
CHAPTER 11

FILE PACKAGE

Most implementations of Lisp treat symbolic �les as unstructured text, much as they are treated in most
conventional programming environments. Function de�nitions are edited with a character- oriented text
editor, and then the changed de�nitions (or sometimes the entire �le) is read or compiled to install those
changes in the running memory image. Interlisp incorporates a di�erent philosophy. A symbolic �le
is considered as a database of information about a group of data objects� function de�nitions, variable
values, record declarations, etc. The text in a symbolic �le is never edited directly. De�nitions are edited
only after their textual representations on �les have been converted to data- structures that reside inside
the Lisp address space. The programs for editing de�nitions inside Interlisp can therefore make use of the
full set of data- manipulation capabilities that the environment already provides, and editing operations
can be easily intermixed with the processes of evaluation and compilation.

Interlisp is thus a ‘‘resident’’ programming environment, and as such it provides facilities for moving
de�nitions back and forth between memory and the external databases on symbolic �les, and for doing
the bookkeeping involved when de�nitions on many symbolic �les with compiled counterparts are being
manipulated. The �le package provides those capabilities. It removes from the user the burden of keeping
track of where things are and what things have changed. The �le package also keeps track of which �les
have been modi�ed and need to be updated and recompiled.

The �le package is integrated into many other system packages. For example, if only the compiled version
of a �le is loaded and the user attempts to edit a function, the �le package will attempt to load the
source of that function from the appropriate symbolic �le. In many cases, if a datum is needed by some
program, the �le package will automatically retrieve it from a �le if it is not already in the user’s working
environment.

Some of the operations of the �le package are rather complex. For example, the same function may
appear in several di�erent �les, or the symbolic or compiled �les may be in di�erent directories, etc.
Therefore, this chapter does not document how the �le package works in each and every situation, but
instead makes the deliberately vague statement that it does the ‘‘right’’ thing with respect to keeping
track of what has been changed, and what �le operations need to be performed in accordance with those
changes.

For a simple illustration of what the �le package does, suppose that the symbolic �le contains the
functions and , and that the �le contains the functions and . These two �les
could be loaded into the environment with the function :

11.1

FOO
FOO1 FOO2 BAR BAR1 BAR2

LOAD

_ (LOAD ’FOO)
FILE CREATED 4-MAR-83 09:26:55
FOOCOMS
{DSK}FOO.;1
_ (LOAD ’BAR)
FILE CREATED 4-MAR-83 09:27:24
BARCOMS
{DSK}BAR.;1

Now, suppose that we change the de�nition of with the editor, and we de�ne two new functions,
and . At that point, the �le package knows that the in-memory de�nition of is no

longer consistent with the de�nition in the �le , and that the new functions have been de�ned but
have not yet been associated with a symbolic �le and saved on permanent storage. The function
summarizes this state of a�airs and enters into an interactive dialog in which we can specify what �les
the new functions are to belong to.

The �le package knows that the �le has been changed, and needs to be dumped back to permanent
storage. This can be done with .

Since we added to the old �le and established a new �le to contain , both and
now also need to be dumped. This is con�rmed by a second call to :

We are also informed that the new version we made of needs to be listed (sent to a printer) and
that the functions on the �le must be compiled.

Rather than doing several s to dump the �les and , we can simply call .
Without any further user interaction, this will dump any �les whose de�nitions have been modi�ed.

will also send any unlisted �les to the printer and recompile any �les which need to be
recompiled. is a useful function to use at the end of a debugging session. It will call
if any new objects have been de�ned, so the user does not lose the opportunity to say explicitly where
those belong. In e�ect, the function executes all the operations necessary to make the user’s
permanent �les consistent with the de�nitions in his current core- image.

11.2

FOO2
NEW1 NEW2 FOO2

FOO
FILES?

_ (FILES?)
FOO...to be dumped.

plus the functions: NEW1,NEW2
want to say where the above go ? Yes
(functions)
NEW1 File name: BAR
NEW2 File name: ZAP

new file ? Yes
NIL

FOO
MAKEFILE

_(MAKEFILE ’FOO)
{DSK}FOO.;2

NEW1 BAR ZAP NEW2 BAR
ZAP FILES?

_ (FILES?)
BAR, ZAP...to be dumped.
FOO...to be listed.
FOO...to be compiled
NIL

FOO

MAKEFILE BAR ZAP CLEANUP

CLEANUP
CLEANUP FILES?

CLEANUP

_ (CLEANUP)
FOO...compiling {DSK}FOO.;2

.

.

.
BAR...compiling {DSK}BAR.;2

.

.

.

FILE PACKAGE

In addition to the de�nitions of functions, symbolic �les in Interlisp can contain de�nitions of a variety
of other types, e.g. variable values, property lists, record declarations, macro de�nitions, hash arrays, etc.
In order to treat such a diverse assortment of data uniformly from the standpoint of �le operations, the
�le package uses the concept of a , of which a function de�nition is just one example. A
typed de�nition associates with a name (usually a litatom), a de�nition of a given type (called the �le
package type). Note that the same name may have several de�nitions of di�erent types. For example, a
litatom may have both a function de�nition and a variable de�nition. The �le package also keeps track of
the �les that a particular typed de�nition is stored on, so one can think of a typed de�nition as a relation
between four elements: a name, a de�nition, a type, and a �le.

Symbolic �les on permanent storage devices are referred to by names that obey the naming conventions
of those devices, usually including host, directory, and version �elds. When such de�nition groups are
noticed by the �le package, they are assigned simple and these are used by all �le package
operations to refer to those groups of de�nitions . The root name for a group is computed from its full
permanent storage name by applying the function ; this strips o� the host, directory,
version, etc., and returns just the simple name �eld of the �le. For each �le, the �le package also has a
data structure that describes what de�nitions it contains. This is known as the commands of the �le, or
its ‘‘�lecoms’’. By convention, the �lecoms of a �le whose root name is is stored as the value of the
litatom . For example, the value of is the �lecoms for the �le . This variable can
be directly manipulated, but the �le package contains facilities such as which make constructing
and updating �lecoms easier, and in some cases automatic. See page 11.32.

The �le package is able to maintain its databases of information because it is noti�ed by various other
routines in the system when events take place that may change that database. A �le is ‘‘noticed’’ when it
is loaded, or when a new �le is stored (though there are ways to explicitly notice �les without completely
loading all their de�nitions). Once a �le is noticed, the �le package takes it into account when modifying
�lecoms, dumping �les, etc. The �le package also needs to know what typed de�nitions have been changed
or what new de�nitions have been introduced, so it can determine which �les need to be updated. This
is done by ‘‘marking changes’’. All the system functions that perform �le package operations (,

, , etc.), as well as those functions that de�ne or change data, (, ,
, DWIM corrections to user functions) interact with the �le package. Also, assignment

of variables or property values is noticed by the �le package. (Note that modi�cations to variable or
property values during the execution of a function body are not noticed.) In some cases the marking
procedure can be subtle, e.g. if the user edits a property list using , only those properties whose
values are actually changed (or added) are marked.

All �le package operations can be disabled with .

[Variable]
The �le package can be disabled by setting to . This will turn
o� noticing �les and marking changes. is initially .

The rest of this chapter goes into further detail about the �le package. Functions for loading and storing
symbolic �les are presented �rst, followed by functions for adding and removing typed de�nitions from
�les, moving typed de�nitions from one �le to another, determining which �le a particular de�nition is
stored in, and so on.

11.3

ZAP...compiling {DSK}ZAP.;1
.
.
.

typed de�nition

root names

ROOTFILENAME

COMS FOOCOMS FOO
FILES?

LOAD
TCOMPL PRETTYDEF EDITF EDITV
EDITP typed-in

EDITP

FILEPKGFLG

FILEPKGFLG
FILEPKGFLG NIL

FILEPKGFLG T

X

X

1

1

Loading Files

11.1 LOADING FILES

The functions below load information from symbolic �les into the Interlisp environment. A symbolic �le
contains a sequence of Interlisp expressions that can be evaluated to establish speci�ed typed de�nitions.
The expressions on symbolic �les are read using as the readtable.

The loading functions all have an argument . a�ects the operation of , ,
, , and . While a source �le is being loaded, (page 5.9) is rebound to .

Thus, if = , and a function is rede�ned, a message is printed and the old de�nition saved.
If = , the old de�nition is simply overwritten. If = , the functions are stored as
‘‘saved’’ de�nitions on the property lists under the property instead of being installed as the active
de�nitions. If = , not only function de�nitions but also variables set by , ,

are stored on property lists (except when the variable has the value , in which case they
are set to the indicated value regardless of).

Another option is available for users who are loading systems for others to use and who wish to suppress
the saving of information used to aid in development and debugging. If = , will:
(1) Rebind to , so old de�nitions are simply overwritten; (2) Rebind to ,
thereby making the not be undoable and eliminating the cost of saving undo information (See page
8.22); (3) Rebind to , to suppress adding to spelling lists; (4) Rebind to

, to prevent the �le from being ‘‘noticed’’ by the �le package; (5) Rebind to ,
to prevent a �le map from being constructed; (6) After the load has completed, set the �lecoms variable
and any �levars variables to ; and (7) Add the �le name to rather than .

Note: All functions that have as an argument perform spelling correction using
as a spelling list when is not a member of . is initially

.

[Function]
Reads successive expressions from (with as readtable) and
evaluates each as it is read, until it reads either , or the single atom . Note
that can be used to load both symbolic and compiled �les. Returns
(full name).

If = , prints the value of each expression; otherwise it does not.

[Function]
Similar to except that it does not load if it has already been loaded, in
which case it returns .

Note: The test is whether the root name of has a property (page
11.13).

A �levars variable is any variable appearing in a �le package command of the form
(see page 11.30). Therefore, if the �lecoms includes , is set to

. If the user wants the value of such a variable to be retained, even when the �le is loaded with
= , then he should replace the variable with an equivalent, expression, such

as .

11.4

FILERDTBL

DEFINE DEFINEQ
RPAQ RPAQ? RPAQQ DFNFLG

NIL
T PROP

EXPR
ALLPROP RPAQQ RPAQ

RPAQ? NOBIND
DFNFLG

SYSLOAD LOAD
DFNFLG T LISPXHIST NIL

LOAD
ADDSPELLFLG NIL FILEPKGFLG

NIL BUILDMAPFLG NIL

NOBIND SYSFILES FILELST

LOADOPTIONS
LOADOPTIONS LOADOPTIONS (NIL T

PROP ALLPROP SYSLOAD)

(LOAD)
FILERDTBL

NIL STOP
LOAD

T LOAD

(LOAD?)
LOAD

NIL

FILEDATES

(*
) (FNS * FOOFNS) FOOFNS

NOBIND
SYSLOAD non-atomic

(FNS * (PROGN FOOFNS))

LDFL G LDFL G

LDFL G

LDFL G

LDFL G LDFL G

LDFL G

LDFL G

LDFL G

LDFL G

FILE LDFL G PRINTFL G

FILE

FILE

PRINTFL G

FILE LDFL G PRINTFL G

FILE

FILE

FILECOM

VARIABLE

LDFL G

FILE PACKAGE

[Function]
Permits selective loading of de�nitions. is a list of function names, a single
function name, or , meaning to load all of the functions on the �le. can be
either a compiled or symbolic �le. If a compiled de�nition is loaded, so are all
compiler- generated subfunctions. The interpretation of is the same as for

.

If = , will use (page 11.10) to determine where the
�rst function in resides, and load from that �le. Note that the �le must
previously have been ‘‘noticed’’ (see page 11.12). If returns , and
the WHEREIS package (page 23.40) has been loaded, will use the
WHEREIS data base to �nd the �le containing .

speci�es which non- expressions are to be loaded (i.e., evaluated):
means all, means none, means to evaluate all variable assignment

expressions (beginning with , , or , see page 11.37), and any
other atom is the same as specifying a list containing that atom.

If is a list, each element in is ‘‘matched’’ against each non-
expression, and if any elements in ‘‘match’’ successfully, the expression
is evaluated. ‘‘Matching’’ is de�ned as follows: If an element of is an
atom, it matches an expression if it is to either the or the of
the expression. If an element of is a list, it is treated as an edit pattern
(page 17.13), and matched with the entire expression (using , page
17.57). For example, if was

, this would cause ��� , all s, and all
s which set up s to be read and evaluated.

If is a list and is true (is a function de�nition),
then will invoke that function on every non- expression being
considered, applying it to two arguments, the �rst and second elements in the
expression. If the function returns , the expression will be skipped; if it returns
a non- litatom (e.g.), the expression will be evaluated; and if it returns a
list, this list is evaluated instead of the expression. Note: The �le pointer is set to
the very beginning of the expression before calling the function de�nition,
so it may read the entire expression if necessary. If the function returns a litatom,
the �le pointer is reset and the expression is or . However, the �le
pointer is not reset when the function returns a list, so the function must leave it
set immediately after the expression that it has presumably read.

returns a list of: (1) The names of the functions that were found; (2) A
list of those functions not found (if any) headed by the litatom ; (3)
All of the expressions that were evaluated; (4) A list of those members of
for which no corresponding expressions were found (if any), again headed by the
litatom . For example,

���

[Function]
Same as .

11.5

(LOADFNS)

T

LOAD

NIL LOADFNS WHEREIS

WHEREIS NIL
LOADFNS

DEFINEQ
T NIL VARS

RPAQ RPAQQ RPAQ?

