
CHAPTER 1

INTRODUCTION

Interlisp is a . A programming system consists of a programming , a large
number of prede�ned programs (or , to use the Lisp terminology) that can be used either
as direct user commands or as subroutines in user programs, and an that supports the
programmer by providing a variety of specialized programming tools. The language and prede�ned
functions of Interlisp are rich, but similar to those of other modern programming languages. The Interlisp
programming environment, on the other hand, is very distinctive. Its most salient characteristic is an
integrated set of programming tools which know enough about Interlisp programming so that they can act
as semi-autonomous, intelligent ‘‘assistants’’ to the programmer. In addition, the environment provides a
completely self-contained world for creating, debugging and maintaining Interlisp programs.

This manual describes all three components of the Interlisp system. There are discussions about the
content and structure of the language, about the pieces of the system that can be incorporated into user
programs, and about the environment. The line between user code and the environment is thin and
changing. Most users extend the environment with some special features of their own. Because Interlisp
is so easily extended, the system has grown over time to incorporate many di�erent ideas about e�ective
and useful ways to program. This gradual accumulation over many years has resulted in a rich and diverse
system. That is the reason this manual is so large.

Whereas the rest of this manual describes the individual pieces of the Interlisp system, this chapter attempts
to describe the whole system� language, environment, tools, and the otherwise unstated philosophies that
tie it all together. It is intended to give a global view of Interlisp to readers approaching it for the �rst
time.

1.1 INTERLISP AS A PROGRAMMING LANGUAGE

This manual does not contain an introduction to programming in Lisp. Sadly, primers and teaching
materials for Lisp are few and quickly become dated. [Winston & Horn, 1981] discuss Lisp and its
applications, but focus on MacLisp, with only a limited section on Interlisp in an appendix. [Siklossy,
1976] and [Weissman, 1967] are both sound, but a little dated. In this section, we simply highlight a few
key points about Lisp on which much of the later material depends.

The Lisp family of languages (e.g., Interlisp, UCI Lisp [Meehan, 1979], FranzLisp [Foderaro, 1979],
MacLisp [Moon, 1974], Lisp Machine Lisp [Weinreb & Moon, 1979], etc.) shares a common structure
in which large programs (or functions) are built up by composing the results of smaller ones. Although
Interlisp, like most modern Lisps, allows programming in almost any style one can imagine, the natural
style of Lisp is functional and recursive, in that each function computes its result by selecting from or
building upon the values given to it and then passing that result back to its caller (rather than by producing
‘‘side-e�ects’’ on external data structures, for example). A great many applications can be written in Lisp
in this purely functional style, which is encouraged by the simplicity with which Lisp functions can be
composed together.

1.1

programming system language
functions

environment

Interlisp as an Interactive Environment

Lisp is also a list-manipulation language. The essential primitive data objects of any Lisp are ‘‘atoms’’
(symbols or identi�ers) and ‘‘lists’’(sequences of atoms or lists), rather than the ‘‘characters’’ or ‘‘numbers’’
of more conventional programming languages (although these are also present in all modern Lisps). Each
Lisp dialect has a set of operations that act on atoms and lists, and these operations comprise the core of
the language.

Invisible in the programs, but essential to the Lisp style of programming, is an automatic memory
management system (an ‘‘allocator’’ and a ‘‘garbage collector’’). Allocation of new storage occurs
automatically whenever a new data object is created. Conversely, that storage is automatically reclaimed
for reuse when no other object makes reference to it. Automatic allocation and deallocation of memory
is essential for rapid, large scale program development because it frees the programmer from the task
of maintaining the details of memory administration, which change constantly during rapid program
evolution.

A key property of Lisp is that it can represent Lisp function de�nitions as pieces of Lisp list data.
Each subfunction ‘‘call’’(or) is written as a list in which the function is written �rst,
followed by its arguments. Thus, is a list structure representation of the expression

. Each program can be written as a list of such function applications. This representation of program as
data allows one to apply the same operations to programs that one uses to manipulate data, which makes
it very straightforward to write Lisp programs which look at and change . This, in
turn, makes it easy to develop programming tools and translators, which was essential in enabling the
development of the Interlisp environment.

