
CHAPTER 22

INTERLISP-10 SPECIFICS

This chapter describes a number of features of Interlisp- 10 that are machine or implementation- dependent,
and are not expected to be implemented in newer implementations of Interlisp.

22.1 INTERLISP-10 INTERRUPT CHARACTERS

The table below gives the interrupt characters currently enabled in Interlisp- 10.

Note: It is possible to change the assignments of control characters to interrupts with
(page 9.17).

control- B Generates an immediate error, and causes a break, regardless of the depth or time of the
computation. Thus if the function is looping internally, typing control- B will cause
the computation to be stopped, the stack unwound to the point at which was called,
and then cause a break.

This is a stronger interruption than control- H. Note that the internal variables of
above are not available in this break, and similarly, may have already produced some
changes in the environment before the control- B was typed. It may not be possible to
simply continue the computation, depending on the nature of the function interrupted
and when it was interrupted. Therefore whenever possible, it is better to use control- H
instead of control- B.

control- C Computation is stopped, and control returns to the operating system (Tenex, etc.) The
program can be continued with the command.

control- D Aborts the computation, and unwinds the stack to the top level. Calls (page 9.14).

control- E Aborts the computation, and unwinds the stack to the last . Calls
(page 9.14).

control- H At the next point a function is about to be entered, the function is
called instead. types , constructs an appropriate
break expression, and then calls . The user can then examine the state of the
computation, and continue by typing , or , and/or back to some
previous point, exactly as with a user break. Control- H breaks are thus always ‘‘safe’’.

Control- H breaks occur when a function is called, since it is only at this time that
the system is in a ‘‘clean’’ enough state to allow the user to interact. Thus, if a compiled
program is looping without calling any functions (or if Interlisp- 10 is in a I/O wait),
control- H will not a�ect it. Control- B, however, will.

22.1

INTERRUPTCHAR

FOO
FOO

FOO
FOO

CONTINUE

RESET

ERRORSET ERROR!

INTERRUPT
INTERRUPT INTERRUPTED BEFORE

BREAK1
OK GO EVAL RETFROM

only

FN

Type Number Functions

As soon as control- H is typed, Interlisp clears and saves the input bu�er, and then rings
the bell, indicating that it is now safe to type ahead to the upcoming break. If the break
returns a value, i.e., is not aborted via or control- D, the contents of the input bu�er
before the control- H was typed will be restored.

Note: Control- H will interrupt at linked function calls (see page 12.18).

control- O Clears the teletype output bu�er.

control- P Changes the setting (see page 6.18).

control- S Changes the setting (see page 22.10).

control- T Prints total execution time for the program, as well as other status information.

22.2 TYPE NUMBER FUNCTIONS

Each data type in Interlisp has an associated ‘‘type name’’. In Interlisp- 10, each data type also has a ‘‘type
number’’, which can be accessed and manipulated with the functions below. In general, it is preferable
to use the type name functions (see page 2.1).

[Function]
Returns the type number for the data type of , e.g., is
8, the type number for lists.

[Function]
Value is , if the type number of is equal to .

[Function]
Value is type name for type number , or if is not a valid type number,
e.g. = .

[Function]
Value is corresponding type number for , or if is not a type name,
e.g. = .

will accept , , , and
, and return the same value for each, which for Interlisp- 10 is 1. Note

however that = .

[Function]
Returns the type description string for , a type name or type number.

[Function]
Sets the type description string for to be . The type description is
used in garbage collection messages and by .

22.2

^

not

PRINTLEVEL

MINFS

(NTYP)
(NTYP ’(A . B))

(TYPEP)
T

(TYPENAMEFROMNUMBER)
NIL

(TYPENAMEFROMNUMBER 30) STRING.CHARS

(TYPENUMBERFROMNAME)
NIL

(TYPENUMBERFROMNAME ’STRING.CHARS) 30

TYPENUMBERFROMNAME READTABLEP TERMTABLEP CCODEP
ARRAYP

(TYPENAMEFROMNUMBER 1) ARRAYP

(GETTYPEDESCRIPTION)

(SETTYPEDESCRIPTION)

STORAGE

D ATUM

DATUM

D ATUM N

DATUM N

N

N N

NAME

NAME NAME

TYPE

TYPE

TYPE STRING

TYPE STRING

1

2

3

1

2

3

INTERLISP-10 SPECIFICS

22.3 VALIDITY OF DEFINITIONS IN INTERLISP-10

Although the function de�nition cell is intended for function de�nitions, and do not make
thorough checks on the validity of de�nitions that ‘‘look like’’ exprs, compiled code, or s. Thus
if is given an array pointer, it treats it as compiled code, and simply stores the array pointer in
the de�nition cell. will then return the array pointer. Similarly, a call to that function will simply
transfer to what would normally be the entry point for the function, and produce random results if the
array were not compiled function.

Similarly, if is given a dotted pair of the form where and
fall in the subr range, assumes it is a subr and stores it away as described earlier.

would then return a dotted pair (but not) to the expression originally given . Similarly,
a call to this function would transfer to the corresponding address.

Finally, if is given any other list, it simply stores it away. A call to this function would then go
through the interpreter.

Note that does not actually check to see if the s-expression is valid de�nition, i.e., begins with
or . Similarly, is true if a de�nition is a list and not of the form

, = 0, 1, 2, or 3 and a subr address; is true if it is of this form.
and work correspondingly.

Only and check function de�nitions further than that described above: both
and return when is true but of the de�nition is not or
In other words, if the user uses to put in a function de�nition cell, will return
this value, the editor and prettyprint will both treat it as a de�nition, will return , and

, , and 1.

22.4 REUSING BOXED NUMBERS IN INTERLISP-10 - SETN

and provide a way of cannibalizing list structure for reuse in order to avoid making new
structure and causing garbage collections. This section describes an analogous function in Interlisp- 10 for
reusing large integers and �oating point numbers, . is used like , i.e., its �rst argument
is considered as quoted, its second is evaluated. If the current value of the variable being set is a large
integer or �oating point number, the new value is deposited into that word in number storage, i.e., no
new storage is used. If the current value is a large integer or �oating point number, e.g., it can be

These functions have di�erent values on s and s and hence must check. The compiler
and interpreter also take di�erent actions for s and s, and therefore generate errors if
the de�nition is neither.

The nobox package provides a more aesthetic way of reusing cons cells as well as number boxes.
However, it is still the case that techniques involving reusing static storage should be used with extreme
caution, and be reserved for those cases where the normal method of storage allocation and garbage
collection is not workable or practical. The decl package (page 23.18) takes a di�erent approach to the
same problem by avoiding creating number boxes in the �rst place via type declarations in the body of
the function de�nition.

The second argument to must always be a number or a error is generated.

22.3

PUTD GETD
SUBR

PUTD
GETD

PUTD (number . address) number
address PUTD GETD

EQUAL EQ PUTD

PUTD

PUTD
LAMBDA NLAMBDA EXPRP (number .
address) number address SUBRP
ARGLIST NARGS

FNTYP ARGTYPE ARGTYPE
FNTYP NIL EXPRP CAR LAMBDA NLAMBDA.

PUTD (A B C) GETD
EXPRP T CCODEP

SUBRP NIL ARGLIST B NARGS

RPLACA RPLACD

SETN SETN SETQ

not

LAMBDA NLAMBDA
LAMBDA NLAMBDA

SETN NON-NUMERIC ARG

Caveats concerning use of SETN

, operates exactly like , i.e., the large integer or �oating point number is boxed, and the
variable is set. This eliminates initialization of the variable.

will work interpretively, i.e., reuse a word in number storage, but will not yield any savings of
storage because the boxing of the second argument will still take place, when it is evaluated. The
elimination of a box is achieved only when the call to is compiled, since compiles open, and
does not perform the box if the old value of the variable can be reused.

