
CHAPTER 5

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

The Interlisp programming system is designed to help the user de�ne and debug functions. Developing
an applications program in Interlisp involves de�ning a number of functions in terms of the system
primitives and other user- de�ned functions. Once de�ned, the user’s functions may be referenced exactly
like Interlisp primitive functions, so the programming process can be viewed as extending the Interlisp
language to include the required functionality.

The user de�nes a function with a list expressions known as an . An speci�es if the function
has a �xed or variable number of arguments, whether these arguments are evaluated or not, the function
argument names, and a series of forms which de�ne the behavior of the function. For example:

A function de�ned with this would have two evaluated arguments, and , and it would execute
and when evaluated. Other types of s are described below.

A function is de�ned by putting an in the function de�nition cell of a litatom. There are a number
of functions for accessing and setting function de�nition cells, but one usually de�nes a function with

(page 5.9). For example:

The expression above will de�ne the function to have the de�nition
. After being de�ned, this function may be evaluated just like any system function:

All function de�nition cells do not contain s. The compiler (page 12.1) translates de�nitions
into compiled code objects, which execute much faster. In Interlisp- 10, many primitive system functions
are de�ned with machine code objects known as s. Interlisp provides a number of ‘‘function type
functions’’ which determine how a given function is de�ned (/compiled code/), the number
and names of function arguments, etc. See page 5.6.

Usually, functions are evaluated automatically when they appear within another function or when typed
into Interlisp. However, sometimes it is useful to envoke the Interlisp interpreter explicitly to apply a
given ‘‘functional argument’’ to some data. There are a number of functions which will apply a given
function repeatedly. For example, will apply a function (or an) to all of the elements of
a list, and return the values returned by the function:

5.1

EXPR EXPR

(LAMBDA (X Y) (PRINT X) (PRINT Y))

EXPR X Y
(PRINT X) (PRINT Y) EXPR

EXPR

DEFINEQ

_ (DEFINEQ (FOO (LAMBDA (X Y) (PRINT X) (PRINT Y))
(FOO)

FOO EXPR (LAMBDA (X Y) (PRINT
X) (PRINT Y))

_ (FOO 3 (IPLUS 3 4))
3
7
7
_

EXPR EXPR

SUBR
EXPR SUBR

MAPCAR EXPR

_ (MAPCAR ’(1 2 3 4 5) ’(LAMBDA (X) (ITIMES X X))

Function Types

When using functional arguments, there are a number of problems which can arise, related with accessing
free variables from within a function argument. Many times these problems can be solved using the
function to create a object (see page 5.15).

The macro facility provides another way of specifying the behavior of a function (see page 5.17). Macros
are very useful when developing code which should run very quickly, which should be compiled di�erently
than it is interpreted, or which should run di�erently in di�erent implementations of Interlisp.

5.1 FUNCTION TYPES

Interlisp functions are de�ned using list expressions called s. An is a list of the form
��� . determines whether the arguments to

this function will be evaluated or not, determines the number and names of arguments, and
��� are a series of forms to be evaluated after the arguments are bound to the local

variables in .

If is the litatom , then the arguments to the function are evaluated. If
is the litatom , then the arguments to the function are not evaluated. Functions which

evaluate or don’t evaluate their arguments are therefore known as ‘‘lambda’’ or ‘‘nlambda’’ functions,
respectively.

If is or a list of litatoms, this indicates a function with a �xed number of arguments. Each
litatom is the name of an argument for the function de�ned by this expression. The process of binding
these litatoms to the individual arguments is called ‘‘spreading’’ the arguments, and the function is called
a ‘‘spread’’ function. If the argument list is any litatom other than , this indicates a function with a
variable number of arguments, known as a ‘‘nospread’’ function.

If is anything other than a litatom or a list of litatoms, such as ��� ,
attempting to use this will generate an error. In addition, if or is used
as an argument name, the error is generated.

These two parameters (lambda/nlambda and spread/nospread) may be speci�ed independently, so there
are four main function types, known as lambda- spread, nlambda- spread, lambda- nospread, and nlambda-
nospread functions. Each one has a di�erent form, and is used for a di�erent purpose. These four
function types are described more fully below.

Note: The Lambdatran lispusers package provides facilities for creating new function types which
evaluate/spread their arguments in di�erent ways than those provided by Interlisp. See page 23.16.

5.1.1 Lambda-Spread Functions

Lambda- spread functions take a �xed number of evaluated arguments. This is the most common function
type. A lambda- spread has the form:

��� ���

5.2

(1 4 9 16 25)

FUNCTION FUNARG

EXPR EXPR
()

LAMBDA
NLAMBDA

NIL

NIL

(LAMBDA "FOO")
EXPR ARG NOT LITATOM NIL T

ATTEMPT TO BIND NIL OR T

EXPR

(LAMBDA ())

LAMBD A-W ORD AR G-LIST FORM 1 FORM N LAMBD A-W ORD

AR G-LIST

FORM 1 FORM N
AR G-LIST

LAMBD A-W ORD LAMBD A-

W ORD

AR G-LIST

AR G-LIST

AR G 1 AR G M FORM 1 FORM N

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

The argument list ��� is a list of litatoms that gives the number and names of the formal
arguments to the function. If the argument list is or , this indicates that the function takes no
arguments. When a lambda- spread function is applied to some arguments, the arguments are evaluated,
and bound to the local variables ��� . Then, ��� are evaluated in order, and
the value of the function is the value of .

In the above example, the function de�ned by is
applied to the arguments and , these arguments are evaluated (giving 99 and 7), the local
variable is bound to 99 and to 7, is evaluated, printing 99, is evaluated,
printing 7, and 7 (the of) is returned as the value of the function.