DEFINEQ

EQ CAR CADR

EDIT4E
(FOOCOMS DECLARE: (DEFLIST & (QUOTE

MACRO))) (RPAQQ FOOCOMS) DECLARE:
DEFLIST MACRO

(FNTYP)
LOADFNS DEFINEQ

NIL
NIL T

READ SKREAD

LOADFNS
NOT-FOUND:

NOT-FOUND:

_ (LOADFNS ’(FOO FIE FUM) NIL ’(BAZ (DEFLIST &)))
(FOO FIE (NOT-FOUND: FUM) (RPAQ BAZ) (NOT-FOUND: (DEFLIST
&)))

(LOADVARS)
(LOADFNS NIL)

FNS FILE LDFL G VARS

FNS

FILE

LDFL G

FILE

FNS

FN

VARS

VARS VARS

VARS

VARS

VARS

VARS

VARS VARS VARS

VARS

VARS

FILE

VARS FILE LDFL G

FILE LDFL G VARS

2 3

2

3

Storing Files

[Function]
Same as .

Once the �le package has noticed a �le, the user can edit functions contained in the �le without explicitly
loading them. Similarly, those functions which have not been modi�ed do not have to be loaded in order
to write out an updated version of the �le. Files are normally noticed (i.e., their contents become known
to the �le package; see page 11.12) when either the symbolic or compiled versions of the �le are loaded.
If the �le is going to be loaded completely, the preferred way to notice it is with . Note
that the user can also load some functions at the same time by giving a second argument, but
it is normally used simply to inform the �le package about the existence and contents of a particular �le.

[Function]
Calls on those functions contained in the block declaration containing

(See page 12.14). is designed primarily for use with symbolic �les,
to load the s for a given block. It will not load a function which already has
an in-core de�nition, and it will not load the block name, unless it is also
one of the block functions.

[Function]
Performs all operations on associated with compilation, i.e. evaluates all
expressions under a (see page 11.26), and ‘‘notices’’
the function and variable names by adding them to the lists and

(see page 16.16).

Thus, if building a system composed of many �les with compilation information
scattered among them, all that is required to compile one �le is to the
others.

[Function]
Similar to , except it does not load if �le has already been loaded, in
which case its value is .

11.2 STORING FILES

[Function]
Makes a new version of the �le , storing the information speci�ed by ’s
�lecoms. Notices if not previously noticed (see page 11.12). Then, it adds

to and .

is a litatom or list of litatoms which specify options. By specifying certain
options, can automatically compile or list . Note that if does
not contain any function de�nitions, it is not compiled even when speci�es

Except if has on its property list the property with value , or a list containing
.

Except if has on its property list the property with value , or a list
containing . Also, if does not contain any function de�nitions, it is not added to

, and it is not compiled even when speci�es or .

11.6

(LOADFROM)
(LOADFNS T)

not LOADFROM
LOADFROM

(LOADBLOCK)
LOADFNS

LOADBLOCK
EXPR
EXPR

(LOADCOMP)

DECLARE: EVAL@COMPILE
NOFIXFNSLST

NOFIXVARSLST

LOADCOMP

(LOADCOMP?)
LOADCOMP

NIL

(MAKEFILE)

NOTLISTEDFILES NOTCOMPILEDFILES

MAKEFILE

FILETYPE DON’TLIST
DON’TLIST

FILETYPE DON’TCOMPILE
DON’TCOMPILE

NOTCOMPILEDFILES C RC

FILE FNS LDFL G

FNS FILE LDFL G

FN FILE LDFL G

FN

FILE LDFL G

FILE

FILE LDFL G

FILE OPTIONS REPRINTFNS SOUR CEFILE

FILE FILE

FILE

FILE

OPTIONS

FILE FILE

OPTIONS

FILE

FILE

FILE

OPTIONS

4

4

FILE PACKAGE

or . The options are spelling corrected using the list . If
spelling correction fails, generates an error. The options are interpreted
as follows:

After making , will compile by calling
(if is speci�ed) or (if is speci�ed).

If there are any block declarations speci�ed in the �lecoms for
, or will be called instead.

If , , , or is the item on following or
, it is given to the compiler as the answer to the compiler’s

question (see page 12.1). For example,
will dump , then or

it specifying that functions are not to be rede�ned, and �nally list
the �le.

After making , calls to print a
hardcopy listing of .

calls with =
(see page 16.20). This causes to be called on each
function de�ned as an before it is prettyprinted.

calls with = (see page
16.20). This causes CLISP translations to be printed, if any, in place
of the corresponding CLISP expressions, e.g., iterative statements,
record expressions, forms, etc.

calls with = (see page
6.54). This causes data objects to be printed rather than
prettyprinted, which is much faster.

‘‘remakes’’ : The prettyprinted de�nitions of
functions that have not changed are copied from an earlier version
of the symbolic �le. Only those functions that have changed are
prettyprinted. See page 11.10.

does remake . If =
(the initial setting), the default for all calls to is to
remake. The option can be used to override this default.

and are used when remaking a �le, as described on
page 11.10.

Alternatively, if has the property with value or a list containing ,
is called with reset to , which will cause to

be called on all functions marked as having been changed. If has property with value
, the compiler will its functions before compiling them (see page 12.9).

11.7

C RC MAKEFILEOPTIONS
MAKEFILE

C
RC MAKEFILE

TCOMPL C RECOMPILE RC

BCOMPL BRECOMPILE

F ST STF S next C
RC

LISTING? (MAKEFILE
’FOO ’(C F LIST)) FOO TCOMPL BCOMPL

LIST MAKEFILE LISTFILES

CLISPIFY MAKEFILE PRETTYDEF CLISPIFYPRETTYFLG T
CLISPIFY

EXPR

NOCLISP MAKEFILE PRETTYDEF PRETTYTRANFLG T

PRINTOUT

FAST MAKEFILE PRETTYDEF PRETTYFLG NIL

REMAKE MAKEFILE

NEW MAKEFILE not MAKEFILEREMAKEFLG T
MAKEFILE

NEW

FILETYPE CLISP CLISP
PRETTYDEF CLISPIFYPRETTYFLG CHANGES CLISPIFY

FILETYPE
CLISP DWIMIFY

FILE FILE

FILE

OPTIONS

FILE

FILE

FILE

FILE

REPRINTFNS SOUR CEFILE

FILE

FILE

Storing Files

If a remake is being performed, checks the state of to make sure that the entire source
�le was actually ed. If was loaded as a compiled �le, prints the message

. Similarly, if only some of the symbolic
de�nitions were loaded via or , prints

. In both cases, will then ask the user if it should
dump anyway; if the user declines, does not call , but simply returns

as its value.

The user can indicate that must be block compiled together with other �les as a unit by putting a list
of those �les on the property list of each �le under the property . If has a
property, the compiler will not be called until all �les on this property have been dumped that need to
be.

operates by rebind ing , , and , evaluat-
ing each expres sion on (under error set protec tion), and then calling . The
user can add expressions to to imple ment his own options.

[Function]
Performs for each �le on that needs to be
dumped. If = , is used. For example,
will make and list all �les that have been changed. In this case, if any typed
de�nitions for any items have been de�ned or changed and they are contained
in one of the �les on , calls to allow the
user to specify where these go. returns a list of all �les that are made.

��� [NLambda NoSpread Function]
Dumps, lists, and recompiles (with or) any of the
speci�ed �les (unevaluated) requiring the corresponding operation. If no �les are
speci�ed, is used. returns .

uses the value of the variable as the
argument to . is initially , to indicate
that the �les should be listed and recompiled. If is set to

, no listing will be performed, and no functions will be rede�ned as the result
of compiling. Alternatively, if is a list, it will be interpreted as the list of
options regardless of the value of .

[Function]
Prints on the terminal the names of those �les that have been modi�ed but not
dumped, dumped but not listed, dumped but not compiled, plus the names of any
functions and other typed de�nitions (if any) that are not contained in any �le.
If there are any, then calls to allow the user to specify
where these go.

[Function]
Called from , , and when there are typed de�nitions
that have been marked as changed which do not belong to any �le.
lists the names of the changed items, and asks the user if he wants to specify where
these items should be put. If user answers (o), returns
without taking any action. If the user answers , this is taken to be an answer
to each question that would be asked, and all the changed items are marked as
dummy items to be ignored. Otherwise, prints the name of each

11.8

not MAKEFILE
LOAD MAKEFILE CAN’T

DUMP: ONLY THE COMPILED FILE HAS BEEN LOADED
LOADFNS LOADFROM MAKEFILE CAN’T DUMP: ONLY SOME OF

ITS SYMBOLICS HAVE BEEN LOADED MAKEFILE
MAKEFILE PRETTYDEF (NOT

DUMPED)

FILEGROUP FILEGROUP

MAKEFILE PRETTYFLG PRETTYTRANFLG CLISPIFYPRETTYFLG
MAKEFILEFORMS PRETTYDEF

MAKEFILEFORMS

(MAKEFILES)
(MAKEFILE)

NIL FILELST (MAKEFILES ’LIST)

not
FILELST MAKEFILES ADDTOFILES?

MAKEFILES

(CLEANUP)
RECOMPILE BRECOMPILE

FILELST CLEANUP NIL

CLEANUP CLEANUPOPTIONS
MAKEFILE CLEANUPOPTIONS (LIST RC)

CLEANUPOPTIONS (RC
F)

CLEANUPOPTIONS

(FILES?)

FILES? ADDTOFILES?

(ADDTOFILES?)
MAKEFILES CLEANUP FILES?

ADDTOFILES?

N ADDTOFILES? NIL
]

ADDTOFILES?

FILE

FILE

FILE

FILE

FILE

OPTIONS FILES

FILE OPTIONS FILES

FILES

FILE1 FILE2 FILEN

OPTIONS

FILE1

_

FILE PACKAGE

changed item, and accepts one of the following responses:

A �le name or a variable whose value is a list
Adds the item to the corresponding �le or list, using .

If the item is not the name of a �le on , the user will be asked
whether it is a new �le. If he says no, then will check
whether the item is the name of a list, i.e. whether its value is a list. If
not, the user will be asked whether it is a new list.

line- feed
Same as the user’s previous response.

space or carriage return
Take no action.

The item is marked as a dummy item by adding it to . This tells
the �le package simply to ignore this item.

The ‘‘de�nition’’ of the item in question is prettyprinted to the terminal,
and then the user is asked again about its disposition.

prompts with ‘‘ ’’, the user types in the name
of a list, i.e. a variable whose value is a list, terminated by a . The item
will then only be added to (under) a command in which the named list
appears as a �levar. If none are found, a message is printed, and the user
is asked again. For example, the user de�nes a new function , and
when asked where it goes, types . If the command

is found, will be added to the value of . If instead
the user types , and the command is
found, then will be added to a command for dumping functions that
is contained in .

Note: If the named list is not also the name of a �le, the user can simply
type it in without parenthesis as described above.

prompts with , the user types in the name
of an object, and the item is then inserted in a command for dumping
objects (of its type) that contains the indicated name. The item is inserted
immediately after the indicated name.

��� [NLambda NoSpread Function]
Lists each of the speci�ed �les (unevaluated). If no �les are given,
is used. Each �le listed is removed from if the listing is com-
pleted. For each �le not found, prints the message

and proceeds to the next �le. calls the func tion
on each �le to be listed. The user can advise or rede�ne for more
specialized applications.

(Interlisp- 10) uses the function (page 22.6) to tell the operating
system to print the �le. calls which calls
with , where is

11.9

ADDTOFILE

FILELST
ADDTOFILES?

] NILCOMS

[

(ADDTOFILES? LISTNAME: (
)

FOO3
(FOOFNS) (FNS *

FOOFNS) FOO3 FOOFNS
(FOOCOMS) (COMS * FOOCOMS)

FOO3
FOOCOMS

@ ADDTOFILES? "Near: ("

(LISTFILES)
NOTLISTEDFILES

NOTLISTEDFILES
LISTFILES " NOT

FOUND" LISTFILES LISTFILES1
LISTFILES1

LISTFILES TENEX
LISTFILES LISTFILES1 TENEX

(CONCAT ’LIST$ LISTFILESTR) LISTFILESTR

FILE1 FILE2 FILEN

FILENAME

FILENAME

Remaking a Symbolic File

initially ‘‘ ’’. The user can reset to specify subcommands for the
list command, or advise or rede�ne .

(Interlisp- D) is initially de�ned as (page 18.17).

��� [NLambda NoSpread Function]
Executes the and options of for each of the speci�ed �les
(unevaluated). If no �les are given, is used. Each �le
compiled is removed from . If is a list, it is interpreted
as the argument to . This feature can be used to supply
an answer to the compiler’s question, e.g.,
will compile each �le on so that the functions are rede�ned
without the s de�nitions being saved.

[Function]
is a �le package type. sweeps through all the �les on the list

and returns a list of all �les containing as a . knows about
and expands all �le package commands and �le package macros. =
defaults to (to retrieve function de�nitions). If is not a list, the value
of is used.

If is given, it should be a function (with arguments , , and)
which is applied for every �le in that contains as a . In this case,

returns .

If the WHEREIS package (page 23.40) has been loaded, is rede�ned so
that = means to use the whereis package data base, so will �nd

even if the �le has not been loaded or noticed. = always means
use .

11.2.1 Remaking a Symbolic File

Most of the time that a symbolic �le is written using , only a few of the functions that it
contains have been changed since the last time the �le was written. Rather than prettprinting all of
the functions, it is often considerably faster to ‘‘remake’’ the �le, copying the prettprinted de�nitions of
unchanged functions from an earlier version of the symbolic �le, and only prettyprinting those functions
that have been changed.

will remake the symbolic �le if the option is speci�ed. If the option is given,
the �le is not remade, and all of the functions are prettprinted. The default action is speci�ed by the value
of : if (its initial value), will remake �les unless the option is
given; if , will not remake unless the option is given.

