations that support it. closes the dribble
�le. Only one dribble �le can be active at any one time, so
followed by will cause to be closed.

In Interlisp- D, opens a dribble �le for the current process, recording the
input and output for that process. Multiple processes can have separate dribble
�les open at the same time.

[Function]
Returns the name of the current dribble �le, if any, otherwise .

Terminal input is echoed to the dribble �le a line bu�er at a time. Thus, the typescript produced is
somewhat neater than that appearing on the user’s terminal, because it does show characters that were
erased via control- A or control- Q. Note that the typescript �le is included in the list of �les returned
by , nor will it be closed by a call to or . Only closes the
typescript �le.

6.2 INPUT FUNCTIONS

Most of the functions described below have an argument , which speci�es the name of the �le on
which the operation is to take place. If is , the primary input �le will be used. If the �le
argument is a string, input will be taken from that string (and the string pointer reset accordingly).

Most input functions also have a argument, which speci�es the readtable to be used for input. If
is , the primary readtable will be used. Readtables are described on page 6.32.

6.12

ERRORTYPELST NIL

RETFROM
RETFROM

EOF

AFTER BEFORE
STATUS

CLOSEALL EOF
CLOSEALL YES

EOF CLOSEF

(DRIBBLE)

NIL T
T

(DRIBBLE)
(DRIBBLE)

(DRIBBLE)

DRIBBLE

(DRIBBLEFILE)
NIL

not
not

(OPENP) CLOSEALL CLOSEF (DRIBBLE)

NIL

NIL

FILE

FILENAME APPENDFL G THA WEDFL G

FILENAME

APPENDFL G

FILENAME THA WEDFL G

FILE1

FILE2 FILE1

FILE

FILE

RDTBL

RDTBL

4

4

INPUT/OUTPUT

Note: in all Interlisp- 10 symbolic �les, end- of-line is indicated by the characters carriage- return and
line- feed in that order. Accordingly, on input from �les, Interlisp- 10 skips all line- feeds that immediately
follow carriage- returns. On input from the terminal, Interlisp echos a line- feed whenever a carriage- return
is input.

When reading from the terminal, the input is bu�ered a line at a time (unless bu�ering has been inhibited
by , or the input is being read by or) and can be backed up over using
speci�ed editing characters. The user can erase a character at a time, the whole line, or, in Interlisp- D, a
word at a time. The keys that perform these editing functions are assignable via the function
(page 6.34), with the intial settings chosen to be those most natural for the given operating system:
characters are deleted one at a time by control- A under Tenex, Delete under Tops20, and BackSpace in
Interlisp- D; the whole line is erased by control- Q under Tenex and in Interlisp- D, and control- U under
Tops20; words are erased by control- W in Interlisp- D.

The character- deleting action on normal terminals is to echo a followed by the erased character; on the
Interlisp- D display the character is physically erased from the screen (this action can also be speci�ed for
display terminals in other Interlisps; see page 6.43). The line-deleting action is normally to print and
start over on a new line. Neither will back up beyond the previous carriage- return.

When reading from a �le, and an end of �le is encountered, all input functions close the �le and generate
an error, (unless has been used to alter this behavior; see page 6.11).

[Function]
Reads one expression from . Atoms are delimited by the break and separator
characters as de�ned in . To include a break or separator character in an
atom, the character must be preceded by the input escape character , e.g.,
is the atom , is the atom , is the atom control- A. For input
from the terminal, an atom containing an interrupt character can be input by typing
instead the corresponding alphabetic character preceded by control- V, e.g., for
control- C.

Strings are delimited by double quotes. To input a string containing a double
quote or a %, precede it by %, e.g., is the string . Note that % can
always be typed even if next character is not ‘‘special’’, e.g., is read as

.

If an atom is interpretable as a number, creates a number, e.g., reads as
a �oating point number, as a literal atom, as a number, as a literal
atom, etc. An integer can be input in octal by terminating it with a , e.g.,
and read in as the same integer. The setting of (page 6.19) determines
in which base integers are printed.

When reading from the terminal, all input is line-bu�ered to enable the action
of the backspacing control characters (unless inhibited by (page
6.45)). Thus no characters are actually seen by the program until a carriage- return is
typed. However, for reading by , when a matching right parenthesis is
encountered, the e�ect is the same as though a carriage- return were typed, i.e., the

Actually, the line bu�ering is terminated by the character with terminal syntax class (see page 6.33),
which in most cases is carriage- return.

6.13

(CONTROL T) READC PEEKC

SETSYNTAX

\

##

END OF FILE WHENCLOSE

(READ)

% AB%(C
AB(C %% % %control-A

^VC

"AB%"C" AB"C
%A%B%C

ABC

READ 1E3
1D3 1.0 1,0

Q 17Q
15 RADIX

(CONTROL T)

READ

EOL

FILE RDTBL FL G

FILE

RDTBL

5

5

Input Functions

characters are transmitted. To indicate this, Interlisp also prints a carriage- return
line- feed on the terminal.

In Interlisp- 10, the character control- W is de�ned as an read macro
that erases the last expression read, echoing a and the erased expression, e.g.,

returns . Control- W can be
used repeatedly, and can also back up and erase expressions on previous lines.
However, since control- W is implemented as an read- macro character,
(page 6.36), once it is typed, then individual typed before it cannot be
deleted by control- A or control- Q, since they will already have passed through the
line bu�er.

In Interlisp- D, control- W is instead de�ned as an editing character that deletes the
last ‘‘word’’ of input, i.e., back to the �rst non- character preceding the �rst
non- character, essentially a repeated BackSpace. The character performing
this function is assignable using the syntax (page 6.34).

= suppresses the carriage- return normally typed by following a
matching right parenthesis. (However, the characters are still given to ;
i.e., the user does not have to type the carriage- return.)

[Function]
Reads in one atom from . Separation of atoms is de�ned by . is
also an escape character for , and the remarks concerning line-bu�ering and
editing control characters also apply.

If the characters comprising the atom would normally be interpreted as a number
by , that number is returned by . Note however that takes no
special action for whether or not it is a break character, i.e., never makes
a string.

[Function]
Reads characters from up to, but not including, the next break or separator
character, and returns them as a string. Control- A, control- Q, control- V, and
have the same e�ect as with .

Note that the break or separator character that terminates a call to or is read by
that call, but remains in the bu�er to become the �rst character seen by the next reading function that is
called. If that function is , it will return the null string. This is a common source of program
bugs.

[Function]
Calls repeatedly until the atom is read. Returns a list of the atoms read,
not including .

[Function]
If = , returns if a separator was encountered immediately prior
to the last atom read by , otherwise.

The line bu�er is also transmitted to whenever an read- macro character is typed
(page 6.36).

6.14

IMMEDIATE
\\

(NOW IS THE TIME^W \\ TIME) (NOW IS THE)

IMMEDIATE
characters

OTHER
SEPR

WORDDELETE

T READ
READ

(RATOM)
%

RATOM

READ RATOM RATOM
" RATOM

(RSTRING)

%
READ

RATOM RSTRING not

RSTRING

(RATOMS)
RATOM

(RATEST)
T RATEST T

RATOM NIL

READ IMMEDIATE

FL G

FILE RDTBL

FILE RDTBL

FILE RDTBL

FILE

A FILE RDTBL

A

A

FL G

FL G

6

6

INPUT/OUTPUT

If = , returns if last atom read by or was a
break character, otherwise.

If = , returns if last atom read (by or) contained
a (as an escape character, e.g., or), otherwise.

[Function]
Reads and returns the next character, including , , etc, i.e., is not a�ected
by break, separator, or escape character. The action of is subject to line-
bu�ering, i.e., does not return a value until the line has been terminated
even if a character has been typed. Thus, the editing control characters have their
usual e�ect. does not directly a�ect the value returned, but is used as usual
in line-bu�ering, e.g., determining when input has been terminated. If

has been executed (page 6.45), defeating line-bu�ering, the argument is
irrelevant, and returns a value as soon as a character is typed (even if the
character typed is one of the editing characters, which ordinarily would never be
seen in the input bu�er).

[Function]
Returns the next character, but does not actually read it and remove it from the
bu�er. If = , is not subject to line-bu�ering , i.e., it returns
a value as soon as a character has been typed. Otherwise, waits until the
line has been terminated before returning its value. This means that control- A,
control- Q, and control- V will be able to perform their usual editing functions.

[Function]
Returns the last character read from .

, , , , all wait for input if there is none. The only way to test whether
or not there is input is to use :

[Function]
Returns if there is anything in the input bu�er of , otherwise. Note
that because of line-bu�ering, may return , indicating there is input in
the bu�er, but may still have to wait.

Frequently, the terminal’s input bu�er contains a single character left over
from a previous input. For most applications, this situation wants to be treated
as though the bu�er were empty, and so returns in this case.
However, if = , also returns in this case, i.e., returns

if there is character in the input bu�er.

[Function]
Waits un til input is available from or from the terminal, i.e. from .

is func tion ally equiv alent to

If reading from the terminal, the character is echoed as soon as reads it, even though it is then
‘‘put back’’ into the system bu�er, where a subsequent del (or control- Z on TOPS- 20) before the character
is read can clear it, and where subsequent line bu�er backspacing could change it. Thus it is possible for
the value returned by to ‘‘disagree’’ in the �rst character with a subsequent .

6.15

NIL RATEST T RATOM READ
NIL

1 RATEST T READ RATOM
% %[%A%B%C NIL

(READC)
% "

READC
READC

(CONTROL
T)

READC

(PEEKC)

NIL PEEKC
PEEKC

(LASTC)

READ RATOM RATOMS PEEKC READC
READP

(READP)
T NIL

READP T
READ

EOL

(READP T) NIL
T READP T (READP T T)

T any

(WAITFORINPUT)
T

WAITFORINPUT (until (OR (READP T) (READP

PEEKC

PEEKC READ

FL G

FL G

FILE RDTBL

RDTBL

RDTBL

FILE RDTBL

RDTBL

FILE

FILE

FILE FL G

FILE

FL G

FILE

FILE

Output Functions

, except that it does not use up machine cycles while waiting.
Returns the device for which input is now available, i.e. or .

can also be an integer, in which case waits until there is
input available from the terminal, or until milliseconds have elapsed. Value
is if input is now available, in the case that timed out.

In Interlisp- 10, operates by dismissing, checking for available
input, and then, if there is none, dismissing again, each time for an increasingly
larger interval. The initial interval is milliseconds (initially
500), and the interval grows by 1/16 for each dismissal, up to a maximum of

milliseconds (initially 10,000).

[Function]
‘‘Skip Read’’. It moves the �le pointer for ahead as if one call to had
been performed, without paying the storage and compute cost to really read in the
structure. is for the case where the user has already performed
some ’s and ’s before deciding to skip this expression. In this case,

should be the material already read (as a string), and
operates as though it had seen that material �rst, thus getting its paren- count,
double- quote count, etc. set up properly.

always uses for its readtable. may have di�culties if
unusual read- macros have been added to . will not recognize
read- macro characters in , nor or read macros.
This is only a problem if the read- macros are de�ned to parse subsequent input in
the �le which does not follow the normal parenthesis and string- quote conventions
in .

returns if the read terminated on an unbalanced closing parenthesis;
if the read terminated on an unbalanced , i.e., one which also would have

closed any extant open left parentheses; otherwise .

6.3 OUTPUT FUNCTIONS

Most of the functions described below have an argument , which speci�es the name of the �le on
which the operation is to take place. If is , the primary output �le is used. Some of the
functions have a argument, which speci�es the readtable to be used for output. If is ,
the primary readtable is used.

Unless otherwise speci�ed by (page 6.23), pointers other than lists, strings, atoms, or numbers,
are printed in the form followed by the octal representation of the address of the pointer
(regardless of radix). For example, an array pointer might print as . This printed
representation is for compactness of display on the user’s terminal, and will read back in correctly; if
the form above is read, it will produce the atom ‘‘ ’’.

Note: the term appearing in the description of an output function means the character or
characters used to terminate a line in the �le system being used by the given implementation of Interlisp.
For example, in Interlisp- 10 end- of-line is indicated by the characters carriage- return and line- feed in that

6.16

FILE)) do NIL)
T

WAITFORINPUT

T NIL WAITFORINPUT

WAITFORINPUT

DISMISSINIT

DISMISSMAX

(SKREAD)
READ

READC RATOM
SKREAD

SKREAD FILERDTBL SKREAD
FILERDTBL SKREAD

SPLICE INFIX

FILERDTBL

SKREAD %)
%] %]

NIL

NIL
NIL

DEFPRINT
{ }

{ARRAYP}#43,2760
not

{ARRAYP}#43,2760

end-of-line

FILE

FILE

FILE

FILE REREADSTRING

FILE

REREADSTRING

REREADSTRING

REREADSTRING

FILE

FILE

RDTBL RDTBL

D ATATYPE

INPUT/OUTPUT

order.

[Function]
Prints on .

[Function]
Prints on with ’s and ’s inserted where required for it to read back in
properly by , using .

Both and print lists as well as atoms and strings; is usually used only for explicitly
printing formatting characters, e.g., might be used to print a left square bracket
(the would not be printed by). is used for printing S-expressions which can then be
read back into Interlisp with ; i.e., break and separator characters in atoms will be preceded by ’s.
For example, the atom ‘‘ ’’ is printed as by . If =8 (page 6.19), prints a

after integers but does not (but both print the integer in octal).

[Function]
[Function]

and are the same as and respectively, except that
they do not increment the horizontal position counter nor perform any linelength
checks. They are useful primarily for printing control characters.

[Function]
Prints the expression using followed by an end- of-line. Returns .

[Function]
Prints spaces. Returns .

[Function]
Prints an end- of-line. Returns .

[Function]
Prints the appropriate number of spaces to move to position .
indicates how many spaces must be printed (if , 1 is used). If the current
position plus is greater than , does a and then

. If is , and the current position is greater than ,
then does nothing.

Note: A sequence of , , , and expressions can often be more conveniently
coded with a single statement (page 6.25).

[Function]
Like except if = , prettyprints instead. Returns .

[Function]
Like except if = , prettyprints instead, followed by an
end- of-line. Returns .

and are used by the programmer’s assistant (page 8.1) for printing the values
of expressions and for printing the history list, by various commands of the break package (page 9.1),
e.g. and commands, and various other system packages. The idea is that by simply settting or
binding to (initially), the user instructs the system when interacting with the user

6.17

(PRIN1)

(PRIN2)
% "

READ

PRIN1 PRIN2 PRIN1
(PRIN1 (QUOTE %[))

% PRIN1 PRIN2
READ %

() %(%) PRIN2 RADIX PRIN2
Q PRIN1

(PRIN3)
(PRIN4)

PRIN3 PRIN4 PRIN1 PRIN2

(PRINT)
PRIN2

(SPACES)
NIL

(TERPRI)
NIL

(TAB)

NIL
TAB TERPRI

(SPACES) T
TAB

PRINT PRIN2 SPACES TERPRI
PRINTOUT

(SHOWPRIN2)
PRIN2 SYSPRETTYFLG T

(SHOWPRINT)
PRINT SYSPRETTYFLG T

SHOWPRINT SHOWPRIN2

?= BT
SYSPRETTYFLG T NIL

X FILE

X FILE

X FILE RDTBL

X FILE

RDTBL

X FILE

X FILE RDTBL

X FILE RDTBL

X X

N FILE

N

FILE

POS MINSP A CES FILE

POS MINSP ACES

MINSP A CES POS

POS MINSP ACES POS

X FILE RDTBL

X X

X FILE RDTBL

X

X

Printlevel

to expressions (page 6.47) instead of printing them.

[Function]
Used by DWIM (page 15.1) to print a sequence of bells to alert the user to stop
typing. Can be advised or rede�ned for special applications, e.g., to �ash the screen
on a display terminal.

[Function]
(Interlisp- 10) ismiss until utput u�er is mpty, i.e., until all of the characters
that have been printed by Interlisp functions have actually been printed on the
user’s terminal. For example, it is important to perform a after printing
an error message before clearing the input bu�ers to make sure that the user has
actually seen the error message.

In systems that do not handle output to the display asynchronously with user
computation, such as Interlisp- D, is a no-op.

6.3.1 Printlevel

When using Interlisp one often has to handle large, complicated lists, which are di�cult to understand
when printed out. allows the user to specify in how much detail lists should be printed.
The print functions , , and are all a�ected by level parameters set by:

[Function]
Sets the print level to , and the print level to . Returns a
list cell whose and are the old settings. is initialized with
the value .

In order that can be used with or , if
is a list cell it is equivalent to

.

changes the printlevel without a�ecting the
printlevel. changes the printlevel with a�ecting the

printlevel. gives the current setting without changing either.

The printlevel speci�es how ‘‘deep’’ to print a list. Speci�cally, it is the number of unpaired left
parentheses which will be printed. Below that level, all lists will be printed as . For example, suppose

= . If =3, would print
, if =2, , if =1, , and if =0, just .

If the printlevel is , the action is similar except that an end- of-line is inserted after each right
parentheses that would be immediately followed by a left parenthesis.

The printlevel speci�es how ‘‘long’’ to print a list. It is the number of top level list elements that
will be printed before the printing is terminated with . For example, if =2,
will print as . For sublists, the number of list elements printed is also a�ected by the depth
of printing in the direction: Whenever the of the depth of the sublist (i.e. the number of
unmatched left parentheses) and the number of elements is greater than the printlevel, is printed.
This gives a ‘‘triangular’’ e�ect in that less is printed the farther one goes in either or direction.
For example, if =2, then will print as

6.18

PRETTYPRINT

(PRINTBELLS)

(DOBE)
D O B E

DOBE

DOBE

PRINTLEVEL
PRINT PRIN1 PRIN2

(PRINTLEVEL)
CAR CDR

CAR CDR PRINTLEVEL
(1000 . -1)

PRINTLEVEL RESETFORM RESETSAVE
(PRINTLEVEL (CAR) (CDR

))

(PRINTLEVEL NIL) CAR CDR
(PRINTLEVEL NIL) CDR

CAR (PRINTLEVEL)

CAR
&

(A (B C (D (E F) G) H) K) (PRINT) (A (B C (D & G)
H) K) (A (B C & H) K) (A & K) &

CAR negative

CDR
-- (A B C D E)

(A B --)
CAR sum

CDR --
CAR CDR

(A (B C (D (E F) G) H) K L) (A (B --) --)

CAR VAL CDR VAL

CAR VAL CDR VAL

CAR VAL CAR VAL

CAR VAL

N

N

X CAR VAL X

CAR VAL CAR VAL CAR VAL

CDR VAL

CDR VAL

INPUT/OUTPUT

and if =3, as .