A standard feature of the Interlisp system is that no error occurs if a spread function is called with too
many or too few arguments. If a function is called with too many arguments, the extra arguments are
evaluated but ignored. If a function is called with too few arguments, the unsupplied ones will be delivered
as . In fact, a spread function cannot distinguish between being given as an argument, and not
being given that argument, e.g., and are the same for spread functions. If it
is necessary to distinguish between these two cases, use an nlambda function and explicitly evaluate the
arguments with the function (page 5.11).

5.1.2 Nlambda-Spread Functions

Nlambda- spread functions take a �xed number of unevaluated arguments. An nlambda- spread has
the form:

��� ���

Nlambda- spread functions are evaluated similarly to lambda- spread functions, except that the arguments
are not evaluated before being bound to the variables ��� .

In the above example, the function de�ned by is
applied to the arguments and , these arguments are bound unevaluated to and ,

is evaluated, printing , is evaluated, printing , and the list
is returned as the value of the function.

Note: Functions can be de�ned so that all of their arguments are evaluated (lambda functions) or none

5.3

()
() NIL

_ (DEFINEQ (FOO (LAMBDA (X Y) (PRINT X) (PRINT Y))))
(FOO)
_ (FOO 99 (PLUS 3 4))
99
7
7
_

FOO (LAMBDA (X Y) (PRINT X) (PRINT Y))
99 (PLUS 3 4)

X Y (PRINT X) (PRINT Y)
value (PRINT Y)

NIL NIL
(FOO) (FOO NIL) exactly

EVAL

EXPR

(NLAMBDA ())

_ (DEFINEQ (FOO (NLAMBDA (X Y) (PRINT X) (PRINT Y))))
(FOO)
_ (FOO 99 (PLUS 3 4))
99
(PLUS 3 4)
(PLUS 3 4)
_

FOO (NLAMBDA (X Y) (PRINT X) (PRINT Y))
99 (PLUS 3 4) X Y

(PRINT X) 99 (PRINT Y) (PLUS 3 4)
(PLUS 3 4)

AR G 1 AR G M

AR G 1 AR G M FORM 1 FORM N
FORM N

AR G 1 AR G M FORM 1 FORM N

AR G 1 AR G M

Lambda-Nospread Functions

are evaluated (nlambda functions). If it is desirable to write a function which only evaluates of its
arguments (e.g.), the function should be de�ned as an nlambda, with some arguments explicitly
evaluated using the function (page 5.11). If this is done, the user should put the litatom on
the property list of the function under the property . This informs various system packages such as
DWIM, CLISP, and Masterscope that this function in fact evaluate its arguments, even though it is
an nlambda.

5.1.3 Lambda-Nospread Functions

Lambda- nospread functions take a variable number of evaluated arguments. A lambda- nospread
has the form:

���

may be any litatom, except and . When a lambda- nospread function is applied to some
arguments, each of these arguments is evaluated and the values stored on the pushdown list. is
then bound to the of arguments which have been evaluated. For example, if is de�ned by

��� , when is evaluated, , , and are evaluated and is bound to 3.
should be reset.

The following functions are used for accessing the arguments of lambda- nospread functions:

[NLambda Function]
Returns the th argument for the lambda- nospread function whose argument list
is . is the of the atomic argument list to a lambda- nospread function,
and is not evaluated; is the number of the desired argument, and is evaluated.
The value of is unde�ned for less than or equal to 0 or greater than the

of .

[NLambda Function]
Sets the th argument for the lambda- nospread function whose argument list is

to . is not evaluated; and are evaluated. should be between 1
and the value of .

In the example below, the function is de�ned to print all of the evaluated arguments it is given, and
return (the value of the statement).

5.4

some
SETQ

EVAL EVAL
INFO

does

EXPR

(LAMBDA)

NIL T

number FOO
(LAMBDA X) (FOO A B C) A B C X

never

(ARG)

name

ARG
value

(SETARG)

FOO
NIL for

_ (DEFINEQ (FOO
(LAMBDA X

(for ARGNUM from 1 to X do (PRINT (ARG X ARGNUM))))))
(FOO)
_ (FOO 99 (PLUS 3 4))
99
7
NIL
_ (FOO 99 (PLUS 3 4) (TIMES 3 4))
99
7
12
NIL

VAR FORM 1 FORM N

VAR

VAR

VAR

VAR M

M

VAR VAR

M

M

VAR

VAR M X

M

VAR X VAR M X M

VAR

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

5.1.4 Nlambda-Nospread Functions

Nlambda- nospread functions take a variable number of unevaluated arguments. An nlambda- nospread
has the form:

���

may be any litatom, except and . Though similar in form to lambda- nospread s, an
nlambda- nospread is evaluated quite di�erently. When an nlambda- nospread function is applied to some
arguments, is simply bound to a list of the unevaluated arguments. The user may pick apart this list,
and evaluate di�erent arguments.

In the example below, is de�ned to print (and then return) the reverse of list of arguments it is given
(unevaluated):

5.1.5 Compiled Functions

Functions de�ned by s can be compiled by the Interlisp compiler (page 12.1), which produces
compiled code objects, which execute more quickly than the corresponding code. Functions de�ned
by compiled code objects may have the same four types as s (lambda/nolambda, spread/nospread).
Functions created by the compiler are referred to as compiled functions.