One result of this ability to have one program examine another is that one can extend the Lisp programming
language itself. If some desired programming idiom is not supported, it can be added simply by de�ning
a function that translates the desired expression into simpler Lisp. Interlisp provides extensive facilities
for users to make this type of language extension. In addition, the CLISP (Conversational LISP) package
provides de�nitions for several commonly used programming constructs (... ... , and

loops, etc.) that make many programs easier to express. Using this ability to extend itself, Interlisp has
incorporated many of the constructs that have been developed in other modern programming languages.

1.2 INTERLISP AS AN INTERACTIVE ENVIRONMENT

Interlisp programs should not be thought of as autonomous, external �les of source code. All Interlisp
programming takes place within the Interlisp environment, which is a completely self-su�cient environment
for developing and using Interlisp programs. Not only does the environment contain the obvious
programming facilities (e.g., program editors, compilers, debuggers, etc.), but it also contains a variety of
tools which assist the user by ‘‘keeping track’’ of what happens, so the user doesn’t have to. For example,
the Interlisp �le package notices when programs or data have been changed, so that the system will
know what needs to be saved at the end of the session. The ‘‘residential’’ style, where one stays within
the environment throughout the development, from initial program de�nition through �nal debugging, is
essential for these tools to operate. Furthermore, this same environment is available to support the �nal
production version, some parts providing run time support and other parts ignored until the need arises
for further debugging or development.

For terminal interaction with the user, Interlisp provides a ‘‘Read-Eval-Print’’ loop. That is, whatever the
user types in is by the system, executed (or ‘‘ ’’-uated) and the result is -ed onto the
terminal. (This interaction is also recorded by the programmer’s assistant, described below, so the user

1.2

function application
(PLUS 1 2) 1 +

2

other Lisp programs

if then else for
do

READ EVAL PRINT

INTRODUCTION

can ask to do an action again, or even to undo the e�ects of a previous action.) Although each interactive
terminal listener (or ‘‘executive’’) de�nes a few specialized commands, most of the interaction will consist
of simple evaluations of ordinary Lisp expressions. Thus, instead of specialized terminal commands for
operations like manipulating the user’s �les, actions like this are carried out simply by typing the same
expressions that one would use to accomplish them inside a Lisp program. This creates a very rich, simple
and uniform set of interactive commands, since any Lisp expression can be typed at a command executive
and evaluated immediately.

In normal use, one writes a program (or rather, ‘‘de�nes a function’’) simply by typing in an expression
that invokes the ‘‘function de�ning’’ function (), giving it the name of the function being de�ned
and its new de�nition. The newly de�ned function can be executed immediately, simply by using it in
a Lisp expression. Although most Interlisp code is normally run compiled (for reasons of e�ciency),
the initial versions of most programs, and all of the user’s terminal interactions, will be run interpreted.
Eventually, as a function gets larger or is used in many places, it becomes more e�ective to compile it.
Usually, by that stage, the function has been stored on a �le and the whole �le (which may contain many
functions) is compiled at once. , the compiler (), and the interpreter (), are all
themselves Lisp functions that use the ability to treat other Lisp expressions and programs as data.

In addition to these basic programming tools, Interlisp also provides a wide variety of programming
support mechanisms:

Structure editor Since Interlisp programs are represented as list structure, Interlisp provides an editor
which allows one to change the list structure of a function’s de�nition directly.

Pretty- printer The pretty printer is a function that prints Lisp function de�nitions so that their
syntactic structure is displayed by the indentation and fonts used.

Break Package When errors occur, the break package is called, allowing the user to examine and
modify the context at the point of the error. Often, this enables execution to
continue without starting over from the beginning. Within a break, the full power
of Interlisp is available to the user. Thus, the broken function can be edited, data
structures can be inspected and changed, other computations carried out, and so
on. All of this occurs in the context of the suspended computation, which will
remain available to be resumed.