If the printlevel is negative, then it is the same as if the printlevel were in�nite.

The printlevel setting can be changed dynamically, even while Interlisp is printing, by typing control- P
followed by a number, i.e., a string of digits, followed by a period or exclamation point. As soon as
control- P is typed, Interlisp clears and saves the input bu�er, clears the output bu�er, rings the bell
indicating it has seen the control- P, and then waits for input, which is terminated by any non- number.
The input bu�er is then restored and the program continues. If the input was terminated by a period or
an exclamation point, the printlevel is immediately set to this number; otherwise, the input is ignored.
Characters cleared from the output bu�er will have been lost in either case, and printing continues with
the (possibly new) printlevel. If the print routine is currently deeper than the new level, all un�nished
lists above that level will be terminated by ‘‘)’’. Thus, if a circular or long list of atoms, is being printed
out, typing ‘‘control-P0.’’ will cause the list to be terminated immediately.

If the string of digits following a control- P is terminated by a comma, another number may be typed
terminated by a period or exclamation point. The printlevel will then be set to the �rst number, the

printlevel to the second number.

In either case, if a period is used to terminate the printlevel setting, the printlevel will be returned to
its previous setting after the current printout has �nished. If an exclamation point is used, the change is
permanent and the printlevel is not restored (until it is changed again).

[Variable]
Normally, only a�ects terminal output. Output to all other �les
acts as though the print level is in�nite. However, if is (initially

), then a�ects output to �les as well.

6.3.2 Printing numbers

How the ordinary printing functions (, , etc.) print numbers can be a�ected in several ways.
in�uences the printing of integers, and in�uences the printing of �oating point numbers.

The setting of the variable determines how the symbol- manipulation functions handle numbers.
The package permits greater controls on the printed appearance of numbers, allowing such
things as left-justi�cation, suppression of trailing decimals, etc.

[Function]
Resets the output radix for integers to the absolute value of . If is negative,
integers are interpreted by the print routines as unsigned numbers; i.e., the actual
two’s complement representation of the integer in the integer size of the particular
implementation is interpreted as if it were a positive number on a machine of
in�nite integer size. Thus, numeric output under a negative radix varies with the
implementation, and numbers printed in this way by one implementation will not
read correctly in an implementation whose integers are of a di�erent size.

For example, in Interlisp- 10, whose integer size is 36 bits, -9 will print as shown
with the following radices :

6.19

(A (B C --) K --)

CDR CDR

CAR

--

CAR
CDR

PLVLFILEFLG
PRINTLEVEL

PLVLFILEFLG T
NIL PRINTLEVEL

PRIN1 PRIN2
RADIX FLTFMT

PRXFLG
PRINTNUM

(RADIX)

CDR VAL

N

N N

Printing numbers

(i.e. 236-9)

The value of is its previous setting. gives the current setting
without changing it. The initial setting is 10.

Note that a�ects output . There is no input radix; on input, numbers
are interpreted as decimal unless they end in , in which case they are interpreted
as octal. Thus and are inverses, independent of any radix setting.

also does not a�ect the behavior of , etc., unless the value of
(below) is ; e.g., with , the value of is ,

not .

[Function]
Resets the output format for �oating point numbers to the format
(see below for a description of formats). = speci�es
the default ‘‘free’’ formatting: some number of signi�cant digits (a function of
the implementation) are printed, with trailing zeros suppressed; numbers with
su�ciently large or small exponents are instead printed in exponent notation.

returns its current setting. returns the current setting without
changing it. The initial setting is .

In Interlisp- 10, may also be a machine- dependent format- code as
returned by (page 6.23).

Whether print name manipulation functions (, , etc.) use the values of and
is determined by the variable :

[Variable]
If = (the initial setting), then the ‘‘ ’’ name used by ,

, , etc., is computed using base 10 for integers and the system
default �oating format for �oating point numbers, independent of the current
setting of or . If = , then and do dictate
the ‘‘ ’’ name of numbers. Note that in this case, and are
inverses.

Examples with , :

With = ,

6.20

(RADIX) (PRINT -9)

10 -9

8 -11Q

-10 68719476727

-8 777777777767Q

RADIX (RADIX)

RADIX only
Q

READ PRINT
RADIX UNPACK
PRXFLG T (RADIX 8) (UNPACK 9) (9)

(1 1)

(FLTFMT)
FLOAT

PRINTNUM FLOAT T

FLTFMT (FLTFMT)
T

FLOAT
NUMFORMATCODE

UNPACK NCHARS RADIX
FLTFMT PRXFLG

PRXFLG
PRXFLG NIL PRIN1 PACK

UNPACK MKSTRING

RADIX FLTFMT PRXFLG T RADIX FLTFMT
PRIN1 PACK UNPACK not

(RADIX 8) (FLTFMT ’(FLOAT 4 2))

PRXFLG NIL

(UNPACK 13) => (1 3)

(PACK ’(A 9)) => A9

FORMA T

FORMA T

FORMA T

FORMA T

INPUT/OUTPUT

With = ,

Note that does not e�ect the radix of ‘‘ ’’ names, so with
, , which uses names, would return 3, (since 9 would

print as 11Q) for either setting of .

Warning: Some system functions will not work correctly if is not .
Therefore, resetting the global value of is not recommended. It is much
better to rebind as a for that part of a program where it needs
to be non- .

The basic function for printing numbers under format control is . Its utility is considerably
enhanced when used in conjunction with the package (page X.XX), which implements a
compact language for specifying complicated sequences of elementary printing operations, and makes
fancy output formats easy to design and simple to program.

[Function]
Prints on according to the format . is a list structure
with one of the forms described below. can also be a machine dependent
format- code as returned by (page 6.23).

(Interlisp- 10) If does not �t in the �eld speci�ed by , the full
print name is printed. Then a is executed so that the line position of the �le
after is always the position prior to printing plus the indicated width.

If is a list of the form , this speci�es a
format. is rounded to the nearest integer, and then printed in a �eld characters long with
radix set to (or 10 if = ; note that the setting of is used as the default). If

and are both , the number is right- justi�ed in the �eld, and the padding characters
to the left of the leading digit are spaces. If is , the character ‘‘ ’’ is used for padding. If

is , then the number is left-justi�ed in the �eld, with trailing spaces to �ll out
characters.

The following examples illustrate the e�ects of the format options (the vertical bars indicate the �eld
width):

6.21

(UNPACK 1.2345) => (1 %. 2 3 4 5)

PRXFLG T

(UNPACK 13) => (1 5)

(PACK ’(A 9)) => A11

(UNPACK 1.2345) => (1 %. 2 3)

PRXFLG PRIN2 (RADIX
8) (NCHARS 9 T) PRIN2

PRXFLG

PRXFLG NIL
PRXFLG

PRXFLG SPECVAR
NIL

PRINTNUM
PRINTOUT

(PRINTNUM)

NUMFORMATCODE

TAB
PRINTNUM

(FIX) FIX

NIL RADIX not
NIL

T 0
T

FIX

FORMA T NUMBER FILE

NUMBER FILE FORMA T FORMA T

FORMA T

NUMBER FORMA T

FORMA T WIDTH RADIX PAD0 LEFTFL USH

NUMBER WIDTH

RADIX RADIX

PAD0 LEFTFL USH

PAD0

LEFTFL USH WIDTH

7

8

7

8

Printing numbers

prints

If is a list of the form , this speci�es a
format. is printed as a decimal number in a �eld characters wide, with

digits to the right of the decimal point. If is not (or), the number is printed in exponent
notation, with the exponent occupying characters in the �eld. should allow for the
character and an optional sign to be printed before the exponent digits. As with format, padding
on the left is with spaces, unless is . If is given, it indicates the digit position at which
rounding is to take place, counting from the leading digit of the number.

format examples:

prints

[Variable]
If ’s argument is not a number and not , a

error is generated. If is , the e�ect depends on the setting of the
variable . If is , then the error occurs as
usual. If it is non- , then no error occurs, and the value of
is printed right- justi�ed in the �eld described by . This option facilitates
the printing of numbers in aggregates with missing values coded as .

The interpretation of = and = are not speci�ed, and are currently a function
of the implementation. Interlisp- 10 prohibits = , and treats = as equivalent to

= ; Interlisp- D interprets = to mean no padding, i.e., to use however much space
the number needs, and interprets = to mean as many decimal places as needed.

As of this writing, the Interlisp- 10 implementation actually does something less intuitive with the
�eld: the placement of the decimal point is a�ected by , and padding never occurs. These two
examples in Interlisp- 10 would actually print as and .

6.22

PRINTNUM

(FIX 2) 3 | 3|

(FIX 2 NIL T) 7 |07|

(FIX 12 8 T) 14 |000000000016|

(FIX 5 NIL NIL T) 2 |2 |

(FLOAT)
FLOAT

0 NIL

E FIX
T

FLOAT

PRINTNUM

(FLOAT 7 2) 27.689 | 27.69|

(FLOAT 7 2 NIL T) 27.689 |0027.69|

(FLOAT 7 2 2) 27.689 | 2.77E1|

(FLOAT 11 2 4) 27.689 | 2.77E+01|

(FLOAT 7 2 NIL NIL 1) 27.689 | 30.00|

(FLOAT 7 2 NIL NIL 2) 27.689 | 28.00|

NILNUMPRINTFLG
PRINTNUM NIL NON-NUMERIC

ARG NIL
NILNUMPRINTFLG NILNUMPRINTFLG NIL

NIL NILNUMPRINTFLG

NIL

NIL NIL
NIL NIL

0 NIL
NIL

|.28E+02| |27.69E+0000|

FORMA T NUMBER

FORMA T WIDTH DECP AR T EXPP AR T PAD0 R OUND

NUMBER WIDTH DECP AR T

EXPP AR T

EXPP AR T EXPP AR T

PAD0 R OUND

FORMA T NUMBER

NUMBER

NUMBER

FORMA T

WIDTH DECP AR T

WIDTH DECP AR T

DECP AR T WIDTH

DECP AR T

EXPP AR T

DECP AR T

INPUT/OUTPUT

In some implementations, formatted printing of numbers receives assistance from the operating system,
provided that the format is speci�ed in some sort of special code. works by converting the
machine- independent format speci�cations described above into machine- codes the exact form
of which may vary from implementation to implementation. This conversion process takes place on each
call to . For e�ciency purposes, if the user is going to be performing a particular call to

frequently, he may wish to separate the conversion from the actual printing, performing the
conversion process just once and saving the result. The function is available for this
purpose: takes a format, performs the conversion and returns a machine dependent
format- code, which can be given to in place of a list structure format as described above. In
this case, will not have to perform the conversion, but can simply use the machine- dependent
format code directly.

[Function]
Converts the or format to a machine- dependent format-
code. If is recognized as a format- code data- structure, then the
new format- code is smashed into that structure instead of allocating new storage.

returns an uninitialized datum that can later be smashed.

In Interlisp- D, this function is a no-op, as there is no special internal representation
for number formats.

6.3.3 User De�ned Printing

[Function]
is a type name (see page 2.1). Whenever a printing function (, ,
, etc.) encounters an object of the indicated type, is called with the item

to be printed as its argument. If it returns , the datum is printed in the manner
the system defaults; for user data types, it is printed as . If

wishes to specify how the datum should be printed, it should return a list of
the form . is printed using (unless it is), and
then printed using with no spaces between the two items. (Typically,

is a read macro character.)

In Interlisp- 10, may also be a type number (see page 22.2). Note that the
user can specify di�erent action for type names , , ,

, and , even though they all have the same type .

Note that also a�ects internal calls to print from , , etc., i.e. any operation that
involves obtaining a print name (see page 2.8). A consequence of this fact is that in implementations
that do not have reentrant printing code (in particular, Interlisp- 10), the user’s function must

call any print name manipulating functions itself, or the results of the whole printing operation are
unde�ned.

6.3.4 Dumping Unusual Data Structures

(for ‘‘Horrible Print’’) and provide a mechanism for printing and reading back in general
data structures that cannot normally be dumped and loaded easily, such as (possibly re-entrant or circular)
structures containing user datatypes, arrays, hash tables, as well as list structures. will correctly
print and read back in any structure containing any or all of the above, chasing all pointers down to the

6.23

PRINTNUM
dependent

PRINTNUM
PRINTNUM

NUMFORMATCODE
NUMFORMATCODE

PRINTNUM
PRINTNUM

(NUMFORMATCODE)
FIX FLOAT

(NUMFORMATCODE)

(DEFPRINT)
PRINT PRIN1

PRIN2
NIL

{datatype}#nnnnnn

(.) PRIN1 NIL
PRIN2

ARRAYP HARRAYP TERMTABLEP
READTABLEP CCODEP number

DEFPRINT PACK CONCAT

DEFPRINT
not

HPRINT HREAD

HPRINT

FORMA T SMASHCODE

FORMA T

SMASHCODE

TYPE FN

TYPE

FN

FN

ITEM1 ITEM2 ITEM1

ITEM2

ITEM1

TYPE

READFILE and WRITEFILE

level of literal atoms, numbers or strings. currently cannot handle compiled code arrays, stack
positions, or arbitrary unboxed numbers.

operates by simulating the Interlisp routine for normal list structures. When it encounters
a user datatype (see page 3.14), or an array or hash array, it prints the data contained therein, surrounded
by special characters de�ned as read- macro characters (see page 6.36). While chasing the pointers of a
structure, it also keeps a hash table of those items it encounters, and if any item is encountered a second
time, another read- macro character is inserted before the �rst occurrence (by resetting the �le pointer with

) and all subsequent occurrences are printed as a back reference using an appropriate macro
character. Thus the inverse function, merely calls the Interlisp routine with the appropriate
readtable.

[Function]
Prints on . If is non- , does no checking for
any circularities in (but is still useful for dumping arbitrary structures of
arrays, hash arrays, lists, user data types, etc., that do not contain circularities).
Specifying as non- results in a large speed and internal- storage
advantage.

Normally, when encounters a user data type for the �rst time, it outputs
a summary of the data type’s declaration. When this is read in, the data type is
redeclared. If is non- , will assume that the same data
type declarations will be in force at read time as were at time, and not
output declarations.

is intended primarily for output to disk �les, since the algorithm depends
on being able to reset the �le pointer. If is not a disk �le (and
=), a temporary �le, , is opened, is ed on
it, and then that �le is copied to the �nal output �le and the temporary �le is
deleted.

[Function]
Reads and returns an -ed expression from .

[Function]
Copies data structure . may contain circular pointers as well as arbitrary
structures.

Note: and (page 11.25) are two �le package commands for dumping and
reloading circular and re-entrant data structures. They provide a convenient interface to and

.

6.4 READFILE AND WRITEFILE

For those applications where the user simply wants to simply read all of the expressions on a �le, and
not evaluate them, the function is available:

[Function]
Reads successive expressions from �le using (with as readtable)

6.24

HPRINT

HPRINT PRINT

SETFILEPTR
HREAD READ

(HPRINT)
NIL HPRINT

NIL

HPRINT

NIL HPRINT
HPRINT

HPRINT

NIL HPRINT.SCRATCH HPRINT

(HREAD)
HPRINT

(HCOPYALL)

HORRIBLEVARS UGLYVARS
HPRINT

HREAD

READFILE

(READFILE)
READ FILERDTBL

EXPR FILE UNCIR CULAR D ATATYPESEEN

EXPR FILE UNCIR CULAR

EXPR

UNCIR CULAR

D ATATYPESEEN

FILE UNCIR CULAR

EXPR

FILE

FILE

X

X X

FILE

INPUT/OUTPUT

until the single atom is read, or an end of �le encountered. Returns a list
of these expressions.

[Function]
Inverse of . Writes a date expression onto , followed by successive
expressions from , using as a readtable. If is atomic, its value is
used. If is not open, it is opened. If is a list, is used and
the �le is left opened. Otherwise, when is �nished, a is printed on
and it is closed. Returns .

[Function]
Prints on and closes it.

6.5 PRINTOUT

Interlisp provides many facilities for controlling the format of printed output. By executing various
sequences of , , , , , , and , almost any e�ect can
be achieved. implements a compact language for specifying complicated sequences of these
elementary printing functions. It makes fancy output formats easy to design and simple to program.

is a CLISP word (like and) for interpreting a special printing language in which
the user can describe the kinds of printing desired. The description is translated by to the
appropriate sequence of , , etc., before it is evaluated or compiled. printing
descriptions have the following general form:

���

is evaluated to obtain the name of the �le to which the output from this speci�cation is directed.
The commands are strung together, one after the other without punctuation, after . Some
commands occupy a single position in this list, but many commands expect to �nd arguments following the
command name in the list. The commands fall into several logical groups: one set deals with horizontal
and vertical spacing, another group provides controls for certain formatting capabilities (font changes and
subscripting), while a third set is concerned with various ways of actually printing items. Finally, there is
a command that permits escaping to a simple Lisp evaluation in the middle of a form. The
various commands are described below. The following examples give a general �avor of how
is used:

Example 1: Suppose the user wanted to print out on the terminal the values of three variables, , , and
, separated by spaces and followed by a carriage return. This could be done by:

or by the more concise form:

6.25

STOP

(WRITEFILE)
READFILE

FILERDTBL
(CAR)
STOP

(ENDFILE)
STOP

PRIN1 PRIN2 TAB TERPRI SPACES PRINTNUM PRINTDEF
PRINTOUT

PRINTOUT for if
DWIMIFY

PRIN1 TAB PRINTOUT

(PRINTOUT)

PRINTOUT

PRINTOUT
PRINTOUT

X Y
Z

(PRIN1 X T)
(SPACES 1 T)
(PRIN1 Y T)
(SPACES 1 T)
(PRIN1 Z T)
(TERPRI T)

PRINTOUT

X FILE

FILE

X X

FILE FILE FILE

X FILE

FILE

FILE

FILE

FILE PRINTCOM 1 PRINTCOM 2 PRINTCOM N

FILE

FILE

Horizontal Spacing Commands

Here the �rst speci�es output to the terminal, the commas cause single spaces to be printed, and the
�nal speci�es a . The variable names are not recognized as special commands, so
they are printed using by default.