5.1.6 SUBRs

In Interlisp- 10, basic built- in functions such as , , and are handcoded in machine language.
These functions are known as ‘‘ s.’’ Functions de�ned as s can be lambda/nolambda or
spread/nospread, the same four function types as functions.

s are called in a special way, so their de�nitions are stored di�erently than those of compiled
or interpreted functions. of a returns a dotted pair, of which is an encoding of the

and number of arguments of the , and of which is the address of the �rst instruction.
Note that each of a subr performs a . Similarly, of a de�nition of the form

, where and are in the appropriate ranges, stores the de�nition as a .

5.5

_

EXPR

(NLAMBDA)

NIL T EXPR

FOO

_ (DEFINEQ (FOO (NLAMBDA X (REVERSE X))))
(FOO)
_ (FOO 99 (PLUS 3 4))
((PLUS 3 4) 99)
((PLUS 3 4) 99)
_ (FOO 99 (PLUS 3 4) (TIMES 3 4))
((TIMES 3 4) (PLUS 3 4) 99)
((TIMES 3 4) (PLUS 3 4) 99)
_

EXPR
EXPR

EXPR

CONS CAR COND
SUBR SUBR

EXPR

SUBR
GETD SUBR CAR

ARGTYPE SUBR CDR
GETD CONS PUTD (.

) SUBR

VAR FORM 1 FORM N

VAR

VAR

NUMBER

ADDRESS NUMBER ADDRESS

Function Type Functions

5.1.7 Function Type Functions

There are a variety of functions used for examining the type, argument list, etc. of functions. These
functions may be given either a litatom, in which case they obtain the function de�nition from the
litatom’s de�nition cell, or a function de�nition itself.

[Function]
Returns if is not a function de�nition or the name of a de�ned function.
Otherwise returns one of the following twelve litatoms:

Expressions Compiled Built- In

Lambda- Spread

Nlambda- Spread

Lambda- Nospread

Nlambda- Nospread

The types in the �rst column are all de�ned by s. The types in the second
column are compiled versions of the types in the �rst column, as indicated by the
pre�x . In the third column are the parallel types for built- in subroutines (only
in Interlisp- 10). Functions of types in the �rst two rows have a �xed number of
arguments, i.e., are spread functions. Functions in the third and fourth rows have
an inde�nite number of arguments, as indicated by the su�x . The pre�x
indicates unevaluated arguments. Thus, for example, a is a compiled
nospread- nlambda function.

returns the litatom if is a expression. See page 5.15.

[Function]
Returns if is either , , , or , i.e., �rst
column of s; otherwise. However, is also true if is
(has) a list de�nition that is not a , even if it does not begin with or

. In other words, is not quite as selective as .

[Function]
Returns if is either , , , or , i.e.,
second column of s; otherwise.

[Function]
Returns if is either , , , or , i.e., the
third column of s; otherwise.

[Function]
is the name of a function or its de�nition. returns 0, 1, 2, or 3, or

if is not a function. The interpretation of this value is:

0 lambda- spread functions (, ,)

5.6

(FNTYP)
NIL

FNTYP

EXPR CEXPR SUBR

FEXPR CFEXPR FSUBR

EXPR* CEXPR* SUBR*

FEXPR* CFEXPR* FSUBR*

EXPR

C

* F
CFEXPR*

FNTYP FUNARG FUNARG

(EXPRP)
T (FNTYP) EXPR FEXPR EXPR* FEXPR*

FNTYP NIL (EXPRP)
SUBR LAMBDA

NLAMBDA EXPRP FNTYP

(CCODEP)
T (FNTYP) CEXPR CFEXPR CEXPR* CFEXPR*

FNTYP NIL

(SUBRP)
T (FNTYP) SUBR FSUBR SUBR* FSUBR*

FNTYP NIL

(ARGTYPE)
ARGTYPE

NIL

EXPR CEXPR SUBR

FN

FN

FN

FN

FN

FN FN

FN

FN

FN

FN

FN

FN

FN

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

1 nlambda- spread functions (, ,)

2 lambda- nospread functions (, ,)

3 nlambda- nospread functions (, ,)

i.e., corresponds to the of ’s.

[Function]
Returns the number of arguments of , or if is not a function. If is
a nospread function, the value of is 1.

[Function]
Returns the ‘‘argument list’’ for . Note that the ‘‘argument list’’ is a litatom
for nospread functions. Since is a possible value for , an error is
generated, , if is not a function.

If is a compiled function, the argument list is constructed, i.e., each call to
requires making a new list. For s, whose de�nitions are lists

beginning with or , the argument list is simply of .
If has a list de�nition, and of the de�nition is not or ,

will check to see if of the de�nition is a member of
(page 15.12). If it is, presumes this is a function object the user is de�ning
via (page 15.10), and simply returns of the de�nition as
its argument list. Otherwise generates an error as described above.

(Interlisp- 10) If is a spread , the returns , ,
, etc. depending on the number of arguments; if a nospread , it returns

. This is merely a ‘‘feature’’ of ; s do not actually store the names
of their arguments(s) on the stack.

[Function]
A ‘‘smart’’ version of that tries various strategies to get the arglist of .

If is not de�ned as a function, attempts spelling correction
on by calling (page 15.19), passing to be used for the call to

. If unsuccessful, an error will be generated, .

If is known to the �le package (page 11.1) but not loaded in,
will obtain the arglist information from the �le.

In Interlisp- 10, if the help system is installed, may
use it to look up the arguments to in the Interlisp manual �les. Speci�cally,

will be used if = and is a nospread function, or
if is a spread , regardless of the value of . For all other
cases, and when is unde�ned or unsuccessful in �nding the arguments,

simply returns .

In order to avoid repeated calls to , and also to provide the user with an
override, stores the arguments returned from on the
property list of under the property and checks for this property
before calling . For spread functions, the argument list itself is stored.

