CHAPTER 11

FILE PACKAGE

Most implementations of Lisp treat symbolic les as unstructured text, much as they are treated in most
conventional programming environments. Function denitions are edited with a character- oriented text
editor, and then the changed denitions (or sometimes the entire le) isread or compiled to instal those
changes in the running memory image. Interlisp incorporates a di erent philosophy. A symbolic le
is considered as a database of information about a group of data objects function denitions, variable
values, record declarations, etc. The text in a symbolic le is never edited directly. Denitions are edited
only after their textua representations on les have been converted to data- structures that reside inside
the Lisp address space. The programs for editing denitions inside Interlisp can therefore make use of the
full set of data- manipulation capabilities that the environment aready provides, and editing operations
can be easily intermixed with the processes of evaluation and compilation.

Interlisp is thus a ‘‘resident’”” programming environment, and as such it provides facilities for moving
denitions back and forth between memory and the external databases on symbolic les, and for doing
the bookkeeping involved when denitions on many symbolic les with compiled counterparts are being
manipulated. The le package provides those capahilities. It removes from the user the burden of keeping
track of where things are and what things have changed. The le package also keeps track of which les
have been modi ed and need to be updated and recompiled.

The le package isintegrated into many other system packages. For example, if only the compiled version
of a le isloaded and the user attempts to edit a function, the le package will attempt to load the
source of that function from the appropriate symbolic le. In many cases, if a datum is needed by some
program, the le package will automatically retrieve it from a le if it isnot aready in the user's working
environment.

Some of the operations of the le package are rather complex. For example, the same function may
appear in several dierent les, or the symbolic or compiled les may be in di erent directories, etc.
Therefore, this chapter does not document how the le package works in each and every situation, but
instead makes the deliberately vague statement that it does the *‘right’’ thing with respect to keeping
track of what has been changed, and what le operations need to be performed in accordance with those
changes.

For a simple illustration of what the le package does, suppose that the symbolic le FOO contains the
functions FOOL and FOO2, and that the le BAR contains the functions BARL and BAR2. These two les
could be loaded into the environment with the function LOAD:

_ (LOAD ’ FOO)

FILE CREATED 4- MAR- 83 09: 26: 55
FOOCOMS

{DSK} FOO. : 1

_ (LOAD ’ BAR)

FILE CREATED 4- MAR- 83 09: 27: 24
BARCOMS

{DSK} BAR ; 1

111

Now, suppose that we change the denition of FOO2 with the editor, and we dene two new functions,
NEWL and NEW2. At that point, the le package knows that the in-memory denition of FOO2 is no
longer consistent with the denition in the le FOO, and that the new functions have been dened but
have not yet been associated with a symbolic le and saved on permanent storage. The function FI LES?
summarizes this state of aairs and enters into an interactive dialog in which we can specify what les
the new functions are to belong to.

_ (FILES?)
FOO. ..to be dunped.
pl us the functions: NEW, NEW2

want to say where the above go ? Yes
(functions)
NEWL File name: BAR
NEW2 File nane: ZAP

new file ? Yes
NI L

The le package knows that the le FQOO has been changed, and needs to be dumped back to permanent
storage. This can be done with MAKEFI LE.

_(MAKEFI LE ’ FOO)
{DSK} FOO. ; 2

Since we added NEW to the old le BAR and established a new le ZAP to contain NEW2, both BAR and
ZAP now also need to be dumped. This isconrmed by a second cal to FI LES?:

_ (FILES?)

BAR, ZAP...to be dunped.
FOO...to be listed.
FOO...to be conpiled

NI L

We are aso informed that the new version we made of FOO needs to be listed (sent to a printer) and
that the functions on the le must be compiled.

Rather than doing severa MAKEFI LEs to dump the les BAR and ZAP, we can simply call CLEANUP.
Without any further user interaction, this will dump any les whose denitions have been modi ed.

CLEANUP will aso send any unlisted les to the printer and recompile any les which need to be
recompiled. CLEANUP is a useful function to use at the end of a debugging session. It will call FI LES?
if any new objects have been dened, so the user does not lose the opportunity to say explicitly where
those belong. In eect, the function CLEANUP executes al the operations necessary to make the user's
permanent les consistent with the denitions in his current core-image.

_ (CLEANUP)
FOO. .. conpiling {DSK}FQQ. ;2

BAR. . . conpi ling {DSK}BAR. ;2

11.2

FILE PACKAGE

ZAP. . .compi ling {DSK}ZAP. ;1

In addition to the denitions of functions, symbolic les in Interlisp can contain denitions of a variety
of other types, eg. variable values, property lists, record declarations, macro denitions, hash arrays, etc.
In order to treat such a diverse assortment of data uniformly from the standpoint of le operations, the
le package uses the concept of a typed denition , of which a function denition isjust one example. A
typed denition associates with a name (usually a litatom), a denition of a given type (called the le
package type). Note that the same name may have several denitions of di erent types. For example, a
litatom may have both afunction denition and avariable denition. The le package also keeps track of
the les that a particular typed denition is stored on, so one can think of atyped denition as a relation
between four elements. a name, a denition, atype, and a le.

Symbolic les on permanent storage devices are referred to by names that obey the naming conventions
of those devices, usualy including host, directory, and version elds. When such denition groups are
noticed by the le package, they are assigned simple root names and these are used by all le package
operations to refer to those groups of denitions . The root name for a group is computed from its full
permanent storage name by applying the function ROOTFI LENAME; this strips o the host, directory,
version, etc., and returns just the simple name eld of the le. For each le, the le package also has a
data structure that describes what denitions it contains. This is known as the commands of the le, or
its ** lecoms'’. By convention, the lecoms of a le whose root name is x is stored as the vaue of the
litatom XCOVS. For example, the value of FOOCOVS is the lecoms for the le FOO. This variable can
be directly manipulated, but the le package contains facilities such as FI LES? which make constructing
and updating lecoms easier, and in some cases automatic. See page 11.32.

The le package is able to maintain its databases of information because it is noti ed by various other
routines in the system when events take place that may change that database. A le is ‘‘noticed’’ when it
is loaded, or when anew le is stored (though there are ways to explicitly notice les without completely
loading all their denitions). Once a le isnoticed, the le package takes it into account when modifying
lecoms, dumping les, etc. The le package also needs to know what typed denitions have been changed
or what new denitions have been introduced, so it can determine which les need to be updated. This
is done by ‘‘marking changes’. All the system functions that perform le package operations (LQAD,
TCOWPL, PRETTYDEF, etc.), as well as those functions that dene or change data, (EDI TF, EDI TV,
EDI TP, DWIM corrections to user functions) interact with the le package. Also, typed-in assignment
of variables or property values is noticed by the le package. (Note that modi cations to variable or
property values during the execution of a function body are not noticed.) In some cases the marking
procedure can be subtle, e.g. if the user edits a property list using EDI TP, only those properties whose
values are actually changed (or added) are marked.

All le package operations can be disabled with FI LEPKGFLG.

FI LEPKGFLG [Variable]
The le package can be disabled by setting FI LEPKGFLG to NI L. This will turn
o noticing les and marking changes. FI LEPKGFLG is initialy T.

The rest of this chapter goes into further detail about the le package. Functions for loading and storing
symbolic les are presented rst, followed by functions for adding and removing typed denitions from
les, moving typed denitions from one le to another, determining which le a particular denition is
stored in, and so on.

11.3

Loading Files

111 LOADING FILES

The functions below load information from symbolic les into the Interlisp environment. A symbolic le
contains a sequence of Interlisp expressions that can be evaluated to establish speci ed typed denitions.
The expressions on symbolic les are read using FI LERDTBL as the readtable.

The loading functions al have an argument LDFL G. LDFL G aects the operation of DEFI NE, DEFI NEQ,
RPAQ, RPAQ?, and RPAQQ. While a source le is being loaded, DFNFLG (page 5.9) is rebound to LDFL G.
Thus, if LDFL G= NI L, and a function is redened, a message is printed and the old denition saved.
If LOFL G= T, the old denition is simply overwritten. If LDFL G= PROP, the functions are stored as
‘““saved’’ denitions on the property lists under the property EXPR instead of being installed as the active
denitions. If LDFL G= ALLPROP, not only function denitions but aso variables set by RPAQQ, RPAQ,
RPAQ? are stored on property lists (except when the variable has the value NOBI ND, in which case they
are set to the indicated value regardiess of DFNFLG).

Another option is available for users who are loading systems for others to use and who wish to suppress
the saving of information used to aid in development and debugging. If LDFL G= SYSLQAD, LOAD will:
(1) Rebind DFNFLG to T, so old denitions are simply overwritten; (2) Rebind LI SPXHI ST to NI L,
thereby making the LOAD not be undoable and eliminating the cost of saving undo information (See page
8.22); (3) Rebind ADDSPELLFLG to NI L, to suppress adding to spelling lists; (4) Rebind FI LEPKGFLG to
NI L, to prevent the le from being ‘‘noticed’’ by the le package; (5) Rebind BUI LDVMAPFLG to NI L,
to prevent a le map from being constructed; (6) After the load has completed, set the lecoms variable
and any levars variables! to NOBI ND; and (7) Add the le name to SYSFI LES rather than FI LELST.

Note: All functions that have LDFL G as an argument perform spelling correction using LOADOPTI ONS
as a spelling list when LDFL G is not a member of LOADOPTI ONS. LOADOPTI ONS is initially (NIL T
PROP ALLPROP SYSLQAD) .

(LOAD FILE LDFL G PRINTFL G) [Function]
Reads successive expressions from FILE (with FI LERDTBL as readtable) and
evaluates each asit isread, until it reads either NI L, or the single atom STOP. Note
that LOAD can be used to load both symbolic and compiled les. Returns FiLE
(full name).

If PRINTFL G= T, LOAD prints the value of each expression; otherwise it does not.

(LOAD? FILE LDFL G PRINTFL G) [Function]
Similar to LOAD except that it does not load Fi LE if it has already been loaded, in
which case it returns NI L.

Note: The test is whether the root name of FI LE has a FI LEDATES property (page
11.13).

1A levars variable is any variable appearing in a le package command of the form (FLECOV *
VAR ABLE) (see page 11.30). Therefore, if the lecoms includes (FNS * FOOFNS) , FOOFNS is set to
NOBI ND. If the user wants the value of such a variable to be retained, even when the le isloaded with
LDFL G= SYSLQOAD, then he should replace the variable with an equivalent, non-atomic expression, such
as (FNS * (PROGN FOOFNS)) .

114

FILE PACKAGE

(LOADFNS FNS FILE LDFL G VARS) [Function]
Permits selective loading of denitions. FNs is a list of function names, a single
function name, or T, meaning to load all of the functions on the le. FILE can be
either a compiled or symbolic le. If a compiled denition is loaded, so are all
compiler- generated subfunctions. The interpretation of LDFL G is the same as for
LOAD.

If FILE= NI L, LOADFNS will use WHEREI S (page 11.10) to determine where the
rst function in FNS resides, and load from that le. Note that the le must
previously have been ‘‘noticed’’ (see page 11.12). If WHEREI S returns NI L, and
the WHEREIS package (page 23.40) has been loaded, LOADFNS will use the
WHEREIS data base to nd the le containing FN.

VARS speci es which non- DEFI NEQ expressions are to be loaded (i.e., evauated):
T means all, NI L means none, VARS means to evaluate all variable assignment
expressions (beginning with RPAQ, RPAQQ, or RPAQ?, see page 11.37), and any
other atom is the same as specifying a list containing that atom.

If VARS is a list, each element in VvARS is ‘‘matched’’ against each non- DEFI NEQ
expression, and if any elements in vARS ‘‘match’’ successfully, the expression
is evaluated. ‘‘Matching’’ is dened as follows. If an element of vARS is an
atom, it matches an expression if it is EQ to either the CAR or the CADR of
the expression. If an element of VARS is a list, it is treated as an edit pattern
(page 17.13), and matched with the entire expression (using EDI TAE, page
17.57). For example, if vARs was (FOOCOVE DECLARE: (DEFLI ST & (QUOTE
MACRO))) , this would cause (RPAQQ FOOCOMS), al DECLARE: s, and al
DEFLI STs which set up MACROs to be read and evaluated.

If vars is a list and (FNTYP vARsS) is true (VARS is a function de nition),
then LOADFNS will invoke that function on every non- DEFI NEQ expression being
considered, applying it to two arguments, the rst and second elements in the
expression. |f the function returns NI L, the expression will be skipped; if it returns
anon-Nl L litatom (eg. T), the expression will be evaluated; and if it returns a
list, this list is evaluated instead of the expression. Note: The le pointer is set to
the very beginning of the expression before caling the vars function de nition,
so it may read the entire expression if necessary. If the function returns a litatom,
the le pointer isreset and the expression is READ or SKREAD. However, the le
pointer is not reset when the function returns a list, so the function must leave it
set immediately after the expression that it has presumably read.

