
CHAPTER 18

INTERLISP-D SPECIFICS

Interlisp- D is an implementation of the Interlisp language that runs on the Xerox 1100, 1108, and 1132
machines. It is completely upward compatable with the older Interlisp- 10, except as speci�ed in this
manual. The most signi�cant extension to Interlisp is the window display package, described on page
19.1. However, Interlisp- D also o�ers many other extensions, which are described in detail below.

18.1 INTERLISP-D INTERRUPT CHARACTERS

The table below gives the interrupt characters currently enabled in Interlisp- D. Many of these are the
same as those used in the Tenex version of Interlisp- 10, but some have been removed, and some have
had their meanings changed. It is possible to change the assignments of control characters to interrupts
using (page 9.17).

Note: In Interlisp- D with multiple processes, it is not su�cient to say that ‘‘the computation’’ is broken,
aborted, etc; it is necessary to specify which process is being acted upon. Most of the interrupt characters
below refer to the TTY process, which is the one currently receiving keyboard input. Control- H can be
used to break arbitrary processes. For more information, see page 18.35.

control- B Causes a break within the TTY process. Use control- H to break a particular process.
Note that this break occurs at the next function call, so it is like control- H in Interlisp-
10; it is always safe to resume the computation. There is no interrupt character like
control- B in Interlisp- 10

control- C On the Xerox 1100 and Xerox 1132, brings the user into the Raid low-level debugger.
From Raid, typing control- N resumes the Lisp computation, and control- D resets the
stack. On the Xerox 1108, after typing control- C, the system stops and waits for the
next character typed. Pressing the key will do a , returning control
to the user. Pressing the key will start up the TeleRaid debugger.

control- D Aborts the TTY process, and unwinds its stack to the top level. Calls (page
9.14).

control- E Aborts the TTY process, and unwinds its stack to the last . Calls
(page 9.14).

control- H Pops up a menu listing all of the currently- running processes. Selecting one of the
processes will cause the break to take place in that process.

control- P Changes the setting, as described on page 6.18.

control- T Prints status information for the TTY process.

18.1

INTERRUPTCHAR

STOP HARDRESET
UNDO

RESET

ERRORSET ERROR!

PRINTLEVEL

Garbage Collection

Note: The control- O, and control- S interrupt characters from the Tenex version of Interlisp- 10 are not
enabled in Interlisp- D.

18.2 GARBAGE COLLECTION

Interlisp- D has a reference- counting garbage collector (Interlisp- 10 uses the more familiar mark- and- sweep
algorithm). A reference- counting garbage collector uses time proportional to the garbage being collected
and not to the size of the address space. This is a crucial advantage for a large address space system such
as Interlisp- D. It does have a disadvantage in that circular lists are never reclaimed, as their reference
count never goes to zero. In addition, atoms are currently not garbage collected; and non- atomic hash
array keys are not collected (in Interlisp- 10, when a non- atomic hash key is no longer referenced except
by the hash array itself, the hashlink goes away and both the key and the value, if it is nowhere else
referenced, are reclaimed).

Garbage collection in Interlisp- D is controlled by the following functions and variables:

[Function]
Initiates a garbage collection. always returns 0, independent of the actual
number of cells collected.

[Function]
The frequency of garbage collection is user settable via the function
(which plays a role similar to Interlisp- 10’s , which is a no-op in Interlisp- D).
Lisp keeps track of the number of cells of any type that have been allocated; when
it reaches the number, a garbage collection occurs.

returns the current setting of the parameter, and, if is non- , sets it to .

As there is no motivation for the Interlisp- 10 interrupt, it is not enabled.

[Variable]
Interlisp- D will invoke a if the system is idle and waiting for user input
for seconds (currently set for 4 seconds).

[Function]
sets the message that appears on the display screen while a garbage collection

is taking place. If is non- , the cursor is complemented during a
; if = , nothing happens. This limited choice exists because

it was found that printing a message took a signi�cant fraction of the time of small
s. The value of is its previous setting.

[Function]
The function returns the number of cells (of any type, not just)
until the next garbage collection, according to the number, although
this number is not very meaningful.

18.2

(RECLAIM)
RECLAIM

(RECLAIMMIN)
RECLAIMMIN

MINFS

RECLAIMMIN (RECLAIMMIN
) NIL

CTRL-S

RECLAIMWAIT
RECLAIM

RECLAIMWAIT

(GCGAG)
GCGAG

NIL
RECLAIM NIL

RECLAIM GCGAG

(GCTRP)
GCTRP LISTP

RECLAIMMIN

N

N N N

MESSA GE

MESSA GE

MESSA GE

INTERLISP-D SPECIFICS

18.3 VARIABLE BINDINGS

Interlisp- D uses deep binding of variables, whereas Interlisp- 10 currently uses shallow binding (prior to
1975, Interlisp- 10 used deep binding). Although this makes little di�erence for most programs, it can
make a di�erence in e�ciency of execution. For example, it is better to pass parameters as arguments
than to let subfunctions reference them freely. In addition, declaring variables that are never bound (i.e.,
whose top level value only is used) to be is important. Sloppy Interlisp- 10 code that rebinds
variables that have been declared as will not run correctly in Interlisp- D. Be careful to use

to ‘‘rebind’’ variables that are declared . works in both systems;
in a shallow system, just binds its arguments as variables (and makes sure they are
declared), while in a deep system such as Interlisp- D, entries are made on . If
the compiler sees an attempt to bind a global variable, it will print out an error message.

For performance reasons, it is important to declare global variables as such in Interlisp- D. This can be
done with the �le package command (page 11.25), which causes variables to be declared
as global to the compiler. For more information on variable bindings and performance, see page 18.19.

18.4 STACK FORMAT

Both the interpreter and compiler generate di�erent intermediate frames than are found in Interlisp- 10,
so if the user has code that assumes a particular number of frames will exist at some point (e.g.,
using), it will probably be wrong. and are still available, however, and

and are useful for ignoring those intermediate frames.

18.5 SAVING VIRTUAL MEMORY STATE

The Interlisp- D virtual memory is kept in the �le Lisp.virtualmem. As virtual memory pages are accessed,
they are loaded from this �le into real memory. To exit from Interlisp- D to the Alto Executive so that it
is possible to return to the current Interlisp- D environment, it is necessary to save the state of the virtual
memory. The simplest way is to use the function (page 14.2). This will write out all altered
pages from real memory to Lisp.virtualmem.

If you are the sole user of Interlisp- D on a disk partition, then you will probably want to use .
However, if other Interlisp- D users may be using that partition, and you wish to save your state, then it
may be more appropriate to use (page 14.3). Note that in Interlisp- D saves the
state of the virtual memory, instead of just the saved pages, so Interlisp- D sysout �le are very large.

[Function]
Returns the number of pages in use in the virtual memory. This is the roughly the
same as the number of pages required to make a sysout �le on the local disk.

Interlisp- D contains a routine that writes out dirty pages of the virtual memory during I/O wait, assuming
that swapping has caused at least one dirty page to be written back into Lisp.virtualmem (making it
non- continuable). The frequency with which this routine runs is determined (inversely) by:

18.3

GLOBALVARS
GLOBALVARS

RESETVARS GLOBALVARS RESETVARS
RESETVARS PROG

SPECVARS RESETVARSLST

GLOBALVARS

STKNTH STKPOS STKSCAN
REALSTKNTH REALFRAMEP

LOGOUT

LOGOUT

SYSOUT SYSOUT entire

(VMEMSIZE)

Error Types

[Variable]
This global variable determines how often the routine that writes out dirty pages is
run. Initially it is set to 4, so the dirty page routine is run once every 4 times around
the idle loop. (The lower is set, the less responsiveness
you get at typein, so it may not be desirable to set it all the way down to 1.)

The following function is used to write all of the dirty pages out, to make sure that the current state is
not lost if there is a system crash.

[Function]
This function is similar to logging out and continuing, but faster. It takes about
as long as a logout, which can be as brief as 10 seconds or so if you have already
written out most of your dirty pages by virtue of being idle a while. After the

, and until the pagefault handler is next forced to write out a dirty page,
your virtual memory image will be continuable (as of the) should there
be a system crash or other disaster.

If the system has been idle long enough, dirty pages have been written, and there are few enough dirty
pages left to write that a would be quick, will be automatically called. While
is being executed, the cursor is changed to a special ‘‘ ’’ cursor. You can control how often

is automatically called by setting the following two global variables:

[Variable]
[Variable]

The system will call after being idle for seconds (initially
60) if there are fewer than pages dirty (initially 600). These values are
fairly conservative. If you want to be extremely wary, you can set =0
and =10000, in which case will be called the �rst chance
available after the �rst dirty page has been written.

18.6 ERROR TYPES

The following additional error types occur in Interlisp- D:

5

48

49

50

51

52

Interlisp- D allows the user to trap arithmetic exceptions. The action taken when over�ow occurs may be
set with the function (page 2.38).

18.4

BACKGROUNDPAGEFREQ

BACKGROUNDPAGEFREQ

(SAVEVM)

SAVEVM
SAVEVM

SAVEVM SAVEVM SAVEVM
SAV/ING

SAVEVM

SAVEVMWAIT
SAVEVMMAX

SAVEVM SAVEVMWAIT
SAVEVMMAX

SAVEVMWAIT
SAVEVMMAX SAVEVM

FILE SYSTEM ERROR

FLOATING UNDERFLOW

FLOATING OVERFLOW

OVERFLOW

ARG NOT HARRAY

TOO MANY ARGUMENTS

OVERFLOW

_

INTERLISP-D SPECIFICS

errors are not generated in Interlisp- D. In the situation where Interlisp- 10 would
generate the error, the call to within the macro will simply return .

18.7 COMPILER

Interlisp- D runs a di�erent instruction set than Interlisp- 10, so source �les from Interlisp- 10 must be
recompiled. The default extension (value of) for Interlisp- D compiled �les is ‘‘ ’’
rather than ‘‘ ’’ as in Interlisp- 10.

The Interlisp- 10 compiler translates Lisp source programs into 36-bit PDP- 10 instructions. The Interlisp- D
compiler compiles Lisp source programs into an 8-bit Lisp instruction set executed by the Xerox 1100
family machines.

In Interlisp- D, block compiling is handled somewhat di�erently than in Interlisp- 10; block compiling
provides a mechanism for hiding function names internal to a block, but it does not provide a performance
advantage. Block compiling in Interlisp- D works by automatically renaming the block functions with
special names, and calling these functions with the normal function- calling mechanisms. Speci�cally, a
function is renamed to . For example, function in block is renamed to
‘‘ ’’. Note that it is possible with this scheme to break functions internal to a block.

Interlisp- D has an optimizing compiler. Among other optimizations, it performs constant folding. Variables
can be declared by the user to be compiler constants using the �le package command (page
11.27), which is syntactically the same as , but additionally informs the compiler that the ‘‘variables’’
are constants.

18.8 LINKED FUNCTION CALLS

Linked function calls are not implemented in Interlisp- D. One noticeable result of this is that if you
break a function that is used by the system, for example in the loop, you will get
unexpected breaks within system code. These extra breaks can be safely exited with . To avoid this
inconvenience, the function inside another function, e.g., . (Note:
Functions that begin with a backslash () are system internal functions and should not be broken or
advised.)

18.9 HELPSYS

There is currently no facility in Interlisp- D. There are plans to reimplement a facility
eventually.

18.5

READ-MACRO CONTEXT
READ NIL

COMPILE.EXT DCOM
COM

\ / FOO BAR
\BAR/FOO

CONSTANTS
VARS

READ-EVAL-PRINT
OK

BREAK (BREAK (PRIN1 IN FOO))
\

HELPSYS HELPSYS

FN BL OCK- NAME FN

Operating System Dependent Functions

18.10 OPERATING SYSTEM DEPENDENT FUNCTIONS

Many Interlisp- 10 functions are missing from Interlisp- D. An attempt has been made to provide an
appropriate implementation for the more useful of these functions, but some simply do not make sense on
the Xerox 1100 family machines. For example, there is no such thing as a . Any function containing
a call on or will fail to compile.

The following Interlisp- 10 functions are not implemented in Interlisp- D: , , ,
, , , , , , .

The following Interlisp- 10 func tions are imple mented as dummies in Interlisp- D: , , ,,
, , . There are communica tion network analogs of and
called and (page 21.5).

Additional Functions:

[Function]
Returns if is recognized as a valid device or remote �le server name at
the moment is called.

[Function]
Returns if is recognized as a valid directory. may include
an explicit hostname. If is supplied, it is used instead. The connected
directory and hostname are used as defaults.

[Function]
Returns the type of machine that Interlisp- D is running on: either (for
the Xerox 1132), (for the Xerox 1100), or (for the Xerox
1108).

[Function]
On the Xerox 1100, this �ashes (reverse- videos) the screen several times. On the
Xerox 1108, this also beeps through the keyboard speaker.