Note: If the �le has never been loaded or dumped, for example if the �lecoms were simply set
up in memory, then will never attempt to remake the �le, regardless of the setting of

, or whether the option was speci�ed.

When is remaking a symbolic �le, the user can explicitly indicate the functions which are
to be prettyprinted and the �le to be used for copying the rest of the function de�nitions from via the

and arguments to . Normally, both of these arguments are defaulted
to . In this case, will be set to those functions that have been changed since the last

11.10

cr LISTFILESTR
LISTFILES1

LISTFILES1 EMPRESS

(COMPILEFILES)
RC C MAKEFILE

NOTCOMPILEDFILES
NOTCOMPILEDFILES

MAKEFILES
LISTING? (COMPILEFILES (STF))

NOTCOMPILEDFILES
EXPR

(WHEREIS)
WHEREIS

WHEREIS
NIL

FNS
FILELST

WHEREIS NIL

WHEREIS
T WHEREIS

NIL
FILELST

MAKEFILE

MAKEFILE REMAKE NEW

MAKEFILEREMAKEFLG T MAKEFILE NEW
NIL MAKEFILE REMAKE

MAKEFILE
MAKEFILEREMAKEFLG REMAKE

MAKEFILE

MAKEFILE
NIL

FILE1 FILE2 FILEN

FILE1
OPTIONS

NAME TYPE FILES FN

TYPE FILES

NAME TYPE

TYPE

FILES

FN NAME FILE TYPE

FILES NAME TYPE

FILES

NAME FILES

REPRINTFNS SOUR CEFILE

REPRINTFNS

FILE PACKAGE

version of the �le was written. For , obtains the full name of the most recent
version of the �le (that it knows about) from the property of the �le, and checks to make
sure that the �le still exists and has the same �le date as that stored on the property. If it
does, uses that �le as . This procedure permits the user to or a
�le in a di�erent directory, and still be able to remake the �le with . In the case where the most
recent version of the �le cannot be found, will attempt to remake using the version of
the �le (i.e., the one �rst loaded), specifying as the union of all changes that have been made
since the �le was �rst loaded, which is obtained from the property of the �le. If both of
these fail, prints the message ‘‘

’’, and does not remake
the �le, i.e. will prettyprint all of the functions.

When a remake is speci�ed, also checks to see how the �le was originally loaded (see page
11.12). If the �le was originally loaded as a compiled �le, will automatically call
to obtain those expressions that are contained on the symbolic �le, but not the compiled
�le, and hence have not been loaded. If the �le was loaded by (but not), then

will automatically be called to obtain any non- expressions.

Note: Remaking a symbolic �le is considerably faster if the earlier version has a indicating where
the function de�nitions are located (page 11.38), but it does not depend on this information.

11.3 MARKING CHANGES

The �le package needs to know what typed de�nitions have been changed, so it can determine which
�les need to be updated. This is done by ‘‘marking changes’’. All the system functions that perform �le
package operations (, , , etc.), as well as those functions that de�ne or change
data, (, , , DWIM corrections to user functions) interact with the �le package by
marking changes. Also, assignment of variables or property values is noticed by the �le package.
(Note that if a program modi�es a variable or property value, this is not noticed.) In some cases the
marking procedure can be subtle, e.g. if the user edits a property list using , only those properties
whose values are actually changed (or added) are marked.

The various system functions which create or modify objects call to mark the object as
changed. For example, when a function is de�ned via or , or modi�ed via , or
a DWIM correction, the function is marked as being a changed object of type . Similarly, whenever a
new record is declared, or an existing record redeclared or edited, it is marked as being a changed object
of type , and so on for all of the other �le package types.

The user can also call directly to mark objects of a particular �le package type as
changed:

[Function]
Marks of type as being changed. is a litatom that indicated
how was changed. recognizes the following values for

:

Used to indicate the creation of , e.g. from .

Used to indicate a change to , e.g. from the editor.

11.11

MAKEFILE
FILEDATES

FILEDATES
MAKEFILE LOAD LOADFROM

MAKEFILE
MAKEFILE original

FILECHANGES
MAKEFILE CAN’T FIND EITHER THE PREVIOUS VERSION OR THE

ORIGINAL VERSION OF , SO IT WILL HAVE TO BE WRITTEN ANEW

MAKEFILE
MAKEFILE LOADVARS

DECLARE:
LOADFNS LOADFROM

LOADVARS DEFINEQ

�le map

LOAD TCOMPL PRETTYDEF
EDITF EDITV EDITP

typed-in

EDITP

MARKASCHANGED
DEFINE DEFINEQ EDITF

FNS

RECORDS

MARKASCHANGED

(MARKASCHANGED)

MARKASCHANGED

DEFINED DEFINE

CHANGED

SOUR CEFILE

SOUR CEFILE

REPRINTFNS

FILE

NAME TYPE REASON

NAME TYPE REASON

NAME

REASON

NAME

NAME

Noticing Files

Used to indicate the deletion of , e.g. by .

Used to indicate the modi�cation of by CLISP translation.

For backwards compatibility, also accepts a of
(=) and (=). New programs should avoid using these
values.

returns . is undoable.

[Function]
Unmarks of type as being changed. Returns if was
marked as changed and is now unmarked, otherwise. is
undoable.

[NoSpread Function]
If is not speci�ed (as opposed to being), returns a list of those objects
of type that have been marked as changed but not yet associated with their
corresponding �les (See page 11.14). If is speci�ed, sets
the corresponding list. returns a list of objects marked
as changed as a list of elements of the form .

Some properties (e.g. , , , , etc..) are used to implement other �le package
types. For example, if the user changes the value of the property , he is really changing an object
of type , and the e�ect is the same as though he had rede�ned the i.s.opr via a direct call to the
function . If a property whose value has been changed or added does not correspond to a speci�c
�le package type, then it is marked as a changed object of type whose is

(except if the property name has a property with value).

Similarly, if the user changes a variable which implements the �le package type (as indicated by
the appearance of the property with value on the variable’s property list), only those
entries that are actually changed are marked as being changed objects of type , and the ‘‘name’’
of the object will be where is of the entry on the alist that is being
marked. If the variable corresponds to a speci�c �le package type other than , e.g. ,

, etc., then an object of that type is marked. In this case, the name of the changed object
will be of the corresponding entry on the alist. For example, if the user edits and
changes a de�nition for , then the object of type is marked as being changed.

11.4 NOTICING FILES

Already existing �les are ‘‘noticed’’ by or (or by or when the
argument is . New �les are noticed when they are constructed by , or when de�nitions

are �rst associated with them via or . Noticing a �le updates certain lists and
properties so that the �le package functions know to include the �le in their operations. For example,

will only dump �les that have been noticed.

The �le package uses information stored on the property list of the root name of noticed �les. The
following property names are used:

11.12

DELETED DELDEF

CLISP

MARKASCHANGED T
DEFINED NIL CHANGED

MARKASCHANGED MARKASCHANGED

(UNMARKASCHANGED)

NIL UNMARKASCHANGED

(FILEPKGCHANGES)
NIL

FILEPKGCHANGES
(FILEPKGCHANGES) all

(.)

EXPR ADVICE MACRO I.S.OPR
I.S.OPR

I.S.OPR
I.S.OPR

PROPS name (
) PROPTYPE IGNORE

ALISTS
VARTYPE ALIST

ALISTS
() CAR

ALISTS USERMACROS
LISPXMACROS

CAR LISPXMACROS
PL PL LISPXMACROS

LOAD LOADFROM LOADFNS LOADVARS
T MAKEFILE

FILES? ADDTOFILES?

CLEANUP

NAME

NAME

REASON

NAME

NAME TYPE

NAME TYPE NAME NAME

TYPE LST

LST

TYPE

LST

TYPENAME CHANGEDOBJECTS

VARIABLENAME

PR OPNAME

VARIABLENAME KEY KEY

VARS

FILE PACKAGE

[Property Name]
When a �le is noticed, the property , value is
added to the property list of its root name. is the variable containing
the �lecoms of the �le (see page 11.21). indicates the �le was
loaded, e.g., completely loaded, only partially loaded as with , loaded as
a compiled �le, etc.

The property is used to determine whether or not the corresponding �le
has been modi�ed since the last time it was loaded or dumped. of the

property records by type those items that have been changed since the last
. Whenever a �le is dumped, these items are moved to the property

, and of the property is reset to .

[Property Name]
The property contains a list of all changed items since the �le was
loaded (there may have been several sequences of editing and rewriting the �le).
When a �le is dumped, the changes in of the property are added to the

property.

[Property Name]
The property contains a list of version numbers and corresponding �le
dates for this �le. These version numbers and dates are used for various integrity
checks in connection with making a �le (see page 11.10).

[Property Name]
The property is used to store the �lemap for the �le (see page 11.38).
This is used to directly load individual functions from the middle of a �le.

To compute the root name, is applied to the name of the �le as indicated in the
expression appearing at the front of the �le, since this name corresponds to the name

the �le was originally made under. The �le package detects that the �le being noticed is a compiled �le
(regardless of its name), by the appearance of more than one expressions. In this case,
each of the �les mentioned in the following expressions are noticed. For example, if the
user performs , and subsequently loads , both and will be
noticed.

When a �le is noticed, its root name is added to the list :

[Variable]
Contains a list of the root names of the �les that have been noticed.

[Variable]
Contains a list of the actual names of the �les as loaded by , ,
etc. For example, if the user performs ,

will be added to , but is added
to . is not used by the �le package; it is
maintained solely for the user’s bene�t.

11.13

FILE
FILE ((.))

how
LOADFNS

FILE
CDR

FILE
MAKEFILE
FILECHANGES CDR FILE NIL

FILECHANGES
FILECHANGES

CDR FILE
FILECHANGES

FILEDATES
FILEDATES

re

FILEMAP
FILEMAP

ROOTFILENAME
FILECREATED

FILECREATED
FILECREATED

(BCOMPL ’(FOO FIE)) FOO.DCOM FOO FIE

FILELST

FILELST

LOADEDFILELST
LOAD LOADFNS

(LOAD ’<NEWLISP>EDITA.COM;3)
EDITA FILELST <NEWLISP>EDITA.COM;3

LOADEDFILELST LOADEDFILELST

FILECOMS LO ADTYPE

FILECOMS

LO ADTYPE

Distributing Change Information

11.5 DISTRIBUTING CHANGE INFORMATION

Periodically, the function is called to �nd which �le(s) contain the elements that have
been changed. is called by , , and , i.e., any procedure that
requires the property to be up to date. This procedure is followed rather than update the
property after each change because scanning and examining each �le package command can be
a time- consuming process, and is not so noticeable when performed in conjunction with a large operation
like loading or writing a �le.

operates by scanning and interrogating the �le package commands for each �le.
When (if) any �les are found that contain the corresponding typed de�nition, the name of the element
is added to the value of the property for the corresponding �le. Thus, after has
completed operating, the �les that need to be dumped are simply those �les on for which
of their property is non- . For example, if the user loads the �le containing de�nitions for

, , and , edits , and then calls , will be
. If any objects marked as changed have not been transferred to the

property for some �le, e.g., the user de�nes a new function but forgets (or declines) to add it to the
�le package commands for the corresponding �le, then both and will print warning
messages, and then call to permit the user to specify on which �les these items belong.

The user can also invoke directly:

[Function]
will update the properties of the noticed �les.

11.6 FILE PACKAGE TYPES

In addition to the de�nitions of functions and values of variables, source �les in Interlisp can contain a
variety of other information, e.g. property lists, record declarations, macro de�nitions, hash arrays, etc.
In order to treat such a diverse assortment of data uniformly from the standpoint of �le operations, the
�le package uses the concept of a , of which a function de�nition is just one example. A
typed de�nition associates with a name (usually a litatom), a de�nition of a given type (called the �le
package type). Note that the same name may have several de�nitions of di�erent types. For example, a
litatom may have both a function de�nition and a variable de�nition. The �le package also keeps track of
the �le that a particular typed de�nition is stored on, so one can think of a typed de�nition as a relation
between four elements: a name, a de�nition, a type, and a �le.

A �le package type is an abstract notion of a class of objects which share the property that every object
of the same �le package type is stored, retrieved, edited, copied etc., by the �le package in the same way.
Each �le package type is identi�ed by a litatom, which can be given as an argument to the functions that
manipulate typed de�nitions. The user may de�ne new �le package types, as described in page 11.20.

[Variable]
The value of is a list of all �le package types, including any that
may have been de�ned by the user.

The �le package is initialized with the following built- in �le package types:

11.14

UPDATEFILES
UPDATEFILES FILES? CLEANUP MAKEFILES

FILE FILE
FILELST

UPDATEFILES FILELST

FILE UPDATEFILES
FILELST CDR

FILE NIL FOO
FOO1 FOO2 FOO3 FOO2 UPDATEFILES (GETPROP ’FOO ’FILE)
((FOOCOMS . T) (FNS FOO2))
FILE

FILES? CLEANUP
ADDTOFILES?

UPDATEFILES

(UPDATEFILES)
(UPDATEFILES) FILE

typed de�nition

FILEPKGTYPES
FILEPKGTYPES

_ _

FILE PACKAGE

Function de�nitions.

(top- level) Variable values.

Property name/value pairs. When a property is changed or added, an object of
type , with ‘‘name’’ is marked as being changed.