22.4.1 Caveats concerning use of SETN

There are three situations to watch out for when using . The �rst occurs when the same variable is
being used for �oating point numbers and large integers. If the current value of the variable is a �oating
point number, and it is reset to a large integer, via , the large integer is simply deposited into a
word in �oating point number storage, and hence will be interpreted as a �oating point number. Thus,

Similarly, if the current value is a large integer, and the new value is a �oating point number, equally
strange results occur.

The second situation occurs when a variable is reset from a large integer to a small integer. In
this case, the small integer is simply deposited into large integer storage. It will then print correctly, and
function arithmetically correctly, but it is a small integer, and hence will not be to another integer
of the same value, e.g.,

In particular, note that will return even if the variable is equal to 0. Thus a program which
begins with set to a large integer and counts it down by must terminate
with not .

Finally, the third situation to watch out for occurs when you want to save the current value of a
variable for later use. For example, if is being used by , and the user wants to save its current
value on , is not su�cent, since the next on will also change ,
because its changes the word in number storage pointed to by , and hence pointed to by . The
number must be copied, e.g., , which sets to a new word in number

22.4

NIL SETN SETQ

SETN

SETN SETN

SETN

SETN

_(SETQ FOO 2.3)
2.3
_(SETN FOO 10000)
2.189529E-43

SETN

not EQ

_(SETQ FOO 10000)
10000
_(SETN FOO 1)
1
_(IPLUS FOO 5)
6
_(EQ FOO 1)
NIL
_(SMALLP FOO)
NIL

ZEROP NIL
FOO (SETN FOO (SUB1 FOO))

(EQP FOO 0), (ZEROP FOO)

SETN
FOO SETN

FIE (SETQ FOO FIE) SETN FOO FIE
FOO FIE

(SETQ FIE (IPLUS FOO)) FIE

INTERLISP-10 SPECIFICS

storage.

[NLambda Function]
A nlambda function like . is quoted, is evaluated, and its value must
be a number. will be set to this number. If the current value of is a large
integer or �oating point number, that word in number storage is cannibalized. The
value of is the (new) value of .

22.5 BOX AND UNBOX IN INTERLISP-10

Some applications may require that a user program explicitly perform the boxing and unboxing operations
that are usually implicit (and invisible) to most programs. The functions that perform these operations are

and respectively. For example, if a user program executes a TENEX JSYS using the
directive, the value of the expression will have to be boxed to be used arithmetically, e.g.,

. It must be emphasized that

For example, suppose the value of were 150000, and you created , and this just to
be an address on the free storage list. The next garbage collection could be disastrous. For this reason,
the function must be used with extreme caution when its argument’s range is not known.

is the inverse of . It takes an address, i.e., a 36 bit quantity, and treats it as a number and boxes
it. For example, of an atom, e.g., , treats the atom as a 36 bit quantity, and
makes a number out of it. If the address of the atom were 125000, would
be 125000, i.e., the location of . It is for this reason that the box operation is called , which is
short for location.

Note that does not print as (125000 in octal) because the print routine recognizes that it is
an atom, and therefore prints it in a special way, i.e., by printing the individual characters that comprise
it. Thus would print as , and would in fact .

[Function]
Makes a number out of , i.e., returns the location of .

[Function]
The inverse of . must be a number; the value of is the unbox of .

The compiler eliminates extra ’s and ’s for example will
not box the value of the , and then unbox it for the addition.

22.6 MISCELLANEOUS OPERATING SYSTEM FUNCTIONS

[Function]
Returns the current load average as a �oating point number (this number is the

22.5

(SETN)
SETQ

SETN

LOC VAG ASSEMBLE
ASSEMBLE

(IPLUS X (LOC (ASSEMBLE --)))

Arbitrary unboxed numbers should NOT be passed around as ordinary values because they can cause trouble
for the garbage collector.

X (VAG X) happened

VAG

LOC VAG
LOC (LOC (QUOTE FOO))

FOO (LOC (QUOTE FOO))
FOO LOC

FOO #364110

(VAG 125000) FOO be FOO

(LOC)

(VAG)
LOC VAG

VAG LOC (IPLUS X (LOC (ASSEMBLE --)))
ASSEMBLE

(LOADAV)

VAR X

VAR X

VAR VAR

VAR

X

X X

X

X X

4

4

Miscellaneous Operating System Functions

�rst of the three printed by the command).

[Function]
is an error number from a JSYS fail return. = means the most recent

error. returns the operating system error diagnostic as a string.

[Function]
Loads the (unboxed) values of , , and into appropriate accumulaters,
and executes JSYS number . If , , or = , 0 is used. returns
the (boxed) contents of the accumulator speci�ed by , i.e., 1 means ,
2 means , and 3 means , with equivalent to 1. Compiles open if is
itself a small integer, and is a small integer, or .

If the JSYS causes a trap, the message is printed
by the operating system, followed by and the operating system
diagnostic. The user is then talking to the operating system exactly as though
control- C had been typed. If the user then continues using the
command, an Interlisp error is generated, , and control then proceeds
the same as for any other �avor of error, i.e. unwinds to last or goes
into a break as described on page 9.10.

The CJSYS package (page 23.53) enables calling JSYSes by their corresponding
name, rather than their number.

[Function]
If = , returns the login user number; if = , returns the connected user
number; if is a literal atom or string, returns the number of the
corresponding user, or if no such user exists.

On TOPS- 20, there is a di�erence between the user number, which is associated
with the job, and the directory number, which is associated with the �le system.
Therefore, on TOPS- 20, if = , returns the directory number
rather than the user number.

[Function]
Returns the hostname as a string for host number , e.g. ,

, etc. If = , the local host is used. If the local host is
not an arpanet host, value is . Also returns if is not a valid host
number.

is interpreted the same as in .

[Function]
Returns the host numer of the local host, or , if the local host is not an arpanet
host.

[Function]
Starts up a lower exec (without a message) using , and then if =
un reads , followed by (using , page 6.47). returns

for Interlisp on TOPS- 20.

22.6

SYSTAT

(ERSTR)
NIL

ERSTR

(JSYS)

NIL JSYS

NIL
NIL

TRAP AT LOCATION
JSYS ERROR:

CONTINUE
JSYS ERROR

ERRORSET

(USERNUMBER)
NIL T

USERNUMBER
NIL

T USERNUMBER

(HOSTNAME)
"PARC-MAXC2"

"BBN-TENEXD" NIL
NIL NIL

USERNAME

(HOSTNUMBER)
NIL

(TENEX)
SUBSYS NIL

"QUIT" BKSYSBUF TENEX

"POP"

ERN _

ERN ERN

N AC1 A C2 AC3 RESUL TAC

A C1 AC2 AC3

N A C1 A C2 A C3

RESUL TA C AC1

A C2 A C3 N

RESUL TAC

NNNNN

A FL G

A A

A

FL G

HOSTN FL G

HOSTN

HOSTN

HOSTN

FL G

STR FILEFL G

FILEFL G

STR

5

5

INTERLISP-10 SPECIFICS

if all of is actually processed/read by the lower exec, if the user
control- C’s and manually QUIT’s back to Interlisp.

If = , passes the string as the second argument to , instead
of unreading it. This has the advantage that can be of any length, and also
that typeahead will not interfere with the call to the lower exec. The disadvantage
is that cannot tell whether the commands to the lower exec terminated
successfully, or were aborted. Thus, if = , the value of is always

.

For example, (page 11.9) is imple mented using , with = ,
so can tell if listings actually were completed.

22.7 STORAGE ALLOCATION AND GARBAGE COLLECTION

In the following discussion, we will speak of a quantity of memory being assigned to a particular data- type,
meaning that the space is reserved for storage of elements of that type. will refer to the process
used to obtain from the already assigned storage a particular location for storing one data element.

A small amount of storage is assigned to each data- type when Interlisp- 10 is started; additional storage is
assigned only during a garbage collection.

The page is the smallest unit of memory that may be assigned for use by a particular data- type. For each
page of memory there is a one word entry in a type table. The entry contains the data- type residing on
the page as well as other information about the page. The type of a pointer is determined by examining
the appropriate entry in the type table.