18.11 IDATE FORMAT

Interlisp- D uses a di�erent time standard than Tenex does. still has the essential property that
is less than) if is before , and equals . If the

particular internal format of the integer date is being used to do arithmetic on dates, the user’s programs
must be �xed. But in that case the user is already in trouble with Interlisp- 10, where the date standard
is subtly di�erent between Tenex and Tops20. The most useful property that the three formats have in
common is that an internal date can be incremented by an integral number of days by computing as the ‘‘1
day’’ constant (which can be evaluated at compile time) the di�erence between two convenient ,
e.g. .

Currently, the format argument of and is not supported (an error will occur if the user tries
to give one). now parses most of the date forms allowed in Interlisp- 10; e.g., the month can be
given numerically, slashes can be used as separators, extra spaces are ignored.

18.6

JSYS
JSYS ASSEMBLE

LISPXSTATS SUBSYS GETBLK
RELBLK ERSTR GTJFN OPNJFN RLJFN OPENF JFNS

LISPXWATCH ADDSTATS HOSTNAME
USERNUMBER HOSTNUMBER LOADAV HOSTNAME
HOSTNUMBER ETHERHOSTNAME ETHERHOSTNUMBER

(HOSTNAMEP)
T

HOSTNAMEP

(DIRECTORYNAMEP)
T

(MACHINETYPE)
DORADO

DOLPHIN DANDELION

(RINGBELLS)

IDATE
(IDATE) (IDATE (IDATE (GDATE))

IDATE’s
(IDIFFERENCE (IDATE " 2-JAN-80 12:00") (IDATE " 1-JAN-80 12:00"))

DATE GDATE
IDATE

NAME

NAME

DIRNAME HOSTNAME

DIRNAME DIRNAME

HOSTNAME

X Y X Y N N

INTERLISP-D SPECIFICS

& [Function]
Sets the internal time- of-day clock. If & = , attempts to
get the time from the communications net; if it fails, the user is prompted for the
time. If & is a string in a form that recognizes, it is used to set
the time.

[Variable]
This variable should be initialized (in) to the time- zone
compensation, i.e., the number of hours west of GMT. For the U.S. west coast it
is 8. For the east coast it is 5.

18.12 CHARACTER SET

Interlisp- D uses an 8-bit character set whereas Interlisp- 10 uses standard 7-bit ASCII. The values returned
by range from 0 to 255, and codes in this range are acceptable arguments to and

. Characters 0-127 have their standard ASCII interpretations; characters 128-255 are called
‘‘meta’’ characters. Some of the meta characters have printed representations in some fonts (for accents,
ligatures, etc.), but most of them will be invisible if printed directly to the screen. Accordingly, the
echoing conventions normally de�ned for control characters have been extended to apply also to meta
characters. The echomode of any character may be set by the new function (page 6.43). In
the original terminal table, the character mode is speci�ed for all meta characters, so all meta
characters are echoed as a cross-hatch () followed by the printed representation corresponding to the
7 rightmost bits of the character. For example, character 129 is echoed as . There is currently no
type- in syntax for meta characters.

The function (page 2.12), de�ned in both Interlisp- D and Interlisp- 10, can be useful when
dealing with the Interlisp- D character set.

18.13 READ TABLES

In Interlisp- D, all control characters are de�ned as separator characters in , so that the font
information in �les is ignored when �les are loaded. Users who run in both Interlisp- 10 and Interlisp- D
with the same �les will want to make the same setting in Interlisp- 10’s , in order that �les
created in one system can be read in the other. The appropriate expression to evaluate, which may be in
your Interlisp- 10 �le, is:

18.7

(SETTIME)
NIL SETTIME

IDATE

\TimeZoneComp
{DSK}INIT.LISP

CHCON1 CHARACTER
FCHARACTER

ECHOCHAR
INDICATE

#
#^A

CHARCODE

FILERDTBL

FILERDTBL

INIT.LISP

(SETSEPR ’(1 2 3 4 5 6 7 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26)

1 FILERDTBL)

D ATE TIME

D ATE TIME

D ATE TIME

Keyboard Interpretation

18.14 KEYBOARD INTERPRETATION

In Interlisp- D, keyboard and mouse interpretation is now done entirely by Lisp code, and certain
lower level keyboard facilities are therefore available. For each key on the keyboard/mouse there is a
corresponding bit in memory that the hardware/microcode turn on and o� as the key moves up and down.
System- level routines decode the meaning of key transitions according to a table of ‘‘key actions’’, which
may be to put particular Ascii codes in the sysbu�er, cause interrupts, change the internal shift/control
status, or create events to be placed in the mouse bu�er.

[Function]
Used to read the instantaneous state of any key, independent of any bu�ering or
pre- assigned key action. Returns if the key named is down at the
moment the function is executed. Most keys are named by any of the characters on
the key-top. The shift keys are named separately as and , space
is , the unmarked keys are , , and

, and the mouse buttons are , , and . Paddles on the
keyset (not generally available) are named through . Thus

returns if the ‘‘ ’’ key is down, returns the state of
the key, etc.

[Function]
Changes the internal tables that de�ne the action to be taken when a key transition is
detected by the system keyboard handler. is speci�ed as for .

is a dotted pair of the form , where the
acceptable transition actions and their interpretations are:

Take no action on this transition (the default for up- transitions on all
ordinary characters).

a list
and are either ascii codes or non- digit characters

standing for their ascii codes. When the transition occurs,
or is transmitted to the system bu�er, depending on
whether either of the 2 shift keys are down. is optional, and
may be or . If is ,
then will also be transmitted when the shift is
down (the alphabetic keys initially specify , but the digit
keys specify).

Examples: and are
the initial settings for the down transitions of the ‘‘ ’’ and ‘‘ ’’ keys
respectively.

, , , ,
, , , ,

Change the status of the internal ‘‘shift’’ �ags for the left shift, right
shift, shift lock, ctrl, and meta keys, respectively. These shifts a�ect the
interpretation of ordinary key actions. If either of the shifts is down,
then s are transmitted. If the lock �ag is down, then

s are transmitted if the key action speci�ed .
If the control �ag is on, then the low-order �ve bits are masked out

18.8

(KEYDOWNP)

T

RSHIFT LSHIFT
SPACE BLANK-TOP BLANK-MIDDLE BLANK-

BOTTOM LEFT MIDDLE RIGHT
PAD1 PAD5 (KEYDOWNP

’a) T a (KEYDOWNP ’TAB)
TAB

(KEYACTION)

KEYDOWNP
(.)

NIL

()

LOCKSHIFT NOLOCKSHIFT LOCKSHIFT
LOCK

LOCKSHIFT
NOLOCKSHIFT

(a A LOCKSHIFT) (61Q ! NOLOCKSHIFT)
a 1

1SHIFTUP 2SHIFTUP LOCKUP CTRLUP METAUP
1SHIFTDOWN 2SHIFTDOWN LOCKDOWN CTRLDOWN METADOWN

LOCKSHIFT

KEYNAME

KEYNAME

KEYNAME ACTIONS

KEYNAME

A CTIONS DO WN- ACTION UP-ACTION

CHAR SHIFTEDCHAR LOCKFLA G

CHAR SHIFTEDCHAR

CHAR

SHIFTEDCHAR

LOCKFLA G

LOCKFLA G

SHIFTEDCHAR

SHIFTEDCHAR

SHIFTEDCHAR

INTERLISP-D SPECIFICS

of the code that would otherwise be transmitted to the system bu�er.
If the meta �ag is down, the high order (8th bit) is turned on as
characters are transmitted.

Example: the initial for the left shift key is
.

An encoding of the current state of the mouse and selected keys is
placed in the mouse- event bu�er when this transition is detected.

returns the previous setting for . If is , returns
the previous setting without changing the tables.

[Function]
is a list of key actions to be set, each of the form

. The e�ect of is as if
were performed for each item on .

If is non- , then returns a list of all
the results from , otherwise it returns . This can be used with a

that appears in a , so that the list is built at
‘‘entry’’, but not upon ‘‘exit’’.

[NoSpread Function]
If is non- , changes the keyboard handler (via) so as to
interpret the bottom blank key (‘‘swat’’) as a metashift: if a key is struck while
meta is down, it is read with the 200Q bit set. For CHAT users this is a way of
getting an ‘‘Edit’’ key on your simulated Datamedia. Returns previous setting.

18.15 LISPUSERS PACKAGES

Most of the packages (see page 23.1) are available with the Interlisp- D system as separate
loadable packages. The major exception is the package, which is highly machine dependent, and
the package which depends on it. , , and many parts of the package are
system-dependent by their very nature, and also are not included. The various network packages are not
provided because many of these facilities are integrated into Interlisp- D at a more fundamental level.

Several packages not documented in the Interlisp Reference Manual are available. The list currently
includes the following:

A collection of functions for laying out, displaying, and editing graphs on the
Interlisp- D screen.

Modi�es the command of Masterscope so that the command’s output
is displayed as an undirected graph. Uses the package.

Provides a set of routines to facilitate communication, over an Ethernet, between
two or more Xerox 1100s running Interlisp- D.

18.9

(1SHIFTUP .
1SHIFTDOWN)

EVENT

KEYACTION NIL

(MODIFY.KEYACTIONS)
(.

) MODIFY.KEYACTIONS (KEYACTION
)

NIL MODIFY.KEYACTIONS
KEYACTION NIL

MODIFY.KEYACTIONS RESETFORM

(METASHIFT)
NIL KEYACTION

LISPUSERS
HASH

WHEREIS EDITA CJSYS EXEC

GRAPHER

BROWSER SHOW PATHS
GRAPHER

EVALSERVER

ACTIONS

KEYNAME A CTIONS

KEY ACTIONS SAVECURRENT?

KEY ACTIONS KEYNAME

A CTIONS KEYNAME

A CTIONS KEY ACTIONS

SAVECURRENT?

FL G

FL G

File System

Provides a simple way to access the Interlisp history list using a menu.

This package advises to notify the user if it appears that a �le is being
written onto a directory other than the one it came from, allowing the user to halt
the process.

18.16 FILE SYSTEM

Typically, the most machine- dependent part of any computer language implementation is the I/O system.
Regardless of e�orts to create consistant interfaces, the fact remains that di�erent physical machines o�er
di�erent disks, printers, etc., and languages have to be extended to take advantage of these. In the case
of implementing Interlisp on the Xerox 1100 family machines, the biggest change was the addition of
facilities for using the high- resolution display, described elsewhere. Other changes have had to be made
to accomodate using �les on a local disk or on a �le server, and sending �les to remote printers. Every
e�ort has been made to keep these interfaces compatible with Interlisp- 10 conventions, to reduce the
amount of work necessary when transferring programs. However, in some situations the user may wish
to take advantage of the special extensions o�ered by Interlisp- D.

This section contains information about a variety of extensions to Interlisp- D that accomodate the di�erent
I/O environment.

18.16.1 File Names

‘‘Full’’ �le names inside of Interlisp- D look just like Tenex �le names, except that all full �le names
begin with a device/host name (in braces) to identify the machine (or pseudo- machine) on which the �le
resides. Files on the local disk belong to device/host , e.g. . and

are still the appropriate way for programs to manipulate �lenames. The device/host
of a �le may be accessed using the new �eld name .

On Xerox 1100s and Xerox 1132s, Interlisp- D can access partitions other than the one which was booted.
If the other partition is password- protected, Interlisp insists on the correct password before accessing any
�les. Partitions are denoted by for Partition 1, for Partition 2, etc. , ,
etc. all work for other partitions. Currently, does not work for partitions other than the default.

18.16.2 Renaming Files

Interlisp- D implements merely by copying to and then deleting
. While this is quite general (and even allows one to rename �les from the local disk or one �le server

to another), it is slower than the Interlisp- 10 operation. It also, in the case of renaming a
local disk �le, requires that the local disk have enough room to hold the copy of the �le.

18.16.3 End Of Line Convention

Interlisp- D uses a di�erent representation for both internally and on �les. Internally,

18.10

HISTMENU

SAMEDIR MAKEFILE

DSK {DSK}FOO.BAR;3 PACKFILENAME
UNPACKFILENAME

HOST

{DSK1} {DSK2} DIR DIRECTORY
SYSOUT

(RENAMEFILE)

RENAMEFILE

end of line end of line

OLD NEW OLD NEW

OLD

INTERLISP-D SPECIFICS

is represented by the carriage return character (15Q), whereas the internal representation in Interlisp- 10
is the character (37Q). The macro (page 2.12) is the appropriate way to code programs
to be independent of the convention: in all systems is always the appropriate
end- of-line character. and provide the system-dependent
character codes. Interlisp- D also interprets a carriage return/line feed sequence in a �le as an end- of-line
and reads it as a carriage return. generates two characters in Interlisp- 10, but only one in
Interlisp- D.

18.16.4 Using Files with Processes

Currently, Interlisp- D does not provide interlocks to keep multiple processes from trying to access the
same �le. Therefore, the user has to be careful not to have two processes manipulating the same �le at
the same time. For example, it will not work to have one process a �le while another process is
running on it.