5.7

FEXPR CFEXPR FSUBR

EXPR* CEXPR* SUBR*

FEXPR* CFEXPR* FSUBR*

ARGTYPE rows FNTYP

(NARGS)
NIL

NARGS

(ARGLIST)

NIL ARGLIST
ARGS NOT AVAILABLE

ARGLIST EXPR
LAMBDA NLAMBDA CADR GETD

CAR LAMBDA NLAMBDA
ARGLIST CAR LAMBDASPLST

ARGLIST
DWIMUSERFORMS CADR

ARGLIST

SUBR ARGLIST (U) (U V) (U V
W) SUBR
U ARGLIST SUBR

(SMARTARGLIST)
ARGLIST

SMARTARGLIST
FNCHECK

FIXSPELL NOT A FUNCTION

SMARTARGLIST

HELPSYS SMARTARGLIST

HELPSYS T
SUBR

HELPSYS
SMARTARGLIST (ARGLIST)

HELPSYS
SMARTARGLIST HELPSYS

ARGNAMES
HELPSYS

FN

FN FN FN

FN

FN

FN

FN

FN

FN

FN EXPLAINFL G TAIL

FN

FN

FN TAIL

FN

FN

FN

EXPLAINFL G FN

FN EXPLAINFL G

FN

FN

Function De�nition

For nospread, the form is where is the
value of when = , and the value when

= . For example, =
.

is used by (page 10.4) and (page 10.9) with = for
constructing equivalent de�nitions, and by the programmer’s assistant command (page 9.5), with

= .

5.2 FUNCTION DEFINITION

Function de�nitions are stored in a ‘‘function de�nition cell’’ associated with each litatom. This cell is
directly accessible via the two functions and , but it is usually easier to de�ne functions with

(page 5.9).

[Function]
Returns the function de�nition of . Returns if is not a litatom, or has
no de�nition.

of a compiled function constructs a pointer to the de�nition, with the result
that two successive calls do not produce results. or must be used
to compare compiled de�nitions.

(Interlisp- 10) of a performs a .

[Function]
Faster version of . Interpreted, generates an error,

, if is not a litatom.

is intended primarily to check whether a function a de�nition, rather
than to obtain the de�nition. Therefore, in Interlisp- 10, of a returns
just the address of the function de�nition, not the dotted pair returned by ,
thereby saving the .

[Function]
Puts into ’s function cell, and returns . Generates an error,

if is not a litatom. Generates an error, , if is a
string, number, or a litatom other than .

[NLambda Function]
Nlambda version of ; both arguments are unevaluated. Returns .

[NLambda Function]
If is not de�ned, same as . Otherwise, does nothing and returns .

[Function]
Moves the de�nition of to , i.e., rede�nes . If = , a
of the de�nition of is used. = is only meaningful for s,
although works for compiled functions and s as well. returns

5.8

(NIL .)
SMARTARGLIST T

NIL (GETPROP ’DEFINEQ ’ARGNAMES) (NIL
(X1 XI ... XN) . X)

SMARTARGLIST BREAK ADVISE NIL
EXPR ?=

T

PUTD GETD
DEFINEQ

(GETD)
NIL

GETD
EQ EQP EQUAL

GETD SUBR CONS

(FGETD)
GETD BAD ARGUMENT -

FGETD

FGETD has
FGETD SUBR

GETD
CONS

(PUTD)
ARG NOT

LITATOM, ILLEGAL ARG
NIL

(PUTDQ)
PUTD

(PUTDQ?)
PUTDQ NIL

(MOVD)
T COPY

T EXPR
MOVD SUBR MOVD

AR GLIST 1 AR GLIST 2 AR GLIST 1
EXPLAINFL G AR GLIST 2

EXPLAINFL G

EXPLAINFL G

EXPLAINFL G

FN

FN FN

FN

FN

FN DEF _

DEF FN DEF

FN DEF

FN DEF

FN

FN DEF

FN

FR OM TO COPYFL G

FR OM TO TO COPYFL G

FR OM COPYFL G

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

.

[Function]
If is not de�ned, same as . Otherwise, does
nothing and returns .

��� [NLambda NoSpread Function]
is the function normally used for de�ning functions. It takes an inde�nite

number of arguments which are not evaluated. Each must be a list de�ning one
function, of the form . For example:

The above expression will de�ne the function with the de�nition
. may also have the form

, in which case an appropriate Lambda will be constructed.
Therefore, the above expression is exactly the same as:

Note that this alternate form can only be used for Lambda functions. The �rst
form must be used to de�ne an Nlambda function.

returns a list of the names of the functions de�ned.

[Function]
Lambda- spread version of . Each element of the list is itself a list either
of the form or . will
generate an error, , on encountering an atom where
a de�ning list is expected.

Note: and will operate correctly if the function is already de�ned and ,
, or .

For expressions involving type- in only, if the time stamp facility is enabled (page 17.60), both
and will stamp the de�nition with the user’s initials and date.

[Variable]
is a global variable that e�ects the operation of (and ,

which calls). If = , an attempt to a function
will cause to print the message and to save the
old de�nition of using before rede�ning it, except if the old and
new de�nitions are the same (i.e.), the e�ect is simply a no-op. If

= , the function is simply rede�ned. If = or , the
new de�nition is stored on the property list under the property .
a�ects the operation of and (page 11.37). is initially .

is reset by (page 11.4) to enable various ways of handling the
de�ning of functions and setting of variables when loading a �le. For most
applications, the user will not reset directly.