Example 2: Suppose the values of and are to be pretty- printed lined up at position 10, preceded by
identifying strings. If the output is to go to the primary output �le, the user could write either:

or the equivalent:

Since strings are not recognized as special commands, is also printed with by default.
The positive integer means to position 10, where the command causes the value of to be
prettyprinted as a variable. By convention, special atoms used as commands are pre�xed with
a period. The causes a carriage return, so the information is printed on the next line.

Example 3. As a �nal example, suppose that the value of is an integer and the value of is a
�oating- point number. is to be printed right- �ushed in a �eld of width 5 beginning at position 15,
and is to be printed in a �eld of width 10 also starting at position 15 with 2 places to the right of the
decimal point. Furthermore, suppose that the variable names are to appear in the font named
and the values in font . The program in ordinary Lisp that would accomplish these e�ects is
too complicated to include here. With , one could write:

The commands do whatever is necessary to change the font on a multi- font output device. The
command sets up a format for a call to the function (page 6.21) to print in the

desired format. The speci�es a format for .

6.5.1 Horizontal Spacing Commands

The horizontal spacing commands provide convenient ways of calling and . In the following
descriptions, stands for a literal positive integer.

Used for absolute spacing. It results in a to position (literally, a
). If the line is currently at position or beyond, the �le will be positioned at

position on the next line.

6.26

(PRINTOUT T X , Y , Z T)

T
T TERPRI PRINTOUT

PRIN1

X Y

(PRIN1 "X =")
(PRINTDEF X 10 T)
(TERPRI)
(PRIN1 "Y =")
(PRINTDEF Y 10 T)
(TERPRI)

(PRINTOUT NIL "X =" 10 .PPV X T "Y =" 10 .PPV Y T)

"X =" PRIN1
TAB .PPV X

PRINTOUT
T Y

X Y
X

Y
BOLDFONT

SMALLFONT
PRINTOUT

(PRINTOUT NIL
.FONT BOLDFONT "X =" 15
.FONT SMALLFONT .I5 X T
.FONT BOLDFONT "Y =" 15
.FONT SMALLFONT .F10.2 Y T
.FONT BOLDFONT)

.FONT
.I5 FIX PRINTNUM X

.F10.2 FLOAT PRINTNUM

TAB SPACES

TAB (TAB
)

N

N N

N N

N

INPUT/OUTPUT

Speci�es to position (the value of) . This is one of several commands
whose e�ect could be achieved by simply escaping to Lisp, and executing the
corresponding form. It is provided as a separate command so that the
form is more concise and is prettyprinted more compactly. Note that and

, where is an integer, are equivalent.

Like except that it can result in zero spaces (i.e. the call to speci�es
=0).

Negative integers indicate relative (as opposed to absolute) spacing. Translates as
.

Provides a short- hand way of specifying 1, 2 or 3 spaces, i.e., these commands are
equivalent to , , and , respectively.

Translates as . Note that and , where is an
integer, are equivalent.

Resets the current line by causing a carriage- return to be printed without a line-
feed. Useful for overprinting, or for regaining control of a line on which characters
have been printed in a variable pitched font.

6.5.2 Vertical Spacing Commands

Vertical spacing is obtained by calling or printing form- feeds. The relevant commands are:

Translates as . This command is functionally equivalent to the integer
command ; they both move to position 0 (= column 1) of the next line. To print
the letter , use the string .

Equivalent to a sequence of ’s. The command allows for
skipping large constant distances and for computing the distance to be skipped.

Puts a form- feed (control- L) out on the �le. Care is taken to make sure that
Interlisp’s view of the current line position is correctly updated.

6.5.3 Special Formatting Controls

There are a small number of commands for invoking some of the formatting capabilities of multi- font
output devices. The available commands are:

Puts out a control sequence that causes a change to font (the association
between and a speci�c font must be de�ned in the user’s font pro�le, as
described in page 6.55). may be a font- name variable or an expression
that evaluates to the value of a font- name variable. may also be a
positive integer , which is taken as an abbreviated reference to the font named

(e.g. 1 =>).

Speci�es superscripting. All subsequent characters are printed above the base of
the current line. Note that this is absolute, not relative: a following a

6.27

.TAB TAB

PRINTOUT
.TAB

.TAB0 .TAB TAB

-
(SPACES | |)

, ,, ,,,
-1 -2 -3

.SP (SPACES) .SP -

.RESET

TERPRI

T (TERPRI)
0
T "T"

.SKIP (TERPRI) .SKIP

.PAGE

.FONT

FONT FONT1

.SUP
.SUP .SUP

POS POS

N

N N

POS

MINSP ACES

N

N

DISTANCE DISTANCE N N N

LINES LINES

FONTSPEC FONTSPEC

FONTSPEC

FONTSPEC

FONTSPEC

N

N

Printing Speci�cations

is a no-op.

Speci�es subscripting. Subsequent printing is below the base of the current line.
As with superscripting, the e�ect is absolute.

Moves printing back to the base of the current line. Un- does a previous or
; a no-op, if printing is currently at the base.

6.5.4 Printing Speci�cations

The value of any expression in a form that is not recognized as a command itself or as a
command argument is printed using by default. For example, title strings can be printed by
simply including the string as a separate command, and the values of variables and forms can
be printed in much the same way. Note that a literal integer, say 51, cannot be printed by including it as
a command, since it would be interpreted as a ; the desired e�ect can be obtained by using instead
the string speci�cation ‘‘51’’,or the form .

For those instances when is not appropriate, e.g., is required, or a list structures must be
prettyprinted, the following commands are available:

Causes to be printed using ; translates as .

Causes to be prettyprinted at the current line position via (page
6.49). The call to speci�es that is to be printed as if it were part
of a function de�nition. That is, , , etc., receive special treatment.

Prettyprints as a variable; no special interpretation is given to ,
, etc.

Like , but prettyprints as a , that is, without the initial and �nal
parentheses if it is a list. Useful for prettyprinting sub- lists of a list whose other
elements are formatted with other commands.

Like , but prettyprints as a tail.

6.5.4.1 Paragraph Format

Interlisp’s prettyprint routines are designed to display the structure of expressions, but they are not really
suitable for formatting unstructured text. If a list is to be printed as a textual paragraph, its internal
structure is less important than controlling its left and right margins, and the indentation of its �rst line.
The and commands allow these parameters to be conveniently speci�ed.

Prints in paragraph format, using . Translates as
(see page 6.31). Example:

will print the elements of as a paragraph with left margin at 5,
right margin at -5, and the �rst line indented to 10.

6.28

.SUB

.BASE .SUP
.SUB

PRINTOUT
PRIN1

PRINTOUT

TAB
(QUOTE 51)

PRIN1 PRIN2

.P2 PRIN2 (PRIN2)

.PPF PRINTDEF
PRINTDEF

SELECTQ PROG

.PPV SELECTQ
PROG

.PPFTL .PPF tail

.PPVTL .PPV

.PARA .PARA2

.PARA
PRIN1 (PRINTPARA

) (PRINTOUT T 10 .PARA
5 -5 LST) LST

(LINELENGTH)

.PARA2

THING THING THING

THING THING

THING

THING THING

THING THING

THING THING

LMAR G RMAR G LIST

LIST

LMAR G RMAR G LIST

LMAR G RMAR G LIST

INPUT/OUTPUT

Print as paragraph using instead of . Translates as
.

6.5.4.2 Right-Flushing

Two commands are provided for printing simple expressions �ushed- right against a speci�ed line position,
using the function (page 6.31). They take into account the current position, the number
of characters in the print- name of the expression, and the position the expression is to be �ush against,
and then print the appropriate number of spaces to achieve the desired e�ect. Note that this might entail
going to a new line before printing. Note also that right- �ushing of expressions longer than a line (e.g. a
large list) makes little sense, and the appearance of the output is not guaranteed.

Flush- right using . The value of determines the position that the
right end of will line up at. As with the horizontal spacing commands,
a negative position number means columns from the current position, a
positive number speci�es the position absolutely. =0 speci�es the right- margin,
i.e. is interpreted as .

Flush- right using instead of .

6.5.4.3 Centering

Commands for centering simple expressions between the current line position and another speci�ed
position are also available. As with right �ushing, centering of large expressions is not guaranteed.

Centers between the current line position and the position speci�ed by
the value of . A positive is an absolute position number, a negative
speci�es a position relative to the current position, and 0 indicates the right- margin.
Uses for printing.

Centers using instead of .

6.5.4.4 Numbering

The following commands provide FORTRAN- like formatting capabilities for integer and �oating- point
numbers. Each command speci�es a printing format and a number to be printed. The format speci�cation
translates into a format- list for the function (see page 6.21).

Speci�es integer printing. Translates as a call to the function with
a format- list constructed from . The atomic format is broken apart
at internal periods to form the format- list. For example, yields the
format- list , and the command sequence

will translate as . It will cause
the value of to be printed with radix -8 right- �ushed in a �eld of width 5,

6.29

PRIN2 PRIN1 (PRINTPARA
T)

FLUSHRIGHT

.FR PRIN1

| |

(LINELENGTH)

.FR2 PRIN2 PRIN1

.CENTER

PRIN1

.CENTER2
PRIN2 PRIN1

PRINTNUM

.I
PRINTNUM

FIX
.I5.-8.T

(FIX 5 -8 T) (PRINTOUT T .I5.-
8.T FOO) (PRINTNUM ’(FIX 5 -8 T) FOO)

FOO

LMAR G RMAR G LIST

POS EXPR POS

EXPR

POS

POS

POS EXPR

POS EXPR

EXPR

POS POS POS

POS EXPR

FORMA T NUMBER

FORMA T

Escaping to LISP

with 0’s used for padding on the left. Internal ’s may be omitted, e.g. the
commands and are equivalent.

Speci�es �oating- number printing. Like the format command, except translates
with a format- list.

The and commands specify calls to with quoted format
speci�cations. The command translates as ,
i.e., it permits the format to be the value of some expression. Note that, unlike
the and commands, is a separate element in the command list, not
part of an atom beginning with .

6.5.5 Escaping to LISP

There are many reasons for taking control away from in the middle of a long print ing expres-
sion. Common situa tions involve temporary changes to system print ing parameters (e.g.),
conditional print ing (e.g. print only if is), or lower- level itera tive print ing within a higher- level
print speci�cation.

The escape command. is an arbitrary Lisp expression that is evaluated
within the context established by the form, i.e., can assume that
the primary output �le has been set to be the argument to . Note
that nothing is done with the of ; any printing desired is accomplished
by itself, and the value is discarded.

Note: Although logically encloses its translation in a (page 9.20) to change the
primary output �le to the argument (if non-), in most cases it can actually pass (or a locally
bound variable if is a non- trivial expression) to each printing function. Thus, the is only
generated when the command is used, or user- de�ned commands (below) are used. If many such occur
in repeated forms, it may be more e�cient to embed them all in a single which
changes the primary output �le, and then specify = in the expressions themselves.

6.5.6 User-De�ned Commands

The collection of commands and options outlined above is aimed at ful�lling all common printing
needs. However, certain applications might have other, more specialized printing idioms, so a facility is
provided whereby the user can de�ne new commands. This is done by adding entries to the global list

to de�ne how the new commands are to be translated.

[Variable]
is an association- list whose elements are of the form

. Whenever appears in command position in the sequence of
commands (as opposed to an argument position of another command), is applied
to the tail of the command- list (including the command).

After inspecting as much of the tail as necessary, the function must return a list
whose is the translation of the user- de�ned command and its arguments, and

6.30

NIL
.I5..T .I5.NIL.T

.F
.I

FLOAT

.N
.I .F PRINTNUM

.N (PRINTNUM)

.I .F
.N

PRINTOUT
LINELENGTH

FOO FIE T

#
PRINTOUT

PRINTOUT
value

PRINTOUT RESETFORM
NIL

RESETFORM
#

PRINTOUT RESETFORM
NIL PRINTOUT

PRINTOUTMACROS

PRINTOUTMACROS
PRINTOUTMACROS (

) PRINTOUT

CAR

FORMA T NUMBER

FORMA T NUMBER

FORMA T NUMBER

FORMA T

FORM FORM

FORM

FILE

FORM

FORM

FILE FILE

FILE

FILE

COMM

FN COMM

FN

INPUT/OUTPUT

whose is the list of commands still remaining to be translated in the normal
way.

For example, suppose the user wanted to de�ne a command ‘‘ ’’, which will cause its single argument to be
printed with only if it is not . This can be done by entering on ,
and de�ning the function as follows:

Note that does not do any printing itself; it returns a form which, when evaluated in the proper
context, will perform the desired action. This form should direct all printing to the primary output �le.

6.5.7 Special Printing Functions

The paragraph printing commands are translated into calls on the function , which may also
be called directly:

[Function]
Prints on in line- �lled paragraph format with its �rst element beginning at
the current line position and ending at or before , and with subsequent lines
appearing between and . If is non- , prints elements
using , otherwise . If is non- , then parentheses will
be printed around the elements of .

If is zero or positive, it is interpreted as an absolute column position.
If it is negative, then the left margin will be at + . If

= , the left margin will be at , and the paragraph will
appear in block format.

If is positive, it also is an absolute column position (which may be greater
than the current). Otherwise, it is interpreted as relative to

, i.e., the right margin will be at + .
Example: will the elements of

in a paragraph with the �rst line beginning at column 10, subsequent lines
beginning at column 5, and all lines ending at or before -5.

The current is una�ected by , and upon completion,
will be positioned immediately after the last character of the last item of .

is a no-op if is not a list.

The right- �ushing and centering commands translate as calls to the function :

[Function]
If = , prints right- �ushed against position on ;
otherwise, centers between the current line position and . Makes sure that it
spaces over at least spaces before printing by doing a if necessary;

= is equivalent to =1. A positive indicates an absolute position,

6.31

CDR

?
PRIN1 NIL (? ?TRAN) PRINTOUTMACROS

?TRAN

(LAMBDA (COMS)
(CONS (SUBST (CADR COMS) ’ARG

’(PROG ((TEMP ARG))
(COND (TEMP (PRIN1 TEMP)))))

(CDDR COMS)))

?TRAN

PRINTPARA

(PRINTPARA)

NIL
PRIN2 PRIN1 NIL

| | (POSITION)
NIL (POSITION)

(LINELENGTH)
(LINELENGTH) (LINELENGTH) | |

(TAB 10) (PRINTPARA 5 -5 LST T) PRIN2
LST

(LINELENGTH)

(LINELENGTH) PRINTPARA

PRINTPARA

FLUSHRIGHT

(FLUSHRIGHT)
NIL

TERPRI
NIL

LMAR G RMAR G LIST P2FLA G PARENFLA G FILE

LIST FILE

RMAR G

LMAR G RMAR G P2FLA G

PARENFLA G

LIST

LMAR G

LMAR G

LMAR G

RMAR G

RMAR G

FILE LIST

LIST

POS X MIN P2FLA G CENTERFLA G FILE

CENTERFLA G X POS FILE

X POS

MIN

MIN MIN POS

Readtables

while a negative signi�es the position which is to the right of the
current line position. =0 is interpreted as , the right margin.

6.6 READTABLES

Many Interlisp input functions treat certain characters in special ways. For example, recognizes that
the right and left parenthesis characters are used to specify list structures, and that the quote character is
used to delimit text strings. The Interlisp input and (to a certain extent) output routines are table driven
by readtables. Readtables are objects that specify the syntactic properties of characters for input routines.
Since the input routines parse character sequences into objects, the readtable in use determines which
sequences are recognized as literal atoms, strings, list structures, etc.

Most Interlisp input functions take an optional readtable argument, which speci�es the readtable to use
when reading an expression. If is given as the readtable, the ‘‘primary readtable’’ is used. If is
speci�ed, the system terminal readtable is used. Some functions will also accept the atom (the

of) as indicating the ‘‘original’’ system readtable. Some output functions also take a readtable
argument. For example, prints an expression so that it would be read in correctly using a given
readtable.

The Interlisp system uses three readtables: for input/output from terminals, the value of for
input/output from �les, and the value of for input from terminals while in the editor. These
three tables are initially copies of the readtable, with changes made to some of them to provide
read macros (page 6.36) that are speci�c to terminal input or �le input. Using the functions described
below, the user may further change, reset, or copy these tables. The user can also create new readtables,
and either explicitly pass them to input/output functions as arguments, or install them as the primary
readtable, via , and then not specify a argument, i.e., use .

6.6.1 Readtable Functions

[Function]
Returns if is a real readtable (or), otherwise .

[Function]
If = , returns the primary read table. If = , returns the system
terminal readtable. If is a real readtable, returns . Otherwise,
generates an error.

[Function]
Sets the primary readtable to . If = , sets the system
terminal readtable, . Note that the user can reset the other system readtables with

, e.g., .

Generates an error if is not , , or a
real readtable. Returns the previous setting of the primary readtable, so

is suitable for use with (page 9.20).