Storage is allocated as is needed by the functions which create new data elements, such as , ,
. For example, when a large integer is created by , the integer is stored in the next

available location in the space assigned to integers. If there is no available location, a garbage collection
is initiated, which may result in more storage being assigned.

The storage allocation and garbage collection methods di�er for the various data- types. The major
distinction is between the types with elements of �xed length and the types with elements of arbitrary
length. List cells, atoms, large integers, �oating point numbers, and string pointers are �xed length; all
occupy 1 word except atoms which use 3 words. Arrays, print names, and strings (string characters) are
variable length.

Elements of �xed length types are stored so that they do not overlap page boundaries. Thus the pages
assigned to a �xed length type need not be adjacent. If more space is needed, any empty page will be
used. The method of storage for these types employs a free- list of available locations; that is,
each available location contains a pointer to the next available location. A new element is stored at the
�rst location on the free- list, and the free- list pointer is updated.

The allocation routine for list cells is more complicated. Each page containing list cells has a separate
free list. First a page is chosen, then the free list for that page is used. Lists are the only data- type which
operate this way.

22.7

T NIL

T TENEX SUBSYS

TENEX
T TENEX

T

LISTFILES TENEX NIL
LISTFILES

Allocation

CONS PACK
MKSTRING IPLUS

allocating

STR

FILEFL G

STR

FILEFL G

FILEFL G

6

7

6

7

Storage Allocation and Garbage Collection

Elements of variable length data- types allowed to overlap page boundaries. Consequently all pages
assigned to a particular variable length type must be contiguous. Space for a new element is allocated
following the last space used in the assigned block of contiguous storage.

When Interlisp- 10 is �rst called, a few pages of memory are assigned to each data- type. When the
allocation routine for a type determines that no more space is available in the assigned storage for that
type, a garbage collection is initiated. The garbage collector determines what data is currently in use and
reclaims that which is no longer in use. A garbage collection may also be initiated by the user with the
function .

Data in use (also called active data) is any data that can be ‘‘reached’’ from the currently running program
(i.e., variable bindings and functions in execution) or from atoms. To �nd the active data the garbage
collector ‘‘chases’’ all pointers, beginning with the contents of the push- down lists and the components
(i.e., , , and function de�nition cell) of all atoms with at least one non- trivial component.

When a previously unmarked datum is encountered, it is marked, and all pointers contained in it are
chased. Most data- types are marked using bit tables; that is tables containing one bit for each datum.
Arrays, however, are marked using a half-word in the array header.

When the mark and chase process is completed, unmarked (and therefore unused) space is reclaimed.
Elements of �xed length types that are no longer active are reclaimed by adding their locations to the
free- list for that type. This free list allocation method permits reclaiming space without moving any data,
thereby avoiding the time consuming process of updating all pointers to moved data. To reclaim unused
space in a block of storage assigned to a variable length type, the active elements are compacted toward
the beginning of the storage block, and then a scan of all active data that can contain pointers to the
moved data is performed to update the pointers.

Whenever a garbage collection of any type is initiated, unused space for all �xed length types is reclaimed
since the additional cost is slight. However, space for a variable length type is reclaimed only when that
type initiated the garbage collection.

If the amount of storage reclaimed for the type that initiated the garbage collection is less than the
minimum free storage requirement for that type, the garbage collector will assign enough additional
storage to satisfy the minimum free storage requirement. The minimum free storage requirement for each
data may be set with the function . The garbage collector assigns additional storage to �xed length
types by �nding empty pages, and adding the appropriate size elements from each page to the free list.
Assigning additional storage to a variable length type involves �nding empty pages and moving data so
that the empty pages are at the end of the block of storage assigned to that type.

In addition to increasing the storage assigned to the type initiating a garbage collection, the garbage
collector will attempt to minimize garbage collections by assigning more storage to other �xed length
types according to the following algorithm. If the amount of active data of a type has increased since
the last garbage collection by more than 1/4 of the value for that type, storage is increased (if
necessary), to attain the value. If active data has increased by less than 1/4 of the value,

If Interlisp- 10 types the message during a garbage collection, it means that an array
header has been clobbered and no longer makes sense. This can be due to hardware malfunction, or an
as yet undiscovered bug in Interlisp. The best thing to do under these circumstances is to give up and
start over with a fresh system or sysout.

The ‘‘type of a garbage collection’’ or the ‘‘type that initiated a garbage collection’’ means either the type
that ran out of space and called the garbage collector, or the argument to .

22.8

are

RECLAIM

CAR CDR

MINFS

MINFS
MINFS MINFS

ARRAYS FOULED

RECLAIM

8

8

INTERLISP-10 SPECIFICS

available storage is increased to 1/2 . If there has been no increase, no more storage is added. For
example, if the setting is 2000 words, the number of active words has increased by 700, and after
all unused words have been collected there are 1000 words available, 1024 additional words (two pages)
will be assigned to bring the total to 2024 words available. If the number of active words had increased
by only 300, and there were 500 words available, 512 additional words would be assigned.

[Function]
Initiates a garbage collection of type , where is either a type name or
type number. Value of is number of words available (for that type) after
the collection.

[Function]
A�ects messages printed by the garbage collector. If = , whenever a
garbage collection is begun, is printed, followed by the type
description of the type that initiated the collection. When the garbage collection
is complete, two numbers are printed: the number of words collected for that
type, and the total number of words available for that type, i.e., allocated but not
necessarily currently in use. Note that other types may also have been collected,
and had more storage assigned.

Example:

If = , no garbage collection message is printed, either on entering or
leaving the garbage collector.

If is a list, of is printed (using) when the garbage
collection is begun, and is printed (using) when the collection is
�nished. If is a literal atom or string, is printed when the
garbage collection is begun, and nothing is printed when the collection �nishes.

If is a number, the message is the same as for , except if
the total number of free pages left after the collection is less than , the
number of free pages is printed, e.g.,

Note that this type description can be set via the function (page 22.2).

22.9

MINFS
MINFS

(RECLAIM)

RECLAIM

Garbage collections, whether invoked directly by the user or indirectly by need for storage, do not con�ne
their activity solely to the data type for which they were called, but automatically collect some or all of the
other types.

(GCGAG)
T

"collecting"

_RECLAIM(18)

collecting large numbers
511, 3071 free cells
3071
_RECLAIM(LITATOM)

collecting atoms
1020, 1020 free cells
1020

NIL

CAR PRIN1
CDR PRIN1

(GCGAG T)

SETTYPEDESCRIPTION

TYPE

TYPE TYPE

MESSA GE

MESSA GE

MESSA GE

MESSA GE MESSA GE

MESSA GE MESSA GE

MESSA GE

MESSA GE

Storage Allocation and Garbage Collection

The initial setting for is 40.

The value of is its previous setting.

q [Function]
is implemented in terms of the primitive which can be used to

further re�ne garbage collection messages for specialized applications. The garbage
collection message is actually composed of seven separate messages:

message #1 is the ‘‘collecting’’ string. If , then neither it, nor the type
dependent �eld (which is settable via described below) is
printed.

message #2 is the carriage- return after the type- dependent �eld. Thus to simply
print a string at the beginning of a garbage collection, perform and

.

message #3 is the ‘‘ ’’ which comes after the number of cells actually collected.
If , then neither it nor that number are printed.

message #4 is the ‘‘ ’’ which comes after the number of cells that are
now allocated. If , neither it nor that number are printed.

message #5 is the number of pages left below which the system prints message 6.

message #6 is the ‘‘ ’’ message. If , neither it nor the number of
pages left are printed.

message #7 is the terminating carriage return.

[Function]
Sets the minimum amount of free storage which will be maintained by the garbage
collector for data types of type number or type name . If, after any garbage
collection for that type, fewer than free words are present, su�cient storage will
be added (in 512 word chunks) to raise the level to .

If = , is used, i.e., the refers to list words.

If = , returns the current setting for the corresponding type.