[Function]
Saves the de�nition of on its property list under the property , ,

5.9

(MOVD?)
(MOVD)

NIL

(DEFINEQ)
DEFINEQ

()

(DEFINEQ (DOUBLE (LAMBDA (X) (IPLUS X X))))

DOUBLE EXPR
(LAMBDA (X) (IPLUS X X)) (.

) EXPR

(DEFINEQ (DOUBLE (X) (IPLUS X X)))

DEFINEQ

(DEFINE)
DEFINEQ

() (.) DEFINE
INCORRECT DEFINING FORM

DEFINE DEFINEQ BROKEN
ADVISED BROKEN-IN

DEFINE
DEFINEQ

DFNFLG
DFNFLG DEFINE DEFINEQ

DEFINE DFNFLG NIL rede�ne
DEFINE (REDEFINED)

SAVEDEF
EQUAL

DFNFLG T DFNFLG PROP ALLPROP
EXPR ALLPROP

RPAQQ RPAQ DFNFLG NIL

DFNFLG LOAD

DFNFLG

(SAVEDEF)
EXPR CODE

TO

FR OM TO COPYFL G

TO FR OM TO COPYFL G

X 1 X 2 X N

X i
NAME DEFINITION

X i NAME AR GS

DEF- BOD Y

X _

X

NAME DEFINITION NAME AR GS DEF- BOD Y

FN

FN

FN

FN

FN

Function Evaluation

or depending on its . Returns the property name used. If
is non- , but = , saves the de�nition on the

property name . This situation can arise when a function is rede�ned which
was originally de�ned with misspelled or omitted.

If is a list, operates on each function in the list, and returns a list of
the individual values.

[Function]
Restores the de�nition of from its property list under property (see

above). Returns . If nothing is saved under , and is de�ned,
returns , otherwise generates an error, .

If is not given, i.e., , looks under the properties ,
, and , in that order. The value of is the property name,

or if nothing is found and is a function, the value is ;
otherwise generates an error, .

If = , the current de�nition of , if any, is saved using .
Thus one can use to switch back and forth between two de�nitions
of the same function, keeping one on its property list and the other in the function
de�nition cell.

If is a list, operates on each function of the list, and its value is a
list of the individual values.

Both and are rede�ned in more general terms (see page 11.18) to operate on
typed de�nitions of which a function de�nition is but one example. Thus, their actual argument lists in
Interlisp are di�erent than given here. However, when their extra arguments are defaulted to , they
operate as described above.

5.3 FUNCTION EVALUATION

Usually, function application is done automatically by the Interlisp interpreter. If a form is typed into
Interlisp whose is a function, this function is applied to the arguments in the of the form. These
arguments are evaluated or not, and bound to the function parameters, as determined by the type of the
function, and the body of the function is evaluated. This sequence is repeated as each form in the body
of the function is evaluated.

There are some situations where it is necessary to explicitly call the evaluator, and Interlisp supplies a
number of functions that will do this. These functions take ‘‘functional arguments’’, which may either be
litatoms with function de�nitions, or forms such as ��� , or expressions
(see page 5.15).

The following functions are useful when one wants to supply a functional argument which will always
return , , or 0.

[NoSpread Function]
Returns .

5.10

SUBR FNTYP (GETD
) NIL (FNTYP) NIL SAVEDEF

LIST
LAMBDA

SAVEDEF

(UNSAVEDEF)

SAVEDEF
(NOT FOUND) NOT A FUNCTION

NIL UNSAVEDEF EXPR
CODE SUBR UNSAVEDEF

(NOTHING FOUND)
NOT A FUNCTION

DFNFLG NIL SAVEDEF
UNSAVEDEF

UNSAVEDEF

SAVEDEF UNSAVEDEF

NIL

CAR CDR

EXPR (LAMBDA (X)) FUNARG

NIL T

(NILL)
NIL

FN FN

FN

FN PR OP

FN PR OP

PR OP PR OP FN

PR OP

PR OP

FN

FN

FN

1

1

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

[NoSpread Function]
Returns .

[NoSpread Function]
Returns 0.

Note: When using expressions as functional arguments, they should be enclosed within the function
(page 5.15) rather than , so that they will be compiled as separate functions.

can also be used to create expressions, which can be used to solve some problems with referencing
free variables, or to create functional arguments which carry ‘‘state’’ along with them.

[Function]
evaluates the expression and returns this value, i.e., provides a way

of calling the Interlisp interpreter. Note that is itself a lambda function, so
argument is �rst evaluated, e.g.,

Interlisp functions can either evaluate or not evaluate these arguments. For those cases where it is
desirable to specify arguments unevaluated, one may use the function:

[NLambda NoSpread Function]
This is a function that prevents its arguments from being evaluated. Its value is
itself, e.g., is .

Note: Since giving more than one argument is almost always a parentheses
error, and one that would otherwise go undetected, itself generates an error
in this case, .

[Function]
Value is an expression which when evaluated yields . If is or a number,
this is itself. Otherwise, . For example, if the
value of is and the value of is , then =

.

[Function]
Speci�es how a datum of a particular type is to be evaluated. Intended primarily
for user de�ned data types, but works for all data types except lists, literal atoms,
and numbers. is a type name. is a function object, i.e. name of a
function or a lambda expression. Whenever the interpreter encounters a datum of
the indicated type, is applied to the datum and its value returned as the result
of the evaluation. returns the previous evaling function for this type. If

= , returns the current evaling function without changing it. If

(page 12.9) permits the user to specify how a datum of a particular type is to be
compiled.