6.32

| |
(LINELENGTH)

READ

NIL T
ORIG not

value ORIG
PRIN2

T FILERDTBL
EDITRDTBL

ORIG

SETREADTABLE NIL

(READTABLEP)
not T ORIG NIL

(GETREADTABLE)
NIL T

ILLEGAL READTABLE

(SETREADTABLE)
T SETREADTABLE

T
SETQ (SETQ FILERDTBL (GETREADTABLE))

ILLEGAL READTABLE NIL T

SETREADTABLE RESETFORM

POS POS

POS

RDTBL

RDTBL

RDTBL RDTBL

RDTBL

RDTBL RDTBL

RDTBL RDTBL

RDTBL FL G

RDTBL FL G

RDTBL

INPUT/OUTPUT

[Function]
Returns a copy of . can be a real readtable, , , or (in
which case returns a copy of the system readtable),
otherwise generates an error.

Note that is the only function that a readtable.

[Function]
Copies (smashes) into . and can be , , or a real
readtable. In addition, can be , meaning use the system’s original
readtable.

6.6.2 Syntax Classes

A readtable is an object that contains information about the ‘‘syntax class’’ of each character. There are
nine basic syntax classes: , , , , ,

, , , and , each associated with a primitive syntactic property. In
addition, there is an unlimited assortment of user- de�ned syntax classes, known as ‘‘read-macros’’. The
basic syntax classes are interpreted as follows:

(normally left parenthesis) Begins list structure.

(normally right parenthesis) Ends list structure.

(normally left bracket) Begins list structure. Also matches
characters.

(normally left bracket) Ends list structure. Can close an arbitrary numbers of
lists, back to the last .

(normally double quote) Begins and ends text strings. Within the string, all
characters except for the one(s) with class are treated as ordinary, i.e.,
interpreted as if they were of syntax class . To include the string delimiter
inside a string, pre�x it with the character.

(normally percent sign) Inhibits any special interpretation of the next character, i.e.,
the next character is interpreted to be of class , independent of its normal
syntax class.

(None initially) Is a break character, i.e., delimits atoms, but is otherwise an
ordinary character.

(space, carriage return, etc.) Delimits atoms, and is otherwise ignored.

Characters that are not otherwise special belong to the class .

Characters of syntax class , , , , and
are all characters . That is, in addition to their interpreta tion as delimit ing list or string struc tures,
they also terminate the read ing of an atom. Characters of class serve to terminate atoms,
with no other special mean ing. In addition, if a break charac ter is the �rst non- separator encountered by

, it is read as a one- character atom. In order for a break charac ter to be included in an atom, it

6.33

(COPYREADTABLE)
NIL T ORIG

COPYREADTABLE original
COPYREADTABLE ILLEGAL READTABLE

COPYREADTABLE creates

(RESETREADTABLE)
NIL T

ORIG

LEFTPAREN RIGHTPAREN LEFTBRACKET RIGHTBRACKET STRINGDELIM
ESCAPE BREAKCHAR SEPRCHAR OTHER

LEFTPAREN

RIGHTPAREN

LEFTBRACKET RIGHTBRACKET

RIGHTBRACKET
LEFTPAREN LEFTBRACKET

STRINGDELIM
ESCAPE

OTHER
ESCAPE

ESCAPE
OTHER

BREAKCHAR

SEPRCHAR

OTHER OTHER

LEFTPAREN RIGHTPAREN LEFTBRACKET RIGHTBRACKET STRINGDELIM
break

BREAKCHAR only

RATOM

RDTBL

RDTBL RDTBL

RDTBL FR OM

FR OM RDTBL FR OM RDTBL

FR OM

Syntax Classes

must be preceded by the charac ter.

Characters of class also terminate atoms, but are otherwise completely ignored; they can be
thought of as logically spaces. As with break characters, they must be preceded by the character
in order to appear in an atom.

For example, if were a break character and a separator character, the input stream
would be read by 6 calls to returning respectively , , , , , .

Although normally there is only one character in a readtable having each of the list- and string- delimiting
syntax classes (such as), it is perfectly acceptable for any character to have any syntax class,
and for more than one to have the same class.

Note that a ‘‘syntax class’’ is an abstraction: there is no object referencing a collection of characters called
a . Instead, a readtable provides the between a character and its syntax class, and
the input/output routines enforce the abstraction by using readtables to drive the parsing.

The functions below are used to obtain and set the syntax class of a character in a readtable. can
either be a character code (a number), or a character (a single-character atom); those Interlisp objects
that happen to be both, viz., one-digit numbers, are interpreted as character codes. For example, in
Interlisp- 10, 1 indicates control- A, and 49 indicates the 1.

Note: Terminal tables, described in page 6.40, also associate characters with syntax classes, and they can
also be manipulated with the functions below. The set of readtable and terminal table syntax classes are
disjoint, so there is never any ambiguity about which type of table is being referred to.

[Function]
Returns the syntax class of , a character or a character code, with respect to

. can be , , , or a real readtable or terminal table.

can also be a syntax class, in which case returns a list of the
character codes in that have that syntax class.

[Function]
Sets the syntax class of , a character or character code, in . can
be either , , or a real readtable or terminal table. returns the
previous syntax class of . can be any one of the following:

� The name of one of the basic syntax classes.

� A list, which is interpreted as a read macro (see page 6.36).

� , , , or a real readtable or terminal table, which means to give
the syntax class it has in the table indicated by . For example,

gives the left parenthesis character in the same syntax
class that it has in the original system readtable.

� A character code or character, which means to give the same syntax class
as the character in . For example,
gives the left brace character the same syntax class as the left bracket.

[Function]
is a character code; is , , or a real readtable or terminal table.

6.34

ESCAPE

SEPRCHAR
ESCAPE

$ * ABC**DEF$GH*$$
RATOM ABC DEF $ GH $ $

LEFTPAREN

syntax class association

character

(GETSYNTAX)

NIL T ORIG

GETSYNTAX

(SETSYNTAX)

NIL T SETSYNTAX

NIL T ORIG
(SETSYNTAX

’%(’ORIG)

(SETSYNTAX ’{ ’%[)

(SYNTAXP)
NIL T

CH

CH TABLE

CH

TABLE TABLE

CH

TABLE

CHAR CLASS TABLE

CHAR TABLE TABLE

CHAR CLASS

CHAR

CLASS

TABLE TABLE

CHAR

CHAR TABLE TABLE

CODE CLASS TABLE

CODE TABLE

INPUT/OUTPUT

Returns if has the syntax class in ; otherwise.

can also be a read- macro type (, ,), or a read- macro
option (, , etc.), in which case returns if the syntax
class is a read- macro with the speci�ed property.

Note: will accept a character as an argument, only a character .

For convenience in use with , the atom may be used to refer to break characters,
i.e., it is the union of , , , , ,
and . For purely symmetrical reasons, the atom corresponds to all separator characters.
However, since the only separator characters are those that also appear in , and

are equivalent.

Note that never returns or as a value although and
accept them as arguments. Instead, returns one of the disjoint basic syntax classes that
comprise . as an argument to is interpreted to mean if the
character is not already of one of the classes. Thus, if is of class , then

doesn’t do anything, since is already a break character, but
means make be a break character, and therefore disables the

function of . Similarly, if one of the format characters is disabled completely, e.g., by
, then would make be a break character; it would

restore as .

The following functions provide a way of collectively accessing and setting the separator and break
characters in a readtable:

[Function]
Returns a list of separator character codes in . Equivalent to

.

[Function]
Returns a list of break character codes in . Equivalent to

.

[Function]
Sets or removes the separator characters for . is a list of charactors or
character codes. determines the action of as follows: If = ,
makes have exactly the elements of as separators, discarding from

any old separator characters not in . If =0, removes from
as separator characters all elements of . This provides an ‘‘ ’’. If

=1, makes each of the characters in be a separator in .

If = , the separator characters are reset to be those in the system’s readtable
for terminals, regardless of the value of , i.e., is equivalent to

. If , then the characters are reset to those
in the original system table.

Returns .

[Function]
Sets the break characters for . Similar to .

6.35

T NIL

MACRO SPLICE INFIX
FIRST IMMEDIATE SYNTAXP T

SYNTAXP not code

SYNTAXP BREAK all
LEFTPAREN RIGHTPAREN LEFTBRACKET RIGHTBRACKET STRINGDELIM

BREAKCHAR SEPR
SEPRCHAR SEPR

SEPRCHAR

GETSYNTAX BREAK SEPR SETSYNTAX SYNTAXP
GETSYNTAX

BREAK BREAK SETSYNTAX BREAKCHAR
BREAK %(LEFTPAREN (SETSYNTAX

’%(’BREAK) %((SETSYNTAX ’%(
’BREAKCHAR) %(just LEFTPAREN

%((SETSYNTAX
’%(’OTHER) (SETSYNTAX ’%(’BREAK) %(only
not %(LEFTPAREN

(GETSEPR)
(GETSYNTAX

’SEPR)

(GETBRK)
(GETSYNTAX

’BREAK)

(SETSEPR)

SETSEPR NIL

UNSETSEPR

T
(SETSEPR T)

(SETSEPR (GETSEPR T)) is T

NIL

(SETBRK)
SETSEPR

CODE CLASS TABLE

CLASS

RDTBL

RDTBL

RDTBL

RDTBL

RDTBL

RDTBL

LST FL G RDTBL

RDTBL LST

FL G FL G

RDTBL LST

RDTBL LST FL G RDTBL

LST

FL G LST RDTBL

LST

FL G

RDTBL

LST FL G RDTBL

RDTBL

Read-Macros

As with to the class, if any of the list- or string- delimiting break characters are
disabled by an appropriate (or by making it be a separator character), its special action for
will be restored by simply making it be a break character again with . However, making these
characters be break characters when they already will have no e�ect.

The action of the character (normally) is not a�ected by or . It can be
disabled by setting its syntax to the class , and other characters can be used for escape on input
by assigning them the class . As of this writing, however, there is no way to change the output
escape character; it is ‘‘hardwired’’ as . That is, on output, characters of special syntax that need to
be preceded by the character will always be preceded by , independent of the syntax of or
which, if any characters, have syntax .

The following function can be used for defeating the action of the character or characters :

[Function]
If = , makes characters of class behave like characters of class

on input. Normal setting is . returns the previous
setting.

6.6.3 Read-Macros

Read- macros are user- de�ned syntax classes that can cause complex operations when certain characters
are read. Read- macro characters are de�ned by specifying as a syntax class an expression of the form:

���

where is one of , , or , and is the name of a function or a lambda
expression. Whenever encounters a read- macro character, it calls the associated function, giving it
as arguments the input �le and readtable being used for that call to . The interpretation of the value
returned depends on the type of read- macro:

This is the simplest type of read macro. The result returned from the macro is
treated as the expression to be read, instead of the read- macro character. Often
the macro reads more input itself. For example, in order to cause to be
read as , one could de�ne as

The result (which should be a list or) is spliced into the input using .
For example, if is de�ned by:

and the value of is , then when the user inputs , the result
will be .

The associated function is called with a third argument, which is a list, in
format (page 2.17), of what has been read at the current level of list nesting. The
function’s value is taken as a new list which replaces the old one. For
example, could be de�ned by:

6.36

SETSYNTAX BREAK
SETBRK READ

not SETBRK
are

ESCAPE % SETSEPR SETBRK
OTHER

ESCAPE
%

ESCAPE % %
ESCAPE

ESCAPE

(ESCAPE)
NIL ESCAPE

OTHER (ESCAPE T) ESCAPE

()

MACRO SPLICE INFIX
READ

READ

MACRO

~EXPR
(NOT EXPR) ~

[MACRO (LAMBDA (FL RDTBL) (LIST ’NOT (READ FL RDTBL]

SPLICE NIL NCONC
$

(SPLICE (LAMBDA NIL (APPEND FOO)))

FOO (A B C) (X $ Y)
(X A B C Y)

INFIX TCONC

TCONC
+

FL G RDTBL

FL G

TYPE OPTION 1 OPTION N FN

TYPE FN

INPUT/OUTPUT

If an read- macro character is encountered in a list, the third argument to
its associated function is . If the function returns , the read- macro character
is essentially ignored and reading continues. Otherwise, if the function returns a

list of one element, that element is the value of the . If it returns a
list of more than one element, the list is the value of the .

The speci�cation for a read- macro character can be augmented to specify various options ���
, e.g., . The following three disjoint options specify when

the read- macro character is to be e�ective:

The default. The read- macro character is always e�ective (except when preceded
by the escape character), and is a break character, i.e., a member of

.

The character is interpreted as a read- macro character when it is the �rst
character seen after a break or separator character; in all other situations, the
character is treated as having class . The read- macro character is a break
character. For example, the quote character is a read- macro character, so
that is read as the single atom , rather than as followed by

.

The read- macro character is a break character, and is interpreted as a read-
macro character only when the character would have been read as a separate atom
if it were not a read- macro character, i.e., when its immediate neighbors are both
break or separator characters. For example, is an read- macro character
in order to implement the comment pointer feature (see page 6.51).

Making a or read- macro character be a break character (with) disables the
read- macro interpretation, i.e., converts it to syntax class . Making an read- macro
character be a break character is a no-op.

The following two disjoint options control whether the read- macro character is to be protected by the
character on output:

or The default. When printed with , the read- macro character will be preceded
by the output escape character ().

or
The read- macro character will be printed without an escape, e.g., is a

character. Unless you are very careful what you are doing, read-
macro characters in should never be , since symbols
that happen to contain the read- macro character will not read back in correctly.

The following two disjoint options control when the macro’s function is actually executed:

6.37

(INFIX (LAMBDA (FL RDTBL Z)
(RPLACA (CDR Z)

(LIST (QUOTE IPLUS)
(CADR Z)
(READ FL RDTBL)))

Z))

INFIX not
NIL NIL

TCONC READ
TCONC READ

(MACRO FIRST IMMEDIATE)

ALWAYS
(GETSYNTAX

’BREAK)

FIRST only

OTHER not
FIRST

DON’T DON’T DON
(QUOTE T)

ALONE not

* ALONE

FIRST ALONE SETBRK
BREAKCHAR ALWAYS

ESCAPE

ESCQUOTE ESC PRIN2
%

NOESCQUOTE NOESC
’

NOESCQUOTE
FILERDTBL NOESCQUOTE

OPTION 1
OPTION N FN

RDTBL

Read-Macros

or
The read- macro character is immediately activated, i.e., the current line is
terminated, as if an had been typed, a carriage- return line- feed is printed, and
the entire line (including the macro character) is passed to the input function.

read- macro characters enable the user to specify a character that will
take e�ect immediately, as soon as it is encountered in the input, rather than
waiting for the line to be terminated. Note that this is not necessarily as soon as
the character is . Characters that cause action as soon as they are typed are
interrupt characters (see page 9.17).

Note that since an macro causes any input before it to be sent to the
reader, characters typed before an read- macro character cannot be
erased by control- A or control- Q once the character has been typed,
since they have already passed through the line bu�er. However, an read
macro can still alter some of what has been typed earlier, via its third argument.

or
The default. The read- macro character is a normal character with respect to the
line bu�ering, and so will not be activated until a carriage- return or matching right
parenthesis or bracket is seen.

Making a read- macro character be both and is a contradiction, since requires
that the next character be input in order to see if it is a break or separator character. Thus,
read- macros are always , regardless of whether or not is speci�ed.

Read- macro characters can be ‘‘nested’’. For example, if is de�ned by

and is de�ned by

then if the value of is , and is input, will be returned. If
is input, will be returned.

If a read- macro’s function calls , and the returns , the function cannot distinguish the
case where a or followed the read- macro character, (e.g. ‘‘ ’’),
from the case where the atom (or ‘‘ ’’) actually appeared. Therefore, in Interlisp- 10, reading a
single or via a inside of a read- macro function is disallowed. If this
occurs, the paren/bracket is put back into the input bu�er, and a is
generated. The following two functions are useful for avoiding this error:

[Function]
Returns if currently under a read- macro function, otherwise the number
of unmatched left parentheses or brackets.

[Function]
Resets the ‘‘read-macro’’ �ag, i.e., the internal system �ag that informs
that it is under a read macro function, and causes it to generate a

, if an unmatched or is encountered. Returns the previous

6.38

IMMEDIATE IMMED

EOL

IMMEDIATE

typed

IMMEDIATE
IMMEDIATE

IMMEDIATE
INFIX

NONIMMEDIATE NONIMMED

ALONE IMMEDIATE ALONE
ALONE

NONIMMEDIATE IMMEDIATE

=

(MACRO (LAMBDA (FL RDTBL) (EVAL (READ FL RDTBL))))

!

(SPLICE (LAMBDA (FL RDTBL) (READ FL RDTBL)))

FOO (A B C) (X =FOO Y) (X (A B C) Y)
(X !=FOO Y) (X A B C Y)

READ READ NIL
RIGHTPAREN RIGHTBRACKET (A B ’)

NIL ()
RIGHTPAREN RIGHTBRACKET READ

READ-MACRO CONTEXT ERROR

(INREADMACROP)
NIL not

(SETREADMACROFLG)
READ

READ-MACRO
CONTEXT ERROR)]

FL G

INPUT/OUTPUT

value of the �ag. The main use for this is when debugging read- macro functions: to
avoid spurious error messages when typing into breaks,
the user can put on (page 9.13).

The error does not occur in Interlisp- D; a inside of a read- macro when
the next input character is a or eats the character and returns , just
as if the had not occurred inside a read- macro.

If a call to from within a read- macro encounters an unmatched a list, the
bracket is simply put back into the bu�er to be read (again) at the higher level. Thus, inputting an
expression such as works correctly.

[Function]
If = , turns o� action of read- macros. If = , turns them on. Returns
previous setting.

In Interlisp- D, turns o�/on action of read- macros in readtable .

The following read macros are standardly de�ned in Interlisp:

(single-quote) Currently de�ned only in and . Returns the next expression, wrapped
in a call to ; e.g., reads as . The macro is de�ned as
a read macro, so that the quote character has no e�ect in the middle of a
symbol. The macro is also ignored if the quote character is immediately followed
by a separator character.