LOADFNS returns a list of: (1) The names of the functions that were found; (2) A
list of those functions not found (if any) headed by the litatom NOT- FOUND: ; (3)
All of the expressions that were evaluated; (4) A list of those members of VARS
for which no corresponding expressions were found (if any), again headed by the
litatom NOT- FOUND: . For example,

_ (LOADFNS ' (FOO FIE FUM FILE NIL ' (BAZ (DEFLIST &)))
(FOO FIE (NOT- FOUND: FUM) (RPAQ BAZ) (NOT- FOUND: (DEFLIST

&)))

(LOADVARS VARS FILE LDFL G) [Function]
Same as (LOADFNS NI L FILE LDFL G VARS).

115

Storing Files

(LOADFROM FILE FNS LDFL G) [Function]
Same as (LOADFNS FNS FILE LDFL G T).

Once the le package has noticed a le, the user can edit functions contained in the le without explicitly
loading them. Similarly, those functions which have not been modi ed do not have to be loaded in order
to write out an updated version of the le. Files are normally noticed (i.e., their contents become known
to the le package; see page 11.12) when either the symbolic or compiled versions of the le are loaded.
If the le is not going to be loaded completely, the preferred way to notice it is with LOADFROM. Note
that the user can aso load some functions at the same time by giving LOADFROM a second argument, but
it isnormally used simply to inform the le package about the existence and contents of a particular le.

(LOADBLOCK FN FILE LDFL G) [Function]
Cdls LOADFNS on those functions contained in the block declaration containing
FN (See page 12.14). LOADBLOCK is designed primarily for use with symbolic les,
to load the EXPRs for a given block. It will not load a function which already has
an in-core EXPR denition, and it will not load the block name, unless it is also
one of the block functions.

(LOADCOWP FILE LDFL G) [Function]
Performs all operations on FILE associated with compilation, i.e. evauates all
expressions under a DECLARE: EVAL@COWPI LE (see page 11.26), and ‘‘notices’
the function and variable names by adding them to the lists NOFI XFNSLST and
NOFI XVARSLST (see page 16.16).

Thus, if building a system composed of many les with compilation information
scattered among them, all that is required to compile one le isto LOADCOWP the
others.

(LOADCOVP? FILE LDFL G) [Function]
Similar to LOADCOWP, except it does not load if le has aready been loaded, in
which case its value is NI L.

11.2 STORING FILES

(MAKEFI LE FILE OPTIONS REPRINTFNS SOUR CEFILE) [Function]
Makes a new version of the le FILE, storing the information speci ed by FILE'S
lecoms. Notices FILE if not previously noticed (see page 11.12). Then, it adds
FI LE to NOTLI STEDFI LES? and NOTCOVPI LEDFI LES .2

oPTIONS isalitatom or list of litatoms which specify options. By specifying certain
options, MAKEFI LE can automatically compile or list FI LE. Note that if FI LE does
not contain any function denitions, itisnot compiled even when OPTI ONS speci es

2Except if FI LE has on its property list the property FI LETYPE with value DON' TLI ST, or alist containing
DON TLI ST.

SExcept if FILE has on its property list the property FI LETYPE with value DON TCOWPI LE, or a list
containing DON' TCOWPI LE. Also, if FILE does not contain any function denitions, it is not added to
NOTCOWPI LEDFI LES, and it is not compiled even when oPTIONs species Cor RC.

116

FILE PACKAGE

C or RC. The options are spelling corrected using the list MAKEFI LEOPTI ONS. If
spelling correction fails, MAKEFI LE generates an error. The options are interpreted

as follows:

Cc
RC

LI ST

CLI SPI FY

NOCLI SP

FAST

REMAKE

NEW

REPRI NTFNS
page 11.10.

After making FILE, MAKEFI LE will compile FILE by caling
TCOWPL (if C is specied) or RECOWPI LE (if RC is speci ed).
If there are any block declarations specied in the lecoms for
FI LE, BCOVPL or BRECOWPI LE will be called instead.

If F, ST, STF, or S isthe next item on orTions following C or
RC, it is given to the compiler as the answer to the compiler's
question LI STI NG? (see page 12.1). For example, (MAKEFI LE
"FOO ' (C F LIST)) will dump FQOO, then TCOVPL or BCOVPL
it specifying that functions are not to be redened, and nally list
the le.

After making FILE, MAKEFI LE cdls LI STFILES to print a
hardcopy listing of FiLE.

MAKEFI LE calls PRETTYDEF with CLI SPI FYPRETTYFLG=T
(see page 16.20). This causes CLI SPI FY to be called on each
function dened as an EXPR before it is prettyprinted. 4

MAKEFI LE calls PRETTYDEF with PRETTYTRANFLG= T (see page
16.20). This causes CLISP trandations to be printed, if any, in place
of the corresponding CLISP expressions, e.g., iterative statements,
record expressions, PRI NTOUT forms, etc.

MAKEFI LE calls PRETTYDEF with PRETTYFLG= NI L (see page
6.54). This causes data objects to be printed rather than
prettyprinted, which is much faster.

MAKEFI LE ‘‘remakes’ FILE: The prettyprinted denitions of
functions that have not changed are copied from an earlier version
of the symbolic le. Only those functions that have changed are
prettyprinted. See page 11.10.

MAKEFI LE does not remake FILE. If MAKEFI LEREMAKEFLG= T
(the initial setting), the default for all calls to MAKEFI LE is to
remake. The NEWoption can be used to override this default.

and SOUR CEFILE are used when remaking a le, as described on

4Alternatively, if FILE has the property FILETYPE with value CLISP or a list containing CLI SP,
PRETTYDEF is caled with CLI SPI FYPRETTYFLG reset to CHANGES, which will cause CLI SPI FY to
be caled on al functions marked as having been changed. If FILE has property FI LETYPE with value
CLI SP, the compiler will DAY M FY its functions before compiling them (see page 12.9).

11.7

Storing Files

If aremake isnot being performed, MAKEFI LE checks the state of FI LE to make sure that the entire source
le was actually LOADed. If FILE was loaded as a compiled le, MAKEFI LE prints the message CAN' T
DUMP: ONLY THE COWPI LED FI LE HAS BEEN LOADED. Similarly, if only some of the symbolic
denitions were loaded via LOADFNS or LOADFROM, MAKEFI LE prints CAN' T DUMP: ONLY SOVE OF
I TS SYMBOLI CS HAVE BEEN LOADED. In both cases, MAKEFI LE will then ask the user if it should
dump anyway; if the user declines, MAKEFI LE does not call PRETTYDEF, but simply returns (FI LE NOT
DUMPED) as its value.

The user can indicate that FI LE must be block compiled together with other les asaunit by putting alist
of those les on the property list of each le under the property FI LEGROUP. If FI LE has a FI LEGROUP
property, the compiler will not be called until al les on this property have been dumped that need to
be.

MAKEFI LE operates by rebind ing PRETTYFLG, PRETTYTRANFLG, and CLI SPI FYPRETTYFLG, evaluat-
ing each expression on MAKEFI LEFORMS (under errorset protection), and then calling PRETTYDEF. The
user can add expressions to MAKEFI LEFORMS to implement his own options.

(MAKEFI LES ©OPTIONS FILES) [Function]
Performs (MAKEFI LE FILE orTioNs) for each le on FILES that needs to be
dumped. If FILES= NI L, FI LELST isused. For example, (MAKEFI LES ’ LI ST)
will make and list al les that have been changed. In this case, if any typed
denitions for any items have been dened or changed and they are not contained
in one of the les on FI LELST, MAKEFI LES calls ADDTOFI LES? to alow the
user to specify where these go. MAKEFI LES returns alist of al les that are made.

(CLEANUP FILE; FILE, FI LEy) [NLambda NoSpread Function]
Dumps, lists, and recompiles (with RECOVPI LE or BRECOWPI LE) any of the
speci ed les (unevaluated) requiring the corresponding operation. If no les are
speci ed, FI LELST isused. CLEANUP returns NI L.

CLEANUP uses the value of the variable CLEANUPOPTI ONS as the oPTIONS
argument to MAKEFI LE. CLEANUPCPTI ONS is initially (LI ST RC), to indicate
that the les should be listed and recompiled. If CLEANUPOPTI ONS is set to (RC
F), no listing will be performed, and no functions will be redened as the result
of compiling. Alternatively, if FILE; is a list, it will be interpreted as the list of
options regardless of the value of CLEANUPOPTI ONS.

(FI LES?) [Function]
Prints on the termina the names of those les that have been modi ed but not
dumped, dumped but not listed, dumped but not compiled, plus the names of any
functions and other typed denitions (if any) that are not contained in any le.
If there are any, FI LES? then calls ADDTOFI LES? to allow the user to specify
where these go.

(ADDTOFI LES? _) [Function]
Called from MAKEFI LES, CLEANUP, and FI LES? when there are typed de nitions
that have been marked as changed which do not belong to any le. ADDTOFI LES?
lists the names of the changed items, and asks the user if he wants to specify where
these items should be put. If user answers N(0), ADDTOFI LES? returns NI L
without teking any action. If the user answers], this is taken to be an answer
to each question that would be asked, and all the changed items are marked as
dummy items to be ignored. Otherwise, ADDTOFI LES? prints the name of each

118

FILE PACKAGE

changed item, and accepts one of the following responses:

A le name or avariable whose value is a list
Adds the item to the corresponding le or list, using ADDTOFI LE.

If the item is not the name of a le on FI LELST, the user will be asked
whether it isa new le. If he says no, then ADDTOFI LES? will check
whether the item is the name of a list, i.e. whether its value is a list. If
not, the user will be asked whether it is a new list.

line-feed
Same as the user’'s previous response.

space or carriage return
Take no action.

] The item is marked as a dummy item by adding it to NI LCOVS. This tells
the le package ssimply to ignore this item.

[The ‘‘denition’” of the item in question is prettyprinted to the terminal,
and then the user is asked again about its disposition.

(ADDTOFI LES? prompts with ‘L1 STNAME: ("', the user types in the name
of aligt, i.e. avariable whose value is a list, terminated by a). The item
will then only be added to (under) a command in which the named list
appears as a levar. If none are found, a message is printed, and the user
is asked again. For example, the user denes a new function FOO3, and
when asked where it goes, types (FOOFNS) . If the command (FNS *
FOOFNS) isfound, FOO3 will be added to the value of FOOFNS. If instead
the user types (FOOCOMWB) , and the command (COMS * FOOCOMS) is
found, then FOOB will be added to a command for dumping functions that
is contained in FOOCONVS.

Note: If the named list is not also the name of a le, the user can simply
type it in without parenthesis as described above.

@ ADDTOFI LES? prompts with "Near: (", the user types in the name
of an object, and the item is then inserted in a command for dumping
objects (of its type) that contains the indicated name. The item is inserted
immediately after the indicated name.

(LI STFILES FILE; FILE, FILEy) [NLambda NoSpread Function]
Lists each of the speci ed les (unevaluated). If no les are given, NOTLI STEDFI LES
isused. Each le listed is removed from NOTLI STEDFI LES if the listing is com-
pleted. For each le not found, LI STFI LES prints the message " FI LENAVE ~ NOT
FOUND" and proceeds to the next le. LI STFI LES callsthe function LI STFI LES1
on each le to be listed. The user can advise or redene LI STFI LES1 for more
specialized applications.

(Interlisp- 10) L1 STFI LES uses the function TENEX (page 22.6) to tell the operating
system to print the le. LI STFILES cdls LI STFI LES1 which cals TENEX
with (CONCAT ' LI ST$ FILENAMVE LI STFI LESTR) , where LI STFI LESTR is

119

Remaking a Symbolic File

initially ‘‘r’’. The user can reset LI STFI LESTR to specify subcommands for the
list command, or advise or redene LI STFI LES1.

(Interlisp- D) LI STFI LESL isinitialy dened as EMPRESS (page 18.17).

(COWPI LEFI LES FILE; FILE, FILEy) [NLambda NoSpread Function]
Executes the RC and C options of MAKEFI LE for each of the specied les
(unevaluated). If no les are given, NOTCOWPI LEDFI LES is used. Each le
compiled isremoved from NOTCOVPI LEDFI LES. If FILE isaligt, it isinterpreted
as the oPTIoNs argument to MAKEFI LES. This feature can be used to supply
an answer to the compiler’s LI STI NG? question, e.g., (COWPI LEFI LES (STF))
will compile each le on NOTCOMPI LEDFI LES so that the functions are rede ned
without the EXPRs denitions being saved.

(WHEREI S NAME TYPE FILES FN) [Function]
TYPE isa le package type. WHEREI S sweeps through all the les on the list FI LES
and returns a list of al les containing NAME as a TYPE . WHEREI S knows about
and expands al le package commands and le package macros. TYPE = NI L
defaults to FNS (to retrieve function denitions). If FILES is not a list, the value
of FI LELST is used.