5.11

(TRUE)
T

(ZERO)

EXPR
FUNCTION QUOTE FUNCTION

FUNARG

(EVAL)
EVAL EVAL

EVAL
its

_(SETQ FOO ’(ADD1 3))
(ADD1 3)
_(EVAL FOO)
4
_(EVAL ’FOO)
(ADD1 3)

QUOTE

(QUOTE)

(QUOTE FOO) FOO

QUOTE
QUOTE

PARENTHESIS ERROR

(KWOTE)
NIL

(LIST (QUOTE QUOTE))
X A Y B (KWOTE (CONS X Y)) (QUOTE

(A . B))

(DEFEVAL)

DEFEVAL
NIL DEFEVAL

COMPILETYPELST

X _

X

X

X

X

X X

X X

TYPE FN

TYPE FN

FN

FN

Function Evaluation

= , the evaling function is set back to the system default (which for all data
types except lists is to return the datum itself).

[Function]
Applies the function to the arguments in the list , and returns its value.

is a lambda function, so its arguments are evaluated, but the individual
elements of are not evaluated. Therefore, lambda and nlambda functions
are treated the same by ; lambda functions take their arguments from

without evaluating them. Note that may still explicitly evaluate one
or more of its arguments itself, as does. Thus,

will set to 4, whereas
will set to the expression .

can be used for manipulating s, for example:

��� [NoSpread Function]
Nospread version of , equivalent to ���

.

[Function]
Simulates a-list evaluation as in LISP 1.5. is a form, is a list of the form:

���

The variable names and values in are ‘‘spread’’ on the stack, and then is
evaluated. Therefore, any variables appearing free in , that also appears as
of an element of will be given the value in the of that element.

The functions below are used to evaluate a form or apply a function repeatedly. , , and
evaluate a given form a speci�ed number of times. , , , etc. apply a given function
repeatedly to di�erent elements of a list, possibly constructing another list. These functions allow e�cient
iterative computations, but they are di�cult to use. For programming iterative computations, it is usually
better to use the CLISP Iterative Statement facility (page 4.5), which provides a more general and complete
facility for expressing iterative statements. Whenever possible, CLISP translates iterative statements into
expressions using the functions below, so there is no e�ciency loss.

[Function]
Evaluates the expression , times. Returns the value of the last evaluation.
If � 0, is not evaluated, and returns .

Before each evaluation, the local variable is bound to the number of
evaluations yet to take place. This variable can be referenced within . For
example, will print the numbers 10, 9, ��� 1, and
return 1.

��� [NLambda NoSpread Function]
Nlambda- nospread version of : is evaluated, are not. Returns the
value of the last evaluation of .

5.12

T

(APPLY)

APPLY

APPLY

SETQ (APPLY ’SETQ ’(FOO
(ADD1 3))) FOO (APPLY ’SET ’(FOO (ADD1 3)))

FOO (ADD1 3)

APPLY EXPR

_(APPLY ’(LAMBDA (X Y) (ITIMES X Y))
’(3 4))

12

(APPLY*)
APPLY (APPLY (LIST

))

(EVALA)

((.) (.) (.))

CAR
CDR

RPT RPTQ FRPTQ
MAP MAPCAR MAPLIST

(RPT)

RPT NIL

RPTN

(RPT 10 ’(PRINT RPTN))

(RPTQ)
RPT

FN

FN AR GLIST _

FN AR GLIST

AR GLIST

AR GLIST FN

FN AR G 1 AR G 2 AR G N
FN AR G 1 AR G 2

AR G N

X A

X A

NAME 1 VAL 1 NAME 2 VAL 2 NAME N VAL N

A X

X

A

N FORM

FORM N

N FORM

FORM

N FORM 1 FORM 2 FORM N
N FORM i

FORM N

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

��� [NLambda NoSpread Function]
Faster version of . Does not bind .

[Function]
If is , applies the function to successive tails of the
list . That is, �rst it computes , and then

, etc., until becomes a non- list. If is provided,
is used instead of for the next call for , e.g., if
were , alternate elements of the list would be skipped. returns

.

[Function]
Identical to , except that is computed at each
iteration instead of , i.e., works on elements, on
tails. returns .

[Function]
Successively computes the same values that would compute, and returns a list
consisting of those values.

[Function]
Computes the same values that would compute, and returns a list consisting
of those values, e.g., is a list of s for each element
on .

[Function]
Computes the same values as and but s these values to form
a list which it returns.

[Function]
Computes the same values as and , but s the values to form
a list which it returns.

Note that creates a new list which is a mapping of the old list in that each element of the new
list is the result of applying a function to the corresponding element on the original list. is used
when there are a number of elements (including none) to be inserted at each iteration. Examples:

This returns a list consisting of with all s removed.

This returns a linear list consisting of all the lists on .

Since uses to string the corresponding lists together, in this example the original list will
be altered to be . If this is an undesirable side e�ect, the
functional argument to should return instead a top level copy of the lists, i.e.

.

5.13

(FRPTQ)
RPTQ RPTN

(MAP)
NIL MAP

() ((CDR
)) (
) (CDR)

CDDR MAP
NIL

(MAPC)
MAP ((CAR))

() MAPC MAP
MAPC NIL

(MAPLIST)
MAP

(MAPCAR)
MAPC

(MAPCAR X ’FNTYP) FNTYP
X

(MAPCON)
MAP MAPLIST NCONC

(MAPCONC)
MAPC MAPCAR NCONC

MAPCAR
MAPCONC

variable

(MAPCONC ’(A B C NIL D NIL)
’(LAMBDA (Y) (if (NULL Y) then NIL else (LIST Y))))

==> (A B C D)

MAPCONC NIL

(MAPCONC ’((A B) C (D E F) (G) H I)
’(LAMBDA (Y) (if (LISTP Y) then Y else NIL)))

==> (A B D E F G)