De�ned in and . Returns the result of evaluating the next expression.
For example, if the value of is , then is
read as , but note that no structure is copied; the of that
input expression is still to the value of . Control- Y can thus be used to read
structures that ordinarily have no read syntax. For example, the value returned
from reading has an array as its second element.
Control- Y can be thought of as an ‘‘un-quote’’ character. The choice of character
to perform this function is changeable with (page 17.59).

‘ (back- quote) Back-quote makes it easier to write programs to construct complex data structures.
Back-quote is like quote, except that within the back-quoted expression, forms can
be evaluated. The general idea is that the back-quoted expression is a ‘‘template’’
containing some constant parts (as with a quoted form) and some parts to be �lled
in by evaluating something.

Within the back-quoted expression, the character ‘‘ ’’ (comma) introduces a form
to be evaluated. A form preceded by ‘‘ ’’ is to be spliced in, using , and
a form preceded by ‘‘ ’’ is to be spliced in, using . Unlike with control- Y,
however, the evaluation occurs not at the time the form is read, but at the time
the back-quoted expression is evaluated. That is, the back-quote macro returns an
expression which, when evaluated, produces the desired structure.

For example, if the value of is , then the form ‘
evaluates to ; it is logically equivalent to

writing .
Back-quote is particularly useful for writing compiler macros. For example,

6.39

READ-MACRO CONTEXT
(SETREADMACROFLG) BREAKRESETFORMS

READ-MACRO CONTEXT READ
RIGHTPAREN RIGHTBRACKET NIL

READ

READ RIGHTBRACKET within

(A B ’(C D]

(READMACROS)
NIL T

’ T EDITRDTBL
QUOTE ’FOO (QUOTE FOO)

FIRST

control-Y T EDITRDTBL
FOO (A B) (LIST 1 control-YFOO 2)

(1 (A B) 2) CADR
EQ FOO

(KEY1 control-Y(ARRAY 10))

SETTERMCHARS

,
,@ APPEND

,. NCONC

FOO (1 2 3 4) (A ,(CAR FOO)
,@(CDDR FOO) D E) (A 1 3 4 D E)

(CONS ’A (CONS (CAR FOO) (APPEND (CDDR FOO) ’(D E))))

FL G RDTBL

FL G FL G

RDTBL

Terminal Tables

‘

is equivalent to writing

Note that comma does have any special meaning outside of a back-quote
context.

For users without a back-quote character on their keyboards, back-quote can also
be written as (vertical- bar, quote). In Interlisp- D, back-quote is typed as
shift- linefeed.

De�ned in and . Implements the command for on- line help
regarding the function currently being ‘‘called’’ in the typein (see page 9.5).

De�ned in only. Implements the comment pointer feature for saving
space by keeping the text of comments outside memory (page 6.51).

De�ned in and , Interlisp- 10 only. An read macro that
deletes the previous expression. In Interlisp- D, control- W is an editing character
that deletes the previous ‘‘word’’.

(vertical bar) When followed by (quote), is a synonym for back-quote; followed by certain
other characters, it is used by and to print and read in unusual
expressions; otherwise is ignored, i.e., treated as a separator character, enabling the
editor’s feature (page 6.55).

6.7 TERMINAL TABLES

A readtable contains input/output information that is . For example, the action of
parentheses is the same regardless of the device from which the input is being performed. A terminal
table is an object that contains information that pertains to input/output operations only, such
as the character to type to delete the last character or to delete the last line. In addition, terminal tables
contain such information as how line-bu�ering is to be performed, how control characters are to be
echoed/printed, whether lower case input is to be converted to upper case, etc.

Using the functions below, the user may change, reset, or copy terminal tables, or create a new terminal
table and install it as the primary terminal table via . However, unlike readtables, terminal
tables cannot be passed as arguments to input/output functions.

6.40

(COND
((FIXP ,(CAR X))

,(CADR X))
(T ,@(CDDR X)))

(LIST ’COND
(LIST (LIST ’FIXP (CAR X))

(CADR X))
(CONS ’T (CDDR X)))

not

|’

? T EDITRDTBL ?=

* FILERDTBL

control-W T EDITRDTBL IMMEDIATE

| ’
HPRINT HREAD

CHANGECHAR

media-independent

terminal

SETTERMTABLE

INPUT/OUTPUT

6.7.1 Terminal Table Functions

[Function]
Returns , if is a real terminal table, otherwise.

[Function]
If = , returns the primary (i.e., current) terminal table. If is a
real terminal table, return . Otherwise, generates an

error.

[Function]
Sets the primary terminal table to be . Returns the previous . Generates
an error if is not a real terminal table.

[Function]
Returns a copy of . can be a real terminal table, , or , in
which case it returns a copy of the system terminal table. Note that

is the only function that a terminal table.

[Function]
Copies (smashes) into . and can be or a real terminal
table. In addition, can be , meaning to use the system’s original
terminal table.

6.7.2 Terminal Syntax Classes

A terminal table associates with each character a single ‘‘terminal syntax class’’, one of ,
, (Interlisp- D only), , , , and . Unlike readtable

classes, only one character in a particular terminal table can belong to each of the classes (except for the
default class). When a new character is assigned one of these syntax classes by , the
previous character is disabled (i.e., reassigned the syntax class), and the value of is the
code for the previous character of that class, if any, otherwise .

The terminal syntax classes are interpreted as follows:

or
(Initially control- A under Tenex, del under Tops20, BackSpace in Interlisp- D)
Typing this character deletes the previous character typed. Repeated use of this
character deletes successive characters back to the beginning of the line.

or
(Initially control- Q in Interlisp- 10 under Tenex and in Interlisp- D, control- U under
Tops20) Typing this character deletes the whole line; it cannot be used repeatedly.

(Interlisp- D only; initially control- W) Typing this character deletes the previous
‘‘word’’, i.e., sequence of non- separator characters.

(Initially control- R) Causes the line to be retyped as Interlisp sees it (useful when
repeated deletions make it di�cult to see what remains).

6.41

(TERMTABLEP)
NIL

(GETTERMTABLE)
NIL

ILLEGAL TERMINAL
TABLE

(SETTERMTABLE)

ILLEGAL TERMINAL TABLE

(COPYTERMTABLE)
NIL ORIG

original
COPYTERMTABLE creates

(RESETTERMTABLE)
NIL

ORIG

CHARDELETE
LINEDELETE WORDDELETE RETYPE CTRLV EOL NONE

NONE SETSYNTAX
NONE SETSYNTAX
NIL

CHARDELETE DELETECHAR

LINEDELETE DELETELINE

WORDDELETE

RETYPE

TTBL

TTBL TTBL

TTBL

TTBL TTBL

TTBL

TTBL

TTBL TTBL

TTBL

TTBL

TTBL TTBL

TTBL FR OM

FR OM TTBL FR OM TTBL

FR OM

9

9

Terminal Control Functions

or (Initially control- V) When followed by , , ��� , inputs the corresponding control
character control- A, control- B, ��� control- Z. This allows interrupt characters to be
input without causing an interrupt.

On input from a terminal, the character signals to the line bu�ering routine
to pass the input back to the calling function. It also is used to terminate inputs to

(page 8.30). In general, whenever the phrase carriage- return linefeed
is used, what is meant is the character with terminal syntax class .

The terminal syntax class of all other characters.

, , and all work on terminal tables as well as readtables (see page
6.34). When given as a argument, and use the primary readtable or
primary terminal table depending on which table contains the indicated argument. For example,

refers to the primary readtable, and
refers to the primary terminal table. In the absence of such information, all three functions default to the
primary readtable; e.g., refers to the primary read table. If given incompatible

and table arguments, all three functions generate errors. For example,
, where is a terminal table, generates an error, and

generates an error.

6.7.3 Terminal Control Functions

[Function]
Used to indicate how control characters are to be echoed or printed. is
a character or character code. may be one of the atoms , ,

, or , which specify how the control character should be
printed:

is never printed.

itself is printed; i.e., the raw control character is
sent to the terminal. Some terminals, particularly displays,
respond to certain control characters in interesting ways.

Output of is simulated. For example, control- I (tab)
may be simulated by printing spaces. The simulation is
machine- speci�c and beyond the control of the user.

is printed as followed by the correspond ing al-
phabetic charac ter.

The value of is the previous output mode for . If = ,
returns the current output mode without changing it.

Note that although the name of this function suggests echoing only, it a�ects
output of the control character, both echoing of input and printing of output.

is an obsolete synonym of .

6.42

CTRLV CNTRLV A B Z

EOL EOL

READLINE
EOL

NONE

GETSYNTAX SETSYNTAX SYNTAXP
NIL GETSYNTAX SYNTAXP

(SETSYNTAX ’BREAK) (SETSYNTAX ’CHARDELETE)

(SETSYNTAX ’{ ’%[)
(SETSYNTAX ’BREAK

) ILLEGAL READTABLE (GETSYNTAX
’CHARDELETE) ILLEGAL TERMINAL TABLE

(ECHOCONTROL)

IGNORE REAL
SIMULATE INDICATE

IGNORE

REAL

SIMULATE

INDICATE ^

ECHOCONTROL NIL
ECHOCONTROL

all

UPARROW INDICATE

TABLE

CLASS

CH CH

CLASS CH

TTBL TTBL

RDTBL

CHAR MODE TTBL

CHAR

MODE

CHAR

CHAR

CHAR

CHAR

CHAR MODE

INPUT/OUTPUT

The two cannot be speci�ed independently, which can lead to some trickiness in
messages (below).

In Interlisp- 10, echoing information can be speci�ed only for control characters
(although echoing can be disabled using , below). Therefore, if
is an alphabetic character (or code), it refers to the corresponding control character,
e.g., makes control- Z echo as . All other
values of generate errors. In Interlisp- D and Interlisp- VAX,
it is possible to specify echoing information for characters, using the function

.

[Function]
(Interlisp- D, Interlisp- VAX only) Like , but must be a
character code, and can specify character� no coercions are performed. The

mode for ‘‘meta’’ characters, i.e., characters whose codes are in the
range 200Q through 377Q, causes the character to be printed following a . For
example, meta- A would print as , meta- control- B as .

can also be a list of characters, in which case is applied to
each of them with arguments and .

[Function]
If = , turns echoing for terminal table on. If = , turns echoing
o�. Returns the previous setting.

[Function]
Returns the current echo mode for .

[Function]
Speci�es the output protocol when a or is typed. In
the case of character deletion, Interlisp- 10 is initially set up for hardcopy terminals:
it echos the characters being deleted, preceding the �rst by a and following the
last by a , so that it is easy to see exactly what was deleted, viz., the characters
between the ’s. Interlisp- D and Interlisp- VAX are initially set up to physically
erase the deleted characters from the display, backing up over them. The various
values of specify di�erent phases of the deletion, as follows:

is the message printed the �rst time
is typed. Initially ‘‘ ’’ in Interlisp- 10.

is the message printed on subsequent ’s
(without intervening charac ters). Initially ‘‘’’in Interlisp- 10.

is the message printed when input is resumed
following a sequence of one or more s.
Initially ‘‘ ’’ in Interlisp- 10.

is the message printed when a is
typed and there are no characters in the bu�er. Initially
‘‘ ’’ in Interlisp- 10.

The charac ters deleted by are echoed.

6.43

DELETECONTROL

all ECHOMODE

(ECHOCONTROL ’Z ’INDICATE) ^Z
ILLEGAL ARG

all
ECHOCHAR

(ECHOCHAR)
ECHOCONTROL

any
INDICATE

#
#A #^B

ECHOCHAR

(ECHOMODE)
T NIL

(GETECHOMODE)

(DELETECONTROL)
CHARDELETE LINEDELETE

\
\

\

1STCHDEL CHARDELETE
\

NTHCHDEL CHARDELETE

POSTCHDEL
CHARDELETE’

\

EMPTYCHDEL CHARDELETE

cr

ECHO CHARDELETE

CHAR

CHAR

CHAR CODE MODE TTBL

CHAR CODE

CHAR CODE

MODE TTBL

FL G TTBL

FL G TTBL FL G

TTBL

TTBL

TYPE MESSA GE TTBL

TYPE

MESSA GE

MESSA GE

MESSA GE

MESSA GE

MESSA GE

10

10

Terminal Control Functions

is ignored.

The characters deleted by are not echoed
is ignored.

is the message printed when charac-
ter is typed. Initially ‘‘ ’’.

Note: In Interlisp- 10, the , , , ,
and messages must be 4 characters or fewer in length.

returns the previous message as a string. If = ,
the value returned is the previous message without changing it. For and

, the value of is the previous echo mode, i.e., or
.

[Function]
Returns the current mode for in .

If the user’s terminal is a display, and can be used to make it really
delete the last character by performing the following:

8 is the code for control- H, which is backspace; we want the terminal to really
backspace when we send .

Do not echo the deleted characters.

Erase each character by backspacing over it, printing a space, then backspacing
again to put the carriage in the right place.

The following functions manipulate the mode, which determines whether lower case characters
are converted to upper case when input from the terminal. (There currently is no ‘‘raise’’mode for input
from �les.)

[Function]
Sets the mode for terminal table . If = , all characters are
passed as typed. If = , input is echoed as typed, but lowercase letters are
converted to upper case. If = , input is converted to upper case it is
echoed. Returns the previous setting.

In Interlisp- 10, both and execute Tenex/Tops20 JSYS calls corresponding to the
Executive command NORAISE, while executes the JSYS calls corresponding to the Executive
command RAISE. Thus with , the conversion to uppercase is performed by Interlisp, while
with) the conversion is performed at the operating system level, i.e., before Interlisp- 10 even
sees the characters. The initial setting of in Interlisp- 10 is determined by the terminal mode at
the time the user �rst starts up the system. When a is started, the mode is restored to
whatever it was prior to the .

6.44

NOECHO CHARDELETE

LINEDELETE LINEDELETE
cr

LINEDELETE 1STCHDEL NTHCHDEL POSTCHDEL
EMPTYCHDEL

DELETECONTROL NIL
ECHO

NOECHO DELETECONTROL ECHO
NOECHO

(GETDELETECONTROL)
DELETECONTROL

DELETECONTROL ECHOCONTROL

(ECHOCONTROL 8 ’REAL)

^H

(DELETECONTROL ’NOECHO)

(DELETECONTROL ’1STCHDEL "^H ^H")
(DELETECONTROL ’NTHCHDEL "^H ^H")

RAISE

(RAISE)
RAISE NIL

T
0 before

(RAISE) (RAISE T)
(RAISE 0)

(RAISE T)
(RAISE 0

RAISE
SYSOUT RAISE

SYSOUT

MESSA GE

MESSA GE

MESSA GE

TYPE TTBL

TYPE TTBL

FL G TTBL

TTBL FL G

FL G

FL G

11

11

INPUT/OUTPUT

[Function]
Returns the current mode for .

6.7.4 Line-Bu�ering

Characters typed at the terminal are stored in two bu�ers before they are passed to an input function. All
characters typed in are put into the low-level ‘‘system bu�er’’, which allows type- ahead. When an input
function is entered, characters are transferred to the ‘‘line bu�er’’ until a character with terminal syntax
class appears (or, for calls from , when the count of unbalanced open parentheses reaches 0).
Until this time, the user can delete characters one at a time from the line bu�er by typing the current

character, or delete the entire line bu�er back to the last carriage- return by typing the
current .

Note that this line editing is performed by or , but by Interlisp, i.e., it does not matter
(nor is it necessarily known) which function will ultimately process the characters, only that they are still
in the Interlisp line bu�er. However, the function that is requesting input at the time the bu�ering starts
does determine whether parentheses counting is observed. For example, if a program performs

and the user types in ‘‘ ’’, the user must type in the carriage- return
following the right parenthesis before any action is taken, because the line bu�ering is happening under

. If the program had performed , the line-bu�ering would be under
, so that the right parenthesis would terminate line bu�ering, and no terminating carriage- return

would be required.

Once a carriage- return has been typed, the entire line is ‘‘available’’ even if not all of it is processed by the
function initiating the request for input. If any characters are ‘‘left over’’, they are returned immediately
on the next request for input. For example, when the input is
‘‘ ’’ returns the three- element list and leaves the carriage- return in the bu�er.

If a carriage- return is typed when the input under is not ‘‘complete’’ (the parentheses are not
balanced or a string is in progress), line bu�ering continues, but the lines completed so far are not
available for editing with or .

The function is available to defeat line-bu�ering:

[Function]
If = , eliminates Interlisp’s normal line-bu�ering for the terminal table .
If = , restores line-bu�ering (normal). When operating with a terminal
table in which has been performed, characters are returned to the
calling function without line-bu�ering as described below.

returns its previous setting.

[Function]
Returns the current control mode for .

The function that initiates the request for input determines how the line is treated when
is in e�ect:

is an exception; it returns the character immediately when its second argument is .

6.45

(GETRAISE)
RAISE

EOL READ

CHARDELETE
LINEDELETE

not READ RATOM

(PROGN
(RATOM) (READ)) A (B C D)

RATOM (PROGN (READ) (READ))
READ

(LIST (RATOM) (READC) (RATOM))
A B cr (A % B)

READ

CHARDELETE LINEDELETE

CONTROL

(CONTROL)
T
NIL

(CONTROL T)

CONTROL

(GETCONTROL)

(CONTROL T)

PEEKC NIL

TTBL

TTBL

MODE TTBL

MODE TTBL

MODE

TTBL

TTBL

Line-Bu�ering

If the expression being typed is a list, the e�ect is the same as though done with
, i.e., line-bu�ering continues until a carriage- return or matching

parentheses. If the expression being typed is not a list, it is returned as soon
as a break or separator character is encountered, e.g., when the input
is ‘‘ <space>’’ immediately returns . and are
available on those characters still in the bu�er. Thus, if a program is performing
several reads under , and the user types ‘‘ ’’
followed by control- Q, only is deleted, since the rest of the line has already
been transmitted to and processed.