DWIM The ‘‘Do What I Mean’’ package automatically �xes the user’s misspellings and
errors in typing.

Programmer’s Assistant
Interlisp keeps track of the user’s actions during a session and allows each one to
be replayed, undone, or altered.

Masterscope Masterscope is a program analysis and management tool which can analyze users’
functions and build (and automatically maintain) a data base of the results.
This allows the user to ask questions like ‘‘ ’’ or ‘‘

’’or to request systematic changes like ‘‘
’’.

Record/Datatype Package
Interlisp allows a programmer to de�ne new data structures. This enables one to
separate the issues of data access from the details of how the data is actually stored.

1.3

DEFINEQ

DEFINEQ COMPILE EVAL

WHO CALLS ARCTAN WHO
USES COEF1 FREELY EDIT WHERE ANY
(function) FETCHES ANY FIELD OF (the data structure) FOO

Interlisp Philosophy

File Package Files in Interlisp are managed by the system, removing the problem of ensuring
timely �le updates from the user. The �le package can be modi�ed and extended
to accomodate new types of data.

Performance Analysis
These tools allow statistics on program operation to be collected and analyzed.

These facilities are tightly integrated, so they know about and use each other, just as they can be used
by user programs. For example, Masterscope uses the structural editor to make systematic changes. By
combining the program analysis features of Masterscope with the features of the structural editor, large
scale system changes can be made with a single command. For example, when the lowest-level interface
of the Interlisp- D I/O system was changed to a new format, the entire edit was made by a single call
to Masterscope of the form ��� . [Burton et al., 1980] This
caused Masterscope to invoke the editor at each point in the system where any of the functions in the list

��� were called. This ensured that no functions used in input or output were overlooked
during the modi�cation.

The new, personal machine implementations of Interlisp, such as Interlisp- D, also provide some new user
facilities, and some new, interactive graphic interfaces to some of the older Interlisp programming tools:

Multiple Processes The multiple and independent processes allowed in Interlisp- D simplify problems
which require logically separate pieces of code to operate in parrallel.

Windows The ability to have multiple, independent windows on the display allows many
di�erent processes or activities to be active on the screen at once.

Inspector The inspector is a display tool for examining complex data structures encountered
during debugging.

The �gure found at the beginning of this chapter shows a standard user display within Interlisp- D. One
window displays a list of messages available for browsing, using an experimental mail reading system.
This operates in parallel with the user’s other activities, continually monitoring the remote mail server
and watching for any new messages. The ‘‘DEdit’’ window is editing an Interlisp function. The ‘‘Chat’’
window o�ers a direct connection to a remote machine (this one is a remote �le server). There are two
nested break windows showing the environment of an interrupted evaluation. And in the lower right,
there is a Masterscope display showing all the possible execution paths to some function.

Some of the newer implementations of Interlisp have embedded within them an entire operating system
written in Interlisp. For the most part, that is of no concern to the user (although it is nice to know that one

write programs of this complexity and performance within Interlisp!). However, some of the facilities
provided by this low level code allow the use of Interlisp for applications that would previously have
been forced into a relatively impoverished system programming environment. In particular, Interlisp- D
provides complete facilities for experimenting with distributed machines and services on a local area
network, plus access to all the services that such networks provide (e.g., mail, printing, �ling, etc.).

1.3 INTERLISP PHILOSOPHY

The extensive environmental support that the Interlisp system provides has developed over the years
in order to support a particular style of programming called ‘‘exploratory programming’’ [Sheil, 1983].

1.4

EDIT WHERE ANY CALLS ’(BIN BOUT)

’(BIN BOUT)

can

INTRODUCTION

For many complex programming problems, the task of program creation is simply one of writing a
program to ful�ll pre- identi�ed speci�cations. Instead, it is a matter of exploring the problem (trying
out various solutions expressed as partial programs) until one �nds a good solution (or sometimes, any
solution at all!). Such programs are by their very nature evolutionary; they are transformed over time
from one realization into another in response to a growing understanding of the problem. This point of
view has lead to an emphasis on having the tools available to analyze, alter, and test programs easily.
One important aspect of this is that the tools be designed to work together in an integrated fashion, so
that knowledge about the user’s programs, once gained, is available throughout the environment.