Note that some properties are used to implement other �le package types. For
example, the property implements the �le package type , the
property implements , etc. This is indicated by putting the
property , with value of the �le package type on the property list
of the property name. For example,

. When such a property is changed or added, an object of the corresponding
�le package type is marked. If

, the change is ignored. The , , , etc. properties
are all handled this way. (Note that cannot be the name of a �le package
type implemented as a property).

Alists (association lists); a list of dotted pairs accessed via and .

A variable is declared to have an association list as its value by putting on its
property list the property with value . In this case, each dotted
pair on the list is an object of type . When the value of such a variable
is changed, only those entries in the a-list that are actually changed or added
are marked as changed objects of type (with ‘‘name’’).
Objects of type are dumped via the or �le package
commands.

Note that some alists are used to ‘‘implement’’ other �le package types. For
example, the value of the global variable implements the �le package
type and the values of and
implement the �le package type . This is indicated by putting on
the property list of the variable the property with value a list of the form

. For example,
.

Expressions.

Objects of type are written out via the �le package command,
and marked as being changed via the programmers assistant command
(page 8.13).

Compiler macros. See page 5.17.

User edit macros. See page 17.48.

(values in) and . See page 8.19.

Advice. See page 10.7.

File package commands/types. New �le package types and commands can be
de�ned as explained on page 11.20 and page 11.32.

11.15

FNS

VARS

PROPS
PROPS ()

MACRO MACROS
ADVICE ADVICE
PROPTYPE

(GETPROP ’MACRO ’PROPTYPE) =>
MACROS

(GETPROP ’PROPTYPE) =>
IGNORE FILE FILEMAP FILEDATES

IGNORE

ALISTS ASSOC PUTASSOC

VARTYPE ALIST
ALISTS

ALISTS ()
ALISTS ALISTS ADDVARS

USERMACROS
USERMACROS LISPXMACROS LISPXHISTORYMACROS

LISPXMACROS
VARTYPE

(ALIST) (GETPROP ’LISPXHISTORYMACROS
’VARTYPE) => (ALIST LISPXMACROS)

EXPRESSIONS

EXPRESSIONS P
REMEMBER

MACROS

USERMACROS

LISPXMACROS LISPXMACROS LISPXHISTORYMACROS

ADVICE

FILEPKGCOMS

LITATOM PR OPNAME

PR OPNAME

LITATOM KEY

FILEPK GTYPE

Functions for Manipulating Typed De�nitions

Record declarations. See page 3.1.

Fields of records. The ‘‘de�nition’’ of an object of type is a list of all the
record declarations which contain the name. See page 3.1.

Iterative statement operators. See page 4.5.

Masterscope templates. See page 13.1.

Files. Files may be treated like other typed de�nitions.

Filevars. See page 11.30.

11.6.1 Functions for Manipulating Typed De�nitions

The functions described below can be used to manipulate typed de�nitions, without needing to know how
the manipulations are done. For example, will return the function de�nition of

, will return the variable value of , etc. All of the functions use the
following conventions:

(1) Any argument that expects a list of litatoms will also accept a single litatom, operating as though it
were enclosed in a list. For example, if the argument should be a list of �les, it may also be
a single �le.

(2) is a �le package type. = is equivalent to = . The singular form of a �le
package type is also recognized, e.g. = is equivalent to = .

(3) = is equivalent to = .

(4) is used to indicate the source of a de�nition, that is, where the de�nition should be found.
can be one of:

Get the de�nition currently in e�ect.

Get the ‘‘saved’’ de�nition, as stored by (page 11.18).

Get the de�nition contained on the (�rst) �le determined by (page 11.10).

Note: is called with = , so that if the WHEREIS package (page
23.40) is loaded, the WHEREIS data base will be used to �nd the �le containing the
de�nition.

Get the de�nition currently in e�ect if there is one, else the saved de�nition if there
is one, otherwise the de�nition from a �le determined by . Like specifying

, , and in order, and taking the �rst de�nition that is found.

a �le name or list of �le names
Get the de�nition from the �rst of the indicated �les that contains one.

In most cases, giving = (or not specifying it at all) is the same as giving
, to get either the current, saved, or �led de�nition. However, with ,

= is interpreted as equal to = , which only tests if

11.16

RECORDS

FIELDS FIELDS

I.S.OPRS

TEMPLATES

FILES

FILEVARS

(GETDEF ’FOO ’FNS)
FOO (GETDEF ’FOO ’VARS) FOO

NIL FNS
VAR VARS

NIL FILELST

CURRENT

SAVED SAVEDEF

FILE WHEREIS

WHEREIS T

?
WHEREIS

CURRENT SAVED FILE

NIL NIL
? HASDEF

NIL CURRENT

FILES

TYPE TYPE TYPE

TYPE TYPE

FILES FILES

SOUR CE

SOUR CE

FILES

SOUR CE

SOUR CE SOUR CE

FILE PACKAGE

there is a current de�nition.

(5) All functions which make destructive changes are undoable.

The operation of most of the functions described below can be changed or extended by modifying
the appropriate properties for the corresponding �le package type using the function ,
described on page 11.20.

[Function]
Returns the de�nition of , of type , from . For most types,

returns the expression which would be prettyprinted when dumping
as . For example, for = , an de�nition is returned, for

= , the value of is returned, etc.

is a list which speci�es certain options:

causes an error if an appropriate de�nition cannot be
found, unless is or contains .

a string If is or contains a string, that string will be returned if
no de�nition is found. The caller can thus determine whether a
de�nition was found, even for types for which or
are acceptable de�nitions.

returns a copy of the de�nition unless is or
contains .

A de�nition will be dwimi�ed if it is likely to contain CLISP
unless is or contains .

[Function]
De�nes of type with . For = , does a ;
for = , does a , etc.

For = , establishes the command list, notices , and then
calls to actually dump the �le , copying functions if necessary
from the ‘‘old’’ �le (supplied as part of).

[Function]
Returns if is the name of something of type . If not, attempts
spelling correction if = , and returns the spelling- corrected .
Otherwise returns .

returns if has a valid de�nition.

Note: if = , interprets this as equal to = ,
which only tests if there is a current de�nition.

[Function]
Returns a list of the types in but not in for
which has a de�nition. is used if is .

11.17

FILEPKGTYPE

(GETDEF)

GETDEF
FNS EXPR

VARS

NOERROR GETDEF
NOERROR

NIL NOBIND

NOCOPY GETDEF
NOCOPY

NODWIM FNS
NODWIM

(PUTDEF)
FNS DEFINE

VARS SAVESET

FILES PUTDEF
MAKEFILE

(HASDEF)

T
NIL

(HASDEF NIL) T NIL

NIL CURRENT

(TYPESOF)

FILEPKGTYPES NIL

NAME TYPE SOUR CE OPTIONS

NAME TYPE SOUR CE

NAME TYPE TYPE

TYPE NAME

OPTIONS

OPTIONS

OPTIONS

OPTIONS

OPTIONS

NAME TYPE DEFINITION

NAME TYPE DEFINITION TYPE

TYPE

TYPE NAME

NAME

DEFINITION

NAME TYPE SOUR CE SPELLFL G

NAME NAME TYPE

SPELLFL G NAME

TYPE

SOUR CE HASDEF SOUR CE

NAME POSSIBLETYPES IMPOSSIBLETYPES SOUR CE

POSSIBLETYPES IMPOSSIBLETYPES

NAME POSSIBLETYPES

Functions for Manipulating Typed De�nitions

[Function]
De�nes to have a copy of the de�nition of by doing on a copy
of the de�nition retrieved by . is
substituted for in the copied de�nition, in a manner that may depend on the

.

For example, sets up to be a copy of
, changes things like to be

in , and performs a on such that the appropriate
de�nitions get copied from .

Note: disables the option of , so will always have
a of the de�nition of .

[Function]
Removes the de�nition of as a that is currently in e�ect.

[Function]
Prettyprints the de�nition of as a to . This shows the user how

would be written to a �le. Used by (page 11.8).

[Function]
Edits the de�nition of as a . Essentially performs

.

[Function]
Makes (or if = , the de�nition of as a that
is currently in e�ect) be the ‘‘saved’’de�nition for as a . If =
(or =), this consists of storing on ’s property list under
property , , or . For = , the de�nition is stored as the
value of the property. For other types, is stored in an internal
data structure, from where it can be retrieved by or .

[Function]
Makes the ‘‘saved’’ de�nition of as a be the de�nition currently in
e�ect. If = (or =), will unsave the property
if any, else or . also recognizes = , , or

, meaning to unsave the corresponding de�nition only.

[Function]
Equivalent to .
is essentially a generaliza tion of , e.g. it enables load ing a single record
declaration from a �le. Note that will give an de�nition,
either obtained from its property list or a �le, un less it already has one.

[Function]
Finds all of the places where is used as any of the types in and changes
those places to use . For example,
will change all calls to to be calls to . Also changes occurrences of

to inside the �lecoms of any �le, inside record declarations, properties,
etc.

11.18

(COPYDEF)
PUTDEF

(GETDEF)

(COPYDEF ’PDQ ’RST ’FILES) RSTCOMS
PDQCOMS (VARS * PDQVARS) (VARS * RSTVARS)

RSTCOMS MAKEFILE RST
PDQ

COPYDEF NOCOPY GETDEF
copy

(DELDEF)

(SHOWDEF)

ADDTOFILES?

(EDITDEF)
(PUTDEF

(EDITE (GETDEF)))

(SAVEDEF)
NIL

FNS
NIL

EXPR CODE SUBR VARS
VALUE

GETDEF UNSAVEDEF

(UNSAVEDEF)

FNS NIL UNSAVEDEF EXPR
CODE SUBR UNSAVEDEF EXPR CODE

SUBR

(LOADDEF)
(PUTDEF (GETDEF)) LOADDEF

LOADFNS
(LOADDEF) EXPR

(CHANGECALLERS)

(CHANGECALLERS ’NLSETQ ’ERSETQ)
NLSETQ ERSETQ

OLD NEW TYPE SOUR CE OPTIONS

NEW OLD

OLD TYPE SOUR CE OPTIONS NEW

OLD

TYPE

NEW

OLD

NAME TYPE

NAME TYPE

NAME TYPE FILE

NAME TYPE FILE

NAME

NAME TYPE SOUR CE EDITCOMS

NAME TYPE NAME

TYPE NAME TYPE SOUR CE EDITCOMS

NAME TYPE DEFINITION

DEFINITION DEFINITION NAME TYPE

NAME TYPE TYPE

TYPE DEFINITION NAME

TYPE

DEFINITION

NAME TYPE _

NAME TYPE

TYPE TYPE

TYPE

NAME TYPE SOUR CE

NAME TYPE NAME TYPE SOUR CE

FN FN

OLD NEW TYPES FILES METHOD

OLD TYPES

NEW

OLD NEW

FILE PACKAGE

attempts to determine if might be used as more than one
type; for example, if it is both a function and a record �eld. If so, rather than
performing the transformation automatically, the user is allowed
to edit all of the places where occurs. For each occurrence of , the
user is asked whether he wants to make the replacement. If he responds with
anything except or , the editor is invoked on the expression containing that
occurrence.

Currently there are two di�erent methods for determining which functions are to be
examined. If = , is used to search
(see page 17.59). If = , then the Masterscope database
is used instead. = defaults to if the value of the
variable is and a Masterscope database
exists, otherwise it defaults to .

[Function]
First performs for all inside . It then
calls to change all occurrences of to , and then ‘‘deletes’’

with . For example, if the user has a function which he now
wishes to call , he simply performs , and will be
given ’s de�nition, and all places that are called will be changed to call

instead.

[Function]
Compares de�niton of with that of , i.e. performs

[Function]
Calls on all pairs of de�nitions of as a obtained from
the various .

11.6.2 De�ning New File Package Types

All manipulation of typed de�nitions in the �le package is done using the type- independent functions
, , etc. Therefore, to de�ne a new �le package type, it is only necessary to specify what

these functions should do when dealing with a typed de�nition of the new type. Each �le package type
has the following properties, whose values are functions or lists of functions:

Note: These functions are de�ned to take a argument so that the user may have the same function
for more than one type.

Value is a function of three arguments, , , and , which should
return the current de�nition of as a type . Used by (which
passes its argument).

If there is no property, a �le package command for dumping is
created (by). This command is then used to write the de�nition of

as a type onto the �le (in Interlisp- D, this �le is
created on the device). This expression is then read back in and returned
as the current de�nition.

11.19

CHANGECALLERS

->

Yes No

EDITCALLERS EDITCALLERS
MASTERSCOPE

NIL MASTERSCOPE
DEFAULTRENAMEMETHOD MASTERSCOPE

EDITCALLERS

(RENAME)
(COPYDEF)

CHANGECALLERS
DELDEF FOO

FIE (RENAME ’FOO ’FIE) FIE
FOO FOO

FIE

(COMPARE)
(COMPARELISTS

(GETDEF) (GETDEF))

(COMPAREDEFS)
COMPARELISTS

GETDEF PUTDEF

GETDEF
GETDEF

GETDEF
MAKENEWCOM

FILEPKG.SCRATCH
{CORE}

OLD

OLD NEW

OLD OLD

METHOD FILES

METHOD

METHOD

OLD NEW TYPES FILES METHOD

OLD NEW TYPE TYPE TYPES

OLD NEW

OLD

NAME1 NAME2 TYPE SOUR CE1 SOUR CE2

NAME1 NAME2

NAME1 TYPE SOUR CE1 NAME2 TYPE SOUR CE2

NAME TYPE SOUR CES

NAME TYPE

SOUR CES

TYPE

NAME TYPE OPTIONS

NAME TYPE

OPTION

NAME

NAME TYPE

De�ning New File Package Types

This enables the user to provide a way of obtaining de�nitions from a �le that is more
e�cient than the default procedure used by . Value is a function of four
arguments, , , , and . The function is applied by
when it is determined that a typed de�nition is needed from a particular �le. The
function must open and search the given �le and return any de�nition for

that it �nds.