An exception to the above occurs when the break or separator character is an
opening parenthesis, bracket or double- quote, since returning at this point would
leave the line bu�er in a ‘‘funny’’ state. Thus if the input to is ‘‘ ’’,
the is not read until a carriage- return or matching parentheses is encountered.
In this case the user could the entire line, since all of the characters
are still in the bu�er.

Characters are returned as soon as a break or separator character is encountered.
Until then, and may be used as with . For
example, followed by ‘‘ <control- A><space>’’ returns .
followed by ‘‘ <control- A>’’ returns and types indicating that control- A was
attempted with nothing in the bu�er, since the is a break character and would
therefore already have been read.

or The character is returned immediately; no line editing is possible. In particular,
is perfectly happy to return the or

characters, or the character ().

The system bu�er and line bu�er can be directly manipulated using the following functions.

[Function]
Clears the input bu�er for . If is and is , the contents of Interlisp’s
system bu�er and line bu�er are saved (and can be obtained via and

described below).

When control- D or control- E is typed, or any of the interrupt characters that
require terminal interaction is typed (control- H, control- P, or control- S), Interlisp
automatically performs . For control- P, control- S, and, when
the break is exited normally, control- H, Interlisp restores the bu�er after the
interaction.

The action of , i.e., clearing of typeahead, is also available as the
interrupt character, initially assigned to the del key in Interlisp- D and in

Interlisp- 10 under Tenex, control- Z under Tops20 . Note that this interrupt clears
both bu�ers at the time it is , whereas the action of the and

character occur at the time they are .

[Function]
If = , returns the contents of the system bu�er (as a string) that was saved at
the last . If = , clears this internal bu�er.

6.46

READ
(CONTROL NIL)

(READ)
ABC ABC CHARDELETE LINEDELETE

(CONTROL T) NOW IS THE TIME
TIME

READ

(READ) ABC(
ABC

LINEDELETE

RATOM
LINEDELETE CHARDELETE READ

(RATOM) ABC AB (RATOM)
((##

(

READC PEEKC
(READC) CHARDELETE LINEDELETE

ESCAPE %

(CLEARBUF)
T T

SYSBUF
LINBUF

(CLEARBUF T T)

(CLEARBUF T)
RUBOUT

typed CHARDELETE
LINEDELETE read

(SYSBUF)
T

(CLEARBUF T T) NIL

FILE FL G

FILE FILE FL G

FL G

FL G

FL G

INPUT/OUTPUT

[Function]
Same as for the line bu�er .

If both the system bu�er and Interlisp’s line bu�er are empty, the internal bu�ers associated with
and are not changed by a .

[Function]
sets the system bu�er to the -name of . The e�ect is the same

as though the user typed . Some implementations have a limit on the length of
, in which case characters in beyond the limit are ignored. Returns .

If is , then the -name of is used, computed with respect to the
readtable .

Note that if the user is typing at the same time as the is being performed,
the relative order of the type- in and the characters of is unpredictable.

Compatibility note: Some implementations of (Interlisp- 10) use a
‘‘system’’ bu�er, from which keyboard interrupts are also processed. In this
case, of an interrupt character actually invokes the interrupt at some
(asynchronous) time after the is initiated. In other implementations
(Interlisp- D), the characters are not processed for interrupts, and it is possible to

characters which would otherwise be impossible to type.

[Function]
is a string. sets Interlisp’s line bu�er to . Some implementations

have a limit on the length of , in which case characters in beyond the
limit are ignored. Returns .

, , , and provide a way of ‘‘undoing’’ a . Thus to
‘‘peek’’ at various characters in the bu�er, one could perform , examine the bu�ers
via and , and then put them back.

The more common use of these functions is in saving and restoring typeahead when a program requires
some unanticipated (from the user’s standpoint) input. The function provides a convenient
way of simply clearing the input bu�er, performing an interaction with the user, and then restoring the
input bu�er.

��� [NLambda NoSpread Function]
Clears any typeahead (ringing the terminal’s bell if there was, indeed, typeahead),
evaluates , ,��� , then restores the typeahead. Returns the
value of . Compiles open.

6.8 PRETTYPRINT

The standard way of printing out function de�nitions (on the terminal or into �les) is to use .

[Function]
is a list of functions. If is atomic, its value is used). The de�nitions of

6.47

(LINBUF)
SYSBUF

LINBUF
SYSBUF (CLEARBUF T T)

(BKSYSBUF)
BKSYSBUF PRIN1

PRIN2

BKSYSBUF

BKSYSBUF

BKSYSBUF
BKSYSBUF

BKSYSBUF

(BKLINBUF)
BKLINBUF

BKLINBUF BKSYSBUF LINBUF SYSBUF CLEARBUF
(CLEARBUF T T)

LINBUF SYSBUF

RESETBUFS

(RESETBUFS)

PRETTYPRINT

(PRETTYPRINT)

FL G

X FL G RDTBL

X

X

X X X

FL G T X

RDTBL

X

STR

STR STR

STR STR

STR

FORM 1 FORM 2 FORM N

FORM 1 FORM 2 FORM N
FORM N

FNS PRETTYDEFL G _

FNS FNS

Prettyprint

the functions are printed in a pretty format on the primary output �le using the
primary readtable. For example, if were de�ned by typing

would print out

is when called from (and hence). Among
other actions taken when this argument is true, indicates its progress
in writing the current output �le: whenever it starts a new function, it prints on
the terminal the name of that function if more than 30 seconds (real time) have
elapsed since the last time it printed the name of a function.

operates correctly on functions that are , , , or have been
compiled with their de�nitions saved on their property lists: it prints the original, pristine de�nition, but
does not change the current state of the function. If a function is not de�ned but is known to be on
one of the �les noticed by the �le package, loads in the de�nition (using) and
prints it (except when called from). If is given an atom which is not the
name of a function, but has a value, it prettyprints the value. Otherwise, attempts spelling
correction. If all fails, returns .

��� [NLambda NoSpread Function]
For prettyprinting functions to the terminal. calls with the
primary output �le set to and the primary read table set to . The primary
output �le and primary readtable are restored after printing.

is equivalent to ; is
equivalent to .

As described above, when , and hence , is called with the name of a function that is
not de�ned, but whose de�nition is on a �le known to the �le package, the de�nition is automatically
read in and then prettyprinted. However, if the user does not intend on editing or running the de�nition,
but simply wants to the de�nition, the function described below can be used to simply copy the
corresponding characters from the �le to the terminal. This results in a savings in both space and time,
since it is not necessary to allocate storage to actually read in the de�nition, and it is not necessary to
re-prettyprint it (since the function is already in prettyprint format on the �le).

[NLambda NoSpread Function]
Copies the de�nition of found on each of the �les in to .
If = , defaults to . If = , defaults to

(see page 11.10). The typical usage of is simply to type ‘‘ ’’.

When printing to the terminal, performs several transformations on the characters in the �le that
comprise the de�nition for : (1) font information (page 6.55) is stripped out (except in Interlisp- D,

6.48

FACTORIAL

(DEFINEQ (FACTORIAL [LAMBDA (N) (COND ((ZEROP N) 1)
(T (ITIMES N (FACTORIAL (SUB1 N]

(PRETTYPRINT ’(FACTORIAL))

(FACTORIAL
[LAMBDA (N)

(COND
((ZEROP N)

1)
(T (ITIMES N (FACTORIAL (SUB1 N])

T PRETTYDEF MAKEFILE
PRETTYPRINT

PRETTYPRINT BROKEN BROKEN-IN ADVISED

PRETTYPRINT LOADFNS
PRETTYDEF PRETTYPRINT

PRETTYPRINT
PRETTYPRINT (NOT PRINTABLE)

(PP)
PP PRETTYPRINT

T T

(PP FOO) (PRETTYPRINT ’(FOO)) (PP FOO FIE)
(PRETTYPRINT ’(FOO FIE))

PRETTYPRINT PP

see PF

(PF)

NIL T NIL (WHEREIS
NIL T) PF PF

PF

PRETTYDEFL G

FN

FN 1 FN N

FN FR OMFILES TOFILE

FN FR OMFILES TOFILE

TOFILE FR OMFILES FN

FN

FN

12

13

12

13

INPUT/OUTPUT

whose display supports multiple fonts); (2) occurrences of the (page 6.55) are not printed;
(3) since functions typically tend to be printed to a �le with a larger linelength than when printing to
a terminal, the number of leading spaces on each line is cut in half; and (4) comments are elided, if

is non- (see page 6.50).

While the function prints entire function de�nitions, the function can be used
to print parts of functions, or arbitrary Interlisp structures:

[Function]
Prints the expression in a pretty format on using the primary readtable.

is the left hand margin (determines the right hand margin.)

= means is a function de�nition, or a piece of one. If = ,
no special action is taken for ’s, ’s, ’s, comments, CLISP, etc.

is when calls to print variables and property
lists, and when is called from the editor via the command .

= means is interpreted as a tail of a list, to be printed without
parentheses.

is for use with the Font package (page 6.55). prints occurrences
of any function in the list in a di�erent font, for emphasis.
passes as the list of all functions on the �le being made.

6.8.1 Comment Feature

A facility for annotating Interlisp functions is provided in . Any expression beginning with
the atom is interpreted as a comment and printed in the right margin. Example:

These comments actually form a part of the function de�nition. Accordingly, is de�ned as an nlambda
nospread function that returns its argument, similar to . When running an interpreted function, is
entered the same as any other Interlisp function. Therefore, comments should only be placed where they
will not harm the computation, i.e., where a quoted expression could be placed. For example, writing

Unless is . is initially .

initially performs , which means to space to position , unless already
beyond this position, in which case it does nothing.

6.49

CHANGECHAR

COMMENTFLG NIL

PRETTYPRINT PRINTDEF

(PRINTDEF)

LINELENGTH

T NIL
LAMBDA PROG COND

NIL PRETTYDEF PRETTYPRINT
PRINTDEF PPV

T

PRINTDEF
MAKEFILE

PRETTYPRINT
*

(FACTORIAL
[LAMBDA (N) (* COMPUTES N!)

(COND
((ZEROP N) (* 0!=1)

1)
(T (* RECURSIVE DEFINITION:

N!=N*N-1!)
(ITIMES N (FACTORIAL (SUB1 N])

*
QUOTE *

(ITIMES N (FACTORIAL (SUB1 N)) (* RECURSIVE DEFINITION))

PFDEFAULT T PFDEFAULT NIL

PRINTDEF (TAB T)

EXPR LEFT DEF TAILFL G FNSLST FILE

EXPR FILE

LEFT

DEF EXPR DEF

DEF

TAILFL G EXPR

FNSLST

FNSLST

FNSLST

LEFT LEFT

14

14

Comment Feature

in the above function would cause an error when attempted to multiply , , and .

For compilation purposes, is de�ned as a macro which compiles into no instructions (unless the comment
has been placed where it has been used for value, in which case the compiler prints an appropriate error
message and compiles as). Thus, the compiled form of a function with comments does not use
the extra atom and list structure storage required by the comments in the source (interpreted) code. This
is the way the comment feature is intended to be used.

A comment of the form causes to be evaluated at prettyprint time, as well as printed as a
comment in the usual way. For example, as a comment in a function containing
octal numbers can be used to change the radix to produce more readable printout.

The comment character is stored in the variable . The user can set it to some other value,
e.g. ‘‘ ’’, and use this to indicate comments.

[Variable]
If of an expression is to , the expression is treated as a
comment by . is initialized to . Note that whatever
atom is chosen for should also have an appropriate function de�nition
and compiler macro, for example, by copying those of .

Comments are designed mainly for documenting . Therefore, when prettyprinting to the terminal,
comments are suppressed and printed as the string . The value of
determines the action.

[Variable]
If is , comments are printed. Otherwise, the value of

is printed. Initially .

The functions and are provided to easily print functions, including their comments.

[NLambda NoSpread Function]
operates exactly like except it �rst sets to , so

comments are printed in full.

[NLambda NoSpread Function]
operates exactly like except it �rst sets to , so

comments are printed in full.

[Function]
Prints the comment . is a separate function to permit the user to
write prettyprint macros (page 6.54) that use the regular comment printer. For
example, to cause comments to be printed at a larger than normal linelength, one
could put an entry for on :

is an entry to the block. However, it is called internally by
so that advising or rede�ning it will not a�ect the action of . should be
called when not under a .

6.50

ITIMES N N-1! RECURSIVE

*

* QUOTE

(* E)
(* E (RADIX 8))

* COMMENTFLG
;

COMMENTFLG
CAR EQ COMMENTFLG

PRETTYPRINT COMMENTFLG *
COMMENTFLG

*

listings
COMMENT **COMMENT**FLG

COMMENTFLG
COMMENTFLG NIL

COMMENTFLG " **COMMENT** "

PP* PF*

(PP*)
PP* PP **COMMENT**FLG NIL

(PF*)
PF* PF **COMMENT**FLG NIL

(COMMENT1)
COMMENT1

* PRETTYPRINTMACROS

(* LAMBDA (X) (RESETFORM (LINELENGTH 100) (COMMENT1 X)))

COMMENT1 PRETTYPRINT PRETTYPRINT
PRETTYPRINT COMMENT1 not

PRINTDEF

X X

X

FN FR OMFILES TOFILE

L _

L

INPUT/OUTPUT

This macro resets the line length, prints the comment, and then restores the line
length.

expects to be called from within the environment established by
, so ordinarily the user should call it from within prettyprint macros.

6.8.2 Comment Pointers

For a well-commented collection of programs, the list structure, atom, and pname storage required to
represent the comments in core can be signi�cant. If the comments already appear on a �le and are
not needed for editing, a signi�cant savings in storage can be achieved by simply leaving the text of the
comment on the �le when the �le is loaded, and instead retaining in core only a to the comment.
This feature has been implemented by de�ning as a read- macro in which, instead of
reading in the entire text of the comment, constructs an expression containing (1) the name of the �le in
which the text of the comment is contained, (2) the address of the �rst character of the comment, (3) the
number of characters in the comment, and (4) a �ag indicating whether the comment appeared at the right
hand margin or centered on the page. For output purposes, is de�ned on (page
6.54) so that it prints the comments represented by such pointers by simply copying the corresponding
characters from one �le to another, or to the terminal. Normal comments are processed the same as
before, and can be intermixed freely with comment pointers.

The comment pointer feature is controlled by the value of .

[Variable]
The comment pointer feature is enabled by setting to .

is initially .

can be changed as often as desired. Thus, some �les can be
loaded normally, and others with their comments converted to comment pointers.

For convenience of editing selected comments, an edit macro, , is included, which loads in the
text of the corresponding comment. The editor’s command, in contrast, prints the comment
reading it by simply copying the corresponding characters to the terminal. is de�ned in terms of

:

[Function]
If is a comment pointer, replaces with the actual text of the comment, which
it reads from its �le. Returns in all cases. If is non- , it is the
name of an open �le, to which copies the comment; in this case,

remains a comment pointer, but it has been changed to point to the new �le
(unless =).

[Function]
De�ned as the prettyprint macro for : copies the comment to the primary output
�le by using .

[Function]
De�ned as the read macro for in : if is ,

6.51

COMMENT1
PRINTDEF only

pointer
* FILERDTBL

* PRETTYPRINTMACROS

NORMALCOMMENTSFLG

NORMALCOMMENTSFLG
NORMALCOMMENTSFLG NIL

NORMALCOMMENTSFLG T

NORMALCOMMENTSFLG

GET*
PP* without

GET*
GETCOMMENT

(GETCOMMENT)

NIL
GETCOMMENT

NORMALCOMMENTSFLG DONTUPDATE

(PRINTCOMMENT)
*

GETCOMMENT

(READCOMMENT)
* FILERDTBL NORMALCOMMENTSFLG NIL

X DESTFL _

X X

X DESTFL

X

X

FL RDTBL LST

15

16

17

15

16

17

Converting Comments to Lower Case

it constructs a comment pointer.

Note that a certain amount of care is required in using the comment pointer feature. Since the text of the
comment resides on the �le pointed to by the comment pointer, that �le must remain in existence as long
as the comment is needed. helps out by changing the comment pointer to always point
at the most recent �le that the comment lives on. However, if the user has been performing repeated

’s (page 11.6) in which di�ering functions have changed at each invocation of , it is
possible for the comment pointers in memory to be pointing at several versions of the same �le, since a
comment pointer is only updated when the function it lives in is prettyprinted, not when the function has
been copied verbatim to the new �le. This can be a problem for �le systems, such as Tenex and Tops20,
that have a built- in limit on the number of versions of a given �le that will be made before old versions
are expunged. In such a case, the user should set the version retention count of any directories involved
to be in�nite. prints an error message if the �le that the comment pointer points at has
disappeared.

Similarly, one should be cognizant of comment pointers in s, and be sure to retain any �les thus
pointed to.

When using comment pointers, the user should also not set (page 6.54) to or call
with option , since this will prevent functions from being prettyprinted, and hence not

get the text of the comment copied into the new �le.

If the user changes the value of but still wishes to use the comment pointer feature,
the new should be given the same read- macro de�nition in as has, and
the same entry be put on . For example, if is reset to be ‘‘ ’’,
then should be performed, and added to

.

6.8.3 Converting Comments to Lower Case

This section is for users operating on terminals without lower case, e.g. model 33 teletypes, who
nevertheless would like their comments to be converted to lower case for more readable line-printer
listings. If the second atom in a comment is , the text of the comment is converted to lower case so
that it looks like English instead of LISP. Note that comments are converted when they are actually
written to a �le by .