22.10

_GCGAG(100)
T
_RECLAIM()

collecting lists
10369, 10369 free cells, 87 pages left.

GCGAG

GCGAG

(GCMESS)
GCGAG GCMESS

collecting large numbers12

511,3 3071 free cells4, 875 pages6 left7

NIL
SETTYPEDESCRIPTION

(GCMESS 1)
(GCMESS 2)

,
NIL

free cells
NIL

pages left NIL

(MINFS)

NIL LISTP MINFS

NIL MINFS MINFS

MESSA GE STRING

STRING

N TYPE

TYPE

N

N

TYPE

N

9

10

11

9

10

11

INTERLISP-10 SPECIFICS

A setting can also be changed dynamically, even during a garbage collection, by typing control- S
followed by a number, followed by a period. When the control- S is typed, Interlisp immediately clears
and saves the input bu�er, rings the bell, and waits for input, which is terminated by any non- number.
The input bu�er is then restored, and the program continues. If the input was terminated by other than
a period, it is ignored. If the control- S was typed during a garbage collection, the number is the new

setting for the type being collected, otherwise for type 8, i.e., list words.

[Function]
The atom hash table automatically expands by a speci�ed number of pages each
time it �lls up. The number of pages is set via the function . The initial
setting is (room for 1024 new atoms).

[Function]
‘‘Garbage Collection Trap’’. Causes a (simulated) control- H interrupt when the
number of free list words remaining equals , i.e., when a garbage collection would
occur in more conses. The message is printed, the function
is called, and a break occurs. Note that by advising the user can
program the handling of a instead of going into a break.

returns its last setting.

will ‘‘disable’’ a previous since there are never -1 free list
words. is initialized this way.

returns the number of list cells left, i.e., number of es until next
type garbage collection.

[Function]
Stores into memory location . Both and must be numbers.

[Function]
Returns the number in memory location , i.e., boxed.

22.8 THE ASSEMBLER AND LAP

The Interlisp- 10 compiler has two principal passes. The �rst compiles its input into a macro assembly
language called . The second pass expands the LAP code, producing (numerical) machine language
instructions. The output of the second pass is written on a �le and/or stored in binary program space.

control- X for Interlisp- 10 on TOPS- 20.

For interrupts, is called with (its third argument) equal to 3. If the user
does not want to go into a break, the advice should still allow to be entered, but �rst
set to -1. This will cause to ‘‘quietly’’ go away by calling the function that was
interrupted. The advice should exit via , as in this case the function that was
about to be called when the interrupt occurred would not be called.

The exact form of the macro assembly language is extremely implementation dependent, as well as being
in�uenced by the architecture and instruction set for the machine that will run the compiled program.

22.11

MINFS

MINFS

(MINHASH)

MINHASH
(MINHASH 2)

(GCTRP)

GCTRP INTERRUPT
INTERRUPT

GCTRP

GCTRP

(GCTRP -1) GCTRP
GCTRP

(GCTRP) CONS
LISTP

(CLOSER)

(OPENR)

LAP

GCTRP INTERRUPT
INTERRUPT

INTERRUPT
not INTERRUPT RETURN

X

N

N

N

A X

X A X A

A

A

INTYPE

INTYPE

12

13

14

12

13

14

Assemble

Input to the compiler is usually a standard Interlisp de�nition. However, in Interlisp- 10, machine
language coding can be included within a function by the use of one or more forms as
described below. In other words, allows the user to write portions of a function in . Note
that is only a compiler directive; it has no independent de�nition. Therefore, functions which
use must normally be compiled in order to run.

22.8.1 Assemble

The format of is similar to that of :

is a list of variables to be bound during the �rst pass of the compilation, during the running of the
object code. The assemble statements are compiled sequentially, each resulting in one or
more instructions of object code. When run, the value of the ‘‘form’’ is the contents of AC1
at the end of the execution of the assemble instructions. Note that may appear anywhere in
an Interlisp- 10 function. For example, one may write:

to test if job runtime exceeds 4 seconds.

22.8.1.1 Assemble Statements

If an assemble statement is an atom, it is treated as a label identifying the location of the next statement
that will be assembled. Such labels de�ned in an form are like labels in that they
may be referenced from the current and lower level nested s or s.

The package (page 5.19) does permit the user to run programs interpretively which contain
directives. Each directive is compiled as a separate function. There is some loss

in e�ciency over compiling the entire function as a unit, and not all expressions are tractable
to this procedure.

This example is to illustrate use of , and is a recommendation to use the above code.
The function (page 22.6) is the appropriate method.

A label can be the last thing in an form, in which case it labels the location of the �rst
instruction the form.

22.12

EXPR
ASSEMBLE

ASSEMBLE LAP
ASSEMBLE
ASSEMBLE

Note: ASSEMBLE is provided for situations where its use is unavoidable. However, its use is de�nitely not
encouraged. The disadvantages are several. ASSEMBLE code is unavoidably dependent on the PDP- 10,
Tenex, and implementation details of Interlisp- 10. Thus, ASSEMBLE code is not transportable to Interlisp
on another machine or operating system, and implementation changes to Interlisp- 10 can (and frequently
do) require changes to existing ASSEMBLE code.

ASSEMBLE PROG

(ASSEMBLE V S1 S2 . . . SN)

V not
S1 ... SN

ASSEMBLE
ASSEMBLE

(IGREATERP (IQUOTIENT (LOC (ASSEMBLE NIL
(MOVEI 1 , -5)
(JSYS 13)))

1000)
4)

ASSEMBLE PROG
PROG ASSEMBLE

MACROTRAN
ASSEMBLE ASSEMBLE

ASSEMBLE

ASSEMBLE not
JSYS

ASSEMBLE
after ASSEMBLE

INTERLISP-10 SPECIFICS

If an assemble statement is not an atom, of the statement must be an atom and one of: (1) a number;
(2) a op-def (i.e., has a property value); (3) an assembler macro (i.e., has a property value

); or (4) one of the special assemble instructions given below, e.g., etc. Anything else will
cause the error message

The types of assemble statements are described here in the order of priority used in the
processor; that is, if an atom has both properties and , the will be used. Similarly a special

instruction may be rede�ned via an . The following descriptions are of the �rst pass
processing of statements. The second pass processing is described in the section on , page
22.15.

(1) numbers

If of an assemble statement is a number, the statement is not processed in the �rst pass (see page
22.15).

(2) LAP op-defs

The property is used for two di�erent types of op-defs: PDP- 10 machine instructions, and
macros. If the de�nition (i.e., the property value) is a number, the op-def is a machine instruction.
When a machine instruction, e.g., , appears as of an assemble statement, the statement is not
processed during the �rst pass but is passed to . The forms and processing of machine instructions
by are described on page 22.16.

If the de�nition is not a number, then the op-def is a macro. When a macro is encountered
in an assemble statement, its arguments are evaluated and processing of the statement with evaluated
arguments is left for the second pass and . For example, is a macro, and

in assemble code results in in the code, where is the value of . The form
and processing of macros are described on page 22.17.

(3) assemble macros

If of an assemble statement has a property , the statement is an assemble macro call. There
are two types of assemble macros: lambda and substitution. If of the macro de�nition is the atom

, the de�nition will be to the arguments of the call and the resulting list of statements will
be assembled. For example, could be de�ned as a macro with two arguments, and

, which expands into occurrences of , e.g., expands to
. The de�nition (i.e., value of property) for could be:

If of the macro de�nition is not the atom , it must be a list of dummy symbols. The
arguments of the macro call will be substituted for corresponding appearances of the dummy symbols in

22.13

CAR
LAP OPD

AMAC C, CQ,
OPCODE? - ASSEMBLE.