Value is a function of three arguments, , , and , which should
store as the de�nition of as a type . Used by .

Value is a function of two arguments, , and , which removes the de�nition
of of as a that is currently in e�ect. Used by .

Value is a function of four arguments, , , , and . Speci�es
how to make a new (instance of a) �le package command to dump , an object
of type . The function should return the new �le package command. Used by

and .

If is non- , this means that the user speci�ed as the �levar
in his interaction with (see page 11.30).

If no is speci�ed, the default is to call , which will
construct and return a command of the form .
can be advised or rede�ned by the user.

Value is a list of functions to be applied to , , and when ,
an instance of type , is changed or de�ned (see , page 11.11).
Used for various applications, e.g. when an object of type changes, it is
necessary to clear the corresponding translatons from .

The functions are called before the object is marked as changed, so
that it can, in fact, decide that the object is to be marked as changed, and execute

.

Note: For backwards compatibility, the argument passed to
functions is either (for) and (for).

Value is a list of functions to be applied to , , and when , an
instance of type , is added to .

Value is a list of functions to be applied to , , and when , an
instance of type , is removed from .

Value is a string which describes instances of this type. For example, for type
, the value of is the string .

The function is used to de�ne new �le package types, or to change the attributes of
existing types. Note that it is possible to rede�ne the attributes of system �le package types, such as
or .

��� [NoSpread Function]
Nospread function for de�ning new �le package types, or changing attributes of
existing �le package types. is one of the property names given above;

11.20

FILEGETDEF
GETDEF

GETDEF

PUTDEF
PUTDEF

DELDEF
DELDEF

NEWCOM

ADDTOFILE SHOWDEF

NIL
ADDTOFILES?

NEWCOM DEFAULTMAKENEWCOM
() DEFAULTMAKENEWCOM

WHENCHANGED
MARKASCHANGED

I.S.OPRS
CLISPARRAY

WHENCHANGED
not

(RETFROM ’MARKASCHANGED)

WHENCHANGED
T DEFINED NIL CHANGED

WHENFILED

WHENUNFILED

DESCRIPTION
RECORDS DESCRIPTION "record declarations"

FILEPKGTYPE
FNS

PROPS

(FILEPKGTYPE)

NAME TYPE FILE OPTIONS

TYPE

NAME

NAME TYPE DEFINITION

DEFINITION NAME TYPE

NAME TYPE

NAME TYPE

NAME TYPE LISTNAME FILE

NAME

TYPE

LISTNAME LISTNAME

TYPE NAME

NAME TYPE REASON NAME

TYPE

REASON

NAME TYPE FILE NAME

TYPE FILE

NAME TYPE FILE NAME

TYPE FILE

TYPE PR OP 1 VAL 1 PR OP N VAL N

PR OP i VAL i

FILE PACKAGE

is the value to be given to that property. Returns .

returns the value of the property , without
changing it.

returns an alist of all of the de�ned properties of ,
using the property names as keys.

11.7 FILE PACKAGE COMMANDS

The basic mechanism for creating symbolic �les is the function (page 11.6). For each �le,
the �le package has a data structure known as the ‘‘�lecoms’’, which speci�es what typed descriptions are
contained in the �le. A �lecoms is a list of �le package commands, each of which speci�es objects of a
certain �le package type which should be dumped. For example, the �lecoms

has a , a , and a �le package command. This �lecoms speci�es that the function
de�nition for , the variable values of , , and , and the record declaration for
should be dumped.

By convention, the �lecoms of a �le is stored as the value of the litatom . For example,
will use the value of as the �lecoms. This variable can be directly

manipulated, but the �le package contains facilities which make constructing and updating �lecoms easier,
and in some cases automatic (See page 11.32).

A �le package command is an instruction to to perform an explicit, well-de�ned operation,
usually printing an expression. Usually there is a one- to-one correspondence between �le package types
and �le package commands; for each �le package type, there is a �le package command which is used
for writing objects of that type to a �le, and each �le package command is used to write objects of a
particular type. However, in some cases, the same �le package type can be dumped by several di�erent
�le package commands. For example, the �le package commands , , and all dump
out objects with the �le package type . This means if the user changes an object of �le package
type via , a typed- in call to , or via an explicit call to , this
object can be written out with any of the above three commands. Thus, when the �le package attempts to
determine whether this typed object is contained on a particular �le, it must look at instances of all three
�le package commands , , and , to see if the corresponding atom and property are
speci�ed. It is also permissible for a single �le package command to dump several di�erent �le package
types. For example, the user can de�ne a �le package command which dumps both a function de�nition
and its macro. Conversely, some �le package comands do not dump any �le package types at all, such as
the command.

For each �le package command, the �le package must be able to determine what typed de�nitions the
command will cause to be printed so that the �le package can determine on what �le (if any) an object
of a given type is contained (by searching through the �lecoms). Similarly, for each �le package type,
the �le package must be able to construct a command that will print out an object of that type. In other
words, the �le package must be able to map �le package commands into �le package types, and vice

11.21

(FILEPKGTYPE)

(FILEPKGTYPE

MAKEFILE

((FNS FOO)
(VARS FOO BAR BAZ)
(RECORDS XYZZY))

FNS VARS RECORDS
FOO FOO BAR BAZ XYZZY

COMS
(MAKEFILE ’FOO.;27) FOOCOMS

MAKEFILE

PROP IFPROP PROPS
PROPS

PROPS EDITP PUTPROP MARKASCHANGED

PROP IFPROP PROPS

E

TYPE

TYPE PR OP PR OP

TYPE TYPE

X X

5

6

5

6

File Package Commands

versa. Information can be provided to the �le package about a particular �le package command via the
function (page 11.32), and information about a particular �le package type via the function

(page 11.20). In the absence of other information, the default is simply that a �le package
command of the form prints out the de�nition of as a type , and, conversely, if
is an object of type , then can be written out by a command of the form .

If a �le package function is given a command or type that is not de�ned, it attempts spelling correction
using as a spelling list. If successful, the corrected version of the list of �le package
commands is written (again) on the output �le. If unsuccessful, generates an error,

.

File package commands can be used to save on the output �le de�nitions of functions, values of variables,
property lists of atoms, advised functions, edit macros, record declarations, etc. The interpretation of each
�le package command is as follows:

��� [File Package Command]
Writes a expression with the function de�nitions of ��� .

The user should never print a expression directly onto a �le himself (by
using the �le package command, for example), because generates
the �lemap of function de�nitions from the �le package commands (see page
11.38).

��� [File Package Command]
For each , writes an expression to set its top level value when the �le is loaded.
If is atomic, writes out an expression to set to the top- level value
it had at the time the �le was written. If is non- atomic, it is interpreted as

, and write out an expression to set to the value of
(evaluated when the �le is loaded).

prints out expressions using and , which are like and
except that they also perform some special operations with respect to the �le

package (see page 11.37).

Note: cannot be used for putting arbitrary variable values on �les. For
example, if the value of a variable is an array (or many other data types), a litatom
which represents the array is dumped in the �le instead of the array itself. The

�le package command (page 11.25) provides a way of saving and
reloading variables whose values contain re-entrant or circular list structure, user
data types, arrays, or hash arrays.

��� [File Package Command]
is used for initializing variables, setting their values only when they are

currently . A variable value de�ned in an command will not
change an already established value. This means that re-loading �les to get some
other information will not automatically revert to the initialization values.

unless or = . See page 15.12.

since at this point, the uncorrected list of �le package commands would already have been printed on
the output �le. When the �le is loaded, this will result in being reset, and may cause a message
to be printed, e.g., . The value of would then be the corrected version.

11.22

FILEPKGCOM
FILEPKGTYPE

()
()

FILEPKGCOMSPLST
BAD FILE PACKAGE

COMMAND

(FNS)
DEFINEQ

DEFINEQ
P MAKEFILE

FNS

(VARS)

VARS

() VARS

VARS RPAQQ RPAQ SETQQ
SETQ

VARS

HORRIBLEVARS

(INITVARS)
INITVARS

NOBIND INITVARS

DWIMFLG NOSPELLFLG NIL

COMS
(FOOCOMS RESET) FOOCOMS

X NAME NAME X NAME

X NAME X NAME

FN 1 FN N
FN 1 FN N

VAR 1 VAR N
VAR i

VAR i VAR i
VAR i

VAR FORM VAR FORM

VAR 1 VAR N

FILE

FILE PACKAGE

The format of an command is just like . The only di�erence is
that if is atomic, the current value is not dumped; instead is de�ned as
the initialization value. Therefore, is the same as

, if and are both .

writes out an expression on the �le instead of or .

��� [File Package Command]
For each , writes an to add each element of to
the list that is the value of at the time the �le is loaded. The new value of

will be the union of its old value and . If the value of is ,
it is �rst set to .

For example, will add
and to the value of .

If is not speci�ed, is initialized to if its current value is .
In other words, will initialize to if has not
previously been set.

��� ��� ��� [File Package Command]
is a variable whose value is an alist, such as , ,

etc. For each , writes out expressions which will restore the values
associated with the speci�ed keys. For example,

will dump the de�nition for the and commands on .

Some alists (, , etc.) are used to implement other �le
package types, and they have their own �le package commands.

��� [File Package Command]
Writes a expression to restore the value of the property of
each litatom when the �le is loaded.

If is a list, expressions will be written for each property on that list. If
is the litatom , the values of all user properties (on the property

list of each) are saved. is a list of properties used by system
functions. Only properties on that list are dumped when the option is
used.

If does not have the property (as opposed to having the
property with value), a warning message

is printed. The command can be used if it is not known
whether or not an atom will have the corresponding property.

��� [File Package Command]
Same as the �le package command, except that it only saves the properties
that actually appear on the property list of the corresponding atom. For example,
if has property and , has , and has
property and , then

will save only those �ve property values.

11.23

INITVARS VARS
NIL

(INITVARS FOO (FUM 2))
(VARS (FOO NIL)(FUM 2)) FOO FUM NOBIND

INITVARS RPAQ? RPAQ RPAQQ

(ADDVARS (.) (.))
(.) ADDTOVAR

NOBIND
NIL

(ADDVARS (DIRECTORIES LISP LISPUSERS)) LISP
LISPUSERS DIRECTORIES

NIL NOBIND
(ADDVARS ()) NIL

(ALISTS () ())
EDITMACROS BAKTRACELST

ALISTS
(ALISTS (BREAKMACROS BT

BTV)) BT BTV BREAKMACROS

USERMACROS LISPXMACROS

(PROP)
PUTPROPS

ALL
SYSPROPS

not ALL

NIL "NO PROPERTY FOR
" IFPROP

(IFPROP)
PROP

FOO1 PROP1 PROP2 FOO2 PROP3 FOO3
PROP1 PROP3 (IFPROP (PROP1 PROP2 PROP3) FOO1

FOO2 FOO3)

VAR i

VAR 1 LST 1 VAR N LST N
VAR i LST i LST i

VAR i
VAR i LST i VAR i

LST i VAR i
VAR VAR VAR

VAR 1 KEY 1 KEY 2 VAR N KEY 3 KEY 4
VAR i

VAR i

PR OPNAME LITATOM 1 LITATOM N
PR OPNAME

LITATOM i

PR OPNAME

PR OPNAME

LITATOM i

LITATOM i PR OPNAME

PR OPNAME

LITATOM i

PR OPNAME LITATOM 1 LITATOM N

File Package Commands

��� [File Package Command]
Similar to command. Writes a expression to restore the value of

for each when the �le is loaded.

As with the command, if does not have the property
(as opposed to having the property with value), a warning message

is printed.

��� [File Package Command]
Writes each of the expressions ��� on the output �le, where they will
be evaluated when the �le is loaded.

��� [File Package Command]
Each of the forms ��� is evaluated at time, when
interpretes this �le package command.

��� [File Package Command]
Each of the commands ��� is interpreted as a �le package command.

[File Package Command]
Used for inserting comment in a �le. The �le package command is simply written
on the output �le; it will be ignored when the �le is loaded.

If the �rst element of is another , a form- feed is printed on the �le before
the comment.

��� [File Package Command]
For each function , writes expressions to reinstate the function to its advised
state when the �le is loaded. See page 10.7.

��� [File Package Command]
For each function , writes a expression which will put the advice
back on the property list of the function. The user can then use to
reactivate the advice.

��� [File Package Command]
Each litatom is the name of a user edit macro. Writes expressions to
add the edit macro de�nitions of to , and adds the names
of the commands to the appropriate spelling lists.

If is not a user macro, a warning message
is printed.

��� [File Package Command]
Each litatom is either the name of a user- de�ned �le package command
or a user- de�ned �le package type (or both). Writes expressions which will restore
each command/type.

If is not a �le package command or type, a warning message
is printed.

��� [File Package Command]
Each is de�ned on or (see page

11.24

(PROPS () ())
PROP PUTPROPS

PROP
NIL "NO

PROPERTY FOR "

(P)

(E)
output MAKEFILE

(COMS)

(* .)