18.16.5 Miscellaneous File Manipulation

[Function]
Copies a �le to a new �le. The source and destination may be any servers/devices.

attempts to preserve the and where possible.

[Function]
Returns an estimate of the number of pages free on the local disk (current partition).
This number is only a ‘‘hint’’, but is usually quite accurate.

[Function]
Returns the number of the current partition (1 or 2 on Xerox 1100, 1-5 on Xerox
1132).

18.16.6 Connecting to Directories

As in Interlisp- 10, Interlisp- D has a notion of a ‘‘connected’’ directory, which is used as the default when
you give a �lename lacking an explicit device/host (and directory). The default is changed by using the
programmer’s assistant command .

[Prog. Asst. Command]
Either part of the argument is optional; if the directory is omitted, the default for
devices that have directories is the value of ; if the host is omitted,
connection will be made to another directory on the same host as before. If
is given with no arguments, connects to the value of .

Note that does not require or provide any directory access privileges, as
does the command of the same name in Interlisp- 10. Access privileges are checked
when a �le is opened.

[Function]
Programmatic form of . Connects to the directory . Returns the

18.11

EOL CHARCODE
EOL (CHARCODE EOL)

(CHARCODE CR) (CHARCODE TENEXEOL)

TERPRI

TCOMPL
LISTFILES

(COPYFILE)

COPYFILE TYPE CREATIONDATE

(DISKFREEPAGES)

(DISKPARTITION)

CONN

CONN { }< >

(USERNAME)
CONN

LOGINHOST/DIR

CONN

(CNDIR)
CONN

FR OMFILE TOFILE

_ _

DEVICE/HOST DIRECTOR Y

HOST/DIR

HOST/DIR

Binary I/O

fullname of the now-connected directory.

[Function]
Undoable form of . is implemented via .

[Variable]
with no argument connects to the value of the variable ,

initially , but usually reset in the user’s greeting �le.

[Function]
Similar to Interlisp- 10 . If is , returns the currently connected
host and directory name. If is , returns the value of . If

is , the value is returned as an atom, otherwise it is returned as a string.

[Variable]
Global variable containing the list of directories searched (in order) by
and (page 15.20) when not given an explicit argument. In this
list, the atom stands for the login directory (), and the atom

stands for the currently connected directory.

18.16.7 Binary I/O

Interlisp- D supports a datatype called a , whose basic operations are ‘‘input’’ and ‘‘output’’. They
provide an e�cient handle to an open �le. All I/O functions that currently refer to �les (e.g., ,

, ,) will also accept streams, and will operate slightly more e�ciently on
them. In addition, the following two functions provide binary input and output on streams:

[Function]
Returns the next byte from ; thus, this operation is similar to

. is a very e�cient (microcoded) operation.

[Function]
Outputs a single 8-bit byte to , i.e., similar to

.

In addition, the following function coerces �les to streams:

[Function]
Takes a designator which can be used as a ‘‘�le’’ argument (e.g., a full/partial �le
name, a display stream, window, etc.) and returns the corresponding stream. If
given a stream will merely return it. is interpreted the same as in
(page 6.2).

and will also accept a �le designator, in which case they coerce it to a stream via .
However, executes in microcode only when given a stream directly.

18.16.8 Temporary Files and the CORE Device

The local device and most �le servers do not support the temporary or scratch �les that are available

18.12

(/CNDIR)
CNDIR CONN /CNDIR

LOGINHOST/DIR
CONN LOGINHOST/DIR

{DSK}

(DIRECTORYNAME)
USERNAME T

NIL LOGINHOST/DIR
T

DIRECTORIES
SPELLFILE

FINDFILE
NIL LOGINHOST/DIR

T

STREAM
PRINT

PRIN1 COPYBYTES FULLNAME

(BIN)
(CHCON1

(READC)) BIN

(BOUT)
(PRIN3 (CHARACTER

))

(GETSTREAM)

OPENP

BIN BOUT GETSTREAM
BIN

DSK

HOST/DIR

FL G STRPTR

FL G

FL G

STRPTR

DIRLST

STREAM

STREAM

STREAM

STREAM BYTE

STREAM

BYTE

FILE ACCESS

ACCESS

INTERLISP-D SPECIFICS

in Interlisp- 10. Files that are created do not disappear when some later event such as logout occurs and
instead must be deleted by speci�c action on the part of the user. For this reason, the and su�xes
in �le names are simply ignored when output is directed to a particular host or device.

However, Interlisp- D does support a notion of core-resident �les, and in many cases these provide
a reasonable substitute for Interlisp- 10 scratch �les. Core- resident �les are on the device (e.g.

. The directory for this device and all �les on it are represented completely
within the user’s virtual memory. These �les are treated as ordinary �les by all �le operations; their only
distinguishing feature is that all trace of them disappears when the virtual memory is abandoned.

In Interlisp- D, the function is de�ned to default the device name to if the �le has
the attribute and no explicit host is provided.

Interlisp- D is initialized with the single core-resident device , but the function may
be used to create any number of logically distinct core devices.

[Function]
Creates a new device for core-resident �les and assigns as its device
name. Thus, after performing , one can execute

to open a �le on that device.

If the directory information associated with devices is not needed, the device can be
used to open core- resident �les which ‘‘disappear’’ when they are closed. Note that �les
do not have names, so the only way to manipulate them is to pass around the value that
returned when the �le was opened.

18.16.9 Floppy Disks on the Xerox 1108

Interlisp- D on the Xerox 1108 can access the built- in �oppy disk drive as device . The �oppy
format is compatible with the Pilot �oppy disk format.

18.16.10 Page Mapping

Interlisp- D implements the page-mapping primitives of Interlisp- 10 with some notable di�erences that
might require major reworking of programs that rely on these facilities (see page 14.17). The major
di�erence is that an Interlisp- D page contains 256 16-bit words, rather than the 512 36-bit words of
Interlisp- 10. A given page number or �le address for or will correspond to a very
di�erent number of bits from the beginning of the �le, and and
move smaller amounts of information. A second di�erence is that bu�ers are completely integrated into
the Interlisp- D storage management system so that a page is guaranteed to be locked down as long as the
user holds a pointer to it. The functions and are therefore unnecessary, but for
compatibility are de�ned with dummy de�nitions.

18.17 FILE SERVERS

A �le server is a shared resource on a local communications network which provides large amounts of

18.13

;S ;T

CORE
{CORE}<FOO>FIE.DCOM;5)

PACKFILENAME CORE
TEMPORARY

CORE COREDEVICE

(COREDEVICE)

(COREDEVICE ’FOO) (OUTFILE
’{FOO}BAR)

CORE NODIRCORE
{NODIRCORE}

OPENFILE

{FLOPPY}

MAPPAGE MAPWORD
WORDCONTENTS SETWORDCONTENTS

LOCKMAP UNLOCKMAP

NAME

NAME

File Server File Names

�le storage. Di�erent �le servers honor a variety of access protocols. In order to support full Lisp I/O,
a �le server must provide a random access protocol. One such protocol is Leaf. It has been integrated
into the Interlisp- D �le system to allow �les on a �le server to be treated in much the same way �les are
accessed on the local disk. Except where noted in this section, the standard �le operations (,

, , etc.) all work for remote �les. This section explains how to make use of remote �les
and what di�erences exist between them and other �les.

18.17.1 File Server File Names

The full name of a �le on a �le server host includes the name of the host in braces, and a directory
speci�cation in angle brackets, e.g., . These names are not necessarily
the syntax by which the actual device/server knows the �les (e.g. some �le servers use ‘‘ ’’ instead of
‘‘ ’’), but Lisp presents a uniform set of naming conventions.

The user can ‘‘connect’’ to a directory on a �le server using the command (page 18.11), after which
any �lename supplied that does not include the host name and/or directory will use the ‘‘connected’’ host
and/or directory. Speci�cally, if the host is omitted, then the connected host is used, and if the directory
is also omitted, the connected directory is used as well. If an explicit host is supplied, no defaulting of
the directory occurs.

Interlisp supports a prelimi nary version of NS �ling to Xerox 8030 �le servers (see page 21.13). Any
device with a colon in its name is presumed to be accessible with NS protocols rather than PUP, e.g.,

. The general format of NS �leserver device names is ;
the device speci�cation for an 8000-series product must contain the ClearingHouse domain and organiza-
tion, but if not supplied directly, then they are obtained from the defaults, which them selves are found by
a search for the nearest ClearingHouse. NS �le servers are modeled after the Star world, and have ‘‘File
Drawers’’ rather than direc tories; ‘‘File Folders’’ are like sub-directories. The func tions ,

, , , , and are working now with NS �le servers.

[Variable]
Files servers on di�erent machines have di�erent login protocols, �le name formats,
etc. For proper service from �le servers other than Xerox �le servers, the user
should add entries to the association- list associating the host
name (all uppercase) with its operating system type, currently one of ,

, , or . For example
will inform Interlisp that the �le server is a �le server.

18.17.2 Logging In

Most �le servers require a user name and password for access. When a �le server requests this information,
Interlisp- D �rst gives the name and password from the Alto Executive. If the �le server doesn’t recognize
that name/password, Interlisp- D prompts the user for a name and password to use. It suggests a default
name (the one on the disk), which the user can accept by typing a space, or replace by typing a new
name or backspacing over it. Interlisp- D saves names and passwords for each host, so the user can login
to di�erent �le servers using di�erent names.

[Function]
Forces Interlisp- D to ask for the login name and password to be used when
accessing host . Any previous login information for is

18.14

OPENFILE
INFILEP CLOSEF

{PHYLUM}<LISP>FOO.DCOM;3
!

;

CONN

{STARFILE:} { : : }

DIRECTORY
FILEBROWSER INFILE COPYFILE LOAD MAKEFILE

NETWORKOSTYPES

NETWORKOSTYPES
TENEX

TOPS20 UNIX VMS (ADDTOVAR NETWORKOSTYPES (MAXC2
. TENEX)) MAXC2 TENEX

(LOGIN)

SER VER DOMAIN OR GANIZA TION

HOSTNAME _ _ _

HOSTNAME HOSTNAME

INTERLISP-D SPECIFICS

overriden. If is , it overrides login information for all hosts.
Password information vanishes when , , or is executed.
Returns the login user name.

18.17.3 Abnormal Conditions

If Interlisp- D tries to access a �le and does not get a response from the �le server in a reasonable period
of time, it prints a message that the �le server is not responding, and keeps trying. If the �le server has
actually crashed, this may continue inde�nitely. A or similar interrupt aborts out of this state.

If the �le server crashes but is restarted before the user attempts to do anything, �le operations will
usually proceed normally, except for a brief pause while Interlisp- D tries to reestablish any connections
it had open before the crash. It will inform the user of any problems that arise in so doing. The most
likely problem occurs when a �le has been opened for output but has not yet been written to (or not
enough has been written so that Interlisp- D has written to the �le server). In this case the �le server will
think the �le is not there when Interlisp- D tries to reestablish the connection. A similar situation arises if
the system has been idle (or at least has not accessed the �le server) for a su�ciently long period. In this
case, the �le server will time out the connection. Normally, Interlisp- D will attempt to recover gracefully
as described above.

closes any Leaf connections that are currently open. On return, it attempts to reestablish
connections for any �les that were open before logging out. If a �le has disappeared or been modi�ed,
Interlisp- D reports this fact.

If it is desired to break the Leaf connection without logging out, call . Any
subsequent reference to �les on that host will reestablish the connection. The main reason for doing this
occurs if Interlisp- D is interrupted while a �le is being opened, leaving the �le server thinking the �le is
open and Lisp thinking it is closed, and then getting a �le busy when Interlisp- D next tries to open it.

On rare occasions, the Ethernet may appear completely unresponsive, due to Interlisp having gotten into
a bad state. Typing will reinitialize Lisp’s Ethernet driver(s), just as when the Lisp
system is started up following a , , etc (see page 21.15)

18.17.4 Caveats

Leaf does not currently support directory enumeration except for one minor case (in the version �eld).
Hence, or cannot be used on a Leaf �le server to get a list of �les.

and currently have to open the �le for input in order to obtain their information,
and hence the �le’s read date will change, even though the semantics of these functions do not imply it.
This di�ers from the operation of , and from Interlisp- 10 �le operations.

Interlisp supports simultaneous access to the same server from di�erent processes and permits overlapping
of Lisp computation with �le server operations, allowing for improved performance. However, as a
corollary of this, a �le is not closed the instant that returns; Interlisp closes the �le ‘‘in the
background’’. It is therefore very important that the user exits Interlisp via , or ,
rather than boot the machine or exit via Raid.