The development of programming tools to support exploratory programming is itself an exploration.
Noone knows all the tools that will eventually be found useful, and not all programmers want all of the
tools to behave the same way. In response to this diversity, Interlisp has been shaped, by its implementors
and by its users, to be easily extensible in several di�erent ways. First, there are many places in the system
where its behavior can be adjusted by the user. One way that this can be done is by changing the value
of various ‘‘�ags’’ or variables whose values are examined by system code to enable or suppress certain
behavior. The other is where the user can provide functions or other behavioral speci�cations of what is to
happen in certain contexts. For example, the format used for each type of list structure when it is printed
by the pretty- printer is determined by speci�cations that are found on the list .
Thus, this format can be changed for a given type simply by putting a printing speci�cation for it on that
list.

Another way in which users can e�ect Interlisp’s behavior is by rede�ning or changing system functions.
The ‘‘Advise’’ capability, for instance, permits the user to modify the operation of virtually any function
in the system by wrapping user code ‘‘around’’ the selected function. (This same philosophy extends
to the break package and tracing, so almost any function in the system can be broken or traced.)
Experimentation is thus encouraged and actively facilitated, which allows the user to �nd useful pieces of
the Interlisp system which can be con�gured to assist with application development. This is even easier
in systems like Interlisp- D, where the entire system is implemented in Interlisp, since there are extremely
few places where the system’s behavior depends on anything outside of Interlisp (such as a low level
system implementation language).

While these techniques provide a fair amount of tailorability, the price paid is that Interlisp presents an
overall appearance of complexity. There are many �ags, parameters and controls that a�ect the behavior
one sees. Because of this complexity, Interlisp tends to be more comfortable for experts, rather than
casual users. Beginning users of Interlisp should depend on the default settings of parameters until they
learn what dimensions of �exibility are available. At that point, they can begin to ‘‘tune’’ the system to
their preferences.

The various implementations of Interlisp share not only this general philosophy, but a philosophy about
each other also. Interlisp is available in highly compatible versions across several machines. The
community of Interlisp implementors is committed to maintain this level of compatibility. One testimony
to this is the existence of pieces of very old code in modern versions of Interlisp that have been inherited
from the original BBN-Lisp system nearly 15 years ago. Many of the function de�nitions in the core of
the system have not changed since 1977, over many di�erent versions of Interlisp.

Appropriately enough, even Interlisp’s underlying philosophy was itself discovered during Interlisp’s
development, rather than laid out beforehand. The Interlisp environment and its interactive style were
�rst analyzed in Sandewall’s excellent paper [Sandewall, 1978]. The notion of ‘‘exploratory programming’’
and the genesis of the Interlisp programming tools in terms of the characteristic demands of this style of
programming was developed in [Sheil, 1983]. The evolution and structure of the Interlisp programming
environment are discussed in greater depth in [Teitelman & Masinter, 1981].

1.5

not

PRETTYPRINTMACROS

1

1

How to Use this Manual

1.4 HOW TO USE THIS MANUAL

This document is a reference manual, not a primer. We have tried to provide a manual that is complete,
and that allows Interlisp users to �nd particular items as easily as possible. Sometimes, these goals have
been achieved at the expense of simplicity. For example, many functions have a number of arguments
that are rarely used. In the interest of providing a complete reference, these arguments are fully explained,
even though they would normally be defaulted. There is a lot of information in this manual that is only
of interest to experts.

Users should not try to read straight through this manual, like a novel. In general, the chapters are
organized with overview explanations and the most useful functions at the beginning of the chapter, and
implementation details towards the end. If you are interested in becoming acquainted with Interlisp using
this manual, the best way would be to skim through the whole book, reading the beginning of each
chapter.

A few notes about the notational conventions used in this manual:

Lisp object notation: All Interlisp objects in this manual are printed in the same font: Functions
(, , ,); Variables (, ,); and arbitrary Interlisp
expressions: , ��� , etc.