ASSEMBLE
OPD AMAC OPD

ASSEMBLE AMAC
ASSEMBLE LAP

CAR

OPD LAP
OPD

HRRZ CAR
LAP

LAP

OPD LAP LAP

LAP LDV LAP (LDV (QUOTE
X) SP) (LDV X N) LAP N SP

LAP

CAR AMAC
CAR

LAMBDA applied
REPEAT LAMBDA N

M N M (REPEAT 3 (CAR1)) ((CAR1) (CAR1)
(CAR1)) AMAC REPEAT

(LAMBDA (N M)
(PROG (YY)

A (COND
((ILESSP N 1)

(RETURN (CAR YY)))
(T (SETQ YY (TCONC YY M))

(SETQ N (SUB1 N))
(GO A)))))

CAR LAMBDA

15

15

COREVALs

of the de�nition, and the resulting list of statements will be assembled. For example, could
be a substitution macro which takes one argument, a number, and expands into instructions to place the
absolute value of the number in AC1:

(4) special assemble statements

��� (compile quote) takes any number of arguments which are assumed to be
regular Interlisp expressions and are compiled in the normal way. E.g.

Note: to avoid confusion and minimize dependence on the current implementation,
it is best to have as much of a function as possible compiled in the normal way,
e.g., to load the value of to is preferred to

.

��� (Compile) takes any number of arguments which are �rst evaluated, then compiled
in the usual way. Both and permit the inclusion of regular compilation within
an assemble form.

��� (Evaluate) takes any number of arguments which are evaluated in sequence. For
example, calls a function which increments the compiler variable .

Compiles code to set the variable to the contents of .

Permits writing a machine instruction with the value of a variable as the operand.
Generates the appropriate address and index �elds to reference the value of

. may be a locally bound variable, free variable, ,
etc. Note that may generate more than one instruction.

Used to indicate a comment; the statement is ignored.

22.8.1.2 COREVALs

There are several locations in the basic machine code of Interlisp- 10 which may be referenced from
compiled code. The current value of each location is stored on the property list under the property

Note that assemble macros produce a list of statements to be assembled, whereas compiler macros
produce a single expression. An assemble macro which a list of statements begins with
and may be spread or no-spread. The analogous compiler macro begins with an atom, (i.e., is
always no-spread) and the is understood.

22.14

CDR ABS

((X)
(CQ (VAG X))
(CAIGE 1 , 0))
(MOVN 1 , 1))

(CQ) CQ

(CQ (COND
((NULL Y)

(SETQ Y 1)))
(SETQ X (IPLUS Y Z)))

X AC1, (CQ X) (LDV (QUOTE X)
SP)

(C) C
C CQ

(E) E
(PSTEP) SP

(SETQ) AC1

(VAR (,))

GLOBALVAR
VAR

(* ...)

computes LAMBDA
either

LAMBDA

E1 EN

E1 EN

E1 EN

VAR VAR

OP AC VARNAME

VARNAME VARNAME

16

17

16

17

INTERLISP-10 SPECIFICS

. Since these locations may change in di�erent reassemblies of Interlisp- 10, they are written
symbolically on compiled code �les, i.e., the name of the corresponding is written, not its value.
Some of the s used frequently in are:

contains (pointer to) atom

Contains (a pointer to) the atom .

Routine to box an integer.

Routine to box �oating number.

Routine to unbox an integer.

Routine to unbox �oating number.

The index registers used for the push- down stack pointers are also included as S. These are
not expected to change, and are not stored symbolically on compiled code �les; however, they should be
referenced symbolically in assemble code. They are:

Parameter stack.

Control stack.

Basic frame pointer.

22.8.2 LAP

LAP (for LISP Assembly Processor) expands the output of the �rst pass of compilation to produce
numerical machine instructions.

22.8.2.1 LAP Statements

If a LAP statement is an atom, it is treated as a label identifying the location of the next statement to be
processed. If a LAP statement is not an atom, of the statement must be an atom and either: (1) a
number; (2) a machine instruction; or (3) a LAP macro.

(1) numbers

If of a LAP statement is a number, a location containing the number is produced in the object
code. E.g.,

The value of is a list of all atoms with properties.

Note that if a function is intended to be swappable, it may not contain any relocatable, indexed
instructions.

22.15

COREVAL
COREVAL

COREVAL ASSEMBLE

KT T

KNIL NIL

MKN

MKFN

IUNBOX

FUNBOX

COREVAL

PP

CP

VP

CAR

CAR

(ADD 1 , A (1))
.
.

COREVALS COREVAL

18

19

18

19

LAP Statements

Statements of this type are processed like machine instructions, with the initial number serving as a 36-bit
op-code.

(2) Machine Instructions

If of a LAP statement has a numeric value for the property the statement is a machine
instruction. The general form of a machine instruction is:

is any PDP- 10 instruction mnemonic or Interlisp UUO.

, the accumulator �eld, is optional. However, if present, it be followed by a comma. is either
a number or an atom with a property. The low order 4 bits of the number or are
OR’d to the AC �eld of the instruction.

may be used anywhere in the instruction to specify indirect addressing (bit 13 set in the instruction)
e.g., .

is the address �eld which may be any of the following:

Reference to an unboxed constant. A location containing the unboxed constant will
be created in a region at the end of the function, and the address of the location
containing the constant is placed in the address �eld of the current instruction. The
constant may be a number e.g., ; an atom with a property

(in which case the constant is the value of the property, at time);
any other atom which is treated as a label (the constant is then the address of
the labeled location) e.g., is equivalent to

; or an expression whose value is a number.

The address is a reference to a Interlisp pointer, e.g., a list, number, string, etc.
A location containing the pointer is assembled at the end of the function, and the
current instruction will have the address of this location, e.g.,

Speci�es the current location in the compiled function; e.g., has the
same e�ect as .

a literal atom If the atom has a property , it is a reference to a system location,
e.g., , and the address used is the value of the .

The value is an 18 bit quantity (rather than 9), since some UUO’s also use the AC �eld of the
instruction.

The TENEX JSYS’s are not de�ned, that is, one must write instead of .

22.16

.
A (1)

(4)
(9)

CAR OPD,

(, @ (index))

must
COREVAL COREVAL

@
(HRRZ 1 , @ 1 (VP))

=

(CAME 1 , = 3596)
COREVAL LOAD

(MOVE 1 , = TABLE) (MOVEI 1 ,
TABLE)

’

(HRRZ 1 , ’ "IS NOT DEFINED")

(HRRZ 1 , ’ (NOT FOUND))

* (JRST * 2)
(SKIPA)

COREVAL
(SKIPA 1 , KNIL) COREVAL

(JSYS 107) (KFORK)

OPCODE A C ADDRESS

OPCODE

AC A C

ADDRESS

CONST ANT

POINTER

20

20

INTERLISP-10 SPECIFICS

Otherwise the atom is a label referencing a location in the LAP code, e.g.,
.

a number The number is the address; e.g.,

a list The form is evaluated, and its value is the address.

Anything else in the address �eld causes an error message, e.g., .
A number may follow the address �eld and will be added to it, e.g., .

is denoted by a following the address �eld, i.e., the address �eld be present if an index
�eld is to be used. The index (of the list) must be either a number, or an atom with a property

, e.g., .

(3) LAP macros

If of a LAP statement is the name of a LAP macro, i.e., has the property , the statement is a
macro call. The arguments of the call follow the macro name: e.g., .

LAP macro calls comprise most of the output of the �rst pass of the compiler, and may also be used in
. The de�nitions of these macros are stored on the property list under the property , and

like assembler macros, may be either lambda or substitution macros. In the �rst case, the macro de�nition
is applied to the arguments of the call; in the second case, the arguments of the call are substituted
for occurrences of the dummy symbols in the de�nition. In both cases, the resulting list of statements is
again processed, with macro expansion continuing till the level of machine instructions is reached.

Some examples of LAP macros are shown below.

The arguments were already evaluated in the �rst pass, see page 22.13.