*

(ADVISE)

(ADVICE)
PUTPROPS

READVISE

(USERMACROS)

USERMACROS

"no EDIT MACRO for
"

(FILEPKGCOMS)

"no FILE
PACKAGE COMMAND for "

(LISPXMACROS)
LISPXMACROS LISPXHISTORYMACROS

LITATOM 1 PR OPNAME 1 LITATOM N PR OPNAME N

PR OPNAME i LITATOM i

LITATOM i PR OPNAME

PR OPNAME i LITATOM i

EXP 1 EXP N
EXP 1 EXP N

FORM 1 FORM N
FORM 1 FORM N

COM 1 COM N
COM 1 COM N

TEXT

TEXT

FN 1 FN N
FN i

FN 1 FN N
FN i

LITATOM 1 LITATOM N
LITATOM i

LITATOM i

LITATOM i
LITATOM i

LITATOM 1 LITATOM N
LITATOM i

LITATOM i
LITATOM i

LITATOM 1 LITATOM N
LITATOM i

FILE PACKAGE

8.19). Writes expressions which will save and restore the de�nition for each macro,
as well as making the necessary additions to

��� [File Package Command]
Each is the name of a record (see page 3.1). Writes expressions which will
redeclare the records when the �le is loaded.

��� [File Package Command]
Similar to , writes expressions on a �le that will, when
loaded, perform whatever initialization/allocation is necessary for the indicated
records. However, the record declarations themselves are not written out. This
facility is useful for building systems on top of Interlisp, in which the implementor
may want to eliminate the record declarations from a production version of the
system, but the allocation for these records must still be done.

��� [File Package Command]
Each is the name of a user- de�ned i.s.opr (see page 4.13). Writes expressions
which will rede�ne the i.s.oprs when the �le is loaded.

��� [File Package Command]
Each is a litatom which has a Masterscope template (see page 13.18).
Writes expressions which will restore the templates when the �le is loaded.

��� [File Package Command]
For each , writes a expression which the block compile functions
interpret as a block declaration. See page 12.14.

��� [File Package Command]
Each is a litatom with a de�nition (and/or a , ,
etc.). Writes out an expression to restore all of the macro properties for each

, embedded in a so the macros will be
de�ned when the �le is compiled. See page 5.17.

��� [File Package Command]
��� [File Package Command]

��� [File Package Command]
Outputs the corresponding compiler declaration embedded in a

. See page 12.3.

��� [File Package Command]
Like , except that the value of each may contain structures for which

is not an inverse of , e.g. arrays, readtables, user data types, etc. Uses
(page 6.24).

��� [File Package Command]
Like , except structures may also contain circular pointers. Uses
(page 6.24). The values of ��� are printed in the same operation, so
that they may contain pointers to common substructures.

does not do any checking for circularities, which results in a large speed
and internal- storage advantage over . Thus, if it is known that the
data structures do contain circular pointers, should be used instead

11.25

LISPXCOMS

(RECORDS)

(INITRECORDS)
RECORDS INITRECORDS

(I.S.OPRS)

(TEMPLATES)

(BLOCKS)
DECLARE:

(MACROS)
MACRO DMACRO 10MACRO

DECLARE: EVAL@COMPILE

(SPECVARS)
(LOCALVARS)
(GLOBALVARS)

DECLARE:
DOEVAL@COMPILE DONTCOPY

(UGLYVARS)
VARS

READ PRINT
HPRINT

(HORRIBLEVARS)
UGLYVARS HPRINT

UGLYVARS
HORRIBLEVARS

not UGLYVARS

REC 1 REC N
REC i

REC 1 REC N

OPR 1 OPR N
OPR i

LITATOM 1 LITATOM N
LITATOM i

BL OCK 1 BL OCK N
BL OCK i

LITATOM 1 LITATOM N
LITATOM i

LITATOM i

VAR 1 VAR N
VAR 1 VAR N

VAR 1 VAR N

VAR 1 VAR N
VAR i

VAR 1 VAR N

VAR 1 VAR N

File Package Commands

of .

[File Package Command]
Normally expressions written onto a symbolic �le are (1) evaluated when loaded;
(2) copied to the compiled �le when the symbolic �le is compiled (see page 12.1);
and (3) not evaluated at compile time. allows the user to override these
defaults.

is a list of �le package commands, possibly interspersed with
‘‘tags’’. The out put of those �le package commands within is
embedded in a expres sion, along with any tags that are speci�ed. For ex-
ample, ��� ��� would
produce ���
��� . is as an nlambda nospread func tion, which processes
its arguments by evaluat ing or not evaluat ing each expres sion depend ing on the
setting of internal state variables. The initial setting is to evaluate, but this can be
overridden by specifying the tag.

expressions are specially processed by the compiler. For the purposes
of compilation, has two principal applications: (1) to specify forms
that are to be evaluated at compile time, presumably to a�ect the compilation,
e.g., to set up macros; and/or (2) to indicate which expressions appearing in the
symbolic �le are to be copied to the output �le. (Normally, expressions are
evaluated and copied.) Each expression in of a form is either
evaluated/not- evaluated and copied/not- copied depending on the settings of two
internal state variables, initially set for copy and not- evaluate. These state variables
can be reset for the remainder of the expressions in the by means of
the tags , , etc.

The tags are:

Evaluate the following forms when the �le is loaded (unless
overridden by).

Do not evaluate the following forms when the �le is loaded.

This tag can be used to provide conditional evaluation.
The value of the expression immediately following the
tag determines whether or not to evaluate subsequent
expressions when loading. ��� ��� is
equivalent to ��� ���

When compiling, copy the following forms into the compiled
�le.

When compiling, do not copy the following forms into the
compiled �le.

When compiling, if the next form evaluates to non- ,
copy the following forms into the compiled �le.

11.26

HORRIBLEVARS

(DECLARE: .)

DECLARE:

DECLARE:
(DECLARE: EVAL@COMPILE DONTCOPY (FNS) (PROP))

(DECLARE: EVAL@COMPILE DONTCOPY (DEFINEQ) (PUTPROPS
)) DECLARE: de�ned

DONTEVAL@LOAD

DECLARE:
DECLARE:

not not
are CDR DECLARE:

DECLARE:
DONTCOPY EVAL@COMPILE

EVAL@LOAD
DOEVAL@LOAD

DONTEVAL@LOAD

DONTEVAL@LOAD

EVAL@LOADWHEN

EVAL@LOADWHEN T
EVAL@LOAD

COPY
DOCOPY

DONTCOPY

COPYWHEN NIL

FILEPK GCOMS/FLA GS

FILEPK GCOMS/FLA GS

FILEPK GCOMS/FLA GS

FILE PACKAGE

When compiling, evaluate the following forms.

When compiling, do not evaluate the following forms.

When compiling, if the next form evaluates to non- ,
evaluate the following forms.

For expressions that are to be copied to the compiled
�le, the tag can be used to specify that the fol-
lowing expres sions in the are to appear at
the front of the compiled �le, before anything else ex-
cept the expressions (see page 11.35). For
example,

will cause
to appear �rst in the compiled �le, followed by

any func tions, then .

Reverses the e�ect of .

The value of is a list of all the tags used in
expressions. If a tag not on this list appears in a �le package command,
performs spelling correction using as a spelling list.

Note that the function (page 11.6) provides a convenient way of
obtaining information from the expressions in a �le, without reading
in the entire �le. This information may be used for compiling other �les.

��� [File Package Command]
This command is used for ‘‘exporting’’ de�nitions. Like , each of the commands

��� is interpreted as a �le package command. The commands are also
�agged in the �le as being ‘‘exported’’ commands, for use with
(see page 11.29).

��� [File Package Command]
Like , for each writes an expression to set its top level value when the
�le is loaded. Also writes a expression to declare these variables as
constants (see page 12.6). Both of these expressions are wrapped in a

��� expression, so they can be used by the compiler.

Like , can be non- atomic, in which case it is interpreted as
, and passed to (along with the variable being initialized to

).

��� [File Package Command]
Each of the commands will be interpreted as a �le package command without
regard to any �le package macros (as de�ned by the property of the

function, page 11.32). Useful for rede�ning a built- in �le package
command in terms of itself.

11.27

EVAL@COMPILE
DOEVAL@COMPILE

DONTEVAL@COMPILE

EVAL@COMPILEWHEN
NIL

FIRST
FIRST

DECLARE:

FILECREATED
(DECLARE: COPY FIRST (P (PRINT

T)) NOTFIRST (P (PRINT T))) (PRINT
T)

(PRINT T)

NOTFIRST FIRST

DECLARETAGSLST DECLARE:
DECLARE:

DECLARETAGSLST

LOADCOMP
DECLARE:

(EXPORT)
COM

GATHEREXPORTS

(CONSTANTS)
VARS

CONSTANTS
(DECLARE:

EVAL@COMPILE)

VARS (
) CONSTANTS

(ORIGINAL)

MACRO
FILEPKGCOM

MESS1

MESS2

MESS1

MESS2

COM 1 COM N

COM 1 COM N

VAR 1 VAR N
VAR i

VAR i VAR

FORM

FORM

COM 1 COM N
COM i

Exporting De�nitions

Note that some of the ‘‘built-in’’ �le package commands are de�ned by �le package
macros, so interpreting them (or new user-de�ned �le package commands) with

will fail. was never intended to be used outside of a �le
package command macro.

[File Package Command]
Used to specify auxiliary �les to be loaded in when the �le is loaded.
is a list of �les, possibly interspersed with lists, which may be used to specify
certain loading options. Within these lists, the following tokens are recognized:

The elements of the command are the (name�eld) of the �les to load. There
are actually several other ways to load in �les; the command interprets

elements of the commands as a series of tokens which change its state.
Those tokens can be:

Pack the given directory onto the beginning of the �le. For
example, . If this
is not speci�ed, the default is to use the same directory as
the �le containing the command.

Load the source version of the �le rather than the compiled
version.

Load the compiled version of the �le (the default).

Load the �le with by calling (the default).

Load the �le with rather than . Automatically
implies .

Load the �le with rather than .

Load the �le with = . This is mainly used
when loading system �les.

Load the �le with = , so function de�nitions
loaded will be stored on property lists.

Load the �le with = , so both function
de�nitions and variable values loaded will be stored on
property lists.

These tokens can be joined together in a single list. For example, an actual
command in the FTP package is:

11.7.1 Exporting De�nitions

When building a large system in Interlisp, it is often the case that there are record de�nitions, macros and
the like that are needed by several di�erent system �les when running, analyzing and compiling the source

11.28

ORIGINAL ORIGINAL

(FILES .)

FILES
FILES

LISTP

FROM
(FILES (FROM LISPUSERS) CJSYS)

FILES

SOURCE

COMPILED

LOAD LOAD?

LOADCOMP LOADCOMP? LOAD?
SOURCE

LOADFROM LOADFROM LOAD?

SYSLOAD SYSOUT

PROP PROP

ALLPROP ALLPROP

(FILES (LOADCOMP) NET (SYSLOAD FROM LISPUSERS) CJSYS)

FILES/LISTS

FILES/LISTS

DIRECTOR Y

LDFL G

LDFL G

LDFL G

FILE PACKAGE

code of the system, but which are not needed for running the compiled code. By using the
�le package command with tag (page 11.26), these de�nitions can be kept out of the compiled
�les, and hence out of the system constructed by loading the compiled �les �les into Interlisp. This saves
loading time, space in the resulting system, and whatever other overhead might be incurred by keeping
those de�nitions around, e.g., burden on the record package to consider more possibilities in translating
record accesses, or con�icts between system record �elds and user record �elds.

However, if the implementor wants to debug or compile code in the resulting system, the de�nitions are
needed. And even if the de�nitions been copied to the compiled �les, a similar problem arises if
one wants to work on system code in a regular Interlisp environment where none of the system �les had
been loaded. One could mandate that any de�nition needed by more than one �le in the system should
reside on a distinguished �le of de�nitions, to be loaded into any environment where the system �les are
worked on. Unfortunately, this would keep the de�nitions away from where they logically belong. The

mechanism is designed to solve this problem.

To use the mechanism, the implementor identi�es any de�nitions needed by �les other than the one
in which the de�nitions reside, and wraps the corresponding �le package commands in the
�le package command (page 11.27). Thereafter, can be used to make a single �le
containing all the exports.

[Function]
is a list of �les containing commands.

extracts all the exported commands from those �les and produces a loadable �le
containing them. If = , the expressions are evaluated as they

are gathered; i.e., the exports are e�ectively loaded into the current environment
as well as being written to .

[Function]
If is , this loads any exported de�nitions from into the
current environment. If is , this returns a list of the exported
de�nitions (evaluable expressions) without actually evaluating them.

[Function]
Checks each of the �les in to see if any exists in a version newer than
the one from which the exports in memory were taken (and

note the creation dates of the �les involved), or if any �le in the
list has not had its exports loaded at all. If there are any such �les, the user is
asked for permission to each such �le. If is non- ,

is performed without asking.

For example, suppose �le contains records , , and , macros and , and constants
and . If the de�nitions of , , , and are needed by �les other than , then

the �le commands for might contain the command

None of the commands inside this would appear on ’s compiled �le, but
would copy the record de�nitions for and and the macro de�nitions for

11.29

DECLARE:
DONTCOPY

had

EXPORT

EXPORT
GATHEREXPORTS

(GATHEREXPORTS)
EXPORT GATHEREXPORTS

EVAL

(IMPORTFILE)
NIL

T

(CHECKIMPORTS)

GATHEREXPORTS
IMPORTFILE

IMPORTFILE NIL
IMPORTFILE

FOO R1 R2 R3 BAR BAZ
CON1 CON2 R1 R2 BAR BAZ FOO

FOO

(DECLARE: EVAL@COMPILE DONTCOPY
(EXPORT (RECORDS R1 R2)

(MACROS BAR BAZ))
(RECORDS R3)
(CONSTANTS BAZ))

DECLARE: FOO (GATHEREXPORTS
’(FOO) ’MYEXPORTS) R1 R2

FR OMFILES TOFILE FL G

FR OMFILES

TOFILE FL G

TOFILE

FILE RETURNFL G

RETURNFL G FILE

RETURNFL G

FILES NO ASKFL G

FILES

NO ASKFL G

7

7

FileVars

and to the �le .