The algorithm for conversion to lower case is the following: If the �rst character in an atom is , do not
change the atom (but remove the). If the �rst character is , convert the atom to lower case. If the
atom (minus any trailing punctuation marks) is an Interlisp word, do not change it. Otherwise, convert
the atom to lower case. Conversion only a�ects the upper case alphabet, i.e., atoms already converted
to lower case are not changed if the comment is converted again. When converting, the �rst character
in the comment and the �rst character following each period are left capitalized. After conversion, the
comment is physically modi�ed to be the lower case text minus the �ag, so that conversion is thus

Unless it believes the expression beginning with is not actually a comment, e.g., if the next atom is
‘‘ ’’ or .

User must type as is the escape character.

i.e., is a bound or free variable for the function containing the comment, or has a top level value, or is
a de�ned function, or has a non- property list.

6.52

GETCOMMENT

MAKEFILE MAKEFILE

GETCOMMENT

SYSOUT

PRETTYFLG NIL
MAKEFILE FAST

COMMENTFLG
COMMENTFLG FILERDTBL *

PRETTYPRINTMACROS COMMENTFLG ;
(SETSYNTAX ’; ’* FILERDTBL) (; . PRINTCOMMENT)

PRETTYPRINTMACROS

%%
only

PRETTYPRINT

^
^ %

%%

*
. E

%% %

NIL

INPUT/OUTPUT

only performed once (unless the user edits the comment inserting additional upper case text and another
�ag).

[Variable]
Words on will always be converted to lower case. is
initialized to contain words which are Interlisp functions but also appear frequently
in comments as English words (, , , , , , , etc.).
Therefore, if one wished to type a comment including the lisp fuction , it would
be necessary to type in order that it might be left in upper case.

[Variable]
Words on (that do not appear on) will be left in upper
case. is initialized to .

[Variable]
is used to distinguish between abbreviations and words that end in

periods. Normally, words that end in periods and occur more than halfway to the
right margin cause carriage- returns. Furthermore, during conversion to lowercase,
words ending in periods, except for those on , cause the �rst character
in the word to be capitalized. is initialized to the upper and
lower case forms of , , and .

6.8.4 Special Prettyprint Controls

[Variable]
In order to save space on �les, tabs are used instead of spaces for the inital spaces
on each line, assuming that each tab corresponds to 8 spaces. This results in a
reduction of �le size by about 30%. Tabs are not used if is set to

(initially).

[Variable]
Controls the number of right parentheses necessary for square bracketing to
occur. If = , no brackets are used. is initialized to 4.

[Variable]
The starting column for comments. Initial setting is 48. Comments run between

and . If a word in a comment ends with a ‘‘ ’’ and
is not on the list , and the position is greater than halfway between

and , the next word in the comment begins on a new
line. Also, if a list is encountered in a comment, and the position is greater than
halfway, the list begins on a new line.

[Variable]
If a comment is bigger (using) than in size, it is printed
starting at column 10, instead of . is initialized to 14
(arrived at empirically). Comments are also printed starting at column 10 if their
second element is also a , i.e., comments of the form .

[Variable]
In the interests of e�ciency, approximates the number of characters

6.53

%%

LCASELST
LCASELST LCASELST

AND EVERY GET GO LAST LENGTH LIST
GO

^GO

UCASELST
UCASELST LCASELST

UCASELST NIL

ABBREVLST
ABBREVLST

ABBREVLST
next ABBREVLST

ETC. I.E. E.G.

PRETTYTABFLG

PRETTYTABFLG
NIL T

#RPARS

#RPARS NIL #RPARS

FIRSTCOL

FIRSTCOL LINELENGTH .
ABBREVLST

FIRSTCOL LINELENGTH

PRETTYLCOM
COUNT PRETTYLCOM

FIRSTCOL PRETTYLCOM

* (* * --)

#CAREFULCOLUMNS
PRETTYPRINT

Special Prettyprint Controls

in each atom, rather than calling , when computing how much will �t on
a line. This procedure works satisfactorily in most cases. However, users with
unusually long atoms in their programs, e.g., such as produced by , may
occasionlly encounter some glitches in the output produced by . The
value of tells how many columns (counting
from the right hand margin) in which to actually compute instead of
approximating. Setting to 20 or 30 will eliminate the glitches,
although it will slow down slightly. is initially
0.

[Function]
sets to 120, to 80, and

to 28. These are useful settings for pret typrint ing �les to be listed on wide paper.
restores these parameters to their initial values. The value of

is its previous setting.

[Variable]
If is , uses instead of prettyprinting. This is
useful for producing a fast symbolic dump (see option of , page
11.6). Note that the �le loads the same as if it were prettyprinted. is
initially set to . should not be set to if comment pointers (page
6.51) are being used.

[Variable]
Used to inform to call on selected function de�nitions
before printing them (see page 16.20).

[Variable]
An association- list that enables the user to control the formatting of selected
expressions. of each expression being ed is looked up on

, and if found, of the corresponding entry is applied
to the expression. If the result of this application is , ignores
the expression; i.e., it prints nothing, assuming that the prettyprintmacro has
done any desired printing. If the result of applying the prettyprint macro is
non- , the result is prettyprinted in the normal fashion. This gives the user
the option of computing some other expression to be prettyprinted in its place.

is initially .

Note: ‘‘prettyprinted in the normal fashion’’ includes processing prettyprint macros,
unless the prettyprint macro returns a structure to the one it was handed, in
which case the potential recursion is broken.

[Variable]
A list of elements of the form . For types other than lists
and atoms, the type name of each datum to be prettyprinted is looked up on

, and if found, the corresponding function is applied
to the datum about to be printed, instead of simply printing it with .

is initially .

[Variable]
An association- list that tells to treat a -of-form the same
as some other -of-form. For example, if appears

6.54

NCHARS

CLISPIFY
PRETTYPRINT

#CAREFULCOLUMNS PRETTYPRINT
NCHARS

#CAREFULCOLUMNS
PRETTYPRINT #CAREFULCOLUMNS

(WIDEPAPER)
(WIDEPAPER T) FILELINELENGTH FIRSTCOL PRETTYLCOM

(WIDEPAPER)
WIDEPAPER

PRETTYFLG
PRETTYFLG NIL PRINTDEF PRIN2

FAST MAKEFILE
PRETTYFLG

T PRETTYFLG NIL

CLISPIFYPRETTYFLG
PRETTYPRINT CLISPIFY

PRETTYPRINTMACROS

CAR PRETTYPRINT
PRETTYPRINTMACROS CDR

NIL PRETTYPRINT

NIL

PRETTYPRINTMACROS NIL

EQ

PRETTYPRINTYPEMACROS
(.)

PRETTYPRINTYPEMACROS
PRIN2

PRETTYPRINTYPEMACROS NIL

PRETTYEQUIVLST
PRETTYPRINT CAR

CAR (QLAMBDA . LAMBDA)

FL G

TYPENAME FN

INPUT/OUTPUT

on , then expressions begin ning with are pret-
typrinted the same as s. is initially . Currently,

only allows (i.e., supports in an interesting way) equiv alences
to forms that internally handles. Equivalence to forms for which
the user has speci�ed a pret typrint macro should be made by add ing fur ther entries
to

[Variable]
If non- , and is print ing to a �le or display terminal,
prints in the right hand margin while print ing those expressions
marked by the editor as having been changed (see page 17.22). is
initially .

6.8.5 Font Package

contains a facility for printing elements of various classes (user functions, system functions,
clisp words, comments, etc.) in di�erent fonts to emphasize (or deemphasize) their importance, and in
general to provide for more pleasing printout when printing to a �le. Of course, in order to be useful,
this facility requires that the user has access to a printer which supports multiple fonts, such as an XGP.

Prettyprint signals font changes by inserting a user- de�ned escape sequence, e.g. meaning change
to font 3, change back to font 1, etc. It is convenient if these sequences can consist of control
characters, because by making these characters be separator charactors in , a �le with font
changes in it can also be loaded back in. Otherwise, the user would have to dump two �les, one for
listing, and one for loading.

Currently, the user can specify fonts for each of the following eight classes, each di�erent, or the same
for several classes.

The font for printing the name of the function being prettyprinted, before the
actual de�nition (usually a large font).

If is on, the font for printing any clisp words, i.e. atoms with property
.

The font for everything inside of a comment.

The font for the name of any function in the �le, or any member of the list
.

The font for any other (de�ned) function.

The font for anything in an expression marked by the editor as having been
changed.

The font used in printing the operand of a �le package command.

The font for everything else, or any of the above classes for which a font is not
speci�ed.

Note: the output primitives , , etc., currently do not know about variable width fonts, so

6.55

PRETTYEQUIVLST QLAMBDA
LAMBDA PRETTYEQUIVLST NIL

PRETTYEQUIVLST
PRETTYPRINT

PRETTYPRINTMACROS

CHANGECHAR
NIL PRETTYPRINT PRETTYPRINT
CHANGECHAR

CHANGECHAR
|

PRETTYPRINT

^F^C
^F^A

FILERDTBL

LAMBDAFONT

CLISPFONT CLISPFLG
CLISPWORD

COMMENTFONT

USERFONT
FONTFNS

SYSTEMFONT

CHANGEFONT

PRETTYCOMFONT

DEFAULTFONT

PRINT PRIN1

18

18

Font Package

the user may have to experiment to �nd a compatible (pleasing) set of fonts. Note also that the user does
not set , , et al, but indicates what font to be used by including an appropriate
entry in . will then set , , et al, to a data structure
that contains the necessary information for performing the font change.

[Variable]
A list of elements of the form q , where
is one of the eight font classes and q is the font number for that class. it is
assumed that the user has some way of communicating to the printing device the
correspondence between font numbers and fonts. For each fontclass, the escape
sequence consists of followed by the character for the
font number, i.e. for font number 1, , for font number 2, , etc.

If q is for any fontclass, the is used. Note that the
must be speci�ed or an error is generated.

The operation of the font package is a�ected by a large number of parameters, e.g. ,
, etc. plus the various fontnames themselves. To facilitate switching back and forth between

various con�gurations, the font package allows the user to set the various parameters to their desired
values, and then use the function to package up and save this con�guration. Subsequently,
the user invokes this con�guration by performing .

Note that the user may also want to reset (page 23.14), (page 6.53),
and (page 6.53) as a part of various font con�gurations.

[Function]
Performs some processing on , and then collects names and values
of variables on , and saves them on .

[Function]
Restores font con�guration for . Generates an error if not previously
de�ned.

[Variable]
The list of variables to be packaged by a . Initially ,

, , , , ,
and .

[Variable]
The character or string used to signal the start of a font escape sequence.

[Variable]
If , enables fonts, if , disables fonts, i.e. no font changes are performed when
prettyprinting.

The is a place marker. replaces () when the font con�guration is
de�ned.

6.56

LAMBDAFONT CLISPFONT
FONTPROFILE FONTSET LAMBDAFONT CLISPFONT

FONTPROFILE
(NIL)

FONTESCAPECHAR code
^A ^B

NIL DEFAULTFONT
DEFAULTFONT

FILELINELENGTH
LISTFILESTR

FONTNAME
(FONTSET)

FILELINELENGTH PRETTYLCOM
FIRSTCOL

(FONTNAME)
FONTPROFILE

FONTDEFSVARS FONTDEFS

(FONTSET)

FONTDEFSVARS
FONTNAME FONTCHANGEFLG

FILELINELENGTH COMMENTLINELENGTH FIRSTCOL PRETTYLCOM LISTFILESTR
FONTPROFILE

FONTESCAPECHAR

FONTCHANGEFLG
T NIL

NIL FONTNAME RPLACA CADR

FONTCLASS FONT FONTCLASS

FONT

FONT

NAME

NAME

NAME

NAME NAME

INPUT/OUTPUT

[Variable]
Passed to the operating system by (page 11.9). Can be used to specify
subcommands to the command, e.g. to establish correspondance between
font number and font name.

[Variable]
Since comments are usually printed in a smaller font, is
provided to o�set the fact that Interlisp does not know about font widths. When

= , of is the linelength used to
print short comments, i.e. those printed in the right margin, and is the
linelength used when printing full width comments.

[Function]
Prints the font escape sequence to change to . Note that
is not a font name, so one should use , not

). For use in .

[Variable]
The dictionary of font con�gurations. is a list of elements of form

. To save a con�guration on a �le after performing
a to de�ne it, the user could either save the entire value of ,
or simply use an �le package command (page 11.23) to dump out just the
one con�guration.

6.9 ASKUSER

DWIM, the compiler, the editor, and many other system packages all use , an extremely general
user interaction package, for their interactions with the user at the terminal. takes as its principal
argument which is used to drive the interaction. speci�es what the user can type at
any given point, how should respond to the various inputs, what value should be returned by

, and is also used to present the user at any given point with a list of the possible responses.
also takes other arguments which permit specifying a wait time, a default value, a message

to be printed on entry, a �ag indicating whether or not typeahead is to be permitted, a �ag indicating
whether the transaction is to be stored on the history list (page 8.1), a default set of options, and an
(optional) input �le/string.

6.9.1 Startup Protocol

Interlisp permits and encourages the user to typeahead; in actual practice, the user frequently does this.
This presents a problem for . When is entered and there has been typeahead, was
the input intended for , or was the interaction unanticipated, and the user simply typing ahead
to some other program, e.g. the programmer’s assistant? Even where there was no typeahead, i.e., the
user starts typing the call to , the question remains of whether the user had time to see
the message from and react to it, or simply began typing ahead at an inauspicious moment.
Thus, what is needed is an interlock mechanism which warns the user to stop typing, gives him a chance
to respond to the warning, and then allows him to begin typing to .

6.57

LISTFILESTR
LISTFILES

LIST

COMMENTLINELENGTH
COMMENTLINELENGTH

FONTCHANGEFLG T CAR COMMENTLINELENGTH
CDR

(CHANGEFONT)

(CHANGEFONT LAMBDAFONT)
(CHANGEFONT ’LAMBDAFONT PRETTYPRINTMACROS

FONTDEFS
FONTDEFS

(.)
FONTNAME FONTDEFS

ALISTS

ASKUSER
ASKUSER

ASKUSER
ASKUSER
ASKUSER

ASKUSER ASKUSER
ASKUSER

after ASKUSER
ASKUSER

ASKUSER

FONTCLASS

FONTCLASS FONTCLASS

NAME PARAMETER- PAIRS

KEYLST KEYLST

19

19

Startup Protocol

Therefore, when is �rst entered, and the interaction is to take place with a terminal, and
typeahead to is not permitted, the following protocol is observed:

(1) If there is typeahead, clears and saves the input bu�ers and rings the bell to warn the user
to stop typing. The bu�ers will be restored when completes operation and returns.

(2) If , the message to be printed on entry, is not (the typical case), then prints
if it is a string, otherwise of , if is a list.

(3) After printing or of , waits until the output has actually been printed on the
terminal to make sure that the user has actually had a chance to see the output. This also give the user
a chance to react. then checks to see if anything additional has been typed in the intervening
period since it �rst warned the user in (1). If something has been typed, clears it out and
again rings the bell. This latter material, i.e., that typed between the entry to and this point,
is discarded and will not be restored since it is not certain whether the user simply reacted quickly to
the �rst warning (bell) and this input is intended for , or whether the user was in the process
of typing ahead when the call to occurred, and did not stop typing at the �rst warning, and
therefore this input is a continuation of input intended for another program.

Anything typed after (3) is considered to be intended for , i.e., once the user sees or
of , he is free to respond. For example, (page 8.11) calls when the number
of undosaves are exceeded for an event with =

. Thus, the user can type a response as soon as is typed.

(4) then types the rest of , if any.

(5) Then goes into a wait loop until something is typed. If , the wait time, is not ,
and nothing is typed in seconds, will type ‘‘ ’’ and treat the elements of ,
the default value, as a list of characters, and begin processing them exactly as though they had been
typed. If the user does type anything within seconds, he can then wait as long as he likes, i.e., once
something has been typed, will not use the default value speci�ed in .

If the user wants to consider his response for more than seconds, and does not want to
default, he can type a carriage return or a space, which are ignored if they are not speci�ed as acceptable
inputs by (see below) and they are the �rst thing typed.

If the calling program knows that the user is expecting an interaction with , e.g. another
interaction preceded this one, it can specify in the call to that typeahead is permitted. In this
case, simply notes whether there is any typeahead, then prints and goes into a wait
loop as described above.

(6) Finally, if the interaction is not with the terminal, i.e., the optional input �le/string is speci�ed,
simply prints and begins reading from the �le/string.

In this case, if the typeahead turns out to contain unacceptable input, will assume that the
typeahead was not intended for , and will restore the typeahead when it completes operation
and returns.

6.58

ASKUSER
ASKUSER

ASKUSER
ASKUSER

NIL ASKUSER
CAR

CAR ASKUSER

ASKUSER
ASKUSER

ASKUSER

ASKUSER
ASKUSER

ASKUSER CAR
UNDO ASKUSER

(LIST "undosaves,
continue saving")

ASKUSER

ASKUSER NIL
ASKUSER ...

ASKUSER

ASKUSER

ASKUSER
ASKUSER

ASKUSER

ASKUSER

ASKUSER
ASKUSER

MESS MESS

MESS MESS

MESS MESS

MESS

MESS

MESS NUMBER- UNDOSA VES

NUMBER- UNDOSA VES

MESS

W AIT

W AIT DEF AUL T

W AIT

DEF A UL T

W AIT

KEYLST

MESS

MESS

20

20

INPUT/OUTPUT

6.9.2 Operation

All input operations are executed with the terminal table in the variable ,, in which (1)
has been executed, so that can interact with the user after each character

is typed; and (2) has been executed, so that can decide it reads a
character whether or not the character should be echoed, and with what, e.g. unacceptable inputs are
never echoed.

As each character is typed, it is matched against , and appropriate echoing and/or prompting is
performed. If the user types an unacceptable character, simply rings the bell and allows him
to try again.

At any point, the user can type and receive a list of acceptable responses at that point (generated from
), or type a control- A, control- Q, control- X, or , which causes to reinitialize, and

start over.