22.17

(JRST
A)

(MOVSI 1 , 400000Q)
(HLRZ 2 , 1 (1))

(SKIPA 1 , KNILL) - LAPERROR
(JRST A 2)

INDEX list must
CAR

COREVAL (HRRZ 1 , 0 (1))

CAR OPD
(LQ2 FIE 3)

ASSEMBLE OPD

(DEFLIST
’[(LQ ((X) (* LOAD QUOTE TO AC1)

(HRRZ 1 , ’ X)))
(LQ2 ((X AC) (* LOAD QUOTE TO AC)

(HRRZ AC , ’ X)))
(LDV ((A SP) (* LOAD LOCAL VARIABLE TO AC1)

(HRRZ 1 , (VREF A SP))))
(STV ((A SP) (* SET LOCAL VARIABLE FROM AC1)

(HRRM 1 , (VREF A SP))))
(LDV2 ((A SP AC) (* LOAD LOCAL VARIABLE TO AC)

(HRRZ AC , (VREF A SP))))
(LDF ((A SP) (* LOAD FREE VARIABLE TO AC1)

(HRRZ 1 , (FREF A SP))))
(STF ((A SP) (* SET FREE VARIABLE FROM AC1)

(HRRM 1 , (FREF A SP))))
(LDF2 ((A SP) (* LOAD FREE VARIABLE TO AC)

(HRRZ 2 , (FREF A SP))))
(CAR1 (NIL (* CAR OF AC1 TO AC1)

21

21

Using Assemble

22.8.3 Using Assemble

In order to use , it is helpful to know the following things about how compiled code is run.
All variable bindings and temporary pointers are stored on the parameter pushdown stack (addressed by
index register). Control information is stored on the control pushdown stack (addressed by index
register). A function call proceeds as follows:

1. The calling function pushes the argument values on the parameter stack.

2. The calling function invokes a routine that adjusts the number of arguments if too few or too many
were supplied, and binds the arguments. Binding usually implies the creation of a basic frame.

3. Then the called function is run.

The arguments in the basic frame are referenced relative to index register , e.g., 1 addresses the
�rst argument. However, it is better to reference variables in less implementation dependent ways, such as

or . The compiler will then generate the correct code whether the variable
is bound locally, is a free reference, is a , etc.

The parameter stack may be used for temporary storage of pointers. Both halves of a word on the
parameter stack may be pointers. On the control stack the right half of a word must be a pointer, the
left a non- pointer. Anything else can cause the garbage collector to fail.

For temporary storage of unboxed numbers, the following macros are provided:

‘‘Pushes’’ the number referenced by . may be any legal
code address �eld, for example: , ,

‘‘Pops’’ the most recent number to .

Whether a basic frame is created for a or open lambda depends on whether any of the variables
are specvars.

22.18

(HRRZ 1 , 0 (1))))
(CDR1 (NIL (* CDR OF AC1 TO AC1)

(HLRZ 1 , 0 (1))))
(CAR2 ((AC) (* CAR OF AC TO AC)

(HRRZ AC , 0 (AC))))
(CLL ((NAM N) (* CALL FN WITH N ARGS GIVEN)

(CCALL N , ’ NAM)))
(LCLL ((NAM N) (* LINKED CALL WITH N ARGS)

(LNCALL N , (MKLCL NAM))))
(RET (NIL (* RETURN FROM FN)

(POPJ CP ,))
(PUSHP (NIL (PUSH PP , 1)))
(PUSHQ ((X) (* PUSH QUOTE)

(PUSH PP , ’ X)))]
’OPD)

ASSEMBLE

PP
CP

VP (VP)

(CQ ...) (VAR (...))
GLOBALVAR

ASSEMBLE

(PUSHN) ASSEMBLE
(PUSHN 1) (PUSHN = 0) (PUSHN @ 2)

(POPN)

PROG

ADDR ADDR ADDR

ADDR ADDR

INTERLISP-10 SPECIFICS

References a previously pushed number. is the opcode, is the accumulator,
is the relative position of the desired number on the pseudo number stack. That

is, = 0 refers to the most recent number, = -1 to the next most recent, etc.
For example:

���
‘‘Pushes’’ a sequence of numbers speci�ed by where is a list of any legal
address �eld. For example: pushes the contents of

, the contents of , and the constant 0.

‘‘Pops’’ the most recent numbers, discarding the values.

Use of these macros is subject to the following restrictions:

1. ’s and ’s must be seen by the compiler in the same order and number in which they
are executed. The compiler does not analyze the code; it assumes when it encounters a in the
sequential processing of the code that the will in fact be executed.

2. Every number that is pushed must be popped.

3. In nested statements, if a or open lambda occurs between the inner and outer level
, numbers pushed in the outer may not be referenced from the inner .

The value of a function is always returned in . Therefore, the pseudo- function, , is available for
obtaining the current contents of . For example compiles a call to with
the current contents of AC1 as argument, and is equivalent to:

In using , be sure that it appears as the �rst argument to be evaluated in the expression. For example:

There are several ways to reference the values of variables in assemble code. For example:

Puts the value of in AC1.

Puts the value of in AC3.

Sets to the contents of AC1.

Sets to the contents of AC2.

Boxes the contents of AC1.

Floating boxes the contents of AC1.

22.19

(NREF (,))

(NREF (MOVN 1, -1))

(PUSHNN)

(PUSHNN (1) (2) (= 0))
AC1 AC2

(POPNN)

PUSHN POPN
PUSHN

PUSHN

ASSEMBLE PROG
ASSEMBLE ASSEMBLE ASSEMBLE

AC1 AC
AC1 (CQ (FOO (AC))) FOO

(PUSHP)
(E (PSTEP))
(CLL (QUOTE FOO) 1)
(E (PSTEPN -1))

AC
(CQ (IPLUS (LOC (AC)) 2))

(CQ X) X

(LDV2 (QUOTE X) SP 3)
X

(SETQ X) X

(VAR (HRRM 2 , X))
X

(CQ (LOC (AC)))

(FASTCALL MKFN)

OP AC N

OP A C

N

N N

N 1 N M
N i N i

N N

Interfork Communication in Interlisp-10

Puts the unboxed value of in AC1.

Gets the �oating unbox of AC1.

To call a function directly, the arguments must be pushed on the parameter stack, and must be
updated, and then the function called: e.g.,

and is equivalent to:

22.9 INTERFORK COMMUNICATION IN INTERLISP-10

The functions described below permit two forks (one or both of them Interlisp- 10) to have a common
area of address space for communication by providing a means of assigning a block of storage

[Function]
Creates a block in size (512 words per page). Value is the address of
the �rst word in the block, which is a multiple of 512 since the block will always
begin at a page boundary. If not enough pages are available, generates the error

.

To store a number in the block, the following function could be de�ned:

Some boxing and unboxing can be avoided by making this function compile open via a substitution
macro.

[Function]
releases a block of storage beginning at and extending for pages.
Causes an error if any of the range is not a
block. Value is .

22.20

(CQ (VAG X)) X

(FASTCALL FUNBOX)

SP

(CQ (CAR X))
(PUSHP) (* stack first argument)
(E (PSTEP))
(PUSHQ 3.14)
(E (PSTEP)) (* stack second argument)
(CLL (QUOTE FUM) 2) (* call FUM with 2 arguments)
(E (PSTEPN -2)) (* adjust stack count)

(CQ (FUM (CAR X) 3.14))

guaranteed
not to move during garbage collections.

(GETBLK)
pages

ILLEGAL OR IMPOSSIBLE BLOCK

Note: the block can be used for storing unboxed numbers ONLY.

(SETBLOCK (LAMBDA (START N X) (CLOSER (IPLUS (LOC START) N) X]

Note: GETBLK should be used sparingly since several unmovable regions of memory can make it di�cult or
impossible for the garbage collector to �nd a contiguous region large enough for expanding array space.