If FN is given, it should be a function (with arguments NAME , FILE, and TYPE)
which is applied for every le in FI LES that contains NAME &s a TYPE . In this case,
VWHEREI S returns NI L.

If the WHEREIS package (page 23.40) has been loaded, WHEREI S isredened so
that FILES= T means to use the whereis package data base, so WHEREI S will nd
NAME even if the le has not been loaded or noticed. FILES= NI L always means
use FI LELST.

11.21 Remaking a Symbolic File

Most of the time that a symbolic le is written using MAKEFI LE, only a few of the functions that it
contains have been changed since the last time the le was written. Rather than prettprinting all of
the functions, it is often considerably faster to ‘‘remake’’ the le, copying the prettprinted denitions of
unchanged functions from an earlier version of the symbolic le, and only prettyprinting those functions
that have been changed.

MAKEFI LE will remake the symbolic le if the REMAKE option is speci ed. If the NEWoption is given,
the le isnot remade, and all of the functions are prettprinted. The default action is speci ed by the value
of MAKEFI LEREMAKEFLG: if T (its initial value), MAKEFI LE will remake les unless the NEWoption is
given; if NI L, MAKEFI LE will not remake unless the REMAKE option is given.

Note: If the le has never been loaded or dumped, for example if the lecoms were simply set
up in memory, then MAKEFI LE will never attempt to remake the le, regardless of the setting of
MAKEFI LEREMAKEFLG, or whether the REMAKE option was speci ed.

When MAKEFI LE is remaking a symbolic le, the user can explicitly indicate the functions which are
to be prettyprinted and the le to be used for copying the rest of the function denitions from via the
REPRINTFNS and SOUR CEFI LE arguments to MAKEFI LE. Normally, both of these arguments are defaulted
to NI L. In this case, REPRINTFNS will be set to those functions that have been changed since the last

11.10

FILE PACKAGE

version of the le was written. For SOUR CEFI LE, MAKEFI LE obtains the full name of the most recent
version of the le (that it knows about) from the FI LEDATES property of the le, and checks to make
sure that the le dill exists and has the same le date as that stored on the FI LEDATES property. If it
does, MAKEFI LE uses that le as SourR CEFI LE . This procedure permits the user to LOAD or LOADFROM a
le in adierent directory, and still be able to remake the le with MAKEFI LE. In the case where the most
recent version of the le cannot be found, MAKEFI LE will attempt to remake using the original version of
the le (i.e, the one rst loaded), specifying as REPRINTFNS the union of al changes that have been made
since the le was rst loaded, which is obtained from the FI LECHANGES property of the le. If both of
these fail, MAKEFI LE prints the message ‘‘CAN' T FI ND El THER THE PREVI QUS VERSI ON OR THE
ORIG NAL VERSION OF FILE, SOIT WLL HAVE TO BE WRI TTEN ANEW’,and does not remake
the le, i.e. will prettyprint all of the functions.

When a remake is speci ed, MAKEFI LE also checks to see how the le was originaly loaded (see page
11.12). If the le was originally loaded as a compiled le, MAKEFI LE will automatically call LOADVARS
to obtain those DECLARE: expressions that are contained on the symbolic le, but not the compiled
le, and hence have not been loaded. If the le was loaded by LOADFNS (but not LOADFROM), then
LOADVARS will automatically be caled to obtain any non- DEFI NEQ expressions.

Note: Remaking a symbolic le is considerably faster if the earlier version has a le map indicating where
the function denitions are located (page 11.38), but it does not depend on this information.

11.3 MARKING CHANGES

The le package needs to know what typed denitions have been changed, so it can determine which
les need to be updated. This is done by ‘‘marking changes’. All the system functions that perform le
package operations (LOAD, TCOVPL, PRETTYDEF, etc.), as well as those functions that dene or change
data, (EDI TF, EDI TV, EDI TP, DWIM corrections to user functions) interact with the le package by
marking changes. Also, typed-in assignment of variables or property values is noticed by the le package.
(Note that if a program modi es a variable or property value, this is not noticed.) In some cases the
marking procedure can be subtle, eg. if the user edits a property list using EDI TP, only those properties
whose values are actually changed (or added) are marked.

The various system functions which create or modify objects call MARKASCHANGED to mark the object as
changed. For example, when a function isdened via DEFI NE or DEFI NEQ, or modi ed via EDI TF, or
a DWIM correction, the function is marked as being a changed object of type FNS. Similarly, whenever a
new record is declared, or an existing record redeclared or edited, it is marked as being a changed object
of type RECORDS, and so on for al of the other le package types.

The user can aso cal MARKASCHANGED directly to mark objects of a particular le package type as
changed:

(MARKASCHANGED NAME TYPE REASON) [Function]
Marks Nave of type TYPE as being changed. REASON is a litatom that indicated
how Nave was changed. MARKASCHANGED recognizes the following values for

REASON :
DEFI NED Used to indicate the creation of Nave |, e.g. from DEFI NE.
CHANGED Used to indicate a change to NaMvE |, e.g. from the editor.

1111

Noticing Files

DELETED Used to indicate the deletion of Nave |, eg. by DELDEF.
CLI SP Used to indicate the modi cation of Nave by CLISP trandation.

For backwards compatibility, MARKASCHANGED also accepts a REASON of T
(= DEFI NED) and NI L (= CHANGED). New programs should avoid using these
values.

MARKASCHANGED returns NAME . MARKASCHANGED is undoable.

(UNVARKASCHANGED NAME TYPE) [Function]
Unmarks Nave of type TYPE as being changed. Returns Nave if NAVE was
marked as changed and is now unmarked, NI L otherwise. UNMARKASCHANGED is
undoable.

(FI LEPKGCHANCGES TYPE LST) [NoSpread Function]
If LsT is not specied (as opposed to being NI L), returns a list of those objects
of type TYPE that have been marked as changed but not yet associated with their
corresponding les (See page 11.14). If LsT is speci ed, FI LEPKGCHANGES sets
the corresponding list. (FI LEPKGCHANGES) returns a list of all objects marked
as changed as a list of elements of the form (TYPENAME . CHANGEDOBJECTS).

Some properties (e.g. EXPR, ADVI CE, MACRO, | . S. OPR, etc..) are used to implement other le package
types. For example, if the user changes the value of the property | . S. OPR, he isreally changing an object
of type | . S. OPR, and the eect isthe same as though he had redened the i.s.opr via a direct call to the
function | . S. OPR. If a property whose value has been changed or added does not correspond to a speci ¢
le package type, then it is marked as a changed object of type PROPS whose name is (VAR ABLENAVE
PROPNAME) (except if the property name has a property PROPTYPE with value | GNORE).

Similarly, if the user changes a variable which implements the le package type ALI STS (as indicated by
the appearance of the property VARTYPE with value ALI ST on the variable’'s property list), only those
entries that are actually changed are marked as being changed objects of type ALI STS, and the ‘‘name’’
of the object will be (VAR ABLENAME ~ KEY) where KeY is CAR of the entry on the aist that is being
marked. If the variable corresponds to a speci ¢ le package type other than ALI STS, eg. USERMACRCS,
LI SPXMACRCS, etc.,, then an object of that type is marked. In this case, the name of the changed object
will be CAR of the corresponding entry on the aist. For example, if the user edits LI SPXMACROS and
changes a denition for PL, then the object PL of type LI SPXMACRCS is marked as being changed.

114 NOTICING FILES

Already existing les are ‘‘noticed”’ by LOAD or LOADFROM (or by LOADFNS or LOADVARS when the
VARS argument is T. New les are noticed when they are constructed by MAKEFI LE, or when denitions
are rst associated with them via FI LES? or ADDTOFI LES?. Noticing a le updates certain lists and
properties so that the le package functions know to include the le in their operations. For example,
CLEANUP will only dump les that have been noticed.

The le package uses information stored on the property list of the root name of noticed les. The
following property names are used:

11.12

FILE PACKAGE

FI LE [Property Name]
When a le isnoticed, the property FI LE, value ((FILECOVS . LOADTYPE)) is
added to the property list of its root name. FILECOVMS is the variable containing
the lecoms of the le (see page 11.21). LOADTYPE indicates how the le was
loaded, e.g., completely loaded, only partialy loaded as with LOADFNS, loaded as
a compiled le, etc.

The property FI LE is used to determine whether or not the corresponding le
has been modi ed since the last time it was loaded or dumped. CDR of the
FI LE property records by type those items that have been changed since the last
MAKEFI LE. Whenever a le is dumped, these items are moved to the property
FI LECHANGES, and CDR of the FI LE property isreset to NI L.

FI LECHANGES [Property Name]
The property FI LECHANGES contains a list of al changed items since the le was
loaded (there may have been several sequences of editing and rewriting the le).
When a le isdumped, the changes in CDR of the FI LE property are added to the
FI LECHANGES property.

FI LEDATES [Property Name]
The property FI LEDATES contains alist of version numbers and corresponding le
dates for this le. These version numbers and dates are used for various integrity
checks in connection with remaking a le (see page 11.10).

FI LEMAP [Property Name]
The property FI LEMAP is used to store the lemap for the le (see page 11.38).
This is used to directly load individual functions from the middle of a le

To compute the root name, ROOTFI LENAME is applied to the name of the le as indicated in the
FI LECREATED expression appearing at the front of the le, since this name corresponds to the name
the le was origindly made under. The le package detects that the le being noticed is a compiled le
(regardless of its name), by the appearance of more than one FI LECREATED expressions. In this case,
each of the les mentioned in the following FI LECREATED expressions are noticed. For example, if the
user performs (BCOVPL ' (FOO FI E)), and subsequently loads FOO. DCOM, both FOO and FI E will be
noticed.

When a le is noticed, its root name is added to the list FI LELST:

FI LELST [Variable]
Contains a list of the root names of the les that have been noticed.

LOADEDFI LELST [Variable]
Contains a list of the actua names of the les as loaded by LOAD, LOADFNS,
etc. For example, if the user performs (LQAD ' <NEWL.I SP>EDI TA. COM 3) ,
EDI TA will be added to FI LELST, but <NEW.I SP>EDI TA. COM 3 is added
to LOADEDFI LELST. LOADEDFI LELST is not used by the le package, it is
maintained solely for the user’'s benet.

11.13

Distributing Change I nformation

115 DISTRIBUTING CHANGE INFORMATION

Periodically, the function UPDATEFI LES is caled to nd which le(s) contain the elements that have
been changed. UPDATEFI LES iscaled by FI LES?, CLEANUP, and MAKEFI LES, i.e., any procedure that
requires the FI LE property to be up to date. This procedure is followed rather than update the FI LE
property after each change because scanning FI LELST and examining each le package command can be
a time- consuming process, and is not so noticeable when performed in conjunction with a large operation
like loading or writing a le.

UPDATEFI LES operates by scanning FI LELST and interrogating the le package commands for each le.
When (if) any les are found that contain the corresponding typed denition, the name of the element
is added to the value of the property FI LE for the corresponding le. Thus, after UPDATEFI LES has
completed operating, the les that need to be dumped are simply those les on FI LELST for which CDR
of their FI LE property isnon-Nl L. For example, if the user loads the le FQOO containing denitions for
FOOL, FOO2, and FOOB, edits FOO2, and then calls UPDATEFI LES, (GETPROP ' FOO ' FI LE) will be
((FOOCOvs . T) (FNS FOO2)) . If any objects marked as changed have not been transferred to the
FI LE property for some le, eg., the user denes anew function but forgets (or declines) to add it to the
le package commands for the corresponding le, then both FI LES? and CLEANUP will print warning
messages, and then call ADDTOFI LES? to permit the user to specify on which les these items belong.

The user can aso invoke UPDATEFI LES directly:

(UPDATEFI LES _ _) [Function]
(UPDATEFI LES) will update the FI LE properties of the noticed les.

116 FILE PACKAGE TYPES

In addition to the denitions of functions and values of variables, source les in Interlisp can contain a
variety of other information, e.g. property lists, record declarations, macro denitions, hash arrays, etc.
In order to treat such a diverse assortment of data uniformly from the standpoint of le operations, the
le package uses the concept of a typed denition , of which a function denition isjust one example. A
typed denition associates with a name (usualy a litatom), a denition of a given type (caled the le
package type). Note that the same name may have several denitions of di erent types. For example, a
litatom may have both afunction denition and avariable denition. The le package also keeps track of
the le that a particular typed denition is stored on, so one can think of atyped denition as a relation
between four elements: a name, a denition, atype, and a le.

A le package type is an abstract notion of a class of objects which share the property that every object
of the same le package type is stored, retrieved, edited, copied etc., by the le package in the same way.
Each le package type isidentied by a litatom, which can be given as an argument to the functions that
manipulate typed denitions. The user may dene new le package types, as described in page 11.20.

FI LEPKGTYPES [Variable]
The value of FI LEPKGTYPES is alist of al le package types, including any that
may have been dened by the user.