18.15

NIL
LOGOUT SYSOUT MAKESYS

CTRL-E

LOGOUT

(BREAKCONNECTION)

(RESTART.ETHER)
LOGOUT SYSOUT

DIRECTORY FILDIR

INFILEP GETFILEINFO

DSK

CLOSEF
(LOGOUT) (LOGOUT T)

HOSTNAME

HOST

New Functionality

18.17.5 New Functionality

Certain �le servers treat text and binary �les di�erently. Files on �le servers can have the attribute ,
with value or , for use with and . The �le type defaults to the
value of , initially . accepts or
as an element of its argument .

Another allowed element of is , which means
not to change the �le’s creation date when a �le is opened (meaningful only for �les being opened for
output).

Interlisp- D includes an implementation of the PupFtp protocol, which supports transferring �les
sequentially only. In those cases where sequential access (as opposed to random access) to a �le is
appropriate, the use of PupFtp generally results in considerable speed improvement over Leaf, particularly
for writing �les on a Xerox IFS. The system tries to use PupFtp where possible for and for
the destination �le of a . One can indicate that a �le is going to be accessed only sequentially
by including the keyword in the list of passed to

; the PupFtp will be used, if possible. If for some reason your �le server supports PupFtp but
you do not wish or to use it, you can set the internal variable to

.

18.18 HARDCOPY FACILITIES

Interlisp- D includes facilities for generating hardcopy in both ‘‘Press’’ and ‘‘Interpress’’ formats. ‘‘Press’’
is a �le format used for communicating documents to laser Xerographic printers called ‘‘Dover’’ (at MIT,
Stanford, and CMU) or ‘‘Penguin’’ (everywhere else). ‘‘Interpress’’ is a Xerox standard format used by
the 8044 printer and other Network System printers. The hardcopy functions below will generate Press
or Interpress output depending on the setting of the function :

[Function]
Sets the type of printing �le format generated by , , and
printer devices (see , below). If is , the Press �le format
is used. If is , the Interpress �le format is used.

Currently, the hardcopy interface is not smart enough to infer the printer mode
from a previously formatted �le or the name of a printing host. If the user wants
to print a previously formatted Press or Interpress �le, the printing mode must be
set correctly.

[Function]
The function is used to �nd the name of the local printer.

For , this merely returns the value of the variable
, which is usually set by an entry in the site greeting �le

(see page 14.5).

18.16

TYPE
TEXT BINARY GETFILEINFO SETFILEINFO

DEFAULTFILETYPE TEXT OPENFILE (TYPE TEXT) (TYPE BINARY)

DON’T.CHANGE.DATE

SYSOUT
COPYFILE

SEQUENTIAL
OPENFILE

COPYFILE SYSOUT \FTPAVAILABLE
NIL

Note: The following implementation of hardcopy facilities is subject to change.

PRINTERMODE

(PRINTERMODE)
LISTFILES HARDCOPYW

PRINTERDEVICE PRESS
INTERPRESS

(PRINTINGHOST)
PRINTINGHOST

(PRINTERMODE ’PRESS)
DEFAULTPRINTINGHOST

MA CHINE.DEPENDENT.P ARAMETERS

MA CHINE.DEPENDENT.P ARAMETERS

MA CHINE.DEPENDENT.P ARAMETERS

X

X

X

_

INTERLISP-D SPECIFICS

For , this returns the value of the variable
if non- , otherwise it returns the �rst local printer

found in the closest clearinghouse (see page 21.11).

The function is used by to send a single �le to a hardcopy printing device.
Interlisp- D is initialized with de�ned to call in Press mode or (page
21.11) in Interpress mode. These functions convert a �le to Press or Interpress format and send it to a
printing server. The ‘‘default’’ site greeting �le delivered with the Xerox 1100 rede�nes as
a no-op.

q q [Function]
The function causes q copies of the �le to be sent to the
printer . If is , the value of is used. q
speci�es one- or two-sided printing; may be 1 or 2 (if is capable of duplex
printing) or (meaning to use the printer’s default); defaults to the value of

, initially .

If is a Press or Interpress format �le, it is transmitted directly. Otherwise, it
is converted by calling the function (called with = and
the same).

[Variable]
constructs scratch press �les on the device for small �les. If

the number of disk pages of the source �le is larger than the limit set by the �rst
element of the list , an alternate scratch �le, speci�ed by the
second element of , is used. is initialized
to .

[Function]
[Function]

These functions produce a Press or Interpress �le named from the
�le . If is , it defaults to the same �le name as , with
extension or .

These functions interpret character sequences beginning with control- F (character
code 6) as special formatting instructions. If the code of the next character is a
valid font number, then the formatting sequence indicates a change to that font.
The correspondence between font numbers and fonts is speci�ed by entries on the
list or, if is , the current font pro�le list (see page 6.55). Each
entry is of the form .
For example, the entry indicates
that will be used in press �les for font 1 which will be represented on
the display as . is a string that is printed as a heading on each
page. If is , the �le’s name and creation date will be used.

These functions also allow absolute tab stops to be speci�ed. If the control- F
is followed by a control- T, the code of the character after that is interpreted
as an absolute tab stop number. The corresponding entry on the list , or

if is , is taken as the number of mills from the left
margin at which printing on the current line will continue. is
initially .

18.17

(PRINTERMODE ’INTERPRESS)
NS.DEFAULT.PRINTER NIL

LISTFILES1 LISTFILES
LISTFILES1 EMPRESS NSPRINT

LISTFILES1

(EMPRESS)
EMPRESS

NIL (PRINTINGHOST)

T
EMPRESS#SIDES T

MAKEPRESS NIL

EMPRESS.SCRATCH
EMPRESS {CORE}

EMPRESS.SCRATCH
EMPRESS.SCRATCH EMPRESS.SCRATCH

(30 {DSK}EMPRESS.SCRATCH)

(MAKEPRESS)
(MAKEINTERPRESS)

ASCII
NIL

Press Interpress

NIL
()

(DEFAULTFONT 1 (GACHA 10) (GACHA 8))
GACHA 8

GACHA 10
NIL

PRESSTABSTOPS NIL
PRESSTABSTOPS

(8000)

FILE COPIES HOST HEADING SIDES

COPIES FILE

HOST HOST SIDES

HOST

FILE

FONTS

HEADING

FILE OUTFILE FONTS HEADING TABS

FILE OUTFILE FONTS HEADING TABS

OUTFILE

FILE OUTFILE FILE

FONTS FONTS

FONT/CLASS FONT- NUMBER DISPLA Y-FONT PRESS- FONT

HEADING

HEADING

TABS

TABS

Performance Considerations

[Variable]
Value is a �le name or a list of �le names to be searched for information about
the widths of characters in particular fonts. This variable should be initialized in
the site greeting �le.

[Function]
Creates bitmap hardcopy and optionally sends it to a printer.
can either be a (open or closed), a , or a (interpreted as a
region of the screen). If , the user is prompted for a region using
(page 19.37) in a man ner which ‘‘defaults’’ to the whole screen.

The logic of defaulting is complex and follows:

, if supplied, will be used as the name of the �le for output. If is ,
then if was given, no printing is performed, else if is
non- , then output is sent to that printer, else output is sent to the value
of . To save an image on a �le without printing it, perform

.

is a reduction factor. Only =1 can be printed
on Dover and Penquin printers. defaults according to the
size of the image, the size of a page, and the parameters , , and

in a complex but appropriate manner.

, which can be one of 0, 90, 180, 270 (default 0) speci�es how the bitmap
image should be rotated on the printed page. This may not be supported by some
printers.

Note that ‘‘Hardcopy’’ in the background menu merely performs ,
which sends an image of region user selects to the default printer. Hardcopy in the
paint menu performs , which sends an image of window
to the default printer.

[Function]
Returns if is a Press �le, otherwise.

Hardcopy output may also be obtained by writing a �le on the printer device , e.g.
. When a �le on this device is closed, it is converted to Press or Interpress format (if

necessary) and sent to the default printer. Thus, acts like the device in Interlisp- 10. Printer
devices can be de�ned for other network printer hosts with the following function:

[Function]
De�nes the network printer host to be a printer device treated like .
For example, if is executed, then

will transmit to the printer named .

18.19 PERFORMANCE CONSIDERATIONS

Most Interlisp- D users will have experience using Interlisp- 10. Although Interlisp- D is completely upward

18.18

FONTWIDTHSFILES

(HARDCOPYW)

WINDOW BITMAP REGION
NIL GETREGION

NIL
FULLPRESSPRINTER

NIL
(PRINTINGHOST)

(HARDCOPYW)

FULLPRESSPRINTER

(HARDCOPYW)

(HARDCOPYW)

(PRESSFILEP)
(FULLNAME) NIL

LPT (COPYFILE
’FOO ’{LPT})

{LPT} LPT:

(PRINTERDEVICE)
LPT

(PRINTERDEVICE ’YODA) (COPYFILE ’FOO
’{YODA}) FOO YODA

WINDO W/BITMAP/REGION FILE HOST SCALEF A CTOR R OT ATION

WINDO W/BITMAP/REGION

FILE HOST

FILE

IMA GE FILE

SCALEF ACTOR SCALEF ACTOR

SCALEF ACTOR

HOST FILE

R OT ATION

WINDO W

FILE

FILE FILE

NAME

NAME

INTERLISP-D SPECIFICS

compatible with Interlisp- 10, there are di�erences in the exact implementation which may in�uence the
performance of applications programs. This chapter contains a collection of notes which may help the
user improve the performance of Interlisp- D programs.

18.19.1 Variable Bindings

A major di�erence between Interlisp- 10 and Interlisp- D is the method of accessing free variables.
Interlisp- 10 uses what is called ‘‘shallow’’ binding. Interlisp- D uses what is called ‘‘deep’’ binding.

The binding of variables occurs when a function or a is entered. For example, if the function
has the de�nition , the variables and are bound so that any reference to

or from or any function called from will refer to the arguments to the function
and not to the value of or from a higher level function. All variable names (atoms) have a top level
value cell which is used if the variable has not been bound in any function. In discussions of variable
access, it is useful to distinquish between three types of variable access: local, special and global. Local
variable access is the use of a variable that is bound within the function from which it is used. Special
variable access is the use of a variable that is bound by another function. Global variable access is the
use of a variable that has not been bound in any function. We will often refer to a variable all of whose
accesses are local as a ‘‘local variable.’’ Similarly, a variable all of whose accesses are global we call a
‘‘global variable.’’

In a ‘‘deep’’ bound system, a variable is bound by saving on the stack the variable’s name together with
a value cell which contains that variable’s new value. When a variable is accessed, its value is found by
searching the stack for the most recent binding (occurrence) and retrieving the value stored there. If the
variable is not found on the stack, the variable’s top level value cell is used.

In a ‘‘shallow’’ bound system, a variable is bound by saving on the stack the variable name and the
variable’s old value and putting the new value in the variable’s top level value cell. When a variable is
accessed, its value is always found in its top level value cell.

The deep binding scheme has one disadvantage: the amount of cpu time required to fetch the value of a
variable depends on the stack distance between its use and its binding. The compiler can determine local
variable accesses and compiles them as fetches directly from the stack. Thus this computation cost only
arises in the use of variable not bound in the local frame (‘‘free’’ variables). The process of �nding the
value of a free variable is called free variable lookup.

In a shallow bound system, the amount of cpu time required to fetch the value of a variable is constant
regardless of whether the variable is local, special or global. The disadvantages of this scheme are that
the actual binding of a variable takes longer (thus slowing down function call), the cells that contain the
current in use values are spread throughout the space of all atom value cells (thus increasing the working
set size of functions) and context switching between processes requires unwinding and rewinding the stack
(thus e�ectively prohibiting the use of context switching for many applications).

A deep binding scheme was choosen for Interlisp- D because of the working set considerations and the
speed of context switching, which we expected to use heavily when processes were added. The free
variable lookup routine was microcoded, thus greatly reducing the search time. In the benchmarks we
performed, the largest percentage of free variable lookup time was 20 percent of the total ellapsed time;
the normal time was between 5 and 10 percent.

One consequence of Interlisp- D’s deep binding scheme is that users may signi�cantly improve performance

18.19

PROG FOO
(LAMBDA (A B)) A B

A B FOO
A B

BOD Y

BOD Y BOD Y

Garbage Collection

by declaring global variables in certain situations. If a variable is declared global, the compiler will compile
an access to that variable as a retrieval of its top level value, completely bypassing a stack search. This
should be done only for variables that are never bound in functions such as global databases and �ags.

Global variable declarations should be done using the �le package command (page 11.25).
Its form is ��� .

Another way of improving performance is to declare variables as local within a function. Normally, all
variables bound within a function have their names put on the stack, and these names are scanned during
free variable lookup. If a variable is declared to be local within a function, its name is not put on the
stack, so it is not scanned during free variable lookup, which may increase the speed of lookups. The
compiler can also make some other optimizations if a variable is known to be local to a function.

A variable may be declared as local within a function by including the form
��� following the argument list in the de�nition of the function. Note: local variable

declarations only e�ect the compilation of a function. Interpreted functions put all of their variable names
on the stack, regardless of any declarations.