11.7.2 FileVars

In each of the �le package commands described above, if the litatom follows the command type,
the form following the , i.e., of the command, is evaluated and its value used in executing
the command, e.g., . When this form is a litatom, e.g.

, we say that the variable is a ‘‘�levar’’. Note that provides a way of
what should be done by .

Example:

would create a �le containing:

���

11.7.3 De�ning New File Package Commands

A �le package command is de�ned by specifying the values of certain properties. The user can specify
the various attributes of a �le package command for a new command, or respecify them for an existing
command. The following properties are used:

De�nes how to dump the �le package command. Used by . Value
is a pair . The ‘‘arguments’’ to the �le package command are
substituted for throughout , and the result treated as a list of �le package
commands. For example, following

Except for the and commands, in which case the follows the property name, e.g.,
.

11.30

BAR BAZ MYEXPORTS

*
* CADDR

(FNS * (APPEND FNS1 FNS2)) (FNS *
FOOFNS) (COMS *)
computing MAKEFILE

_ (SETQ FOOFNS ’(FOO1 FOO2 FOO3))
(FOO1 FOO2 FOO3)
_ (SETQ FOOCOMS

’((FNS * FOOFNS)
(VARS FIE)
(PROP MACRO FOO1 FOO2)
(P (MOVD ’FOO1 ’FIE1))]

_ (MAKEFILE ’FOO)

FOO

(FILECREATED "time and date the �le was made" . "other information")
(PRETTYCOMPRINT FOOCOMS)
(RPAQQ FOOCOMS ((FNS * FOOFNS))
(RPAQQ FOOFNS (FOO1 FOO3 FOO3))
(DEFINEQ "de�nitions of FOO1, FOO2, and FOO3")
(RPAQQ FIE "value of FIE")
(PUTPROPS FOO1 MACRO)
(PUTPROPS FOO2 MACRO)
(MOVD (QUOTE FOO1) (QUOTE FIE1))
STOP

MACRO MAKEFILE
(.)

(FILEPKGCOM ’FOO ’MACRO ’((X Y) .

PROP IFPROP *
(PROP MACRO * FOOMACROS)

FORM

PR OPV AL UE

PR OPV AL UE

AR GS COMS

AR GS COMS

FILE PACKAGE

, the �le package command will cause to be substituted for
and for throughout , and then treated as a list of commands.

The substitution is carried out by (page 2.24), so that the ‘‘argument list’’
for the macro can also be atomic. For example, if was used instead
of , then the command would cause to be
substituted for throughout .

Note: Filevars are evaluated substitution. For example, if the litatom
follows in the command, of the command is evaluated substituting

in .

Speci�es how (if possible) to add an instance of an object of a particular type to a
given �le package command. Used by . Value is , a function of three
arguments, , a �le package command of which is to ,

, a typed object, and , its type. should return if it (undoably) adds
to , if not. If no property is speci�ed, then the default is (1) if

= and = , and is a �levar (i.e.
a literal atom), add to the value of the �levar, or (2) if =
and is not , add to .

Actually, the function is given a fourth argument, , which if non- ,
means the function should try to add the item after . See discussion of

, page 11.8.

Speci�es how (if possible) to delete an instance of an object of a particular type from
a given �le package command. Used by . Value is , a function
of three arguments, , , and , same as for . should return
if it (undoably) deletes from , if not. If no property is
speci�ed, then the default is (1) = and = , and

is a �levar (i.e. a literal atom), and is contained in the value
of the �levar, then remove from the �levar, or (2) if =
and is not , and is contained in , then remove

from .

If returns the value of , it means that the command is now ‘‘empty’’, and
can be deleted entirely from the command list.

Speci�es whether an instance of an object of a given type is contained in a given
�le package command. Used by and . Value is , a
function of three arguments, , a �le package command of which is
to , , and . The interpretation of is as follows:
if is , should return a list of elements of type contained in

. If is , should return if there are elements of type in

. If is an atom other than or , return if of type is
contained in . Finally, if is a list, return a list of those elements of type

contained in that are also contained in .

Note that it is su�cient for the function to simply return the list of
items of type in command , i.e. it can in fact ignore the argument.
The argument is supplied mainly for those situations where producing the

11.31

)) (FOO A B) A
X B Y

SUBPAIR
(X .)

((X Y) .) (FOO A B) (A B)
X

before
* CADDR

ADD
ADDTOFILE

CAR EQ
T

NIL ADD
(CAR) (CADR) * (CADDR)

(CAR)
(CADR) * (CDR)

NIL

ADDTOFILES?

DELETE
DELFROMFILES

ADD T
NIL DELETE

(CAR) (CADR) *
(CADDR)

(CAR)
(CADR) * (CDR)

(CDR)

ALL

CONTENTS
CONTAIN

WHEREIS INFILECOMS?
CAR EQ

NIL
T T any

T NIL T

CONTENTS

COMS

COMS COMS

COMS

COMS

COMS

NAME

COMS

FN

COM COMMANDNAME

NAME TYPE FN

NAME COM

COM TYPE COM COM

NAME COM TYPE

COM NAME COM

NEAR

NEAR

FN

COM NAME TYPE FN

NAME COM

COM TYPE COM

COM NAME

NAME COM TYPE

COM NAME COM

NAME COM

FN

FN

COM

COMMANDNAME NAME TYPE NAME

NAME FN TYPE

COM NAME FN TYPE

COM NAME NAME TYPE

COM NAME

TYPE COM NAME

TYPE COM NAME

NAME

Functions for Manipulating File Command Lists

entire list of items involves signi�cantly more computation or creates more storage
than simply determining whether a particular item (or any item) of type is
contained in the command.

If a property is speci�ed and the corresponding function application
returns and = , then the operation indicated by is
performed (1) on the value of , if = , otherwise (2)
on . In other words, by specifying a property that returns

, e.g. the function , the user speci�es that a �le package command of
name produces objects of �le package type and only objects of type .

If the property is not provided, the command is simply expanded
according to its de�nition, and each command on the resulting command
list is then interrogated.

Note that if is a �le package command that is used frequently,
its expansion by the various parts of the system that need to interrogate �les can
result in a large number of es and garbage collections. By informing the
�le package as to what this command actually does and does not produce via the

property, this expansion is avoided. For example, suppose the user
has a �le package command called which dumps various property lists
but no functions. Thus, the �le package could ignore this command when seeking
information about .

The function is used to de�ne new �le package commands, or to change the attributes of
existing commands. Note that it is possible to rede�ne the attributes of system �le package commands,
such as or , and to cause unpredictable results.

��� [NoSpread Function]
Nospread function for de�ning new �le package commands, or changing attributes
of existing �le package commands. is one of of the property names described
above; is the value to be given that property of the �le package command

. Returns .

returns the value of the property ,
without changing it.

returns an alist of all of the de�ned properties
of , using the property names as keys.

11.8 FUNCTIONS FOR MANIPULATING FILE COMMAND LISTS

The following functions may be used to manipulate �lecoms. Note that the argument does have
to correspond to the �lecoms for some �le. For example, can be the list of commands generated
as a result of expanding a user de�ned �le package command.

[Function]
is a list of �le package commands, or a variable whose value is a list of

�le package commands. is a �le package type. returns if

11.32

CONTENTS
NIL (CAR)

(CADDR) (CADR) *
(CDR) CONTENTS

NIL NILL
FOO FOO FOO

CONTENTS
MACRO

CONS

CONTENTS
GRAMMARS

FNS

FILEPKGCOM

FNS PROPS

(FILEPKGCOM)

(FILEPKGCOM)

(FILEPKGTYPE

not

(INFILECOMS?)

INFILECOMS? T

TYPE

COM TYPE NAME

COM COM

COM

COMMANDNAME

COMMANDNAME PR OP 1 VAL 1 PR OP N VAL N

PR OP i
VAL i

COMMANDNAME COMMANDNAME

COMMANDNAME PR OP PR OP

COMMANDNAME

COMMANDNAME

COMS

COMS

NAME TYPE COMS _

COMS

TYPE

FILE PACKAGE

of type is ‘‘contained’’ in .

If = , returns a list of all elements of type .

If = , returns if there are elements of type in
.

[Function]
Adds of type to the �le package commands for . Uses
and . Returns . is undoable.

[Function]
Deletes all instances of of type from the �lecoms for each of the �les on

. If is a non- litatom, is used. = defaults
to . Returns a list of �les from which was actually removed. Uses

. is undoable.

Note: Deleting a function will also remove the function from any
declarations in the �lecoms.

[Function]
Adds as a to , a list of �le package commands or a variable
whose value is a list of �le package commands. Returns if was
unable to �nd a command appropriate for adding to . is
undoable.

Note that the exact algorithm for adding commands depends the particular
command itself. See discussion of the property, in the description of

, page 11.32.

Note: will not attempt to add an item to any command which is
inside of a unless the user speci�ed a speci�c name via the
or option of .

[Function]
Deletes as a from . Returns if was unable
to modify to delete . is undoable.

[Function]
Returns a �le package command for dumping of type . Uses the
procedure described in the discussion of , page 11.20.

[Function]
Moves the de�nition of as a from to by modifying
the �le commands in the appropriate way (with and).

Note that if is speci�ed, the de�nition will be retrieved from that �le,
even if there is another de�nition currently in the user’s environment.

[Function]
Returns a list of all objects of type in .

can also be the name of a �le package command. For example,

11.33

NIL INFILECOMS?

T INFILECOMS? T any

(ADDTOFILE)
ADDTOCOMS

MAKENEWCOM ADDTOFILE

(DELFROMFILES)

NIL (LIST) NIL
FILELST

DELFROMCOMS DELFROMFILES

BLOCKS

(ADDTOCOMS)

NIL ADDTOCOMS
ADDTOCOMS

ADD
FILEPKGCOM

ADDTOCOMS
DECLARE: LISTNAME

NEAR ADDTOFILES?

(DELFROMCOMS)
NIL DELFROMCOMS

DELFROMCOMS

(MAKENEWCOM)

NEWCOM

(MOVETOFILE)

DELFROMFILES ADDTOFILE

(FILECOMSLST)

NAME TYPE COMS

NAME TYPE

NAME TYPE

COMS

NAME TYPE FILE _ _

NAME TYPE FILE

FILE

NAME TYPE FILES

NAME TYPE

FILES FILES FILES FILES

NAME

COMS NAME TYPE _ _

NAME TYPE COMS

NAME COMS

COMS NAME TYPE

NAME TYPE COMS

COMS NAME

NAME TYPE _ _

NAME TYPE

TOFILE NAME TYPE FR OMFILE

NAME TYPE FR OMFILE TOFILE

FR OMFILE

FILE TYPE _

TYPE FILE

TYPE

8

8

Symbolic File Format

will return the list of all declaration in
. knows about expanding user de�ned �le package commands.

[Function]
Same as .

[Function]
Returns . Note that
returns the litatom , not the value of .

[Function]
Maps down and sets to all �levars (see
page 11.30), i.e. any variable used in a command of the form

. Also sets to . Returns .

11.9 SYMBOLIC FILE FORMAT

The �le package manipulates symbolic �les in a particular format. This format is de�ned so that the
information in the �le is easily readable when the �le is listed, as well as being easily manipulated by the
�le package functions. In general, there is no reason for the user to manually change the contents of a
symbolic �le. However, in order to allow users to extend the �le package, this section describes some of
the functions used to write symbolic �les, and other matters related to their format.

[Function]
Writes a symbolic �le in format for loading, using as
its readtable. returns the name of the symbolic �le that was created.

operates under a (see page 9.19), so if an error occurs,
or a control- D is typed, all �les that has opened will be closed, the
(partially complete) �le being written will be deleted, and any undoable operations
executed will be undone.

is an optional list of function names. It is equivalent to including
in the �le package commands in . is an

anachronism from when did not use a list of �le package commands,
and should be speci�ed as .

is the name of the �le on which the output is to be written. If
= , the primary output �le is used. If is atomic the �le

is opened if not already open, and it becomes the primary output �le.
is closed at end of , and the primary output �le is restored. Finally,
if is a list, of is assumed to be the �le name, and is
opened if not already open. In this case, the �le is left open at end of .

Since operates under a , any s executed in the �le package commands
will also be protected. For example, if one of the �le package commands executes a

, the will atomatically be restored.