The le package isinitialized with the following built-in le package types:

11.14

FNS

VARS

PROPS

AL| STS

EXPRESSI ONS

MACROS

USERVACROS

LI SPXMACROS

ADVI CE

FI LEPKGCOVB

FILE PACKAGE

Function de nitions.
(top-level) Variable values.

Property name/value pairs. When a property is changed or added, an object of
type PROPS, with ‘‘name’’ (LI TATOM PROPNAME) is marked as being changed.

Note that some properties are used to implement other le package types. For
example, the property MACRO implements the le package type MACROCS, the
property ADVI CE implements ADVI CE, etc. This is indicated by putting the
property PROPTYPE, with value of the le package type on the property list
of the property name. For example, (GETPROP ' MACRO ' PROPTYPE) =>
MACRCS. When such a property ischanged or added, an object of the corresponding
le package type is marked. If (GETPROP PROPNAME ' PROPTYPE) =>
| GNORE, the change isignored. The FI LE, FI LEMAP, FI LEDATES, etc. properties
are al handled this way. (Note that | GNORE cannot be the name of a le package
type implemented as a property).

Alists (association lists); a list of dotted pairs accessed via ASSOC and PUTASSCC.

A variable is declared to have an association list as its value by putting on its
property list the property VARTYPE with value ALI ST. In this case, each dotted
pair on the list is an object of type ALI STS. When the value of such a variable
is changed, only those entries in the alist that are actually changed or added
are marked as changed objects of type ALI STS (with ““name’’ (LI TATOM KEY)).
Objects of type ALI STS are dumped via the ALI STS or ADDVARS le package
commands.

Note that some alists are used to ‘‘implement’”’ other le package types. For
example, the vaue of the global variable USERMACROS implements the le package
type USERMACRGOS and the values of LI SPXMACROS and LI SPXH STORYMACRCS
implement the le package type LI SPXMACROS. This is indicated by putting on
the property list of the variable the property VARTYPE with value alist of the form
(ALI ST FILEPK GTYPE). For example, (GETPROP '’ LI SPXH STORYMACROS
"VARTYPE) => (ALIST LI SPXMACROS) .

Expressions.

Objects of type EXPRESSI ONS are written out via the P le package command,
and marked as being changed via the REMEMBER programmers assistant command

(page 8.13).

Compiler macros. See page 5.17.

User edit macros. See page 17.48.

(values in) LI SPXMACROS and LI SPXH STORYMACROS. See page 8.19.
Advice. See page 10.7.

File package commands/types. New le package types and commands can be
dened as explained on page 11.20 and page 11.32.

11.15

Functions for Manipulating Typed De nitions

RECCORDS Record declarations. See page 3.1

FI ELDS Fields of records. The ‘‘denition’”” of an object of type FI ELDS is a list of al the
record declarations which contain the name. See page 3.1.

I.S. OPRS Iterative statement operators. See page 4.5.

TEMPLATES Masterscope templates. See page 13.1.

FI LES Files. Files may be treated like other typed denitions.

FI LEVARS Filevars. See page 11.30.

11.6.1 Functions for Manipulating Typed De nitions

The functions described below can be used to manipulate typed denitions, without needing to know how
the manipulations are done. For example, (GETDEF ' FOO ' FNS) will return the function denition of
FOO, (GETDEF ' FOO ' VARS) will return the variable value of FOO, etc. All of the functions use the
following conventions:

oy

2

©)
(4)

Any argument that expects a list of litatoms will also accept a single litatom, operating as though it
were enclosed in alist. For example, if the argument FILES should be alist of les, it may also be
asingle le.

TYPE isa le package type. TYPE = NI L is equivalent to TYPE = FNS. The singular form of a le
package type is aso recognized, e.g. TYPE = VAR is equivalent to TYPE = VARS.

FILES= NI L is equivaent to FILES= FI LELST.

SOUR CE is used to indicate the source of a denition, that is, where the denition should be found.
SOUR CE can be one of:

CURRENT Get the denition currently in eect.
SAVED Get the ‘‘saved’’ denition, as stored by SAVEDEF (page 11.18).
FI LE Get the denition contained on the (rst) le determined by WHEREI S (page 11.10).

Note: WHEREI S is called with FILES= T, so that if the WHEREIS package (page
23.40) is loaded, the WHEREIS data base will be used to nd the le containing the
de nition.

? Get the denition currently in eect if there is one, else the saved denition if there
is one, otherwise the denition from a le determined by WHEREI S. Like specifying
CURRENT, SAVED, and FI LE in order, and taking the rst denition that is found.

a le name or list of le names
Get the denition from the rst of the indicated les that contains one.

NI L In most cases, giving SoUR CE= NI L (or not specifying it at al) is the same as giving

?, to get either the current, saved, or led denition. However, with HASDEF,
SOUR CE= NI L is interpreted as equal to sourR cE= CURRENT, which only tests if

11.16

FILE PACKAGE

there is a current de nition.

(5) All functions which make destructive changes are undoable.

The operation of most of the functions described below can be changed or extended by modifying
the appropriate properties for the corresponding le package type using the function FI LEPKGTYPE,
described on page 11.20.

(GETDEF NaME

(PUTDEF NAMVE

(HASDEF Nanve

(TYPESOF NAME

TYPE SOUR CE OPTIONS) [Function]

Returns the denition of Nave , of type TyPE, from SOUR CE. For most types,
CGETDEF returns the expression which would be prettyprinted when dumping
NAMVE as TYPE . For example, for TYPE = FNS, an EXPR denition is returned, for
TYPE = VARS, the value of NAMVE s returned, etc.

OPTIONS is alist which speci es certain options:

NCERROR CGETDEF causes an error if an appropriate denition cannot be
found, unless oPTIONS is or contains NOERROR.

a string If oPTIONS is or contains a string, that string will be returned if
no denition is found. The caller can thus determine whether a
denition was found, even for types for which NI L or NOBI ND
are acceptable de nitions.

NOCOPY GETDEF returns a copy of the denition unless oPTIONS is or
contains NOCOPY.

NODW M A FNS denition will be dwimi ed if it islikely to contain CLISP
unless OPTIONS is or contains NODW M.

TYPE DEFINITION) [Function]

Denes NaMve of type TYPE with DEFINITION . For TYPE = FNS, does a DEFI NE;
for TYPE = VARS, does a SAVESET, etc.

For TYPE = FI LES, PUTDEF establishes the command list, notices Nave , and then
calls MAKEFI LE to actually dump the le NaMve , copying functions if necessary
from the “‘old”’ le (supplied as part of DEFI NI TION).

TYPE SOUR CE SPELLFL G) [Function]

Returns Nave if NAMVE IS the name of something of type TYype . If not, attempts
spelling correction if SPELLFL G= T, and returns the spelling-corrected NAMVE .
Otherwise returns NI L.

(HASDEF NIL TYPE) returns T if NI L has a valid de nition.

Note: if soUR cE= NI L, HASDEF interprets this as equal to SOUR CE= CURRENT,
which only tests if there is a current de nition.

POSSI BLETYPES | MPOSSI BLETYPES ~ SOUR CE) [Function]

Returns a list of the types in PosSI BLETYPES but not in | MPOSSI BLETYPES — for
which NAVE has a denition. FI LEPKGTYPES is used if pPossI BLETYPES iS NI L.

11.17

Functions for Manipulating Typed De nitions

(COPYDEF O.D NEW TYPE SOUR CE OPTIONS) [Function]
Denes New to have a copy of the denition of oD by doing PUTDEF on a copy
of the denition retrieved by (GCETDEF O.D TYPE SOUR CE OPTIONS). NEW iS
substituted for oLD in the copied denition, in a manner that may depend on the
TYPE .

For example, (COPYDEF ' PDQ ' RST ' FI LES) setsup RSTCOMVS to be a copy of
PDQCOMVS, changes things like (VARS * PDQVARS) to be (VARS * RSTVARS)
in RSTCOVS, and performs a MAKEFI LE on RST such that the appropriate
denitions get copied from PDQ.

Note: COPYDEF disables the NOCOPY option of GETDEF, so New will aways have
a copy of the denition of a.b.

(DELDEF NAaME TYPE) [Function]
Removes the denition of NaVE as a TYPE that is currently in eect.

(SHOADEF NAME TYPE FILE) [Function]
Prettyprints the denition of NaVE as a TYPE to FILE. This shows the user how
NAVE would be written to a le. Used by ADDTOFI LES? (page 11.8).

(EDI TDEF NAME TYPE SOUR CE EDI TCOMS) [Function]
Edits the denition of NaVE as a TYPE . Essentiadly performs (PUTDEF NavE
TYPE (EDI TE (GETDEF NAME TYPE SOUR CE) EDITCOMS)).

(SAVEDEF NAME TYPE DEFINITION) [Function]
Makes DEFI NI TION (or if DEFINITION = NI L, the denition of NAME asaTYPE that
iscurrently in eect) be the ‘‘saved’’ denition for NAVME asaTYPE . If TYPE = FNS
(or TYPE = NI L), this consists of storing DEFI NI TION on NAVE ’sproperty list under
property EXPR, CODE, or SUBR. For TYPE = VARS, the denition is stored as the
value of the VALUE property. For other types, DEFINITION isstored in an interna
data structure, from where it can be retrieved by GETDEF or UNSAVEDEF.

(UNSAVEDEF NAME TYPE _) [Function]
Makes the ‘‘saved’ denition of NaVE as a TYPE be the denition currently in
eect. If TYPE = FNS (or TYPE = NI L), UNSAVEDEF will unsave the EXPR property
if any, else CODE or SUBR. UNSAVEDEF aso recognizes TYPE = EXPR, CODE, or
SUBR, meaning to unsave the corresponding denition only.

(LOADDEF NAME TYPE SOUR CE) [Function]
Equivalent to (PUTDEF Nave TYPE (GETDEF NAME TYPE SOUR CE)) . LOADDEF
is essentialy a generalization of LOADFNS, eg. it enables loading a single record
declaration from a le. Note that (LOADDEF FN) will give FN an EXPR de nition,
either obtained from its property list or a le, unlessit already has one.

(CHANGECALLERS O.D NEW TYPES FILES METHOD) [Function]
Finds all of the places where oD isused as any of the types in TYPES and changes
those places to use New . For example, (CHANGECALLERS ' NLSETQ ' ERSETQ)
will change all callsto NLSETQ to be calls to ERSETQ. Also changes occurrences of
oD to New inside the lecoms of any le, inside record declarations, properties,
etc.

11.18

FILE PACKAGE

CHANGECALLERS attempts to determine if a.b might be used as more than one
type; for example, if it is both a function and a record eld. If so, rather than
performing the transformation oD -> New automatically, the user is alowed
to edit al of the places where a.b occurs. For each occurrence of ab, the
user is asked whether he wants to make the replacement. If he responds with
anything except Yes or No, the editor isinvoked on the expression containing that
occurrence.

Currently there are two di erent methods for determining which functions are to be
examined. If MeTHoD = EDI TCALLERS, EDI TCALLERS is used to search FiILES
(see page 17.59). If vetTHOD = MASTERSCOPE, then the Masterscope database
is used instead. METHOD = NI L defaults to MASTERSCOPE if the value of the
variable DEFAULTRENAMVEMETHOD is MASTERSCOPE and a Masterscope database
exists, otherwise it defaults to EDI TCALLERS.

(RENAME O.D NEW TYPES FILES METHOD) [Function]
First performs (COPYDEF ab New TvypPe) for al TYPE inside TYPES . It then
calls CHANGECALLERS to change all occurrences of oD to NEw , and then *‘deletes”
oD with DELDEF. For example, if the user has a function FOO which he now
wishes to call FI E, he smply performs (RENAME ' FOO ' FI E), and FI E will be
given FOOs denition, and all places that FOO are called will be changed to call
FI E instead.

(COVWPARE NAMEL NAME2 TYPE SOUR CE1 SOUR CE2?) [Function]
Compares deniton of Navel with that of Nave2 | i.e. performs (COVPARELI STS
(CGETDEF NAMEL TYPE SOUR CE1) (CGETDEF NAME2 TYPE SOUR CE2))

(COWPAREDEFS NAME TYPE SOUR CES) [Function]
Calls COVPARELI STS on al pairs of denitions of Nave asaTyPE obtained from
the various SOUR CES.

11.6.2 Dening New File Package Types

All manipulation of typed denitions in the le package is done using the type-independent functions
CGETDEF, PUTDEF, etc. Therefore, to dene anew le package type, it is only necessary to specify what
these functions should do when dealing with a typed denition of the new type. Each le package type
has the following properties, whose values are functions or lists of functions:

Note: These functions are dened to take a TYPE argument so that the user may have the same function
for more than one type.

GETDEF Vaue is a function of three arguments, NAMVE , TYPE , and OPTI ONS , which should
return the current denition of NavE as a type TyPeE . Used by GETDEF (which
passes its OPTI ON argument).