18.19.2 Garbage Collection

As an Interlisp- D applications program runs, it creates data structures (allocated out of free storage space),
manipulates them, and then discards them. If there were no way of reclaiming this space, over time the
Interlisp- D memory (both the physical memory in the machine and the virtual memory stored on the
disk) would get �lled up, and the computation would come to a halt. Actually, long before this would
happen the system would probably become intolerably slow, due to ‘‘data fragmentation’’, which occurs
when the data currently in use are spread over many virtual memory pages, so that most of the computer
time must be spent swapping disk pages into physical memory. This problem (‘‘fragmentation’’) will
occur in any situation where the virtual memory is signi�cantly larger than the real, physical memory. To
reduce swapping, it is desirable to keep the ‘‘working set’’ (the set of pages containing actively referenced
data) as small as possible.

It is possible to write programs that don’t generate much ‘‘garbage’’ data, or which recycle data, but such
programs tend to be overly complicated and frought with pitfalls. Spending e�ort writing such programs
defeats the whole point of using a system with automatic storage allocation. An important part of any Lisp
implementation is the ‘‘garbage collector’’ which identi�es discarded data and reclaims its space. There
are several well-known approaches to garbage collection. Interlisp- 10 uses the traditional mark- and- sweep
garbage collection algorithm, which identi�es ‘‘garbage’’ data by ‘‘walking’’ through and ‘‘marking’’ all
accessible data structures, and then sweeping through the data spaces to �nd all unmarked objects (i.e.,
not referenced by any other object). Although this method is guaranteed to reclaim all garbage, it takes
time proportional to the number of allocated objects, which may be very large. (Some allocated objects
will have been marked during the ‘‘mark’’ phase, and the remainder will be collected during the ‘‘sweep’’
phase; so all will have to be touched in some way.) Also, the time that a mark- and- sweep garbage
collection takes is independent of the amount of garbage collected; it is possible to sweep through the
whole virtual memory, and only recover a small amount of garbage.

For interactive applications, it is simply not acceptable to have long interruptions in a computation for
the purpose of garbage collection. Interlisp- D solves this problem by using a reference- counting garbage
collector. With this scheme, there is a table containing counts of how many times each object is referenced.
This table is incrementally updated as pointers are created and discarded, incurring a small overhead
distributed over the computation as a whole. (Note: References from the stack are not counted, but are

18.20

GLOBALVARS
(GLOBALVARS)

(DECLARE (LOCALVARS
))

VAR 1 VAR N

VAR 1 VAR N

INTERLISP-D SPECIFICS

handled separately at ‘‘sweep’’ time; thus the vast majority of data manipulations do not cause updates to
this table.) At opportune moments, the garbage collector scans this table, and reclaims all objects that are
no longer accessible (have a reference count of zero). The time for scanning the reference count tables
is very nearly constant (about 0.2 seconds on the Xerox 1100); the sweep time then is this small value,
plus time proportional to the amount of garbage that has to be collected (typically less than a second).
‘‘Opportune’’ times occur when a certain number of cells have been allocated or when the system has been
waiting for the user to type something for long enough. The frequency of garbage collection is controlled
by the functions and variables described on page 18.2. For the best system performance, it is desirable
to adjust these parameters for frequent, short garbage collections, which will not interrupt interactive
applications for very long, and which will have the added bene�t of reducing data fragmentation, keeping
the working set small.

One problem with the Interlisp- D garbage collector is that not all garbage is guaranteed to be collected.
Circular data structures, which point to themselves directly or indirectly, are never reclaimed, since their
reference counts are always at least one. With time, this unreclaimable garbage may increase the working
set to unacceptable levels. Some users have worked with the same Interlisp- D virtual memory for a very
long time, but it is a good idea to occasionally save all of your functions in �les, reinitialize Interlisp- D,
and rebuild your system. Many users end their working day by issuing a command to rebuild their
system and then leaving the machine to perform this task in their absence. If the system seems to be
spending too much time swapping (an indication of fragmented working set), this procedure is de�nitely
recommended.

18.19.3 Datatypes

If an applications program uses data structures that are large (more than 8 �elds) and that are used a
lot, there are several advantages to representing them as user s rather than as s. The
primary advantage is increased speed: accessing and setting the �elds of a can be signi�cantly
faster than walking through a list with repeated s and s. Also, compiled code for
referencing user s is usually smaller. Finally, by reducing the number of objects created (one

object against many list cells), this can reduce the expense of garbage collection.

For code that has been written using the record package’s , , and operations,
changing from s to s only requires editing the record declaration (using) to
replace declaration type by , and recompiling.

18.19.4 Incomplete Filenames

There is a signi�cant problem in Interlisp- D (and in Interlisp- 10) with respect to using incomplete
�lenames. Whenever an I/O function is given an incomplete �lename (one which doesn’t have the
device/host, directory, name, extension, and version number all supplied), the system has to convert it to
a complete �lename, by supplying defaults and searching through directories (which may be on remote �le
servers). Currently, work is being done on speeding up the �lename- completion process, but in any case it
is much faster to convert an incomplete �lename once, and use the complete �lename from then on. For
example, suppose a �le is opened with . After
doing this, and would both work, but
would take longer (sometimes orders of magnitude longer). This could seriously e�ect the performance
if a program which is doing many I/O operations.

18.21

DATATYPE RECORD
DATATYPE

RECORD CAR CDR
DATATYPE

DATATYPE RECORD

fetch replace create
RECORD DATATYPE EDITREC

RECORD DATATYPE

(SETQ FULLNAME (OPENFILE ’MYNAME ’INPUT))
(READC ’MYNAME) (READC FULLNAME) (READC ’MYNAME)

Turning O� the Display

18.19.5 Turning O� the Display

Maintaining the video image on the screen uses about 30% of the cpu cycles (on the Xerox 1100), so
turning o� the display will improve the speed of compute- bound tasks. When the display is o�, the
screen will be white but any printing or displaying that the program does will be visible when the display
is turned back on. Note: Breaks and waiting turn the display on, but users should be aware
that it is possible to have the system waiting for a response to a question printed or a menu displayed on
a non- visible part of the screen. The following functions are provided to turn the display o�:

[Function]
Sets the display to only show the top of the screen. If
is , resets the display to show the full screen. Returns the previous setting.

[Function]
Evaluates (with the display set to only show the top of the
screen), and returns the value of . It restores the screen to its previous setting.
If is not given, it defaults to 0.

18.19.6 Gathering Statistics

Interlisp- D has an extended set of statistics-gathering tools. An extended version of the function is
provided:

q [NLambda Function]
Largely subsumes the function . Evaluates the form and prints
statistics on time spent in various categories (elapsed, keyboard wait, swapping
time, gc) and datatype allocation.

For more accurate measurement on small computations, q may be speci�ed
(its default is 1) to cause to be executed q number of times.
To improve the accuracy of timing open- coded operations in this case,
compiles a form to execute q number of times (unless
is non-), and then times the execution of the compiled form. The compilation
is with optimizations o� to avoid constant folding.

exists largely for compatibility with ; it restricts the statistics to
speci�c categories. It can be an atom or list of datatypes to monitor, and/or the
atom to monitor time spent. Note that ordinarily, monitors all
time and datatype usage, so this argument is rarely needed.

The value of is the value of the last evaluation of .

The Interlisp- D system has a facility for gathering very low-level statistics on function call and return.
It is conceptually like performing a on every function in the world. The system designers
regularly use this facility to determine where time is being spent in suspect computations, suggesting
which parts of the system code deserve optimizing.

[Function]
Collects statistics of the evaluation of and produces a listing of the results.

, if supplied, will appear in the heading of the listing.

18.22

PAGEFULLFN

(SETDISPLAYHEIGHT)

T

(DISPLAYDOWN)

TIME

(TIMEALL)
TIME

TIMEALL

NIL

TIME

TIME TIMEALL

TIMEALL

BREAKDOWN

(DOSTATS)

NSCANLINES

NSCANLINES NSCANLINES

FORM NSCANLINES

FORM NSCANLINES

FORM

NSCANLINES

TIMEF ORM TIMES TIMEWHA T INTERPFL G _

TIMEF ORM

TIMES

TIMEF ORM TIMES

TIMEF ORM TIMES INTERPFL G

TIMEWHA T

TIMEF ORM

FORM TITLE _ _ _

FORM

TITLE

INTERLISP-D SPECIFICS

Performing a statistics run consists of three phases:

Gathering
The microcode is instructed to emit a statistics event for every function call and return that is
executed, and is evaluated. These events are collected on a �le for the next phase (the name
of the �le is , where =). Currently the �le must reside on

, so be sure you have a lot of space. Even seemingly short computations can generate large
numbers of function call/return events. If your disk �lls up, Lisp may not recover gracefully (it
usually falls into).

Analysis
The statistics �le is read in. For each event, a counter associated with the indicated function is
incremented by the amount of time spent in the function. The analysis also records who called
which functions, how often, and with how many arguments. This is by far the longest phase.

Summarizing
The results of the analysis are used to produce a listing that shows each of the functions called,
sorted by their contribution to the total time, and a cross-reference of who called whom. The listing
is put on a �le on the connected directory and also shipped to your local printer.

Excerpts from a sample statistics printout are shown below, with commentary. The form is ,
which was fairly brief in this case.

Notes

The times shown in the printout are for time spent in a single function; there is no cumulative time
measurement. The percentages should thus add up to 100%. If calls , the time spent inside
is charged to only, not to as well.

The times recorded are of the right order of magnitude, and can be compared to each other, but should
not be taken literally, as they are in�ated by the overhead of recording each call and return event. The
total elapsed time for the evaluation phase is much larger still, being dominated by the time to dump the
statistics to disk, but this part of the time is �ltered out in the analysis.

18.23

{DSK} .STATS (CAR)
{DSK}

SWAT

.PRINTOUT

(RECLAIM)

FOO FIE FIE
FIE FOO

Statistics from file: {DSK}RECLAIM.STATS;1

measuring: evaluation of
FORM = (RECLAIM)

Computation run on Dolphin serial #237 with 2304 pages of memory.
Versions: Ram=7401(17,1) Bcpl=17400(37,0) Lisp=106000(214,0)

(Internal version numbers of microcode, Lisp.run, Lisp.sysout)

Unrecognized events: NIL (everything was okay)

Values from MiscStats (times in msecs):
SWAPWAITTIME 6137
PAGEFAULTS 58
GCTIME 27392

Not Windowing

FORM

XXX XXX FORM

XXX

Gathering Statistics

18.24

Filtering out \StackOverflow, \NWWInterrupt, \PageFault, \StatsOverflow
(time for these functions measured separately)

Ignoring time for GETKEYS, \GETKEY, WAITFORINPUT, DISMISS, GATHERSTATS,
\GATHERSTATS, RAID

(time for these functions ignored completely)

Function timings: #ofCalls PerCall
total time spent in function (microseconds)

| percentage of total analyzed time spent in function
| | function name. Number of arguments in brackets
| | | number of calls recorded to this fn
| | | | avg time per call (microseconds)

1746426 36.08% \GCMAPTABLE [1] 524 3332
1104420 22.81% \GCMAPSCAN [0] 1 1104420

794862 16.42% \HTFIND [2] 1236 643
461194 9.52% \FREELISTCELL [1] 2044 225
457537 9.45% \GCRECLAIMCELL [1] 1533 298

77437 1.59% \GCMAPUNSCAN [0] 1 77437
52907 1.09% RELEASINGVMEMPAGE [1] 30 1763
47308 0.97% \GCSCANSTACK [0] 1 47308
45365 0.93% FINDPTRSBUFFER [2] 30 1512

9218 0.19% \ADDBASE [2] 31 297
7618 0.15% CREATECELL [1] 18 423
7428 0.15% \INSERTBLOCK [1] 31 239
6856 0.14% \RECLAIMARRAYBLOCK [1] 31 221

21597 0.44% for 18 entries not shown
(functions contributing less than .1% are omitted)

4840173 Total for 31 entries 5511

Function timings: Filtered out fns #ofCalls PerCall

(times for functions whose contribution was omitted from the analysis above)

20225828 70.32% Subr.\StatsOverflow [0] 413 48972 (stats overhead)
6900042 23.99% Subr.\PageFault [1] 58 118966 (pagefault activity)
1635737 5.68% Subr.\NWWInterrupt [0] 762 2146 (periodic service)

28761607 Total for 3 entries 1291

Function timings: Alphabetic #ofCalls PerCall

(listing as above, but including all functions, and sorted alphabetically)

. . .

Call Information:

(Alphabetic listing of functions, with calls and callers information)

INTERLISP-D SPECIFICS

18.20 THE INTERLISP-D PROCESS MECHANISM

The Interlisp- D Process mechanism provides an environment in which multiple Lisp processes can run in
parallel. Each executes in its own stack space, but all share a global adress space. The current process
implementation is cooperative; i.e., process switches happen voluntarily, either when the process in control
has nothing to do or when it is in a convenient place to pause. There is no preemption or guaranteed
service, so you cannot run something demanding (e.g., Chat) at the same time as something that runs for
long periods without yielding control. Keyboard input and network operations block with great frequency,
so processes currently work best for highly interactive tasks (editing, making remote �les).