MAPCONC

MAPCONC NCONC
((A B D E F G) C (D E F G) (G) H I)

MAPCONC (LAMBDA (Y)
(if (LISTP Y) then (APPEND Y) else NIL)))

N FORM 1 FORM 2 FORM N

MAPX MAPFN1 MAPFN2

MAPFN2 MAPFN1

MAPX MAPFN1 MAPX MAPFN1

MAPX MAPX MAPFN2 MAPFN2

MAPX MAPX MAPFN1

MAPFN2

MAPX MAPFN1 MAPFN2

MAPFN1 MAPX

MAPFN1 MAPX

MAPX MAPFN1 MAPFN2

MAPX MAPFN1 MAPFN2

MAPX MAPFN1 MAPFN2

MAPX MAPFN1 MAPFN2

MAPX

MAPX

Function Evaluation

[Function]
Identical to except is a function of two arguments, and

is computed at each iteration. Terminates when
either or is a non- list.

is still a function of one argument, and is applied twice on each iteration;
gives the new , the new . is

used if is not supplied, i.e., is .

[Function]
Identical to except is a function of two arguments and

is used to assemble the new list. Terminates when
either or is a non- list.

[Function]
Applies to elements of and returns a list of those elements for
which this application is non- , e.g.,

= .

plays the same role as with , , et al.

[Function]
Returns if the result of applying to each element in is true,
otherwise . For example, .

operates by evaluating . The
second argument is passed to so that it can look at the next element
on if necessary. If yields , immediately returns

. Otherwise, computes , or if
= , and uses this as the ‘‘new’’ , and the process continues.

For example, is true if every element of is
atomic.

[Function]
Returns the tail of beginning with the �rst element that satis�es ,
i.e., for which applied to that element is true. Value is if no such
element exists. is equivalent to

. operates analogously to . At each stage,
is computed, and if this is not , is returned as

the value of . Otherwise, is computed, or
if = , and used for the next .

[Function]

[Function]

[Function]
A general printing function. It cycles through applying (or if
not given) to each element of . Between each application, performs

5.14

(MAP2C)
MAPC (

(CAR) (CAR))

() () CDR
NIL

(MAP2CAR)
MAPCAR (

(CAR) (CAR))

(SUBSET)

NIL

(SUBSET ’(A B 3 C 4) ’NUMBERP) (3 4)

MAP MAPC

(EVERY)
T

NIL (EVERY ’(X Y Z) ’ATOM) => T

EVERY ((CAR))

NIL EVERY
NIL EVERY () (CDR)

NIL
(EVERY ’ATOM ’CDDR) other

(SOME)

NIL
(SOME X ’(LAMBDA (Z) (EQUAL Z Y)))

(MEMBER Y X) SOME EVERY (
(CAR)) NIL

SOME () (CDR)
NIL

(NOTANY)
(NOT (SOME))

(NOTEVERY)
(NOT (EVERY))

(MAPRINT)
PRIN1

MAPRINT

MAPX MAPY MAPFN1 MAPFN2

MAPFN1 MAPFN1

MAPX MAPY

MAPX MAPY

MAPFN2

MAPFN2 MAPX MAPX MAPFN2 MAPY MAPY

MAPFN2

MAPX MAPY MAPFN1 MAPFN2

MAPFN1 MAPFN1

MAPX MAPY

MAPX MAPY

MAPX MAPFN1 MAPFN2

MAPFN1 MAPX

MAPFN2

EVER YX EVER YFN1 EVER YFN2

EVER YFN1 EVER YX

EVER YFN1 EVER YX EVER YX

EVER YFN1

EVER YX EVER YFN1

EVER YFN2 EVER YX EVER YX

EVER YFN2 EVER YX

X X

SOMEX SOMEFN1 SOMEFN2

SOMEX SOMEFN1

SOMEFN1

SOMEFN1

SOMEX SOMEX SOMEX

SOMEFN2 SOMEX SOMEX

SOMEFN2 SOMEX

SOMEX SOMEFN1 SOMEFN2

SOMEX SOMEFN1 SOMEFN2

EVER YX EVER YFN1 EVER YFN2

EVER YX EVER YFN1 EVER YFN2

LST FILE LEFT RIGHT SEP PFN LISPXPRINTFL G

LST PFN PFN

LST

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

of (or ‘‘ ’’ if =). If is given, it is printed (using)
initially; if is given it is printed (using) at the end.

For example, is equivalent to for lists. To
print a list with commas between each element and a �nal ‘‘.’’ one could use

.

If = , (page 8.20) is used instead of .

5.4 FUNCTIONAL ARGUMENTS

When using functional arguments, the following function is very useful:

[NLambda Function]
If = , is the same as , except that it is treated di�erently
when compiled. Consider the function de�nition:

���

calls the function with the value of and the expression
.

If is run interpreted, it doesn’t make any di�erence whether or
is used. However, when is compiled, if is used the compiler

will de�ne and compile the as an auxiliary function (See page 12.8). The
compiled will run considerably faster, which can make a big di�erence if it
is applied repeatedly.

Note: Compiling will create an auxiliary function if it is a functional
argument to a function that compiles open, such as most of the mapping functions
(, , etc.).

If is not , it can be a list of variables that are (presumably) used freely by
. In this case, the value of is an expression of the form

, where is a stack pointer to a frame that contains the variable bindings
for those variables on . can also be a stack pointer itself, in which case
the value of is . Finally, can be an atom, in
which case it is evaluated, and the value interpreted as described above.