If there is no GETDEF property, a le package command for dumping NAME s
created (by MAKENEWCOM). This command is then used to write the denition of
NAME as atype TYPE onto the le FI LEPKG SCRATCH (in Interlisp- D, this le is
created on the { CORE} device). This expression isthen read back in and returned
as the current de nition.

11.19

FI LECETDEF

PUTDEF

DELDEF

NEWCOM

VWHENCHANGED

WHENFI LED

VWHENUNFI LED

DESCRI PTI ON

Dening New File Package Types

This enables the user to provide away of obtaining denitions from a le that ismore
ecient than the default procedure used by GETDEF. Vaue is a function of four
arguments, NAME , TYPE , FILE, and OPTIONS . The function is applied by GETDEF
when it is determined that a typed denition is needed from a particular le. The
function must open and search the given le and return any TYPE denition for
NAMVE that it nds.

Value is a function of three arguments, NaVE |, TYPE , and DEFI NI TI ON , which should
store DEFI NI TION as the denition of NaveE as atype TYPE . Used by PUTDEF.

Value isafunction of two arguments, NaVE , and TYPE , which removes the de nition
of of NaME as a TYPE that iscurrently in eect. Used by DELDEF.

Vaue is a function of four arguments, NAME , TYPE , LI STNAME , and FILE. Speci es
how to make a new (instance of @) le package command to dump NAMVE , an object
of type TYPE . The function should return the new le package command. Used by
ADDTOFI LE and SHOADEF.

If LIsTNAVE is nhon-NI L, this means that the user speci ed LISTNAME as the levar
in his interaction with ADDTOFI LES? (see page 11.30).

If no NEWCOM is speci ed, the default is to call DEFAULTMAKENEWCOM, which will
construct and return acommand of the form (TYPE Nave) . DEFAULTMAKENEWCOM
can be advised or redened by the user.

Value is a list of functions to be applied to Nave |, TYPE , and REASON when NAME
an instance of type TYPE , ischanged or dened (see MARKASCHANGED, page 11.11).
Used for various applications, e.g. when an object of type | . S. OPRS changes, it is
necessary to clear the corresponding translatons from CLI SPARRAY.

The WHENCHANGED functions are called before the object is marked as changed, so
that it can, in fact, decide that the object is not to be marked as changed, and execute
(RETFROM ' MARKASCHANGED) .

Note: For backwards compatibility, the REASON argument passed to WHENCHANGED
functions is either T (for DEFI NED) and NI L (for CHANGED).

Value is a list of functions to be applied to NAME , TYPE , and FILE when NAME , an
instance of type TYPE , is added to FILE.

Value is a list of functions to be applied to NaVE , TYPE , and FI LE when NAME , an
instance of type TYPE , is removed from FILE.

Vaue is a string which describes instances of this type. For example, for type
RECORDS, the value of DESCRI PTI ON isthe string "record decl arati ons"” .

The function FI LEPKGTYPE is used to dene new le package types, or to change the attributes of
existing types. Note that it is possible to redene the attributes of system le package types, such as FNS

or PROPS.

(FILEPKGTYPE TYPE PROP; VAL PROP | VAL) [NoSpread Function]

Nospread function for dening new le package types, or changing attributes of
existing le package types. PROP; is one of the property names given above; VAL,

11.20

FILE PACKAGE

is the value to be given to that property. Returns TYPE .

(FI LEPKGTYPE TYPE PROP) returns the value of the property PROP, without
changing it.

(FI LEPKGTYPE TYPE returns an aist of al of the dened properties of TYPE ,
using the property names as keys.

11.7 FILE PACKAGE COMMANDS

The basic mechanism for creating symbolic les is the function MAKEFI LE (page 11.6). For each le,
the le package has a data structure known as the ‘‘ lecoms'’, which speci es what typed descriptions are
contained in the le. A lecoms isalist of le package commands, each of which speci es objects of a
certain le package type which should be dumped. For example, the lecoms

((FNS FOO)
(VARS FOO BAR BAZ)
(RECORDS XYZZY))

has a FNS, a VARS, and a RECCRDS le package command. This lecoms species that the function
denition for FOO, the variable values of FOO, BAR, and BAZ, and the record declaration for XYZZY
should be dumped.

By convention, the lecoms of a le X is stored as the value of the litatom xCOVSB. For example,
(MAKEFI LE " FQQ ; 27) will use the value of FOOCOMS as the lecoms. This variable can be directly
manipulated, but the le package contains facilities which make constructing and updating lecoms easier,
and in some cases automatic (See page 11.32).

A le package command is an instruction to MAKEFI LE to perform an explicit, well-dened operation,
usualy printing an expression. Usualy there is a one-to-one correspondence between le package types
and le package commands, for each le package type, there is a le package command which is used
for writing objects of that type to a le, and each le package command is used to write objects of a
particular type. However, in some cases, the same le package type can be dumped by severa di erent

le package commands. For example, the le package commands PROP, | FPROP, and PROPS all dump
out objects with the le package type PROPS. This means if the user changes an object of le package
type PROPS via EDI TP, a typed-in call to PUTPROP, or via an explicit call to MARKASCHANGED, this
object can be written out with any of the above three commands. Thus, when the le package attempts to
determine whether this typed object is contained on a particular le, it must look at instances of al three
le package commands PROP, | FPROP, and PROPS, to see if the corresponding atom and property are
speci ed. It is aso permissible for a single le package command to dump severa di erent le package
types. For example, the user can dene a le package command which dumps both a function denition

and its macro. Conversely, some le package comands do not dump any le package types at all, such as
the E command.

For each le package command, the le package must be able to determine what typed denitions the
command will cause to be printed so that the le package can determine on what le (if any) an object
of a given type is contained (by searching through the lecoms). Similarly, for each le package type,
the le package must be able to construct a command that will print out an object of that type. In other
words, the le package must be able to map le package commands into le package types, and vice

11.21

File Package Commands

versa. Information can be provided to the le package about a particular le package command via the
function FI LEPKGCOM (page 11.32), and information about a particular le package type via the function
FI LEPKGTYPE (page 11.20). In the absence of other information, the default issimply that a le package
command of the form (X Nave) prints out the denition of NAVE as atype X, and, conversely, if NAMVE

is an object of type x, then NavE can be written out by a command of the form (X NaMve).

If a le package function is given a command or type that is not dened, it attempts spelling correction ®
using FI LEPKGCOMSPLST as a spelling list. If successful, the corrected version of the list of le package
commands iswritten (again) on the output le. ® If unsuccessful, generates an error, BAD FI LE PACKAGE
COVIVAND.

File package commands can be used to save on the output le denitions of functions, values of variables,
property lists of atoms, advised functions, edit macros, record declarations, etc. The interpretation of each
le package command is as follows:

(FNS PN FN) [File Package Command]
Writes a DEFI NEQ expression with the function denitions of FN; FNy.

The user should never print a DEFI NEQ expression directly onto a le himself (by
using the P le package command, for example), because MAKEFI LE generates
the lemap of function denitions from the FNS le package commands (see page
11.38).

(VARS VAR VAR) [File Package Command]
For each VAR, writes an expression to set its top level value when the le isloaded.
If VAR; is atomic, VARS writes out an expression to set VAR; to the top-level value
it had at the time the le was written. If VAR; is non-atomic, it is interpreted as
(vAR FORM), and VARS write out an expression to set VAR to the value of FORM
(evaluated when the le is loaded).

VARS prints out expressions using RPAQQ and RPAQ, which are like SETQQ and
SETQ except that they also perform some specia operations with respect to the le
package (see page 11.37).

Note: VARS cannot be used for putting arbitrary variable values on les. For
example, if the value of a variable is an array (or many other data types), a litatom
which represents the array is dumped in the le instead of the array itself. The
HORRI BLEVARS le package command (page 11.25) provides a way of saving and
reloading variables whose values contain re-entrant or circular list structure, user
data types, arrays, or hash arrays.

(I NI TVARS VAR { VAR) [File Package Command]
I NI TVARS is used for initializing variables, setting their values only when they are
currently NOBI ND. A variable value dened in an | NI TVARS command will not
change an aready established value. This means that re-loading les to get some
other information will not automatically revert to the initialization values.

Sunless DW MFLG or NOSPELLFLG= NI L. See page 15.12.

6dince at this point, the uncorrected list of le package commands would aready have been printed on
the output le. When the le isloaded, this will result in FI LECOVS being reset, and may cause a message
to be printed, eg., (FOOCOMS RESET) . The value of FOOCOMS would then be the corrected version.

11.22

(ADDVARS (VAR q .

FILE PACKAGE

The format of an | NIl TVARS command is just like VARS. The only di erence is
that if VAR; is atomic, the current value is not dumped; instead NIL isdened as
the initialization value. Therefore, (1 Nl TVARS FOO (FUM 2)) is the same as
(VARS (FOO NIL)(FUM 2)), if FOO and FUM are both NOBI ND.

I NI TVARS writes out an RPAQ? expression on the le instead of RPAQ or RPAQQ.

LST 1) (VAR . LSTW)) [File Package Command]
For each (VAR; . LsT;), writes an ADDTOVAR to add each element of LST; to
the list that is the value of vAR; at the time the le isloaded. The new value of
VAR ; will be the union of its old value and LsT;. If the value of VAR; is NOBI ND,
itis rst setto NIL.

For example, (ADDVARS (DI RECTORIES LI SP LI SPUSERS)) will add LI SP
and LI SPUSERS to the value of DI RECTORI ES.

If LsT; is not speci ed, VAR; isinitidlized to NI L if its current value is NOBI ND.
In other words, (ADDVARS (vaAR)) will initialize var to NI'L if vaAR has not
previously been set.

(ALI STS (VAR KEY | KEY ,) (VAR KEY 3 KEY ,)) [File Package Command]

(PROP PR OPNAME

(1 FPROP PR OPNAME

VAR ; is a variable whose value is an alist, such as EDI TVACROS, BAKTRACELST,
etc. For each VAR;, ALI STS writes out expressions which will restore the values
associated with the speci ed keys. For example, (ALI STS (BREAKMACRCS BT
BTV)) will dump the denition for the BT and BTV commands on BREAKVACRCS.

Some dists (USERMACRCS, LI SPXMACROS, etc.) are used to implement other le
package types, and they have their own le package commands.

LI TATOM 4 LI TATOM) [File Package Command]
Writes a PUTPROPS expression to restore the value of the PROPNAME — property of
each litatom LI TAToM ; when the le is loaded.

If PROPNAVE IS alist, expressions will be written for each property on that list. If
PROPNAME is the litatom ALL, the values of all user properties (on the property
list of each LI TATOV ;) are saved. SYSPROPS is a list of properties used by system
functions. Only properties not on that list are dumped when the ALL option is
used.

If LITATOM ; does not have the property PROPNAME (as opposed to having the
property with value NI L), a warning message "NO PROPNAVE PROPERTY FOR
LI TATOM ;" is printed. The command | FPROP can be used if it is not known
whether or not an atom will have the corresponding property.

LI TATOM 4 LI TATOM) [File Package Command]
Same as the PROP le package command, except that it only saves the properties
that actually appear on the property list of the corresponding atom. For example,
if FOOL has property PROP1 and PROP2, FOO2 has PROP3, and FOOB has
property PROP1 and PROP3, then (| FPROP (PROP1 PROP2 PROP3) FOOL
FOO2 FOO3) will save only those ve property values.

11.23

(PROPS (LITATOM 4

(P ExPq EXP)

(E FORV 4 FORM

File Package Commands

PROPNAME) (LITATOM \y PROPNAME)) [File Package Command]
Similar to PROP command. Writes a PUTPROPS expression to restore the value of
PROPNAVE ; for each LI TATOM ; when the le is loaded.

As with the PROP command, if LI TATOM ; does not have the property PR OPNAVE
(as opposed to having the property with NI L value), a warning message " NO
PROPNAVE | PROPERTY FOR LITATOM " is printed.

[File Package Command]
Writes each of the expressions EXP ; ExP j on the output le, where they will
be evaluated when the le is loaded.

N) [File Package Command]
Each of the forms FORM ; FORM is evaluated at output time, when MAKEFI LE
interpretes this le package command.

(COVs com 4 oM) [File Package Command]

Each of the commands cov 4 coM | isinterpreted as a le package command.

(* . TEXT) [File Package Command]
Used for inserting comment in a le. The le package command is simply written
on the output le; it will be ignored when the le is loaded.

If the rst element of TEXT isanother *, a form-feed is printed on the le before
the comment.

(ADVI SE FN4 FN) [File Package Command]
For each function FN;, writes expressions to reinstate the function to its advised
state when the le isloaded. See page 10.7.

(ADVI CE FN4 FN) [File Package Command]
For each function FN;, writes a PUTPROPS expression which will put the advice
back on the property list of the function. The user can then use READVI SE to
reactivate the advice.