In Interlisp- D, the process mechanism is already turned on, and is expected to stay on during normal
operations, as some system facilities (in particular, most network operations) require it. However, under
exceptional conditions, the following function can be used to turn the world o� and on:

[Function]
Starts up the process world, or if = , kills all processes and turns it
o�. Normally does not return. The environment starts out with two processes: a
top- level (the initial ‘‘tty’’ process) and the ‘‘background’’ process, which
runs the window mouse handler and other system background tasks.

Note: is intended to be called at the top level of Interlisp,
not from within a program. It does not toggle some sort of switch; rather, it
constructs some new processes in a new part of the stack, leaving any callers of

in a now inaccessible part of the stack. Calling
is the only way the call to ever returns.

[Function]
Resets the whole world, and rebuilds the stack from scratch. This is ‘‘harder’’ than
doing to every process, because it also resets system internal processes (such
as the keyboard handler).

automatically turns the process world on (or resets it if it was on),
unless the variable is .

18.25

(number of calls in parentheses)

CLOCK
Calls: MAKENUMBER (8), \SLOWIPLUS2 (6), CLOCK (2),

CREATECELL (2), CLOCK0 (2), \SLOWIDIFFERENCE (2)
Callers: \DORECLAIM (2), CLOCK (2)

CLOCK0
Callers: CLOCK (2)

CREATECELL
Calls: \HTFIND (1)
Callers: MAKENUMBER (16), CLOCK (2)

. . .

(PROCESSWORLD)
OFF

EVALQT

PROCESSWORLD

PROCESSWORLD (PROCESSWORLD
’OFF) PROCESSWORLD

(HARDRESET)

RESET

HARDRESET
AUTOPROCESSFLG NIL

FL G

FL G

Creating and Destroying Processes

18.20.1 Creating and Destroying Processes

��� [NoSpread Function]
Creates a new process evaluating , and returns its process handle. The
process’s stack environment is the top level, i.e., the new process does not have
access to the environment in which was called; all such information
must be passed as arguments in . The process runs until returns or
the process is explicitly deleted. An untrapped error within the process also deletes
the process (unless its property is), in which case a message is
printed to that e�ect.

The remaining arguments are alternately property names and values. Any
property/value pairs acceptable to may be given, but the following
two are directly relevant to :

Value should be a litatom; if not given, the process name is taken from
. may pack the name with a number to

make it unique. This name is solely for the convenience of manipulating
processes at Lisp typein; e.g., the name can be given as the argument
to most process functions, and the name appears in menus of processes.
However, programs should normally only deal in process handles, both for
e�ciency and to avoid the confusion that can result if two processes have
the same de�ning form.

If the value is non- , the new process is created but then immediately
suspended; i.e., the process does not actually run until woken by a

(below).

[NoSpread Function]
Used to get or set the values of certain properties of process , in a manner
analogous to . If is supplied (including if it is),
property is given that value. In all cases, returns the old value of the
property. The following properties have special meaning for processes; all others
are uninterpreted:

Value is a litatom used for identifying the process to the user.

Value is a �ag indicating the disposition of the process following errors or
hard resets:

or
(the default) If an untrapped error (or control- E or control- D)
causes its form to be exited, the process is deleted. The process
is also deleted if a (or control- D from) occurs,
causing the entire Process world to be reinitialized.

or
The process is automatically restarted on errors or .
This is the normal setting for persistent ‘‘background’’ processes,

18.26

(ADD.PROCESS)

ADD.PROCESS

RESTARTABLE T

PROCESSPROP
ADD.PROCESS

NAME
(CAR) ADD.PROCESS

SUSPEND
NIL

WAKE.PROCESS

(PROCESSPROP)

WINDOWPROP NIL

NAME

RESTARTABLE

NIL NO

HARDRESET RAID

T YES
HARDRESET

FORM PR OP 1 VAL UE 1 PR OP N VAL UE N
FORM

FORM FORM

FORM

PR OC

PR OC PR OP NEWV AL UE

PR OC

NEWV AL UE

PR OP

INTERLISP-D SPECIFICS

such as the mouse process, that can safely restart themselves on
errors.

The process is deleted as usual if an error causes its form to be
exited, but it restarted on a . This setting is preferred
for persistent processes for which an error is an unusual condition,
one that might repeat itself if the process were simply blindly
restarted.

Value is the Lisp form used to start the process (readonly).

Value indicates the disposition of the process following a resumption of
Lisp after some exit (, ,). Possible values are:

Delete the process.

Suspend the process; i.e., do not let it run until it is explicitly
woken.

<an event>
Cause the process to be suspended waiting for the event (page
18.30).

Value is a function or form used to provide information about the process,
in conjunction with the process status window (page 18.36).

Value is a window associated with the process, the process’s ‘‘main’’window.
Used in conjunction with switching the tty process (page 18.33).

Value is a function that is applied to the process when the process is made
the tty process (page 18.33).

Value is a function that is applied to the process when the process ceases
to be the tty process (page 18.33).

[Function]
Returns the handle of the currently running process, or if the Process world
is turned o�.

[Function]
Deletes process . may be a process handle (returned by),
or its name. Note that if is the currently running process,
does not return!

18.27

HARDRESET

is HARDRESET

FORM

AFTEREXIT

LOGOUT SYSOUT MAKESYS

DELETE

SUSPEND

INFOHOOK

WINDOW

TTYENTRYFN

TTYEXITFN

(THIS.PROCESS)
NIL

(DEL.PROCESS)
ADD.PROCESS

DEL.PROCESS

PR OC _

PR OC PR OC

PR OC

Process Control Constructs

[Function]
Terminates the currently running process, causing it to ‘‘return’’ . There is an
implicit around the argument given to ,
so that normally a process can �nish by simply returning; is
supplied for earlier termination.

[Function]
If has terminated, returns the value, if any, that it returned. This is either
the value of a or the value returned from the form given to

. If the process was aborted, the value is . If
is true, blocks until �nishes, if necessary; otherwise,
it returns immediately if is still running. Note that must
be the actual process handle returned from , not a process name,
as the association between handle and name disappears when the process �nishes
(and the process handle itself is then garbage collected if no one else has a pointer
to it).

[Function]
True if has terminated. The value returned is an indication of how it
�nished: or .

[Function]
True if is the handle of an active process, i.e., one that has not yet �nished.

[Function]
True if is the handle of a deleted process. This is analogous to

. It di�ers from in that it never causes an error,
while can cause an error if its argument is not a
process at all.

[Function]
Unwinds to its top level and reevaluates its form. This is e�ectively a

followed by the original .

[Function]
Maps over all processes, calling with three arguments: the process handle,
its name, and its form.

[Function]
If is a process handle or the name of a process, returns the process handle
for it, else . If is , generates an error if is not, and does
not name, a live process.

18.20.2 Process Control Constructs

[Function]
Yields control to the next waiting process, assuming any is ready to run. If

is speci�ed, it is a number of milliseconds to wait before returning (in
which case is very much like), or , meaning wait forever (until
explicitly woken). Alternatively, can be given as a millisecond timer (as

18.28

(PROCESS.RETURN)

PROCESS.RETURN ADD.PROCESS
PROCESS.RETURN

(PROCESS.RESULT)

PROCESS.RETURN
ADD.PROCESS NIL

PROCESS.RESULT
NIL

ADD.PROCESS

(PROCESS.FINISHEDP)

NORMAL ERROR

(PROCESSP)

(RELPROCESSP)

RELSTKP PROCESS.FINISHEDP
PROCESS.FINISHEDP

(RESTART.PROCESS)

DEL.PROCESS ADD.PROCESS

(MAP.PROCESSES)

(FIND.PROCESS)

NIL T

(BLOCK)

BLOCK DISMISS T

VAL UE

VAL UE

FORM

PR OCESS W AITF ORRESUL T

PR OCESS

W AITF ORRESUL T

PR OCESS

PR OCESS PR OCESS

PR OCESS

PR OCESS

PR OC

PR OC

PR OCHANDLE

PR OCHANDLE

PR OC

PR OC

PR OC

MAPFN

MAPFN

PR OC ERR ORFL G

PR OC

ERR ORFL G PR OC

MSECSW AIT TIMER

MSECSW AIT

TIMER

INTERLISP-D SPECIFICS

returned by) of an absolute time at which to wake up. In any of
those cases, the process enters the state until the time limit is up.
with no arguments leaves the process in the state, i.e., it returns as soon
as every other runnable process of the same priority has had a chance.

[Function]
Explicitly wakes process , i.e., makes it , and causes its call to
(or other waiting function) to return . This is one simple way to notify a
process of some happening; however, note that if is applied to a
process more than once before the process actually gets its turn to run, it sees only
the latest .

[Function]
Blocks process inde�nitely, i.e., will not run until it is woken by a

.

The following three functions allow access to the stack context of some other process. They require a little
bit of care, and are computationally non- trivial, but they do provide a more powerful way of manipulating
another process than allows.

[Function]
Performs in the stack context of .

[Function]
Evaluates in the stack context of . If is true, blocks
until the evaluation returns a result, else allows the current process to run in parallel
with the evaluation. Any errors that occur will be in the context of , so be
careful. In particular, note that

and

behave quite di�erently if causes an error. And it is quite permissible to
intentionally cause an error in proc by performing

If errors are possible and is true, the caller should almost certainly
make sure that traps the errors; otherwise the caller could end up waiting
forever if unwinds back into the pre- existing stack context of .

[Function]
Performs in the stack context of . Note same warnings
as with .

18.20.3 Events

An ‘‘event’’ is a synchronizing primitive used to coordinate related processes, typically producers and

18.29

SETUPTIMER
waiting BLOCK

runnable

(WAKE.PROCESS)
runnable BLOCK

WAKE.PROCESS

(SUSPEND.PROCESS)

WAKE.PROCESS

WAKE.PROCESS

(PROCESS.EVALV)
(EVALV)

(PROCESS.EVAL)

(PROCESS.EVAL ’(NLSETQ (FOO)))

(NLSETQ (PROCESS.EVAL ’(FOO)))

FOO

(PROCESS.EVAL ’(ERROR!))

(PROCESS.APPLY)
(APPLY)

PROCESS.EVAL

PR OC STATUS

PR OC

STATUS

STATUS

PR OC

PR OC PR OC

PR OC VAR

VAR PR OC

PR OC FORM W AITF ORRESUL T

FORM PR OC W AITF ORRESUL T

PR OC

PR OC

PR OC

PR OC

W AITF ORRESUL T

FORM

FORM PR OC

PR OC FN AR GS W AITF ORRESUL T

FN AR GS PR OC

Monitors

consumers. Consumer processes can ‘‘wait’’on events, and producers ‘‘notify’’ events.

[Function]
Returns an instance of the datatype, to be used as the event argument
to functions listed below. is arbitrary, and is used for debugging or status
information.

[Function]
Suspends the current process until is noti�ed, or until a timeout occurs. If

is , there is no timeout. Otherwise, timeout is either a number of
milliseconds to wait, or, if is , a millisecond timer set to expire at the
desired time using (see page 14.11).

[Function]
If there are processes waiting for to occur, causes those processes to be
placed in the running state, with returned as the value from .
If is true, only runs the �rst process waiting for the event (this should
only be done if the programmer knows that there can only be one process capable
of responding to the event at once).

The meaning of an event is up to the programmer. In general, however, the noti�cation of an event
is merely a hint that something of interest to the waiting process has happened; the process should still
verify that the conceptual event actually occurred. That is,

In particular, the
completion of and related operations in e�ect wakes up the process in which they were
performed, since there is no secure way of knowing whether the event of interest occurred while the
process was busy performing the .

There is currently one class of system-de�ned events, used with the network code. Each Pup and NS
socket has associated with it an event that is noti�ed when a packet arrives on the socket; the event can be
obtained by calling or , respectively.

18.20.4 Monitors

It is often the case that cooperating processes perform operations on shared structures, and some mechanism
is needed to prevent more than one process from altering the structure at the same time. Some languages
have a construct called a monitor, a collection of functions that access a common structure with mutual
exclusion provided and enforced by the compiler via the use of monitor locks. Interlisp- D has taken this
implementation notion as the basis for a mutual exclusion capability suitable for a dynamically- scoped
environment.

A monitorlock is an object created by the user and associated with (e.g., stored in) some shared structure
that is to be protected from simultaneous access. To access the structure, a program waits for the lock
to be free, then takes ownership of the lock, accesses the structure, then releases the lock. The functions
and macros below are used:

[Function]
Returns an instance of the datatype, to be used as the lock argument
to functions listed below. is arbitrary, and is used for debugging or status
information.