11.34

(FILECOMSLST ’BLOCKS) BLOCKS
FILECOMSLST

(FILEFNSLST)
(FILECOMSLST ’FNS)

(FILECOMS)
(PACK* (OR ’COMS)) (FILECOMS ’FOO)

FOOCOMS FOOCOMS

(SMASHFILECOMS)
(FILECOMSLST ’FILEVARS) NOBIND

(*
) (FILECOMS) NOBIND

(PRETTYDEF)

PRETTYPRINT FILERDTBL
PRETTYDEF

PRETTYDEF RESETLST
PRETTYDEF

(FNS
*)

PRETTYDEF
NIL

NIL

PRETTYDEF
CAR

PRETTYDEF

PRETTYDEF RESETLST RESETSAVE
(RESETSAVE

(RADIX -8)) RADIX

FILE

FILE

FILE

FILE

FILE TYPE

FILE TYPE

FILE

FILE

COMMAND

VARIABLE FILE FILE

PR TTYFNS PR TTYFILE PR TTYCOMS REPRINTFNS SOUR CEFILE CHANGES

PR TTYFNS

PR TTYFNS PR TTYCOMS PR TTYFNS

PR TTYFILE

PR TTYFILE PR TTYFILE

PR TTYFILE

PR TTYFILE PR TTYFILE

9

9

FILE PACKAGE

is a list of �le package commands interpreted as described on page
11.21. If is atomic, its top level value is used and an is written
which will set that atom to the list of commands when the �le is subsequently loaded.
A expression (see below) will also be written which informs
the user of the named atom or list of commands when the �le is subsequently
loaded.

and are for use in conjunction with remaking a �le
(see page 11.10). can be a list of functions to be prettyprinted, or

, meaning prettyprint all functions with de�nitions, or meaning
prettyprint all functions either de�ned as s, or with properties. Note that
doing a remake with = makes sense if there have been changes
in the �le, but not to any of the functions, e.g., changes to variables or property
lists. is the name of the �le from which to copy the de�nitions
for those functions that are going to be prettyprinted, i.e., those not speci�ed
by . = means to use most recent version (i.e., highest
number) of , the second argument to . If
cannot be found, prints the message

, and proceeds as it does when and
are both .

calls with its second argument = , so
whenever starts a new function, it prints (on the terminal) the
name of that function if more than 30 seconds (real time) have elapsed since the
last time it printed the name of a function.

Note that normally if is given a litatom which is not de�ned as
a function but is known to be on one of the �les noticed by the �le package,

will load in the de�nition (using) and print it. This is
not done when is called from .

[Function]
is a list of functions. prettyprints a epression that de�nes

the functions to the primary output �le using the primary readtable. Used by
to implement the �le package command.

[Function]
Prints the expression at beginning of �les.
used by the �le package.

[NLambda NoSpread Function]
Prints a message (using) followed by the time and date the �le
was made, which is . The message is the value of ,
initially . If = , nothing is printed.

contains information about the �le, e.g., full name, address of �le map, list of
changed items, etc. also stores the time and date the �le was made

In addition, if any of the functions in the �le are Nlambdas, will automatically print
a expression suitable for informing the compiler about these functions, in case the user
recompiles the �le without having �rst loaded the nlambda functions. See page 12.6.

11.35

RPAQQ

PRETTYCOMPRINT

EXPRS EXPR ALL
EXPR EXPR

NIL

not
T

PRETTYDEF
PRETTYDEF " NOT FOUND, SO IT

WILL BE WRITTEN ANEW"
NIL

PRETTYDEF PRETTYPRINT T
PRETTYPRINT

PRETTYPRINT

PRETTYPRINT LOADFNS
PRETTYPRINT PRETTYDEF

(PRINTFNS)
PRINTFNS DEFINEQ

PRETTYDEF FNS

(PRINTDATE)
FILECREATED PRETTYDEF

(FILECREATED)
LISPXPRINT

(CAR) PRETTYHEADER
"FILE CREATED" PRETTYHEADER NIL (CDR

)
FILECREATED

PRETTYDEF
DECLARE:

PR TTYCOMS

PR TTYCOMS

REPRINTFNS SOUR CEFILE

REPRINTFNS

REPRINTFNS

SOUR CEFILE

REPRINTFNS SOUR CEFILE

PR TTYFILE SOUR CEFILE

FILE

REPRINTFNS

SOUR CEFILE

PRETTYDEFL G

X _

X

FILE CHANGES

CHANGES

X

X

X

Copyright Notices

on the property list of the �le under the property and performs other
initialization for the �le package.

[NLambda Function]
Prints (unevaluated) using , unless = .

[Variable]
Value is the message printed by . is initially

. If = , neither nor
will print anything. Thus, setting to will result in ‘‘silent
loads’’. is reset to dur ing greet ing (page 14.5).

[Function]
Returns a list of the changed objects of �le package type from the

expression of . If = , returns an alist of all of the
changes, with the �le package types as the s of the elements..

[Function]
Returns the �le date contained in the expression of .

11.9.1 Copyright Notices

The system has a facility for automatically printing a copyright notice near the front of �les, right after
the expression, specifying the years it was edited and the copyright owner. The format
of the copyright notice is:

Once a �le has a copyright notice then every version will have a new copyright notice inserted into the
�le without user intervention. (The copyright information necessary to keep the copyright up to date is
stored at the end of the �le.).

Any year the �le has been edited is considered a ‘‘copyright year’’ and therefore kept with the copyright
information. For example, if a �le has been edited in 1981, 1982, and 1984, then the copyright notice
would look like:

When a �le is made, if it has no copyright information, the system will ask the user to specify the copyright
owner (if =). The user may specify one of the names from , or
give one of the following responses:

(1) Type a left-square- bracket. The system will then prompt for an arbitrary string which will be used as
the owner- string

(2) Type a right- square- bracket, which speci�es that the user really does not want a copyright notice.

(3) Type ‘‘ ’’ which speci�es that this �le should never have a copyright notice.

For example, if COPYRIGHTOWNERS has the value

11.36

FILEDATES

(PRETTYCOMPRINT)
LISPXPRINT PRETTYHEADER NIL

PRETTYHEADER
FILECREATED PRETTYHEADER "FILE

CREATED" PRETTYHEADER NIL FILECREATED PRETTYCOMPRINT
PRETTYHEADER NIL

PRETTYHEADER NIL

(FILECHANGES)

FILECREATED NIL
CAR

(FILEDATE)
FILECREATED

FILECREATED

(* Copyright (c) 1981 by Foo Bars Corporation)

(* Copyright (c) 1981,1982,1984 by Foo Bars Corporation)

COPYRIGHTFLG T COPYRIGHTOWNERS

NONE

X

X

FILE TYPE

TYPE

FILE TYPE

FILE _

FILE

FILE PACKAGE

then for a new �le the following interaction will take place:

Then ‘‘Foo Bars Corporation’’ in the above copyright notice example would have been ‘‘Bolt Beranek and
Newman Inc.’’

The following variables control the operation of the copyright facility:

[Variable]
If = (default), the system will preserve old copyright infor-
mation, but will not ask the user about copyright ing new �les.

If = , then when a �le is made, if it has no copyright information,
the system will ask the user to specify the copyright owner.

If = , the system will neither prompt for new copyright
information nor preserve old copyright information.

[Variable]
is a list of entries of the form , where

is used as a response to and is a string which is the
full identi�cation of the owner.

[Variable]
If the user does not respond in seconds to the copyright query, the
value of is used.

11.9.2 Functions Used Within Source Files

The following functions are normally only used within symbolic �les, to set variable values, property
values, etc. Most of these have special behavior depending on �le package variables.

[NLambda Function]
An nlambda function like that sets the top level binding of (unevaluated)
to .

[NLambda Function]
An nlambda function like that sets the top level binding of

11.37

((BBN "Bolt Beranek and Newman Inc.")
(XEROX "Xerox Corporation"))

FOO

Do you want to Copyright FOO? Yes
Copyright owner: (user typed ?)
one of:
BBN - Bolt Beranek and Newman Inc.
XEROX - Xerox Corporation
NONE - no copyright ever for this file
[- new copyright owner -- type one line of text
] - no copyright notice for this file now

Copyright owner: BBN

COPYRIGHTFLG
COPYRIGHTFLG NIL

COPYRIGHTFLG T

COPYRIGHTFLG NEVER

COPYRIGHTOWNERS
COPYRIGHTOWNERS ()

ASKUSER

DEFAULTCOPYRIGHTOWNER
DWIMWAIT

DEFAULTCOPYRIGHTOWNER

(RPAQ)
SETQ

(RPAQQ)
SETQQ

KEY O WNERSTRING

KEY O WNERSTRING

VAR VAL UE

VAR

VAL UE

VAR VAL UE

VAR

File Maps

(unevaluated) to (unevaluated).

[NLambda Function]
Similar to , except that it does nothing if already has a top level value
other than . Returns if is reset, otherwise .

, , and generate errors if is not a litatom. All are a�ected by the value of
(page 5.9). If = (and the value of is other than), instead of setting , the
corresponding value is stored on the property list of under the property . All are undoable.

��� [NLambda NoSpread Function]
Each that is not a member of the value of is added to it, i.e. after
completes, the value of will be ��� .

is used by for implementing the command.
It performs some �le package related operations, i.e. ‘‘notices’’ that has been
changed. Returns the atom (not the value of).

��� [NLambda NoSpread Function]
Nlambda nospread version of (none of the arguments are evaluated). For
= ��� , puts property , value , on the property list of . Performs
some �le package related operations, i.e., ‘‘notices’’that the corresponding properties
have been changed.

[Function]
Same as , but marks the corresponding property value as having been
changed (used by the �le package).

11.9.3 File Maps

A �le map is a data structure which contains a symbolic ’map’ of the contents of a �le. Currently, this
consists of the begin and end byte address (see , page 6.9) for each expression in
the �le, the begin and end address for each function de�nition within the , and the begin and
end address for each compiled function.

, , , , and numerous other system functions depend heavily
on the �le map for e�cient operation. For example, the �le map enables to load selected
function de�nitions simply by setting the �le pointer to the corresponding address using ,
and then performing a single . Similarly, the �le map is heavily used by the ‘‘remake’’ option of

(page 11.10): those function de�nitions that have been changed since the previous version
are prettyprinted; the rest are simply copied from the old �le to the new one, resulting in a considerable
speedup.

Whenever a �le is written by , a �le map for the new �le is built. Building the map in this
case essentially comes for free, since it requires only reading the current �le pointer before and after each
de�nition is written or copied. However, building the map does require that that
it is printing a expression. For this reason, the user should never print a expression
onto a �le himself, but should instead always use the �le package command (page 11.22).

The �le map is stored on the property list of the root name of the �le, under the property . In
addition, writes the �le map on the �le itself. For cosmetic reasons, the �le map is written
as the last expression in the �le. However, the of the �le map in the �le is (over)written into the

11.38

(RPAQ?)
RPAQ
NOBIND NIL

RPAQ RPAQQ RPAQ? DFNFLG
DFNFLG ALLPROP NOBIND

VALUE

(ADDTOVAR)
ADDTOVAR

(UNION (LIST))
ADDTOVAR PRETTYDEF ADDVARS

(PUTPROPS)
PUTPROP

1

(SAVEPUT)
PUTPROP

GETFILEPTR DEFINEQ
DEFINEQ

MAKEFILE PRETTYDEF LOADFNS RECOMPILE
LOADFNS

SETFILEPTR
READ

MAKEFILE

MAKEFILE

PRETTYPRINT know
DEFINEQ DEFINEQ

FNS

FILEMAP
MAKEFILE

address

VAL UE

VAR VAL UE

VAR

VAL UE VAR

X

VAR X

VAR

VAR X 1 X 2 X N
X i VAR

VAR X 1 X 2 X N VAR

VAR

VAR VAR

ATM PR OP 1 VAL 1 PR OP N VAL N

i N PR OP i VAL i ATM

ATM PR OP VAL

FILE PACKAGE

expression that appears at the beginning of the �le so that the �le map can be rapidly
accessed without having to scan the entire �le. In most cases, and do not have to build
the �le map at all, since a �le map will usually appear in the corresponding �le, unless the �le was written
with = , or was written outside of Interlisp.

Currently, �le maps for �les are not written onto the �les themselves. However, and
will build maps for a compiled �le when it is loaded, and store it on the property .

Similary, will obtain and use the �le map for a compiled �le, when available.

The use and creation of �le maps is controlled by the following variables:

[Variable]
Whenever a �le is read by or , or written by , a �le map
is automatically built unless = . (is initially .)

While building the map will not help the �rst reference to a �le, it will help in
future references. For example, if the user performs where

does not contain a �le map, the will be (slightly) slower than if
did contain a �le map, but subsequent calls to for this version of
will be able to use the map that was built as the result of the ,

since it will be stored on ’s property.

[Variable]
If = (the initial setting), the functions that use �le maps will �rst
check the property to see if a �le map for this �le was previously
obtained or built. If not, the �rst expression on the �le is checked to see if it is a

expression that also contains the address of a �le map. If the �le
map is not on the property or in the �le, a �le map will be built (unless

=).

If = , the property and the �le will not be checked for
the �le map. This allows the user to recover in those cases where the �le and its
map for some reason do not agree. For example, if the user uses a text editor
to change a symbolic �le that contains a map (not recommended), inserting or
deleting just one character will throw that map o�. The functions which use �le
maps contain various integrity checks to enable them to detect that something is
wrong, and to generate the error

. In such cases, the user can set to , causing the map
contained in the �le to be ignored, and then reexecute the operation.

11.39

FILECREATED
LOAD LOADFNS

BUILDMAPFLG NIL

compiled LOAD
LOADFNS FILEMAP

LOADFNS

BUILDMAPFLG
LOAD LOADFNS MAKEFILE

BUILDMAPFLG NIL BUILDMAPFLG T

(LOADFROM ’FOO)
FOO LOADFROM
FOO LOADFNS
FOO LOADFROM

FOO FILEMAP

USEMAPFLG
USEMAPFLG T

FILEMAP

FILECREATED
FILEMAP

BUILDMAPFLG NIL

USEMAPFLG NIL FILEMAP

FILEMAP DOES NOT AGREE WITH CONTENTS
OF USEMAPFLG NILFILE

File Maps

11.40