(RELBLK)

ILLEGAL OR IMPOSSIBLE BLOCK

N

N

ADDRESS N

ADDRESS N

ADDRESS

22

23

24

22

23

24

INTERLISP-10 SPECIFICS

22.10 SUBSYS

This section describes a function, , which permits the user to run a Tenex/TOPS- 20 subsystem,
such as SNDMSG, SRCCOM, TECO, or even another Interlisp, from inside of an Interlisp without
destroying the latter. In particular, will start up a lower exec, which will print the
operating system herald, followed by . The user can then do anything at this exec level that he can at
the top level, without a�ecting his superior Interlisp. For example, he can start another Interlisp, perform
a , run for a while, type a control- C returning him to the lower exec, RESET, do a SNDMSG,
etc. The user exits from the lower exec via the command QUIT, which will return control to
in the higher Interlisp. Thus with , the user need not perform a to save the state of
his Interlisp in order to use a Tenex/TOPS- 20 capability which would otherwise clobber the core image.
Similarly, provides a way of checking out a �le in a fresh Interlisp without having to
commandeer another terminal or detach a job.

While can be used to run any subsystem directly, without going through an intervening exec,
this procedure is not recommended. The problem is that control- C always returns control to the next
highest . Thus if the user is running an Interlisp in which he performs , and
then types control- C to the lower Interlisp, control will be returned to the exec above the �rst Interlisp. If
the user elects to call a subsystem directly, he must therefore know how it is normally exited and always
exit from it that way.

Starting a lower exec does not have this disadvantage, since it can be exited via or , i.e.,
the lower exec is e�ectively ‘‘errorset protected’’ against control- C.

[Function]
If = , starts up a lower exec, otherwise runs system,
e.g. , etc. is the same as

. Control- C always returns control to next higher . Note
that more than one Interlisp can be stacked, but there is no backtrace to help you
�gure out where you are.

and provide a way of specifying �les for input and
output. can also be a string, in which case a temporary �le is created,
and the string printed on it.

may be , , or . is equivalent to
, except when is a handle (see below) in which case is

equivalent to .

The value of is a large integer which is a handle to the lower fork. The lower fork is
reset unless the user speci�cally does so using , described below. If is given as its �rst

POP on TOPS- 20.

Interlisp is exited via the function , TECO via the command , SNDMSG via control- Z, and
EXEC via .

The fork is also reset when the handle is no longer accessible, i.e., when nothing in the Interlisp system
points to it. Note that the fork is accessible while the handle remains on the history list.

22.21

SUBSYS

(SUBSYS ’EXEC)
@

SYSIN
SUBSYS

SUBSYS SYSOUT

SUBSYS SYSOUT

SUBSYS

EXEC (SUBSYS ’LISP)

only QUIT POP

(SUBSYS)
EXEC <SUBSYS>

(SUBSYS ’SNDMSG) (SUBSYS ’TECO) (SUBSYS)
(SUBSYS ’EXEC) EXEC

START REENTER CONTINUE NIL
START NIL

CONTINUE

SUBSYS not
KFORK SUBSYS

LOGOUT ;H
QUIT

FILE/FORK INCOMFILE OUTCOMFILE ENTR YPOINTFL G

FILE/FORK

INCOMFILE OUTCOMFILE

INCOMFILE

ENTR YPOINTFL G

FILE/FORK

25

26

25

26

JFN Functions in Interlisp-10

argument the value of a previous call to , it continues the subsystem run by that call. For
example, the user can do , load up the TECO with a big source
�le, massage the �le, leave TECO with , run Interlisp for awhile (possibly including other calls to

) and then perform to return to TECO, where he will �nd his �le loaded
and even the TECO pointer position preserved.

Note that if the user starts a lower EXEC, in which he runs an Interlisp, control- C’s from the Interlisp,
then from the EXEC, if he subsequently continues this EXEC with , he can reenter or
continue the Interlisp.

Note also that calls to can be stacked. For example, using , the user can run a lower
Interlisp, and within that Interlisp, yet another, etc., and ascend the chain of Interlisps using ,
and then descend back down again using .

For convenience, continues the last subsystem run.

, , , and are all (page 8.19) which perform the corresponding
calls to . is a which performs , thereby continuing the last

.

[Function]
Accepts a value from and kills it (RESET in Tenex terminology). If

is subsequently performed, an error is generated.
kills all outstanding forks (from this Interlisp).

22.11 JFN FUNCTIONS IN INTERLISP-10

JFN stands for Job File Number. It is an integral part of the Tenex �le system and is described in
[Mur1], and in somewhat more detail in the Tenex JSYS manual. In Interlisp- 10, the following functions
are available for direct manipulation of JFNs:

[Function]
Returns the JFN for . If not open, generates a
error. = , , , or as described in discussion of

. For example, will write a byte on
a �le, while will read one byte.

[Function]
Sets up a ‘‘long’’ call to GTJFN (see JSYS manual). is a �le name possibly
containing control- F and/or <esc>. is the default extension, the default
version (overriden if speci�es extension/version, e.g.,). is

Must be the exact same large number, i.e., . Note that if the user neglects to set a variable to the
value of a call to , (and has performed an intervening call so that will not work),
he can still continue this subsystem by obtaining the value of the call to for the history list using
the function , described in page 8.16.

The is de�ned to save its value on so that subsequent commands
will restart the same exec.

22.22

SUBSYS
(SETQ SOURCES (SUBSYS ’TECO))

;H
SUBSYS (SUBSYS ’SOURCES)

QUIT SUBSYS

SUBSYS SUBSYS
LOGOUT

SUBSYS

(SUBSYS T)

SNDMSG LISP TECO EXEC LISPXMACROS
SUBSYS CONTIN LISPXMACRO (SUBSYS T)

SUBSYS

(KFORK)
SUBSYS

(SUBSYS) (KFORK T)

(OPNJFN)
FILE NOT OPEN

NIL INPUT OUTPUT BOTH
OPENP (JSYS 51Q (OPNJFN FILE) BYTE)

(JSYS 50Q (OPNJFN FILE) NIL NIL 2)

(GTJFN)

FOO.COM;2

EQ
SUBSYS (SUBSYS T)

SUBSYS
VALUEOF

EXEC LISPXMACRO LASTEXEC EXEC

FORK

FORK

FILE ACCESS

FILE FILE

A CCESS

FILE EXT V FLA GS

FILE

EXT V

FILE FLA GS

INTERLISP-10 SPECIFICS

as described on page 17, section 2 of JSYS manual. and may be strings
or atoms; and must be numbers. Value is JFN, or on errors.

[Function]
Releases . releases all JFN’s which do not specify open �les.
Value of is .

[Function]
Converts (a small number) to a �le name. is either , meaning format
the �le name as would or other Interlisp- 10 �le functions, or else is a
number, meaning format according to JSYS manual. The value of is atomic
except where enough options are speci�ed by to exceed atom size. In this
case, the value is returned as a string.

is an optional string pointer to be reused. In this case, the string characters
are stored in an internal scratch string, , so that a subsequent
call to will overwrite the characters returned by this one. The value of
when is supplied is always a string.

The following function is available in Interlisp- 10 for specialized �le applications:

[Function]
Opens . is a number whose bits specify the access and mode for ,
i.e., corresponds to the second argument to the Tenex JSYS OPENF (see JSYS
Manual). Value is full name of .

The �rst argument to can also be a number, which is then interpreted as
a JFN. does not a�ect the primary input or output �le settings, and does
not check whether the �le is already open - i.e., the same �le can be opened more
than once, possibly for di�erent purposes.

Note that for almost all applications the function (page 6.1) provides a more convenient (and
implementation independent) way of opening �les.

22.12 DISPLAY TERMINALS

The value of the variable indicates whether the user is running on a display terminal
or not. is used in various places in the system, e.g., , , etc.,
primarily to decide how much information to present to the user (more on a display terminal than on
a hard copy terminal). is initialized to the value of , whenever
Interlisp is (re)-entered, and after returning from a sysout.

[Function]
Value is if user is on a display terminal, otherwise. In Interlisp- 10,

is de�ned to invoke the appropriate jsys to check the user’s
terminal type.