(USERMACROS LI TATOM 4 LI TATOM) [File Package Command]
Each litatom LITATOM ; is the name of a user edit macro. Writes expressions to
add the edit macro denitions of LI TAToM ; to USERMACROS, and adds the names
of the commands to the appropriate spelling lists.

If LITATOM ; is not a user macro, a warning message "no EDI T MACRO for
LI TATOM ;" is printed.

(FI LEPKGCOVS LI TATOM 4 LI TATOM) [File Package Command]
Each litatom LI TATOM ; is either the name of a user-dened le package command
or auser-dened le package type (or both). Writes expressions which will restore
each command/type.

If LiTATOM ; isnot a le package command or type, a warning message "no FI LE
PACKAGE COMVAND for LITATOM ;" is printed.
(LI SPXVACRCS LI TATOM LI TATOM) [File Package Command]

Each LI TATOM ; isdened on LI SPXMACROS or LI SPXH STORYMACROS (see page

11.24

FILE PACKAGE

8.19). Writes expressions which will save and restore the denition for each macro,
as well as making the necessary additions to LI SPXCOVB

(RECORDS REC 4 REC) [File Package Command]
Each ReC; is the name of a record (see page 3.1). Writes expressions which will
redeclare the records when the le is loaded.

(I Nl TRECORDS REC q REC) [File Package Command]
Similar to RECORDS, | NI TRECORDS writes expressions on a le that will, when
loaded, perform whatever initialization/alocation is necessary for the indicated
records. However, the record declarations themselves are not written out. This
facility is useful for building systems on top of Interlisp, in which the implementor
may want to eliminate the record declarations from a production version of the
system, but the allocation for these records must still be done.

(1.S.OPRS ©FR 4 OPR) [File Package Command]
Each oPR ; isthe name of a user-dened i.s.opr (see page 4.13). Writes expressions
which will redene the i.s.oprs when the le is loaded.

(TEMPLATES LITATOM 4 LI TATOM) [File Package Command]
Each LI TATOM ; is a litatom which has a Masterscope template (see page 13.18).
Writes expressions which will restore the templates when the le is loaded.

(BLOCKS BLOCK 4 BLOCK) [File Package Command]
For each BL ocK ;, writes a DECLARE: expression which the block compile functions
interpret as a block declaration. See page 12.14.

(MACRCS LI TATOM 4 LI TATOM) [File Package Command]
Each LI TATOM ; is alitatom with a MACRO de nition (and/or a DMACRO, 10MACRO,
etc). Writes out an expression to restore all of the macro properties for each
LI TATOM ;, embedded in a DECLARE: EVAL@COWPI LE so the macros will be
dened when the le iscompiled. See page 5.17.

(SPECVARS VAR { VAR) [File Package Command]
(LOCALVARS VAR VAR) [File Package Command]
(GLOBALVARS VAR 4 VAR) [File Package Command]

Outputs the corresponding compiler declaration embedded in a DECLARE:
DOEVAL @OWVPI LE DONTCOPY. See page 12.3.

(UGLYVARS VAR 4 VAR) [File Package Command]
Like VARS, except that the value of each VAR; may contain structures for which
READ is not an inverse of PRI NT, e.g. arrays, readtables, user data types, etc. Uses
HPRI NT (page 6.24).

(HORRI BLEVARS VAR VAR) [File Package Command]
Like UGLYVARS, except structures may also contain circular pointers. Uses HPRI NT
(page 6.24). The values of VAR VAR \ are printed in the same operation, so
that they may contain pointers to common substructures.

UGLYVARS does not do any checking for circularities, which results in alarge speed
and internal- storage advantage over HORRI BLEVARS. Thus, if it is known that the
data structures do not contain circular pointers, UGLYVARS should be used instead

11.25

File Package Commands

of HORRI BLEVARS.

(DECLARE: . FILEPK GCOMVB/ FLA GS) [File Package Command]
Normally expressions written onto a symbolic le are (1) evaluated when loaded;
(2) copied to the compiled le when the symbolic le is compiled (see page 12.1);
and (3) not evaluated at compile time. DECLARE: allows the user to override these
defaults.

FI LEPK GCOMS/ FLA GS isalist of le package commands, possibly interspersed with
““tags’. The output of those le package commands within FI LEPK GCOMS/ FLA GS iS
embedded in aDECLARE: expression, along with any tags that are speci ed. For ex-
ample, (DECLARE: EVAL@COWVPI LE DONTCOPY (FNS) (PROP)) would
produce (DECLARE: EVAL@COVPI LE DONTCORPY (DEFINEQ) (PUTPROPS

)). DECLARE: is dened as an nlambda nospread function, which processes
its arguments by evaluating or not evaluating each expression depending on the
setting of internal state variables. The initial setting is to evaluate, but this can be
overridden by specifying the DONTEVAL @ QAD tag.

DECLARE: expressions are specialy processed by the compiler. For the purposes
of compilation, DECLARE: has two principal applications: (1) to specify forms
that are to be evaluated at compile time, presumably to aect the compilation,
eg., to set up macros, and/or (2) to indicate which expressions appearing in the
symbolic le are not to be copied to the output le. (Normally, expressions are not
evaluated and are copied.) Each expression in CDR of a DECLARE: form is either
evaluated/not- evaluated and copied/not- copied depending on the settings of two
internal state variables, initially set for copy and not-evaluate. These state variables
can be reset for the remainder of the expressions in the DECLARE: by means of
the tags DONTCOPY, EVAL@COVPI LE, etc.

The tags are:

EVAL@ OQAD
DOEVAL @ QAD Evauate the following forms when the le isloaded (unless
overridden by DONTEVAL@ QOAD).

DONTEVAL @.QAD Do not evaluate the following forms when the le isloaded.

EVAL @. OADVWHEN This tag can be used to provide conditional evaluation.
The vaue of the expresson immediately following the
tag determines whether or not to evaluate subsequent
expressions when loading. EVAL@Q OADWHEN T is
equivaent to EVAL@. OAD

CoPY

DOCOPY When compiling, copy the following forms into the compiled
le.

DONTCORY When compiling, do not copy the following forms into the
compiled le.

COPYVHEN When compiling, if the next form evaluates to non-NI L,

copy the following forms into the compiled le.

11.26

FILE PACKAGE

EVAL@OWPI LE
DOEVAL@COWPI LE ~ When compiling, evauate the following forms.

DONTEVAL @OVPI LE
When compiling, do not evauate the following forms.

EVAL @OVPI LEWHEN
When compiling, if the next form evaluates to non-NI L,
evaluate the following forms.

FI RST For expressions that are to be copied to the compiled
le, the tag FI RST can be used to specify that the fol-
lowing expressions in the DECLARE: are to appear at
the front of the compiled le, before anything else ex-
cept the FI LECREATED expressions (see page 11.35). For
example, (DECLARE: COPY FIRST (P (PRI NT MESSs1
T)) NOTFIRST (P (PRINT mMess2 T))) will cause (PRI NT
MESSL T) to appear rst in the compiled le, followed by
any functions, then (PRI NT MEss2 T).

NOTFI RST Reverses the eect of FI RST.

The value of DECLARETAGSLST is a list of al the tags used in DECLARE:
expressions. If atag not on this list appears in a DECLARE: le package command,
performs spelling correction using DECLARETAGSLST as a spelling list.

Note that the function LOADCOWVP (page 11.6) provides a convenient way of
obtaining information from the DECLARE: expressions in a le, without reading
in the entire le. This information may be used for compiling other les.

(EXPORT com 4 oM) [File Package Command]
This command isused for ‘‘exporting’’ denitions. Like COM each of the commands
coM 4 com | isinterpreted as a le package command. The commands are aso
agged in the le as being ‘‘exported’’ commands, for use with GATHEREXPORTS
(see page 11.29).

(CONSTANTS VAR 4 VAR) [File Package Command]
Like VARS, for each VAR; writes an expression to set its top level vaue when the
le isloaded. Also writes a CONSTANTS expression to declare these variables as
congtants (see page 12.6). Both of these expressions are wrapped in a (DECLARE:
EVAL@OWPI LE) expression, so they can be used by the compiler.

Like VARS, vAR; can be non-atomic, in which case it is interpreted as (VAR
FORM), and passed to CONSTANTS (along with the variable being initialized to
FORM).

(ORIG NAL com 4 oM) [File Package Command]
Each of the commands com ; will be interpreted as a le package command without
regard to any le package macros (as dened by the MACRO property of the
FI LEPKGCOM function, page 11.32). Useful for redening a built-in le package
command in terms of itself.

11.27

Exporting De nitions

Note that some of the ‘‘built-in’’ le package commands are dened by le package
macros, so interpreting them (or new user-dened le package commands) with
ORI G NAL will fail. ORI G NAL was never intended to be used outside of a le
package command macro.

(FILES . FILES/ LISTS) [File Package Command]
Used to specify auxiliary les to be loaded in when the le isloaded. FILES/LISTS
is a list of les, possibly interspersed with lists, which may be used to specify
certain loading options. Within these lists, the following tokens are recognized:

The elements of the FI LES command are the (nameeld) of the les to load. There
are actually several other ways to load in les; the FI LES command interprets
LI STP elements of the commands as a series of tokens which change its state.
Those tokens can be:

FROM DI RECTOR Y Pack the given directory onto the beginning of the le. For
example, (FI LES (FROM LI SPUSERS) CIJSYS). If this
is not speci ed, the default is to use the same directory as
the le containing the FI LES command.

SOURCE Load the source version of the le rather than the compiled
version.

COWPI LED Load the compiled version of the le (the default).

LQAD Load the le with by calling LOAD? (the default).

L OADCOWP Load the le with LOADCOWP? rather than LOAD?. Automatically
implies SOURCE.

LOADFROM Load the le with LOADFROM rather than LOAD?.

SYSLOAD Load the le with LDFL G= SYSOUT. This is mainly used
when loading system les.

PROP Load the le with LDFL G= PROP, so function de nitions
loaded will be stored on property lists.

ALLPROP Load the le with LDFL G= ALLPROP, so both function
denitions and variable values loaded will be stored on
property lists.

These tokens can be joined together in a single list. For example, an actua
command in the FTP package is:

(FILES (LOADCOMP) NET (SYSLOAD FROM LI SPUSERS) CISYS)

11.7.1 Exporting De nitions

When building a large system in Interlisp, it is often the case that there are record denitions, macros and
the like that are needed by severa di erent system les when running, analyzing and compiling the source

11.28

FILE PACKAGE

code of the system, but which are not needed for running the compiled code. By using the DECLARE:
le package command with tag DONTCOPY (page 11.26), these denitions can be kept out of the compiled
les, and hence out of the system constructed by loading the compiled les les into Interlisp. This saves
loading time, space in the resulting system, and whatever other overhead might be incurred by keeping
those denitions around, e.g., burden on the record package to consider more possibilities in trandlating
record accesses, or conicts between system record elds and user record elds.

However, if the implementor wants to debug or compile code in the resulting system, the denitions are
needed. And even if the denitions had been copied to the compiled les, a similar problem arises if
one wants to work on system code in a regular Interlisp environment where none of the system les had
been loaded. One could mandate that any denition needed by more than one le in the system should
reside on a distinguished le of denitions, to be loaded into any environment where the system les are
worked on. Unfortunately, this would keep the denitions away from where they logically belong. The
EXPORT mechanism is designed to solve this problem.

To use the mechanism, the implementor identies any denitions needed by les other than the one
in which the denitions reside, and wraps the corresponding le package commands in the EXPORT
le package command (page 11.27). Thereafter, GATHEREXPORTS can be used to make a single le
containing al the exports.

(GATHEREXPORTS FROWILES TOFILE FLG) [Function]
FROWILES is a list of les containing EXPORT commands. GATHEREXPORTS
extracts all the exported commands from those les and produces a loadable le
TOFILE containing them. If FLG = EVAL, the expressions are evaluated as they
are gathered; i.e, the exports are eectively loaded into the current environment
as well as being written to TOFI LE .

(1 MPORTFI LE FILE RETURNFL G) [Function]
If RETURNFL G is NI L, this loads any exported denitions from FILE into the
current environment. If RETURNFL G is T, this returns a list of the exported
denitions (evauable expressions) without actually evaluating them.

(CHECKI MPORTS FILES NOASKFL G) [Function]
Checks each of the les in FILES to see if any exists in a version newer than
the one from which the exports in memory were taken (GATHEREXPORTS and
| MPORTFI LE note the creation dates of the les involved), or if any le in the
list has not had its exports loaded at al. If there are any such les, the user is
asked for permission to | MPORTFI LE each such le. If NOASKFL G is non-NI L,
| MPORTFI LE is performed without asking.