18.30

(CREATE.EVENT)
EVENT

(AWAIT.EVENT)

NIL
T

SETUPTIMER

(NOTIFY.EVENT)

AWAIT.EVENT

the process should be written so that it operates
correctly even if woken up before the timeout and in the absence of the noti�ed event.

PROCESS.EVAL

PROCESS.EVAL

(PUPSOCKETEVENT) (NSOCKETEVENT)

(CREATE.MONITORLOCK)
MONITORLOCK

NAME

NAME

EVENT TIMEOUT TIMERP

EVENT

TIMEOUT

TIMERP

EVENT ONCEONL Y

EVENT

EVENT

ONCEONL Y

PUPSOCKET NSOCKET

NAME _

NAME

INTERLISP-D SPECIFICS

[Macro]
Evaluates while owning . Value is the last of .
This construct is implemented so that the lock is released even if the form is
exited via error (currently implemented with). Ownership of a lock is
dynamically scoped: if the current process already owns the lock (e.g., if the caller
was itself inside a for this lock), is a noop.

[Macro]
Like , but implemented without the . User interrupts
(e.g., control- E) are inhibited during the evaluation of .

Programming restriction: the evaluation of must not error (the lock would
not be released). This construct is mainly useful when is a small, safe
computation that never errors and need never be interrupted.

[Function]
For use in blocking inside a monitor. Performs

, but releases �rst, and reobtains the lock (possibly waiting)
on wakeup.

Typical use for : A function wants to perform some operation on , but only
if it is in a certain state. It has to obtain the lock on the structure to make sure that the state of the
structure does not change between the time it tests the state and performs the operation. If the state turns
out to be bad, it then waits for some other process to make the state good, meanwhile releasing the lock
so that the other process can alter the structure.

It is sometimes convenient for a process to have at its top level and then do all its
interesting waiting using . Not only is this often cleaner, but in the present
implementation in cases where the lock is frequently accessed, it saves the overhead of

.

Programming restriction: there must not be an between the enclosing and
the call to such that the would catch an and continue
inside the monitor, for the lock would not have been reobtained. (The reason for this restriction is
that, although won’t itself error, the user could have caused an error with an
interrupt, or a in the context of the waiting process that produced an error.)

On rare occasions it may be useful to manipulate monitor locks directly. The following two functions are
used in the implementation of :

[Function]
Takes possession of , waiting if necessary until it is free, unless is
true, in which case it returns immediately. If is true, performs a

to be unwound when the enclosing exits. Returns
if was successfully obtained, if the current process already owned .

18.31

(WITH.MONITOR .)
(PROGN .)

RESETLST

WITH.MONITOR WITH.MONITOR

(WITH.FAST.MONITOR .)
WITH.MONITOR RESETLST

(MONITOR.AWAIT.EVENT)
(AWAIT.EVENT

)

MONITOR.AWAIT.EVENT

(WITH.MONITOR
(until

do (MONITOR.AWAIT.EVENT))
)

WITH.MONITOR
MONITOR.AWAIT.EVENT

RESETLST
WITH.MONITOR

ERRORSET WITH.MONITOR
MONITOR.AWAIT.EVENT ERRORSET ERROR!

MONITOR.AWAIT.EVENT
PROCESS.EVAL

WITH.MONITOR

(OBTAIN.MONITORLOCK)

NIL
RESETSAVE RESETLST

T

LOCK FORMS

FORMS LOCK FORMS

LOCK FORMS

FORMS

FORMS

FORMS

RELEASEL OCK EVENT TIMEOUT TIMERP

EVENT TIMEOUT

TIMERP RELEASEL OCK

Foo

FooLock

condition-of-Foo

FooLock EventFooChanged timeout

operate-on-Foo

LOCK DONTW AIT UNWINDSA VE

LOCK DONTW AIT

UNWINDSA VE

LOCK

LOCK LOCK

Global Resources

[Function]
Releases if it is owned by the current process, and wakes up the next process,
if any, waiting to obtain the lock.

When a process is deleted, any locks it owns are released.

18.20.5 Global Resources

The biggest source of problems in the multi- processing environment is the matter of global resources.
Two processes cannot both use the same global resource if there can be a process switch in the middle
of their use (currently this means calls to , but ultimately with a preemptive scheduler means
anytime). Thus, user code should be wary of its own use of global variables, if it ever makes sense for
the code to be run in more than one process at a time. ‘‘State’’ variables private to a process should
generally be bound in that process; structures that are shared among processes (or resources used privately
but expensive to duplicate per process) should be protected with monitor locks or some other form of
synchronization.

Aside from user code, however, there are many global variables and resources. Most of these arise
historically from the single-process Interlisp- 10 environment, and will eventually be changed in Interlisp- D
to behave appropriately in a multi- processing environment. Some have already been changed, and are
described below. Two other resources not generally thought of as global variables� the keyboard and the
mouse� are particularly idosyncratic, and are discussed in the next section.

The following resources, which are global in Interlisp- 10, are allocated per process in Interlisp- D: primary
input and output (the streams a�ected by and), terminal input and output (the streams
designated by the name), the primary read table and primary terminal table, and dribble �les. Thus,
each process can print to its own primary output, print to the terminal, read from a di�erent primary
input, all without interfering with another process’s reading and printing.

Each process begins life with its primary and terminal input/output streams set to a dummy stream. If
the process attempts input or output using any of those dummy streams, e.g., by calling ,
or , a tty window is automatically created for the process, and that window becomes the
primary input/output and terminal input/output for the process. The default tty window is created at or
near the region speci�ed in the variable .

A process can, of course, call explicitly to give itself a tty window of its own
choosing, in which case the automatic mechanism never comes into play. Calling
when a process has no tty window not only sets the terminal streams, but also sets the primary input and
output streams to be that window, assuming they were still set to the dummy streams.

[Function]
Returns if the process has a tty window; otherwise. If is ,
it defaults to the current process.

Other system resources that are typically changed by , , are all global
entities. In the multiprocessing environment, these constructs are suspect, as there is no provision for
‘‘undoing’’ them when a process switch occurs. For example, in the current release of Interlisp- D, it is
not possible to set the print radix to 8 inside only one process, as the print radix is a global entity.

Note that and similar expressions are perfectly valid in the process world, and even quite
useful, when they manipulate things strictly within one process. The process world is arranged so that

18.32

(RELEASE.MONITORLOCK)

BLOCK

system

INPUT OUTPUT
T

(READ T)
(PRINT & T)

DEFAULTTTYREGION

TTYDISPLAYSTREAM
TTYDISPLAYSTREAM

(HASTTYWINDOWP)
T NIL NIL

RESETFORM RESETLST RESETVARS

RESETFORM

LOCK

LOCK

PR OC

PR OC PR OC

INTERLISP-D SPECIFICS

deleting a process also unwinds any expressions that were performed in the process and are
still waiting to be unwound, exactly as if a control- D had reset the process to the top. Additionally,
there is an implicit at the top of each process, so that can be used as a way of
providing ‘‘cleanup’’ functions for when a process is deleted. For these, the value of is
if the process �nished normally, if it was aborted by an error, if the process was explicitly
deleted, and if the process is being restarted (after a or a).

18.20.6 Typein and the TTY Process

There is one global resource, the keyboard, that is particularly problematic to share among processes.
Consider, for example, having two processes both performing . Since the keyboard input
routines block while there is no input, both processes would spend most of their time blocking, and it
would simply be a matter of chance which process received each character of typein.

To resolve such dilemmas, the system designates a distinguished process, termed the , that is
assumed to be the process that is involved in terminal interaction. Any typein from the keyboard goes to
that process. If a process other than the tty process requests keyboard input, it blocks until it becomes the
tty process. When the tty process is switched (in any of the ways described further below), any typeahead
that occurred before the switch is saved and associated with the current tty process. Thus, it is always the
case the keystrokes are sent to the process that is the tty process at the time of the keystrokes, regardless
of when that process actually gets around to reading them.

It is less immediately obvious how to handle keyboard interrupt characters, as their action is asynchronous
and not always tied to typein. Interrupt handling is described on page 18.35.

18.20.6.1 Switching the TTY Process

Any process can make itself be the tty process by calling .

[Function]
Returns the handle of the current tty process. In addition, if is non- ,
makes it be the tty process. The special case of = is interpreted to mean
the executive process; this is sometimes useful when a process wants to explicitly
give up being the tty process.

[Function]
True if is the tty process; defaults to the running process. Thus,

is true if the caller is the tty process.

[Function]
E�ciently waits until is true. is called
internally by the system functions that read from the terminal; user code thus
need only call it in special cases.

In some cases, such as in functions invoked as a result of mouse action or a user’s typed- in call, it is
reasonable for the function to invoke itself so that it can take subsequent user type in.
In other cases, however, this is too undisciplined; it is desirable to let the user designate which process
typein should be directed to. This is most conveniently done by mouse action.

18.33

RESETxxx

RESETLST RESETSAVE
RESETSTATE NIL

ERROR RESET
HARDRESET HARDRESET RESTART.PROCESS

(READ T)

tty process

TTY.PROCESS

(TTY.PROCESS)
NIL

T

(TTY.PROCESSP)

(TTY.PROCESSP)

(WAIT.FOR.TTY)
(TTY.PROCESSP) WAIT.FOR.TTY

TTY.PROCESS

PR OC

PR OC

PR OC

PR OC

PR OC PR OC

Switching the TTY Process

The system supports the model that ‘‘to type to a process, you click in its window.’’ To cooperate with
this model, any process desiring keyboard input should put its process handle as the property
of its window(s). To handle the common case, the function does this automatically
when the ttydisplaystream is switched to a new window. A process can own any number of windows;
clicking in any of those windows gives the process the tty.

This mechanism su�ces for most casual process writers. For example, if a process wants all its input/output
interaction to occur in a particular window that it has created, it should just make that window be its
tty window by calling . Thereafter, it can or to/from the stream; if
the process is not the tty process at the time that it calls , it will block until the user clicks in the
window.

For those needing tighter control over the tty, the default behavior can be overridden or supplemented.
The remainder of this section describes the mechanisms involved.

There is a window property that controls whether and how to switch the tty to the
process owning a window. The mouse handler, before invoking any normal , speci�cally
notices the case of a button going down in a window that belongs to a process (i.e., has a
window property) that is not the tty process. In this case, it invokes the window’s of
one argument (). defaults to :

[Function]
If has a property, performs

and then invokes ’s function
(or if the right button is down).

There are some cases where clicking in a window does not always imply that the user wants to talk
to that window. For example, clicking in a text editor window with a shift key held down means to
‘‘shift-select’’ some piece of text into the input bu�er of the tty process. The editor supports this
by supplying a that performs if no shift key is down, but goes
into its shift- select mode, without changing the tty process, if a shift key is down. The shift- select mode
performs a of the selected text when the shift key is let up, the feeding input to
the current tty process.

Sometimes a process wants to be noti�ed when it becomes the tty process, or stops being the tty process.
For example, Chat (page 20.18) turns o� all keyboard interrupt characters while it is the tty process,
so that they can be passed transparently to the remote host. To support this, there are two process
properties, and . The actions taken by when it switches the
tty to a new process are as follows: the former tty process’s is called with two arguments
(); the new process is made the tty process; �nally, the new tty
process’s is called with two arguments (). Normally
the and need only their �rst argument, but the other process involved in
the switch is supplied for completeness. In the present system, most processes want to interpret the
keyboard in the same way, so it is considered the responsibility of any process that changes the keyboard
interpretation to restore it to the normal state by its .

A window is ‘‘owned’’ by the last process that anyone gave as the window’s property. Ordinarily
there is no con�ict here, as processes tend to own disjoint sets of windows (though, of course, cooperating
processes can certainly try to confuse each other). The only likely problem arises with that most global
of windows, . Programs should not be tempted to read from . This
is not usually necessary anyway, as the �rst attempt to read from in a process that has not set its

to its own window causes a tty window to be created for the process (see page

18.34

PROCESS
TTYDISPLAYSTREAM

TTYDISPLAYSTREAM PRINT READ T
READ

WINDOWENTRYFN
BUTTONEVENTFN

PROCESS
WINDOWENTRYFN

WINDOWENTRYFN GIVE.TTY.PROCESS

(GIVE.TTY.PROCESS)
PROCESS (TTY.PROCESS (WINDOWPROP

’PROCESS)) BUTTONEVENTFN
RIGHTBUTTONFN

current
WINDOWENTRYFN GIVE.TTY.PROCESS

BKSYSBUF BKSYSBUF

TTYEXITFN TTYENTRYFN TTY.PROCESS
TTYEXITFN

TTYENTRYFN
TTYENTRYFN TTYEXITFN

TTYEXITFN

PROCESS

PROMPTWINDOW PROMPTWINDOW
T

TTYDISPLAYSTREAM

WINDO W

WINDO W

WINDO W

WINDO W WINDO W

OLDTTYPR OCESS NEWTTYPR OCESS

NEWTTYPR OCESS OLDTTYPR OCESS

INTERLISP-D SPECIFICS

18.32).