Case is signi�cant: An important piece of information, often missed by newcomers to Interlisp, is that
The variable is not the same as the variable , which is not the

same as the variable . By convention, most Interlisp system functions and variables are all-uppercase,
but users are free to use upper and lower case for their own functions and variables as they wish.

This manual contains a large number of descriptions of functions, variables, commands, etc, which are
printed in the following standard format:

[Function]
This is a description for the function named . has two arguments, and

. Some system functions have extra optional arguments that are not documented
and should not be used. These extra arguments are indicated by ‘‘� ’’.

The descriptor [Function] indicates that this is a function, rather than a [Variable],
[Prog. Asst. Command], etc.. For function de�nitions only, this can also indicate
the function ‘‘type’’: [NLambda Function], [NoSpread Function], or [NLambda
NoSpread Function], which describes whether the function takes a �xed or variable
number of arguments, and whether the arguments are evaluated or not.

One exception to the case-signi�cance rule is provided by the Interlisp CLISP facility, which allows
iterative statement operators and record operations to be typed in either all-uppercase or all-lowercase
letters: ��� is the same as ��� . The few situations
where this is the case are explicitly mentioned in the manual. Generally, one should assume that case is
signi�cant.

1.6

AND PLUS DEFINEQ LOAD MAX.INTEGER FILELST DFNFLG
(PLUS 2 3) (PROG ((A 1)))

upper and lower case is signi�cant. FOO foo
Foo

(FOO)
FOO FOO

(for X from 1 to 5) (FOR X FROM 1 TO 5)

BAR BAZ _

BAR

BAZ

INTRODUCTION

1.5 REFERENCES

[Burton, et al., 1980] Burton, R. R., L. M. Masinter, A. Bell, D. G. Bobrow, W. S. Haugeland, R.M.
Kaplan and B.A. Sheil, ‘‘Interlisp-D: Overview and Status’’ � in [Sheil & Masinter,
1983].

[Foderaro, 1979] Foderaro, John K., � University of California, Bekeley,
California (1979).

[Meehan, 1979] Meehan, J. R., � Lawrence Erlbaum Associates,
Hillsdale, New Jersey (1979).

[Moon, 1974] Moon, David, � Version 0, Laboratory for Computer
Science, MIT, Cambridge, Massachusetts, (1974)

[Sandewall, 1978] Sandewall, Erik, ‘‘Programming in the Interactive Environmnet: The LISP
Experience’’ � , vol 10, no 1, pp 35-72, (March 1978).

[Sheil, 1983] Sheil, B.A., ‘‘Environments for Exploratory Programming’’ � , (February,
1983) � also in [Sheil & Masinter, 1983].

[Sheil & Masinter, 1983]
Sheil, B.A. and L. M. Masinter, ‘‘Papers on Interlisp- D’’, Xerox PARC Technical
Report CIS-5 (Revised), (January, 1983).

[Siklossy, 1976] Siklossy, L., � Prentice- Hall, Englewood Cli�s, New Jersey (1976).

[Teitelman & Masinter, 1981]
Teitelman, W. and L. M. Masinter, ‘‘The Interlisp Programming Environment’’ �

, vol 14, no 4, pp 25-34, (April 1981) � also in [Sheil & Masinter, 1983].

[Weinreb & Moon, 1979]
Weinreb, D. and D. Moon, � Arti�cial Intelligence
Laboratory, MIT, Cambridge, Massachusetts, (January 1979).

[Weissman, 1967] Weissman, C., � Dickenson Publishing Company, Belmont,
California (1967).

[Winston & Horn, 1981]
Winston, P. H., and B.K.P. Horn, � Addison- Wesley, Reading, Massachusetts
(1981).

1.7

The FRANZ LISP Manual

The New UCI Lisp Manual

MACLISP Reference Manual

ACM Computing Surveys

Datamation

Let’s Talk Lisp

Computer

Lisp Machine Manual

LISP 1.5 Primer

LISP

References

1.8