For example, suppose le FQOO contains records R1, R2, and R3, macros BAR and BAZ, and constants
CON1 and CON2. If the denitions of R1, R2, BAR, and BAZ are needed by les other than FOO, then
the le commands for FOO might contain the command

(DECLARE: EVAL@OVPI LE DONTCOPY
(EXPORT (RECORDS R1 R2)
(MACRCS BAR BAZ))
(RECORDS R3)
(CONSTANTS BAZ))

None of the commands inside this DECLARE: would appear on FOO scompiled le, but (GATHEREXPORTS
"(FOO) ' MYEXPORTS) would copy the record denitions for Rl and R2 and the macro denitions for

11.29

FileVars

BAR and BAZ to the le MYEXPORTS.

11.7.2 FileVars

In each of the le package commands described above, if the litalom * follows the command type,”
the form following the *, i.e, CADDR of the command, is evaluated and its value used in executing
the command, eg., (FNS * (APPEND FNS1 FNS2)). When this form is a litatom, eg. (FNS *
FOOFNS) , we say that the variable is a ‘‘ levar’’. Note that (COMS * FORM) provides a way of
computing what should be done by MAKEFI LE.

Example:

_ (SETQ FOOFNS ' (FOOL FO2 FOOB))
(FOOL FOCR FOOB)
_ (SETQ FOOCOVB
'((FNS * FOOFNS)
(VARS FIE)
(PROP MACRO FOOL FOOR)
(P (MOVD ' FOOL ’ FI E1))]
_ (MAKEFI LE ’ FOO)

would create a le FOO containing:

(FI LECREATED "time and date the le was made" . " other information”)
(PRETTYCOVPRI NT FOOCOVB)

(RPAQQR FOOCOME ((FNS * FOOFNS))

(RPAQR FOOFNS (FOOL FOCB3 FOCB))

(DEFI NEQ " denitions of FOOL, FOO2, and FOO3")

(RPAQQ FI E "value of FI E")

(PUTPROPS FOOL MACRO PRCPV AL UE)

(PUTPROPS FOO2 MACRO PRCPV AL UE)

(MOVD (QUOTE FOOL) (QUOTE FIE1))
STOP

11.7.3 Dening New File Package Commands

A le package command is dened by specifying the values of certain properties. The user can specify
the various attributes of a le package command for a new command, or respecify them for an existing
command. The following properties are used:

MACRO Denes how to dump the le package command. Used by MAKEFI LE. Vaue
isapar (ARGS . covs). The ‘“‘arguments’ to the le package command are
substituted for AR Gs throughout covs , and the result treated asalist of le package
commands. For example, following (FI LEPKGCOM ' FOO ' MACRO ' ((X YY)

“Except for the PROP and | FPROP commands, in which case the * follows the property name, e.g.,
(PROP MACRO * FOOMACRCS) .

11.30

ADD

DELETE

CONTENTS
CONTAI' N

FILE PACKAGE

covs)), the le package command (FOO A B) will cause A to be substituted for
X and B for Y throughout covs , and then covs treated as a list of commands.

The substitution is carried out by SUBPAI R (page 2.24), so that the ‘‘argument list”
for the macro can also be atomic. For example, if (X . covs) was used instead
of ((XY) . cows), then the command (FOO A B) would cause (A B) to be
substituted for X throughout covs .

Note: Filevars are evaluated before substitution. For example, if the litatom
* follows Nave in the command, CADDR of the command is evaluated substituting
in coOVB .

Speci es how (if possible) to add an instance of an object of a particular type to a
given le package command. Used by ADDTCFI LE. Vaue isFN, afunction of three
arguments, coM , a le package command CAR of which is EQ to CovvaANDNAMVE ,
NAME , atyped object, and TYPE , itstype. FN should return T if it (undoably) adds
NAVE to cov , NI L if not. If no ADD property is speci ed, then the default is (1) if
(CAR cov)= TYPE and (CADR com)= *, and (CADDR covm) isa levar (i.e
a literal atom), add Nave to the value of the levar, or (2) if (CAR com) = TYPE
and (CADR com) isnot *, add Nnave to (CDR com).

Actually, the function is given a fourth argument, NeAR , which if non-NI L,
means the function should try to add the item after NEAR . See discussion of
ADDTCFI LES?, page 11.8.

Speci es how (if possible) to delete an instance of an object of a particular type from
agiven le package command. Used by DELFROMFI LES. Value is FN, a function
of three arguments, com , NAVE , and TYPE , same as for ADD. FN should return T
if it (undoably) deletes nave from com , NI L if not. If no DELETE property is
speci ed, then the default is (1) (CAR com)= TyPE and (CADR com) = *, and
(CADDR cov) isa levar (i.e. aliteral atom), and NAME is contained in the value
of the levar, then remove Nnave from the levar, or (2) if (CAR com)= TYPE
and (CADR coMm) ishot *, and NAME is contained in (CDR com), then remove
Nave from (CDR com).

If FN returns the value of ALL, it means that the command is now
can be deleted entirely from the command list.

empty’’, and

Speci es whether an instance of an object of a given type is contained in a given
le package command. Used by WHEREI S and | NFI LECOVMS?. Value is FN, a
function of three arguments, cov , a le package command CAR of which is EQ
t0 COMVANDNANE , Nave , and TYPE . The interpretation of NavE is as follows:
if NAVE is NI L, FN should return a list of elements of type TYPE contained in
coMm . If NavE IS T, FN should return T if there are any elements of type TYPE in
coM . If NavE is an atom other than T or NI L, return T if Nave of type TYPE is
contained in com . Finally, if Nave s alist, return alist of those elements of type
TYPE contained in cov that are also contained in NAME .

Note that it is sucient for the CONTENTS function to simply return the list of
items of type TYPE in command coMm , i.e. it can in fact ignore the NAVE argument.
The NavE argument is supplied mainly for those situations where producing the

11.31

Functions for Manipulating File Command Lists

entire list of items involves signi cantly more computation or creates more storage
than simply determining whether a particular item (or any item) of type TYPE is
contained in the command.

If a CONTENTS property is specied and the corresponding function application
returns NI L and (CAR com) = TYPE , then the operation indicated by NAMVE s
performed (1) on the value of (CADDR com), if (CADR com) = *, otherwise (2)
on (CDR cov). In other words, by specifying a CONTENTS property that returns
NI L, eg. the function NI LL, the user speci es that a le package command of
name FQOO produces objects of le package type FOO and only objects of type FOO.

If the CONTENTS property is not provided, the command is simply expanded
according to its MACRO denition, and each command on the resulting command
list is then interrogated.

Note that if COMVANDNAVE isa le package command that is used frequently,
its expansion by the various parts of the system that need to interrogate les can
result in a large number of CONSes and garbage collections. By informing the
le package as to what this command actually does and does not produce via the
CONTENTS property, this expansion is avoided. For example, suppose the user
has a le package command called GRAMVARS which dumps various property lists
but no functions. Thus, the le package could ignore this command when seeking
information about FNS.

The function FI LEPKGCOM is used to dene new le package commands, or to change the attributes of
existing commands. Note that it is possible to redene the attributes of system le package commands,
such as FNS or PROPS, and to cause unpredictable results.

(FI LEPKGCOM COMVANDNANE PROP; VAL { PRCP VAL) [NoSpread Function]
Nospread function for dening new le package commands, or changing attributes
of existing le package commands. PROP; isone of of the property names described
above; VAL, is the value to be given that property of the le package command
COVIVANDNANE . Returns COVVANDNANVE

(FI LEPKGCOM COVIVANDNANVE PROP) returns the value of the property PROP,
without changing it.

(FI LEPKGTYPE COMVANDNAME returns an aist of al of the dened properties
of COVMANDNAME , using the property names as keys.

11.8 FUNCTIONS FOR MANIPULATING FILE COMMAND LISTS

The following functions may be used to manipulate lecoms. Note that the argument covs does not have
to correspond to the lecoms for some le. For example, covs can be the list of commands generated
as aresult of expanding a user dened le package command.

(I NFI LECOVE? NAME TYPE COMB _) [Function]
covs is a list of le package commands, or a variable whose value is a list of
le package commands. TYPE isa le package type. | NFI LECOVS? returns T if

11.32

FILE PACKAGE

NAME of type TYPE is‘‘contained’’ in covs .
If NaME = NI L, | NFI LECOMS? returns a list of al elements of type TYPE .

If Nave = T, | NFI LECOVS? returns T if there are any elements of type TYPE in
COMB .

(ADDTOFI LE Nave TYPE FILE _ _) [Function]
Adds Nnave of type TYPE to the le package commands for Fi LE. Uses ADDTOCOVS
and MAKENEWCOM. Returns FiI LE. ADDTOFI LE is undoable.

(DELFROVFI LES NAME TYPE FILES) [Function]
Deletes al instances of Nave of type TYPE from the lecoms for each of the les on
FILES. If FILES isanon-NI L litatom, (LI ST FILES) isused. FILES= NI L defaults
to FI LELST. Returns a list of les from which NaVE was actualy removed. Uses
DELFROMCOVS. DELFROWFI LES is undoable.

Note: Deleting a function will aso remove the function from any BLOCKS
declarations in the lecoms.

(ADDTOCOMS CcoMs NAME TYPE _) [Function]
Adds Nave as a TYPE to covs , a list of le package commands or a variable
whose value is a list of le package commands. Returns NI L if ADDTOCOMS was
unable to nd a command appropriate for adding NaVE to covs . ADDTOCOMS is
undoable.

Note that the exact algorithm for adding commands depends the particular
command itself. See discussion of the ADD property, in the description of
FI LEPKGCOM, page 11.32.

Note: ADDTOCOVE will not attempt to add an item to any command which is
inside of a DECLARE: unless the user speci ed a speci ¢ name via the LI STNAMVE
or NEAR option of ADDTOFI LES?.

(DELFROMCOMS covMs NAME TYPE) [Function]
Deletes NaVvE as a TYPE from covs . Returns NI L if DELFROMCOVS was unable
to modify covs to delete Nave . DELFROMCOMS is undoable.

(MAKENEWCOM NAME TYPE _ _) [Function]
Returns a le package command for dumping Nave of type TYPE . Uses the
procedure described in the discussion of NEWCOM, page 11.20.

(MOVETOFI LE TOFILE NAME TYPE FROWILE) [Function]
Moves the denition of NaVE asa TYPE from FROWILE to TOFILE by modifying
the le commands in the appropriate way (with DELFROVFI LES and ADDTOFI LE).

Note that if FROWILE is speci ed, the denition will be retrieved from that le,
even if there is another denition currently in the user’'s environment.

(FI LECOVSLST FILE TYPE _) [Function]
Returns a list of al objects of type TYPE in FILE.

TYPE can also be the name of a le package command. For example,

11.33

Symbolic File Format

(FI LECOVELST FILE ' BLOCKS) will return the list of al BLOCKS declaration in
FI LE. FI LECOVELST knows about expanding user dened le package commands.

(FI LEFNSLST FI LE) [Function]
Same as (FI LECOVELST FILE ' FNS) .

(FI LECOVS FILE TYPE) [Function]
Returns (PACK* FILE (OR TYPE ' COMB)). Note that (FI LECOMS ' FOO)
returns the litatom FOOCOMS, not the value of FOOCOVS.

(SMASHFI LECOVS FI LE) [Function]
Maps down (FI LECOVELST FILE ' FI LEVARS) and setsto NOBI ND al levars (see
page 11.30), i.e. any variable used in a command of the form (cowanp — *
VAR ABLE) . Also sets (FI LECOVS FiLE) to NOBI ND. Returns Fi LE.

119 SYMBOLIC FILE FORMAT

The le package manipulates symbolic les in a particular format. This format is dened so that the
information in the le is easily readable when the le islisted, as well as being easily manipulated by the
le package functions. In general, there is no reason for the user to manualy change the contents of a
symbolic le. However, in order to alow users to extend the le package, this section describes some of
the functions used to write symbolic les, and other matters related to their format.

(PRETTYDEF PRTTYFNS PRTTYFILE PRTTYCOMS REPRINTFNS SOUR CEFILE CHANGES)
[Function]
Writes a symbolic le in PRETTYPRI NT format for loading, using FI LERDTBL as
its readtable. PRETTYDEF returns the name of the symbolic le that was created.

PRETTYDEF operates under a RESETLST (see page 9.19), so if an error occurs,
or a control- D is typed, all les that PRETTYDEF has opened will be closed, the
(partially complete) le being written will be deleted, and any undoable operations
executed will be undone. 8

PRTTYFNS isan optional list of function names. It isequivalent to including (FNS
* PRTTYFNS) in the le package commands in PRTTYCOMS . PRTTYFNS IS an
anachronism from when PRETTYDEF did not use alist of le package commands,
and should be specied as NI L.

PRTTYFILE is the name of the le on which the output is to be written. If
PRTTYFILE = NI L, the primary output le isused. If PRTTYFILE isatomic the le
is opened if not already open, and it becomes the primary output le. PRTTYFILE
is closed at end of PRETTYDEF, and the primary output le is restored. Finally,
if PRTTYFILE isalist, CAR of PRTTYFILE is assumed to be the le name, and is
opened if not already open. In this case, the le isleft open at end of PRETTYDEF.