Note that , Control- A, Control- Q, and Control- X will not work if they are acceptable inputs, i.e., they
match one of the keys on . will not work if it is an interrupt character, in which case it is
not seen by .

When an acceptable sequence is completed, returns the indicated value.

6.9.3 Format of KEYLST

is a list of elements of the form , where is an atom
or a string (equivalent), is an atom or a string, and a list of options in
property list format. The following options are recognized and explained below: , ,

, , , , , , ,
, . If an option is speci�ed in , the value of the option is the

next element. Otherwise, if the option is speci�ed in (the seventh argument to),
its value is the next element on . Thus, can be used to provide default options
for an entire , rather than having to include the option at each level. If an option does not appear
on either or , its value is .

For convenience, an entry on of the form , can be used as an
abbreviation for , and an entry of just the form , i.e., a
non- list, as an abbreviation for .

As each character is read, it is matched against the currently active keys. A character matches a key if it
is the same character as that in the corresponding position in the key, or, if the character is an alphabetic
character, if the characters are the same without regard for upper/lower case di�erences, i.e. ‘‘ ’’ matches
‘‘ ’’ and vice versa. In other words, if two characters have already been input and matched, the third
character is matched with each active key by comparing it with the third character of that key. If the
character matches with one or more of the keys, the entries on corresponding to the remaining
keys are discarded. If the character does not match with any of the keys, the character is not echoed, and
a bell is rung instead.

Unless the option (page 6.62) is .

6.59

ASKUSERTTBL
(CONTROL T) ASKUSER

(ECHOMODE NIL) ASKUSER after

ASKUSER

?
ASKUSER

?

ASKUSER

ASKUSER

(.)

KEYLST CONFIRMFLG
PROMPTCONFIRMFLG NOCASEFLG RETURN EXPLAINSTRING NOECHOFLG KEYSTRING PROMPTON
COMPLETEON AUTOCOMPLETEFLG

ASKUSER

NIL

(.)
(CONFIRMFLG T)

(NIL CONFIRMFLG T)

A
a

NOCASEFLG T

KEYLST

KEYLST

KEYLST

KEYLST KEY PR OMPTSTRING OPTIONS KEY

PR OMPTSTRING OPTIONS

OPTIONS

OPTIONSLST

OPTIONSLST OPTIONSLST

KEYLST

OPTIONS OPTIONSLST

KEYLST KEY ATOM/STRING

KEY ATOM/STRING KEY

KEY

KEYLST

21

21

Format of KEYLST

When a key is complete, is printed (is equivalent to ‘‘’’,the empty string, i.e., nothing
will be printed). Then, if the value of the option is , waits for con�rmation of
the key by a or space. Otherwise, the key does not require con�rmation.

Then, if the value of the option is not , its value becomes the new , and the process
recurses. Otherwise, the key is a ‘‘leaf,’’ i.e., it terminates a particular path through the original, top- level

, and returns the result of packing all the keys that have been matched and completed
along the way (unless the option is used to specify some other value, as described below).

For example, the following is the default , i.e., is used when is called with
= :

This speci�es that if (as soon as) the user types (or), echoes with , prompts with
‘‘ ’’, and returns as its value. Similarly, if the user types , echoes the , prompts with
‘‘ ’’, and returns . If the user types , prints:

to indicate his possible responses. All other inputs are unacceptable, and will ring the bell and
not echo or print anything.

Here is a more complicated example, the used for the compiler questions (page 12.1):

When is called with this , and the user types an , two keys are matched: and .
The user can then type a , which matches only the key, or con�rm the key by typing a or space.
If the user con�rms the key, prompts with ‘‘ ’’, and returns as its
value. (Note that the con�rming character is not included in the value.) If the user types a ,
prompts with ‘‘ ’’, and makes be the new ,
and waits for more input. The user can then type an , or con�rm the ‘‘’’(which essentially starts out
with all of its characters matched). If he con�rms the ‘‘’’, returns as its value the result of
packing and ‘‘’’. If he types , prompts with ‘‘ ’’, and waits for con�rmation
again. If the user then con�rms, returns , the result of packing and .

As mentioned earlier, at any point the user can type a and be prompted with the possible responses.
For example, if the user types and then , will type:

is used throughout the discussion to denote carriage return.

6.60

NIL
CONFIRMFLG T ASKUSER

cr

KEYLST NIL

ASKUSER
RETURN

ASKUSER
NIL ((Y "es cr") (N "o cr"))

Y y ASKUSER Y
es cr Y N ASKUSER N
o cr N ? ASKUSER

Yes
No

ASKUSER

((ST "ore and redefine " KEYLST ("" (F . "orget exprs"))
(S . "ame as last time")
(F . "File only")
(T . "o terminal")
1
2
(Y . "es")
(N . "o"))

ASKUSER S ST S
T ST S cr

S ASKUSER ame as last time S
T ASKUSER

ore and redefine ("" (F . "orget exprs"))
F

ASKUSER ST
ST F ASKUSER orget exprs

ASKUSER STF ST F

?
S ? ASKUSER

STore and redefine Forget exprs
STore and redefine
Same as last time

cr

PR OMPTSTRING

KEYLST

KEYLST

KEYLST KEYLST

KEYLST

KEYLST

KEYLST

KEYLST

KEYLST

INPUT/OUTPUT

6.9.4 Completing a Key

The decision about when a key is complete is more complicated than simply whether or not all of its
characters have been matched. In the example above, all of the characters in the key are matched as
soon as the has been typed, but until the next character is typed, does not know whether the

completes the key, or is simply the �rst character in the key. Therefore, a key is considered to
be complete when:

(1) All of its characters have been matched and it is the only key left, i.e., there are no other keys for
which this key is a substring; or

(2) All of its characters have been matched and a con�rming character is typed; or

(3) All of its characters have been matched, and the value of the option is , and the
value of the option is not , and the next character matches one of the keys on the value of
the option; or

(4) There is only one key left and a con�rming character is typed. Note that if the value of
is , the key still has to be con�rmed, regardless of whether or not it is complete. For example, if the
�rst entry in the above example were instead

and the user wanted to specify the path, he would have to type , con�rm before typing ,
even though the completed the key by the rule in case (1). However, he would be prompted with
‘‘ ’’ as soon as he typed the , and completed the key.

Case (2) says that con�rmation can be used to complete a key in the case where it is a substring of another
key, even where the value of is . In this case, the con�rming character doubles as both
an indicator that the key is complete, and also to con�rm it, if necessary. This situation corresponds to
typing in the above example.

Case (3) says that if there were another entry whose key was in the above example, so that after
the user typed , two keys, and , were still active, then typing would complete the key,
because matches the entry on the value of the option of the
entry. In this case, ‘‘ ’’ would be printed the was echoed.

Finally, case (4) says that the user can use con�rmation to specify completion when only one key is left,
even when all of its characters have not been matched. For example, if the �rst key in the above example
were , the user could type and then con�rm, and would be echoed, followed by whatever
prompting was speci�ed. In this case, the con�rming character also con�rms the key if necessary, so that
no further action is required, even when the value of is .

Case (4) permits the user not to have to type every character in a key when the key is the only one left.
Even when there are several active keys, the user can type type (the key, or on some terminals,
the key labelled) to specify the next >0 common characters among the currently active keys. The
e�ect is exactly the same as though these characters had been typed. If there are no common characters
in the active keys at that point, i.e. =0, the is treated as an incorrect input, and the bell is rung.
For example, if is , and the user types

followed by , will supply the , , , and . The user can then type followed by or
space to complete and con�rm , as per case (4), or type , followed by , and will
supply the , etc. Note that the characters supplied do not have to correspond to a terminal segment of

6.61

S
S ASKUSER

S S ST

CONFIRMFLG NIL
KEYLST NIL

KEYLST

CONFIRMFLG
T

(ST "ore and redefine " CONFIRMFLG T KEYLST ("" (F . "orget exprs"))

STF ST then F
ST ST

ore and redefine T ST

CONFIRMFLG NIL

S cr

STX
ST ST STX F ST

F (F . "orget exprs") KEYLST ST
ore and redefine before F

STORE ST ORE

CONFIRMFLG T

$ ESC
ALT

$
(CLISPFLG CLISPIFYPACKFLG CLISPIFTRANFLG)

C $ ASKUSER L I S P F cr

CLISPFLG I $ ASKUSER
F

N

N

KEYLST

Options

any of the keys. Note also that the does not con�rm the key, although it may complete it in the case
that there is only one key active.

If the user types a con�rming character when several keys are left, the next >0 common characters are
still supplied, the same as with . However, assumes the intent was to complete a key, i.e.,
case (4) is being invoked. Therefore, after supplying the next characters, the bell is rung to indicate
that the operation was not completed. In other words, typing a con�rming character has the same e�ect
as typing an in that the next common characters are supplied. Then, if there is only one key left,
the key is complete (case 4) and con�rmation is not required. If the key is not the only key left, the bell
is rung.

6.9.5 Options

When a key is complete, if the value of the option is not , this value
becomes the new and the process recurses. Otherwise, the key terminates
a path through the original, top- level , and returns the indicated
value.

If , the key must be con�rmed with either a or a space. If the value of
is a , the con�rming character may be any member of the list.

If , whenever con�rmation is required, the user is prompted with the string ‘‘
’’.

If , says do perform case independent matching on alphabetic characters. If
, do perform case independent matching, i.e. ‘‘ ’’ matches with ‘‘ ’’ and vice

versa.

If non- , of the value of the option is returned as the value
of . Note that di�erent options can be speci�ed for di�erent
keys. The variable is bound in to the list of keys that have
been matched. In other words, would be equivalent
to what normally does.

If the value of the option is non- , its value is printed when
the user types a , rather than + . enables
more elaborate explanations in response to a than what the user sees when he
is prompted as a result of simply completing keys. See example below.

If non- , characters that are matched (or automatically supplied as a result of
typing or con�rming) are not echoed, nor is the con�rming character, if any.
The value of is automatically when is reading from a
�le or string. The decision about whether or not to echo a character that matches
several keys is determined by the value of the option for the �rst key.

Example: one of the entries on the used by (page 11.8) is:

6.62

$

$ ASKUSER

$

KEYLST KEYLST NIL

ASKUSER

CONFIRMFLG T cr

CONFIRMFLG list

PROMPTCONFIRMFLG
T

[confirm]

NOCASEFLG T not
NIL A a

RETURN NIL EVAL RETURN
ASKUSER RETURN

ANSWER ASKUSER
RETURN (PACK ANSWER)

ASKUSER

EXPLAINSTRING EXPLAINSTRING NIL
? EXPLAINSTRING

?

NOECHOFLG NIL
$

NOECHOFLG NIL ASKUSER

NOECHOFLG

ADDTOFILES?

(] "Nowhere cr" NOECHOFLG T
EXPLAINSTRING "] - nowhere, item is marked as a dummy cr")

N

N

N

KEYLST

KEYLST

KEY PR OMPTSTRING

KEYLST

INPUT/OUTPUT

When the user types , just prints ‘‘ ’’, i.e., the is not echoed. If the user types ,
the explanation corresponding to this entry will be:

If non- , characters that are matched are echoed as though the value of
were used in place of the key. is also used for computing

the value returned. The main reason for this feature is to enable echoing in
lowercase.

If non- , is printed when the key is con�rmed with a
member of the value of . See example below.

When a con�rming character is typed, the characters that are automatically
supplied, as speci�ed in case (4), are echoed when the key is con�rmed with
a member of the value of .

The and options enable the user to construct a which will cause
to emulate the action of the TENEX exec. The protocol followed by the TENEX exec is

that the user can type as many characters as he likes in specifying a command. The command can be
completed with a or space, in which case no further output is forthcoming, or with a , in which case
the rest of the characters in the command are echoed, followed by some prompting information. The
following would handle the TENEX and comands:

If the value of the option is not , will
automatically supply unambiguous characters whenever it can, i.e., acts
as though were typed after each character (except that it does not ring the bell
if there are no unambiguous characters).

value is a list of dotted pairs of form . When
is typed, and it does not match any of the current keys, is evaluated and
nothing else happens, i.e. the matching process stays where it is. For example,
could have been implemented using this option. Essentially provides
a read macro facility while inside of (since does ’s, read
macros de�ned via the readtable are never invoked).

value is what is printed to delimit explanation in response to . Initially ‘‘ ’’ but
can be reset, e.g. to ‘‘ ’’, for more linear output.

6.63

] ASKUSER Nowherecr] ?

] - nowhere, item is marked as a dummy

KEYSTRING NIL
KEYSTRING KEYSTRING

PROMPTON NIL only
PROMPTON

COMPLETEON
only

PROMPTON

PROMPTON COMPLETEON
ASKUSER

cr $

COPY CONNECT

((COPY " (FILE LIST) "
PROMPTON ($)
COMPLETEON ($)
CONFIRMFLG ($))

(CONNECT " (TO DIRECTORY) "
PROMPTON ($)
COMPLETEON ($)
CONFIRMFLG ($)))

AUTOCOMPLETEFLG
AUTOCOMPLETEFLG NIL ASKUSER

ASKUSER
$

MACROCHARS (.)

?
MACROCHARS

ASKUSER ASKUSER READC

EXPLAINDELIMITER
? cr

,

PR OMPTSTRING

N

KEYLST

KEYLST

CHARA CTER FORM CHARA CTER

FORM

22

22

Special Keys

6.9.6 Special Keys

can be used as a key to match with any single character, provided the character does not match with
some other key at that level. For the purposes of echoing and returning a value, the e�ect is the same as
though the character that were matched actually appeared as the key.

(esc) can be used as a key to match with the result of a single call to . For example, if the �rst
entry in the TENEX above were:

then if the user typed , would be returned as the value of . One
advantage of using , rather than having the calling program perform the , is that the call to
from inside is protected, so that the user can back out of this path and reinitialize

, e.g. to change from a command to a command, simply by typing control- E.

can be used as a key to match with the result of a single call to .

A list can be used as a key, in which case the list/form is evaluated and its value ‘‘matches’’ the key.
This feature is provided primarily as an escape hatch for including arbitrary input operations as part of
an sequence. For example, the e�ect of could be achieved simply by using ()
as a key.

‘‘’’ can be used as a key. Since it has no characters, all of its characters are automatically matched.
‘‘’’ essentially functions as a place marker. For example, one of the entries on the used by

is:

Thus, if the user types a character that does not match any of the other keys on the , then the
character completes the ‘‘’’ key, by virtue of case (4), since the character match with the in the
inner . then prints ‘‘ ’’ echoing the character, then calls .
The character will be read as part of the . The value returned by will be the value of the

.

[Function]
is either or a number (of seconds). is a single character or

a sequence (list) of characters to be used as the default inputs for the case when
is not and more than seconds elapse without any input. In this

For , , or a list, if the last character read by the input operation is a separator, the character is
treated as a con�rming character for the key. However, if the last character is a break character, it will
be matched against the next key.

6.64

&

$ READ

(COPY " (FILE LIST) "
PROMPTON ($)
COMPLETEON ($)
CONFIRMFLG ($)
KEYLST (($ NIL RETURN ANSWER)))

COP FOO cr (COPY FOO) ASKUSER
$ READ READ

ASKUSER ERRORSET
ASKUSER COPY CONNECT

$$ READLINE

ASKUSER $$ READLINE T

ADDTOFILES?

("" "File/list: "
EXPLAINSTRING "a file name or name of a function list"
KEYLST ($))

will $
ASKUSER File/list: before READ

READ ASKUSER
READ

(ASKUSER)

NIL

NIL

$ $$

KEYLST

KEYLST

KEYLST

KEYLST

W AIT DEF A UL T MESS KEYLST TYPEAHEAD LISPXPRNTFL G OPTIONSLST FILE

W AIT DEF A UL T

W AIT W AIT

23

23

INPUT/OUTPUT

case, the character(s) from are processed exactly as though they had been
typed, except that �rst types ‘‘ ’’.

is the initial message to be printed by , if any, and can be a string,
or a list. In the latter case, each element of the list is printed, separated by spaces,
and terminated with a ‘‘ ’’. and were described earlier.

is if the user is permitted to typeahead a response to .
means any typeahead should be cleared and saved. determines
whether or not the interaction is to be recorded on the history list. can be
either (in which case it is set to), the name of a �le, or a string. All input
operations take place from until an unacceptable input is encountered, i.e.,
one that does not conform to the protocol de�ned by . At that point,
is set to , is set to , the input bu�er is cleared, and a bell is rung.
Unacceptable inputs are not echoed.

The value of is the result of packing all the keys that were matched,
unless the option is speci�ed (page 6.62).

[Function]
is a list of atoms or strings. returns an which

will permit the user to specify one of the elements on by either typing enough
characters to make the choice unambiguous, or else typing a number between 1
and , where is the length of .

For example, if is called with =
, then the user can type - - , , - - , , , or to

indicate one of the three choices.

If = , then echoing of upper case elements will be in lower case (but
the value returned will still be one of the elements of). If is
non- , it will be the last key on the . Otherwise, a key which permits
the user to indicate ‘‘No - none of the above’’ choices, in which case the value
returned by will be .

If is a string, and all of its characters are read before �nishes, will be reset to ,
and the interaction will continue with reading from the terminal.

6.65

ASKUSER ...

ASKUSER

?
T ASKUSER NIL

NIL T

T NIL

ASKUSER
RETURN

(MAKEKEYLST)
MAKEKEYLST ASKUSER

ASKUSER (MAKEKEYLST ’(CONNECT
SUPPORT COMPILE)) C O N S C O M 1 2 3

T

NIL

ASKUSER NIL

ASKUSER T
ASKUSER

DEF AUL T

MESS

KEYLST OPTIONSLST

TYPEAHEAD

LISPXPRNTFL G

FILE

FILE

KEYLST FILE

DEF AUL T

LST DEF A UL TKEY LCASEFL G _

LST KEYLST

LST

N N LST

KEYLST

LCASEFL G

LST DEF AUL TKEY

KEYLST

FILE FILE

Special Keys

6.66