22.23

NIL

(RLJFN)
(RLJFN -1)

RLJFN T

(JFNS)
NIL

OPENP
JFNS

MACSCRATCHSTRING
JFNS JFNS

(OPENF)

OPENF
OPENF

OPENFILE

DISPLAYTERMFLG
DISPLAYTERMFLG PRETTYPRINT HELPSYS

DISPLAYTERMFLG (DISPLAYTERMP)

(DISPLAYTERMP)
T NIL

DISPLAYTERMP

FILE EXT

V FLA GS

JFN

JFN

JFN A C3 STRPTR

JFN A C3

AC3

STRPTR

STRPTR

FILE X

FILE X FILE

X

FILE

27

28

27

28

The Interlisp-10 Swapper

22.13 THE INTERLISP-10 SWAPPER

Interlisp- 10 provides a very large auxilary address space exclusively for swappable arrays (primarily
compiled function de�nitions). In addition to the 256K of address space, this ‘‘shadow space’’ can
currently accomodate an additonal 256K words, can easily be expanded to 3.5 million words, and with
some further modi�cations, could be expanded to 128 million words. Thus, the overlay system provides
essentially unlimited space for compiled code.

Shadow space and the swapper are intended to be more or less transparent to the user. However, this
section is included in the manual to give programmers a reasonable feeling for what overlays are like,
without getting unnecessarily technical, as well as to document some new functions and system controls
which may be of interest for authors of exceptionally large systems.

22.13.1 Overlays

The shadow space is a very large auxiliary address space used exclusively for an Interlisp data- type
called a swappable array . The regular address space is called the ‘‘resident’’ space to distinguish it from
shadow space. Any kind of resident array - compiled code, pointer data, binary data, or a hash array
- can be copied into shadow space (‘‘made swappable’’), from which it is referred to by a one-word
resident entity called a handle . The resident space occupied by the original array can then be garbage
collected normally (assuming there are no remaining pointers to it, and it has not been made shared by
a). Similarly, a swappable array can be made resident again at any time, but of course this
requires (re)allocating the necessary resident space.

This is accomplished as follows: A section of the resident address space is permanently reserved for a
. When a particular swappable array is requested, it is brought (swapped) in by mapping

or the pages of shadow space in which it lies onto a section of the swapping bu�er . This
process is the swapping or overlaying from which the system takes its name. The array is now (directly)
accessible. However, further requests for swapping could cause the array to be overlaid with something
else, so in e�ect it is liable to go away at any time. Thus all system code that relates to arrays must
recognize handles as a special kind of array, fetch them into the bu�er (if not already there), when
necessary check that they have not disappeared, fetch them back in if they have, and even be prepared
for the second fetch to bring the swappable array in at a di�erent place than did the �rst.

The major emphasis in the design of the overlay system has been placed on running compiled code,
because this accounts for the overwhelming majority of arrays in typical systems, and for as much as
60% of the overall data and code. The system supports the running of compiled code directly from the

Since compiled code arrays point to atoms for function names, and strings for error messages, not to
mention the fact that programs usually have data base, which are typically lists rather than arrays, there is
still a very real and �nite limit to the total size of programs that Interlisp- 10 can accomodate. However,
since much of the system and user compiled code can be made swappable, there is that much more
resident space available for these other data- types.

Initially 64,512 word pages, but can be changed via the function described below.

22.24

resident

MAKESYS

The main purpose and intent of the swapping system is to permit utilization of swappable arrays directly
and interchangeably with resident arrays, thereby saving resident space which is then available for other
data-types, such as lists, atoms, strings, etc.

swapping bu�er
overlaying

SETSBSIZE

29

30

31

29

30

31

INTERLISP-10 SPECIFICS

swapping bu�er, and the function calling mechanism knows when a swappable de�nition is being called,
�nds it in the bu�er if it is already there, and brings it in otherwise. Thus, from the user’s point of
view, there is no need to distinguish between swappable and resident compiled de�nitions, and in fact

will be true for either.

22.13.2 E�ciency

Once of the most important design goals for the overlay system was that swappable code should not
execute any extra instructions compared to resident code, once it had been swapped in. Thus, the
instructions of a swappable piece of code are identical (except for two instructions at the entry point) to
those of the resident code from which it was copied, and similarly when a swappable function calls
another function (of any kind) it uses the exact same calling sequence as any other code. Thus, all costs
associated with running of swappable code are paid at the point of entry (both calling and returning).

The cost of the swapping itself, i.e. the fetch of a new piece of swapped code into the bu�er, is even
harder to measure meaningfully, since two successive fetches of the same function are not the same, due
to the fact that the instance created by the �rst fetch is almost certain to be resident when the second
is done, if no swapping is done in between. Similarly, two successive PMAP’s (the Tenex operation to
fetch one page) are not the same from one moment to another, even if the virtual state of both forks is
exactly the same - a di�cult constraint to meet in itself. Thus, all that can be reported is that empirical
measurements and observations have shown no consistent slowdown in performance of systems containing
swappable functions viz a viz resident functions.

22.13.3 Speci�cations

Associated with the overlay system is a datatype called a , (type name), which
occupies one word of resident space, plus however much of shadow space needed for the body of the
array. , , , , , , , , , ,

, and all work equally well with swappable as resident programs. is true for all
compiled functions/de�nitions.

[Function]
Analogous to . Returns if is a swappable array and, otherwise.

The relocatable instructions are indexed by a base register, to make them run equally well at any
location in the bu�er. The net slowdown due to this extra level of indirection is too small to measure
accurately in the overall running of a program. On analytical grounds, one would expect it to be around
2%.

If the function in question does nothing, e.g. a compiled , it costs approximately
twice as much to enter its de�nition if it is swappable as compared to resident. However, very small
functions are normally not made swappable (see , page 22.26), because they don’t save much
space, and are (typically) entered frequently. Larger programs don’t exhibit a measurable slow down since
they amortize the entry cost over longer runs.

The cost of fetching is probably not in the mapping operation itself but in the �rst reference to the
page, which has a high probability of faulting. This raises the problem of measuring page fault activity,
another morass of uncertainty.

22.25

CCODEP

SWPARRAY SWPARRAYP

ARGLIST FNTYP NARGS GETD PUTD ARGTYPE ARRAYSIZE CHANGENAME CALLS BREAK
ADVISE EDITA CCODEP

(SWPARRAYP)
ARRAYP NIL

(LAMBDA NIL NIL)

MKSWAPP

X

X X

Speci�cations

[Function]
Analogous to . Returns if is or has a swapped compiled de�nition.

[Function]
If is a resident array, returns a swappable array which is a copy of . If is
a literal atom and is true, its de�nition is copied into a swappable
array, and it is (undoably) rede�ned with the latter. returns .

[Function]
The inverse of . is either a swappable array, or an atom with swapped
de�nition on its property.

[Function]
All compiled de�nitions begin life as resident arrays, whether they are created by

, or by compiling to core. Before they are stored away into their atom’s
function cell, is applied to the atom and the array. If the value of

is , the de�nition is made swappable; otherwise, it is left resident. By
rede�ning or advising it, the user can completely control the swappability
of all future de�nitions as they are created. The initial de�nition of will
make a function swappable if (1) is , and (2) the name of the
function is not on , and (3) the size of its de�nition is greater than

words, initially 128.

[Function]
Sets the size of the swapping bu�er to , a number of . Returns the previous
value. returns the current size without changing it.

Note: Currently, the system lacks error recovery routines for situations such as a
call to a swappable function which is too big for the swapping bu�er, or when the
size is zero. Therefore, should be used with care.

22.26

(SCODEP)
CCODEP T

(MKSWAP)

(CCODEP)
MKSWAP

(MKUNSWAP)
MKSWAP
CODE

(MKSWAPP)

LOAD
MKSWAPP

MKSWAPP T
MKSWAPP

MKSWAPP
NOSWAPFLG NIL

NOSWAPFNS
MKSWAPSIZE

(SETSBSIZE)
pages

(SETSBSIZE)

SETSBSIZE

X

X

X

X X X

X

X

X

X

FNAME CDEF

N

N