8Since PRETTYDEF operates under a RESETLST, any RESETSAVESs executed in the le package commands
will aso be protected. For example, if one of the le package commands executes a (RESETSAVE
(RADI X -8)), the RADI X will atomatically be restored.

11.34

(PRINTENS x _)

FILE PACKAGE

PRTTYCOVS is a list of le package commands interpreted as described on page
11.21. If PRTTYCOVS isaomic, itstop level value isused and an RPAQQ is written
which will set that atom to the list of commands when the le issubsequently |oaded.
A PRETTYCOWPRI NT expression (see below) will also be written which informs
the user of the named atom or list of commands when the le is subsequently
loaded. ©

REPRI NTFNS and SOUR CEFILE are for use in conjunction with remaking a le
(see page 11.10). REPRINTFNS can be a list of functions to be prettyprinted, or
EXPRS, meaning prettyprint all functions with EXPR denitions, or ALL meaning
prettyprint al functions either dened as EXPRs, or with EXPR properties. Note that
doing a remake with REPRINTFNS = NI L makes sense if there have been changes
in the le, but not to any of the functions, e.g., changes to variables or property
lists. SOUR CEFILE is the name of the le from which to copy the denitions
for those functions that are not going to be prettyprinted, i.e., those not speci ed
by REPRINTFNS . SOUR CEFILE = T means to use most recent version (i.e.,, highest
number) of PRTTYFILE , the second argument to PRETTYDEF. If SOUR CEFILE
cannot be found, PRETTYDEF prints the message "FILE NOT FOUND, SO IT
WLL BE WRI TTEN ANEW , and proceeds as it does when REPRI NTFNS and
SOUR CEFILE are both NI L.

PRETTYDEF cals PRETTYPRI NT with its second argument PRETTYDEFL G= T, SO
whenever PRETTYPRI NT starts a new function, it prints (on the terminal) the
name of that function if more than 30 seconds (real time) have elapsed since the
last time it printed the name of a function.

Note that normally if PRETTYPRI NT is given a litatom which is not dened as
a function but is known to be on one of the les noticed by the le package,
PRETTYPRI NT will load in the denition (using LOADFNS) and print it. This is
not done when PRETTYPRI NT is caled from PRETTYDEF.

[Function]
x isalist of functions. PRI NTFNS prettyprints a DEFI NEQ epression that de nes
the functions to the primary output le using the primary readtable. Used by
PRETTYDEF to implement the FNS le package command.

(PRI NTDATE FILE CHANGES) [Function]

(FI LECREATED x)

Prints the FI LECREATED expression at beginning of PRETTYDEF les. CHANGES
used by the le package.

[NLambda NoSpread Function]
Prints a message (using LI SPXPRI NT) followed by the time and date the le
was made, which is (CAR x). The message is the value of PRETTYHEADER,
initiadly " FI LE CREATED'. If PRETTYHEADER= NI L, nothing is printed. (CDR
X) contains information about the le, e.g., full name, address of le map, list of
changed items, etc. FI LECREATED aso stores the time and date the le was made

9In addition, if any of the functions in the le are Nlambdas, PRETTYDEF will automatically print
a DECLARE: expression suitable for informing the compiler about these functions, in case the user
recompiles the le without having rst loaded the nlambda functions. See page 12.6.

11.35

Copyright Notices

on the property list of the le under the property FI LEDATES and performs other
initilization for the le package.

(PRETTYCOWMPRI NT X) [NLambda Function]
Prints x (unevaluated) using LI SPXPRI NT, unless PRETTYHEADER= NI L.

PRETTYHEADER [Variable]
Vaue isthe message printed by FI LECREATED. PRETTYHEADER isinitialy " FI LE
CREATED" . If PRETTYHEADER= NI L, neither FI LECREATED nor PRETTYCOVPRI NT
will print anything. Thus, setting PRETTYHEADER to NI L will result in ‘‘silent
loads’. PRETTYHEADER isreset to NI L during greeting (page 14.5).

(FI LECHANGES FILE TYPE) [Function]
Returns a list of the changed objects of le package type TYyPE from the
FI LECREATED expression of FILE. If TYPE = NI L, returns an alist of al of the
changes, with the le package types as the CARs of the elements..

(FI LEDATE FILE _) [Function]
Returns the le date contained in the FI LECREATED expression of FILE.

11.9.1 Copyright Notices

The system has a facility for automatically printing a copyright notice near the front of les, right after
the FI LECREATED expression, specifying the years it was edited and the copyright owner. The format
of the copyright notice is:

(* Copyright (c) 1981 by Foo Bars Corporation)

Once a le has a copyright notice then every version will have a new copyright notice inserted into the
le without user intervention. (The copyright information necessary to keep the copyright up to date is
stored at the end of the le).

Any year the le has been edited is considered a ‘‘copyright year’” and therefore kept with the copyright
information. For example, if a le has been edited in 1981, 1982, and 1984, then the copyright notice
would look like:

(* Copyright (c) 1981, 1982,1984 by Foo Bars Corporation)

When a le ismade, if it has no copyright information, the system will ask the user to specify the copyright
owner (if COPYRI GHTFLG= T). The user may specify one of the names from COPYRI GHTOMNERS, or
give one of the following responses:

(1) Type a left-square- bracket. The system will then prompt for an arbitrary string which will be used as
the owner- string

(2) Type a right- square- bracket, which speci es that the user really does not want a copyright notice.
(3) Type ‘“‘NONE’" which speci es that this le should never have a copyright notice.

For example, if COPYRIGHTOWNERS has the value

11.36

FILE PACKAGE

((BBN "Bolt Beranek and Newman Inc.")
(XEROX " Xer ox Corporation"))

then for anew le FQO the following interaction will take place:

Do you want to Copyright FOO? Yes

Copyri ght owner: (user typed ?)

one of:

BBN - Bolt Beranek and Newman | nc.

XEROX - Xerox Corporation

NONE - no copyright ever for this file

[- new copyright owner -- type one line of text
] - no copyright notice for this file now

Copyri ght owner: BBN

Then ‘‘Foo Bars Corporation’” in the above copyright notice example would have been ‘‘Bolt Beranek and
Newman Inc.”’

The following variables control the operation of the copyright facility:

COPYRI GHTFLG [Variable]
If COPYRI GHTFLG= NI L (default), the system will preserve old copyright infor-
mation, but will not ask the user about copyrighting new les.

If COPYRI GHTFLG= T, then when a le ismade, if it has no copyright information,
the system will ask the user to specify the copyright owner.

If COPYRI GHTFLG= NEVER, the system will neither prompt for new copyright
information nor preserve old copyright information.

COPYRI GHTOANERS [Variable]
COPYRI GHTOMNERS is alist of entries of the form (KEY OWNERSTRING), where
KEY isused as aresponse to ASKUSER and OWNERSTRING is a string which isthe
full identi cation of the owner.

DEFAULTCOPYRI GHTOANER [Variable]
If the user does not respond in DW MAAI T seconds to the copyright query, the
value of DEFAULTCOPYRI GHTOANER is used.

11.9.2 Functions Used Within Source Files

The following functions are normally only used within symbolic les, to set variable values, property
values, etc. Most of these have special behavior depending on le package variables.

(RPAQ VAR VAL UE) [NLambda Function]
An nlambda function like SETQ that sets the top level binding of varR (unevaluated)
to VAL UE.

(RPAQQ VAR VAL UE) [NLambda Function]

An nlambda function like SETQQ that sets the top level binding of vAR

11.37

File Maps

(unevaluated) to VAL UE (unevauated).

(RPAQ? VAR VAL UE) [NLambda Function]
Similar to RPAQ, except that it does nothing if VAR aready has a top level value
other than NOBI ND. Returns VAL UE if VAR is reset, otherwise NI L.

RPAQ, RPAQQ, and RPAQ? generate errors if X is not a litatom. All are aected by the vaue of DFNFLG
(page 5.9). If DFNFLG= ALLPROP (and the value of vAR is other than NOBI ND), instead of setting X, the
corresponding value is stored on the property list of vAR under the property VALUE. All are undoable.

(ADDTOVAR VAR X X5 XN) [NLambda NoSpread Function]
Each X; that isnot a member of the value of VAR isadded to it, i.e. after ADDTOVAR
completes, the value of var will be (UNION (LIST Xx; X, XN) VAR).

ADDTOVAR is used by PRETTYDEF for implementing the ADDVARS command.
It performs some le package related operations, i.e. ‘‘notices’ that VAR has been
changed. Returns the atom vArR (not the vaue of vAR).

(PUTPROPS ATM PROP; VAL ; PRCP | VAL) [NLambda NoSpread Function]
Nlambda nospread version of PUTPROP (none of the arguments are evaluated). For
i=1 N, puts property PROP;, value VAL;, on the property list of ATM. Performs
some le package related operations, i.e., ‘‘notices’ that the corresponding properties
have been changed.

(SAVEPUT ATM PROP VAL) [Function]
Same as PUTPROP, but marks the corresponding property value as having been
changed (used by the le package).

11.9.3 File Maps

A le map is a data structure which contains a symbolic 'map’ of the contents of a le. Currently, this
consists of the begin and end byte address (see GETFI LEPTR, page 6.9) for each DEFI NEQ expression in
the le, the begin and end address for each function denition within the DEFI NEQ, and the begin and
end address for each compiled function.

MAKEFI LE, PRETTYDEF, LOADFNS, RECOVPI LE, and numerous other system functions depend heavily
on the le map for ecient operation. For example, the le map enables LOADFNS to load selected
function denitions simply by setting the le pointer to the corresponding address using SETFI LEPTR,
and then performing a single READ. Similarly, the le map is heavily used by the ‘‘remake’’ option of
MAKEFI LE (page 11.10): those function denitions that have been changed since the previous version
are prettyprinted; the rest are simply copied from the old le to the new one, resulting in a considerable
speedup.

Whenever a le is written by MAKEFI LE, a le map for the new le is built. Building the map in this
case essentially comes for free, since it requires only reading the current le pointer before and after each
denition is written or copied. However, building the map does require that PRETTYPRI NT know that
it is printing a DEFI NEQ expression. For this reason, the user should never print a DEFI NEQ expression
onto a le himsealf, but should instead aways use the FNS le package command (page 11.22).

The le map is stored on the property list of the root name of the le, under the property FI LEMAP. In
addition, MAKEFI LE writes the le map on the le itself. For cosmetic reasons, the le map is written
as the last expression in the le. However, the address of the le map in the le is (over)written into the

11.38

FILE PACKAGE

FI LECREATED expression that appears at the beginning of the le so that the le map can be rapidly
accessed without having to scan the entire le. In most cases, LOAD and LOADFNS do not have to build
the le map at al, since a le map will usually appear in the corresponding le, unless the le was written
with BU LDVMAPFLG= NI L, or was written outside of Interlisp.

Currently, le maps for compiled les are not written onto the les themselves. However, LOAD and
LQADFNS will build maps for a compiled le when it isloaded, and store it on the property FI LEMAP.
Similary, LOADFNS will obtain and use the le map for a compiled le, when available.

The use and creation of le maps is controlled by the following variables:

BUI LDVAPFLG [Variable]
Whenever a le isread by LOAD or LOADFNS, or written by MAKEFI LE, a le map
is automatically built unless BUI LDMAPFLG= NI L. (BUI LDVAPFLG is initialy T.)

While building the map will not help the rst reference to a le, it will help in
future references. For example, if the user performs (LOADFROM ' FOO) where
FOO does not contain a le map, the LOADFROM will be (dlightly) slower than if
FOO did contain a le map, but subsequent calls to LOADFNS for this version of
FOO will be able to use the map that was built as the result of the LOADFROM,
since it will be stored on FOO's FI LEMAP property.

USEMAPFLG [Variable]
If USEMAPFLG= T (the initial setting), the functions that use le maps will rst
check the FI LEMAP property to see if a le map for this le was previously
obtained or built. If not, the rst expression on the le is checked to seeif it isa
FI LECREATED expression that also contains the address of a le map. If the le
map is not on the FI LEMAP property or in the le, a le map will be built (unless
BU LDVAPFLG= NI L).

If USEMAPFLG= NI L, the FI LEMAP property and the le will not be checked for
the le map. This alows the user to recover in those cases where the le and its
map for some reason do not agree. For example, if the user uses a text editor
to change a symbolic le that contains a map (not recommended), inserting or
deleting just one character will throw that map o. The functions which use le
maps contain various integrity checks to enable them to detect that something is
wrong, and to generate the error FI LEMAP DOES NOT AGREE W TH CONTENTS
OF FILE. In such cases, the user can set USEMAPFLG to NI L, causing the map
contained in the le to be ignored, and then reexecute the operation.

11.39

File Maps

11.40