18.20.6.2 Handling of Interrupts

At the time that a keyboard interrupt character (page 9.17) is struck, any process could be running, and
some decision must be made as to which process to actually interrupt. To the extent that keyboard
interrupts are related to typein, most interrupts are taken in the tty process; however, the following are
handled specially:

,
(normally control- D and control- E) These interrupts are taken in the mouse process, if the
mouse is not in its idle state; otherwise they are taken in the tty process. Thus, control- E
can be used to abort some mouse- invoked window action, such as the Shape command.
As a consequence, note that if the mouse invokes some lengthy computation that the user
thinks of as ‘‘background’’, control- E still aborts it, even though that may not have been
what the user intended. Such lengthy computations, for various reasons, should generally
be performed by spawning a separate process to perform them.

The interrupt in a process other than the executive is interpreted exactly as if an
error unwound the process to its top level: if the process was designated
= , it is restarted; otherwise it is killed.

(Initially control- H) A menu of processes is presented to the user, who is asked to select
which one the interrupt should occur in. The current tty process appears with a * next
to its name at the top of the menu. The menu also includes an entry ‘‘[Spawn Mouse]’’,
for the common case of needing a mouse because the mouse process is currently tied up
running someone’s ; selecting this entry spawns a new mouse process,
and no break occurs.

(Initially control- B) Performs the interrupt always in the tty process.

(Initially) This interrupt clears typeahead in processes.

, ,
These interrupts always occur in whatever process was running at the time the interrupt
struck. In the cases of and , this means that the
interrupt is more likely to strike in the o�ending process (especially if it is a ‘‘runaway’’
process that is not blocking). Note, however, that this process is still not necessarily the
guilty party; it could be an innocent bystander that just happened to use up the last of a
resource prodigiously consumed by some other process.

18.20.7 Keeping the Mouse Alive

Since the window mouse handler runs in its own process, it is not available while a window’s
function (or any of the other window functions invoked by mouse action) is running.

This leads to two sorts of problems: (1) a long computation underneath a deprives the
user of the mouse for other purposes, and (2) code that runs as a cannot rely on other

s running, which means that there some pieces of code that run di�erently from normal
when run under the mouse process. These problems are addressed by the following functions:

18.35

RESET ERROR

RESET
RESTARTABLE

T

HELP

BUTTONEVENTFN

BREAK HELP

RUBOUT all

RAID STACK OVERFLOW STORAGE FULL

STACK OVERFLOW STORAGE FULL

BUTTONEVENTFN
BUTTONEVENTFN

BUTTONEVENTFN
BUTTONEVENTFN

Debugging Processes

[Function]
Spawns another mouse process, allowing the mouse to run even if it is currently
‘‘tied up’’ under the current mouse process. This function is intended mainly to be
typed in at the Lisp executive when the user notices the mouse is busy.

[Function]
Performs a only when called underneath the mouse process. This
should be called (once, on entry) by any function that relies on s
for completion, if there is any possibility that the function will itself be invoked by
a mouse function.

It never hurts, at least logically, to call or needlessly, as the
mouse process arranges to quietly kill itself if it returns from the user’s and �nds that
another mouse process has sprung up in the meantime. (There is, of course, some computational expense.)

18.20.8 Debugging Processes

[Function]
Puts up a window that provides several debugging commands for manipulating
running processes. If the window is already up,
refreshes it. If is a position, the window is placed in that position;
otherwise, the user is prompted for a position.

The window consists of two menus. The �rst is a menu of all the processes at the
moment. Commands in the second menu operate on the process selected in the
�rst menu. The commands are:

, , ,
Performs a backtrace of the selected process. The �rst time, it prompts for
a window in which to display the backtrace.

Changes the selection to the tty process, i.e., the one currently in control
of the keyboard.

Associates the keyboard with the selected process; i.e., makes the selected
process be the tty process.

If the selected process has an , calls it. The hook may be a
function, which is then applied to two arguments, the process and the
button (or) used to invoke , or a form, which is
simply ’ed. The or happens in the context of the
selected process, using or . The info
hook can be set using .

Deletes the selected process.

Restarts the selected process.

Wakes the selected process. Prompts for a value to wake it with (see
).

18.36

(SPAWN.MOUSE)

(ALLOW.BUTTON.EVENTS)
(SPAWN.MOUSE)

BUTTONEVENTFN

SPAWN.MOUSE ALLOW.BUTTON.EVENTS
BUTTONEVENTFN

(PROCESS.STATUS.WINDOW)

PROCESS.STATUS.WINDOW

BT BTV BTV* BTV!

WHO?

KBD_

INFO INFOHOOK

LEFT MIDDLE INFO
EVAL APPLY EVAL

PROCESS.APPLY PROCESS.EVAL
PROCESSPROP

KILL

RESTART

WAKE
WAKE.PROCESS

_

WHERE

WHERE

INTERLISP-D SPECIFICS

Suspends the selected process; i.e., causes it to block inde�nitely (until
explicitly woken).

Enter a break under the selected process. This has the side e�ect of waking
the process with the value returned from the break.

Currently, the process status window runs under the mouse process, like other menus, so if the mouse is
unavailable (e.g., a mouse function is performing an extensive computation), you may be unable to use
the process status window (you can try , of course).

18.20.9 Non-Process Compatibility

This section describes some considerations for authors of programs that ran in the old single-process
Interlisp- D environment, and now want to make sure they run properly in the Multi- processing world.
The biggest problem to watch out for is code that runs underneath the mouse handler. Writers of mouse
handler functions should remember that in the process world the mouse handler runs in its own process,
and hence (a) you cannot depend on �nding information on the stack (stash it in the window instead), and
(b) while your function is running, the mouse is not available (if you have any non- trivial computation
to do, spawn a process to do it, notify one of your existing processes to do it, or use to
run it under some other process).

The following functions are meaningful even if the process world is not on: (invokes the system
background routine, which includes handling the mouse); , (both return

); and (returns , i.e., anyone is allowed to take tty input). In addition, the following
two functions exist in both worlds:

[Function]
Same as , when processes are
running, when not. This is highly recommended for mouse functions that
perform any non- trivial activity.

[Function]
Same as , when
processes are running, when not.

Most of the process functions that do not take a process argument can be called even if processes aren’t
running. creates, but does not run, a new process (it runs when is
called).

18.21 PROMPTFORWORD

is a function that reads in a sequence of characters, generally from the keyboard,
without involving -like syntax. The intent is to mimic the prompted- read used by the Alto Exec
when asking for login names, passwords etc. Thus a user can supply a prompting string, as well as
a ‘‘candidate’’ string, which is printed and used if the user types only a word terminator character (or
doesn’t type anything before a given time limit). As soon as any characters are typed the ‘‘candidate’’

18.37

SUSPEND

BREAK

SPAWN.MOUSE

PROCESS.EVAL

BLOCK
TTY.PROCESS THIS.PROCESS

NIL TTY.PROCESSP T

(EVAL.AS.PROCESS)
(ADD.PROCESS ’RESTARTABLE ’NO)

EVAL

(EVAL.IN.TTY.PROCESS)
(PROCESS.EVAL (TTY.PROCESS))

EVAL

ADD.PROCESS PROCESSWORLD

PROMPTFORWORD
READ

FORM

FORM

FORM W AITF ORRESUL T

FORM W AITF ORRESUL T

PROMPTFORWORD

string is erased and the new input takes its place.

accepts user type- in until one of the ‘‘word terminator’’ characters is typed. Normally,
the word terminator characters are , , , , or . This list can be changed using the

argument to , for example if it is desirable to allow the user to input
lines including spaces.

also recognizes the following special characters:

Control- A, , or
Any of these characters deletes the last character typed and appropriately erases it
from the echo stream if it is a displaystream.

Control- W or Control- Q
Erases all the type- in so far.

Control- R Reprints the accumulated string.

? Calls up a ‘‘help’’ facility. The action taken is de�ned by the
argument to (see below). Normally, this prints a list of possible
candidates.

Control- V ‘‘Quotes’’ the next character: after typing Control- V, the next character typed
is added to the accumulated string, regardless of any special meaning it has.
Allows the user to include editing characters and word terminator characters in the
accumulated string.

[Function]

has a multiplicity of features, which are speci�ed through a rather large number of
input arguments, but the default settings for them (i.e., when they aren’t given, or are given as) is
such to minimize the number needed in the average case, and an attempt has been made to order the
more frequently non- defaulted arguments at the �rst of the argument list. The default input and echo
are both to the terminal; the terminal table in e�ect during input allows most control characters to be

’d.

returns if a null string is typed; this would occur when no candidate is given and
only a terminator is typed, or when the candidate is erased and a terminator is typed with no other input
still un- erased. In all other cases, returns a string.

uses a (see page 18.30) so that a second call cannot be started before
the �rst one �nished; primarily this is to limit confusion between multiple processes that might try to
access the keyboard at the same time, or print in the prompt window ‘‘at the same time’’

is controlled through the following arguments:

If non- , this is coerced to a string and used for prompting; an additional space is output
after this string.

18.38

PROMPTFORWORD
EOL ESCAPE LF SPACE TAB

PROMPTFORWORD

PROMPTFORWORD

BS DEL

PROMPTFORWORD

(PROMPTFORWORD
)

PROMPTFORWORD
NIL

INDICATE

PROMPTFORWORD NIL

PROMPTFORWORD

PROMPTFORWORD MONITORLOCK

PROMPTFORWORD

NIL

TERMINCHAR.LST

GENERA TE?LIST.FN

PR OMPT.STR CANDID ATE.STR GENERA TE?LIST.FN ECHO.CHANNEL

DONTECHOTYPEIN.FL G TIMELIMIT.secs TERMINCHARS.LST KEYBD.CHANNEL OLDSTRING

PR OMPT.STR

CANDID ATE.STR

INTERLISP-D SPECIFICS

If non- , this is coerced to a string and o�ered as initial contents of the input bu�er.

If non- , this is either a string to be printed out for help, or a function to be applied to
and (after both have been coerced to strings), and which should

return a list of potential candidates. The help string or list of potential candidates will then be
printed on a separate line, the prompt will be restarted, and any type- in will be re-echoed.

Note: If is a function, its value list will be ‘‘cached’’ so that it will be run
at most once per call to .

Coerced to an output stream; defaults to , the ‘‘terminal output stream’’, normally
. To achieve echoing to the ‘‘current output �le’’, use

. If echo is to a display stream, it will have a �ashing caret showing where the
next input is to be echoed.

If , there is no echoing of the input characters. If the value of is
a single-character atom or string, that character is echoed instead of the actual input. For
example, prompts for a password with being ‘‘*’’.

If non- , this is the number of seconds (as an integer) that the caller is is willing to wait with
no input from (see below); if timeout is reached, then is
returned, regardless of any other type- in activity.

This is list of ‘‘word terminators’’; it defaults to
.

If non- , this is coerced to a stream, and the input bytes are taken from that stream.
defaults to the keyboard input stream. Note that this is the same as , which is a
keyboard input stream, not suitable for use with .

If non- , this must be a string, which will be destructively used to return the answer.

Examples:

This �rst prompts the user for input by printing the �rst argument as a prompt into ;
then the pro�ered default answer, ‘‘ ’’, is printed out and the caret starts �ashing just after it to
indicate that the upcoming input will be echoed there. If the user fails to complete a word within 30
seconds, then the result will be the string .

18.39

NIL

NIL

PROMPTFORWORD

NIL T
(TTYDISPLAYSTREAM) (GETSTREAM
NIL ’OUTPUT)

T

LOGIN

NIL

(CHARCODE (EOL ESCAPE LF SPACE
TAB))

NIL NIL
not T bu�ered

PROMPTFORWORD

NIL

(PROMPTFORWORD
"What is your FOO word?" ’Mumble
(FUNCTION (LAMBDA () ’(Grumble Bletch)))
PROMPTWINDOW NIL 30)

PROMPTWINDOW
Mumble

"Mumble"

(FRESHLINE T)

GENERA TE?LIST.FN

PR OMPT.STR CANDID ATE.STR

GENERA TE?LIST.FN

ECHO.CHANNEL

DONTECHOTYPEIN.FL G

DONTECHOTYPEIN.FL G

DONTECHOTYPEIN.FL G

TIMELIMIT.secs

KEYBD.CHANNEL CANDID ATE.W ORD

TERMINCHAR.LST

KEYBD.CHANNEL

OLDSTRING

PROMPTFORWORD

This �rst prompts in whatever window is currently , and then takes in a username;
the second call prompts with and takes in another word (the password)
pro�ering a candidate, echoing the typed- in characters as ‘‘*’’.

18.40

(LIST
(PROMPTFORWORD

(CONCAT "{" HOST "} Login:")
(USERNAME NIL NIL T))

(PROMPTFORWORD
" (password)" NIL NIL NIL ’*))

(TTYDISPLAYSTREAM)
" (password)" without