As explained above, one of the possible values that can return is the form
, where is a function and is a stack pointer. is not a function itself. Like

and , it has meaning and is specially recognized by Interlisp only in the context of applying a
function to arguments. In other words, the expression is used exactly like a function.
When a expression is applied or is of a form being ’ed, the or takes
place in the access environment speci�ed by (see page 7.1). Consider the following example:

5.15

PRIN1 NIL PRIN1
PRIN1

(MAPRINT X NIL ’%(’%)) PRIN1

(MAPRINT X T NIL ’%. ’%,)

T LISPXPRIN1 PRIN1

(FUNCTION)
NIL FUNCTION QUOTE

(DEFINEQ (FOO
(FIE LST (FUNCTION (LAMBDA (Z) (ITIMES Z Z))))

))

FOO FIE LST EXPR
(LAMBDA (Z) (LIST (CAR Z)))

FOO FUNCTION
QUOTE FOO FUNCTION

EXPR
EXPR

FUNCTION not

MAPCAR MAPLIST

NIL
FUNCTION (FUNARG

)

FUNCTION (FUNARG)

FUNCTION (FUNARG
) FUNARG LAMBDA
NLAMBDA

(FUNARG)
FUNARG CAR EVAL APPLY EVAL

_ (DEFINEQ (DO.TWICE (FN VAL)

SEP SEP LEFT

RIGHT

LISPXPRINTFL G

FN ENV

ENV

ENV

FN FN

POS POS

ENV ENV

FN ENV ENV

FN

POS FN POS

FN POS

ENV

Functional Arguments

is de�ned to apply a function to a value , and apply again to the value returned;
in other words it calculates . Given the expression

, which doubles a given value, it correctly calculates = = 20. However,
when given , which should add the value of the global variable to
the argument , it does something unexpected, returning 20 again, rather than 5+1+1 = 7. The problem
is that when the is evaluated, it is evaluated in the context of , where is bound
to the second argument of , namely 5. In this case, one solution is to use the argument
to to construct a expression which contains the value of at the time that the

is executed. Now, when is evaluated, it is evaluated in
an environment where the global value of is accessable. Admittedly, this is a somewhat contrived
example (it would be easy enough to change the argument names to so there would be no
con�ict), but this situation arises occasionally with large systems of programs that construct functions, and
pass them around.

Note: System functions with functional arguments (, , etc.) are compiled so that their
arguments are local, and not accessable (see page 12.4). This reduces problems with con�icts with free
variables used in functional arguments.

expressions can be used for more than just circumventing the clashing of variables. For example,
a expression can be returned as the value of a computation, and then used ‘‘higher up’’.
Furthermore, if the function in a expression any of the variables contained in the frame,
only the frame would be changed. For example, consider the following function:

The function returns a that increments and returns the previous value of the
counter . However, this is done within the environment of the call to where
was executed, which the expression ‘‘carries around’’ with it, even after has
�nished executing. Note that each call to creates a expression with a new,
independent environment, so that multiple counters can be generated and used:

5.16

(APPLY* FN (APPLY* FN VAL))))
(DO.TWICE)
_ (DO.TWICE [FUNCTION (LAMBDA (X) (IPLUS X X))]

5)
20
_ (SETQ VAL 1)
1
_ (DO.TWICE [FUNCTION (LAMBDA (X) (IPLUS X VAL))]

5)
20
_ (DO.TWICE [FUNCTION (LAMBDA (X) (IPLUS X VAL)) (VAL)]

5)
7

DO.TWICE FN VAL FN
(FN (FN VAL)) EXPR (LAMBDA (X) (IPLUS X

X)) (FN (FN 5)) (FN 10)
(LAMBDA (X) (IPLUS X VAL)) VAL

X
EXPR DO.TWICE VAL

DO.TWICE
FUNCTION FUNARG VAL

FUNCTION (LAMBDA (X) (IPLUS X VAL))
VAL

DO.TWICE

APPLY MAPCAR

FUNARG
FUNARG

FUNARG sets

(MAKECOUNTER (CNT)
(FUNCTION [LAMBDA NIL

(PROG1 CNT (SETQ CNT (ADD1 CNT]
(CNT)))

MAKECOUNTER FUNARG
CNT MAKECOUNTER FUNCTION

FUNARG MAKECOUNTER
MAKECOUNTER FUNARG

_ (SETQ C1 (MAKECOUNTER 1))
(FUNARG (LAMBDA NIL (PROG1 CNT (SETQ CNT (ADD1 CNT)))) #1,13724/*FUNARG)
_ (APPLY C1)
1

ENV

2

2

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

By creating a expression with , a program can create a function object which has
updateable binding(s) associated with the object which last calls to it, but are only accessible
through that instance of the function. For example, using the device, a program could
maintain two di�erent instances of the same random number generator in di�erent states, and run them
independently.

Note: In Interlisp- 10, environment switching is expensive because it is a shallow-binding system (see page
7.1), so this may restrict the applications of expressions.

5.5 MACROS

Macros provide an alternative way of specifying the action of a function. Whereas function de�nitions are
evaluated with a ‘‘function call’’, which involves binding variables and other housekeeping tasks, macros
are evaluated by one Interlisp form into another, which is then evaluated.

A litatom may have both a function de�nition and a macro de�nition. When a form is evaluated by
the interpreter, if the has a function de�nition, it is used (with a function call), otherwise if it has
a macro de�nition, then that is used. However, when a form is compiled, the is checked for a
macro de�nition �rst, and only if there isn’t one is the function de�nition compiled. This allows functions
that behave di�erently when compiled and interpreted. For example, it is possible to de�ne a function
that, when interpreted, has a function de�nition that is slow and has a lot of error checks, for use when
debugging a system. This function could also have a macro de�nition that de�nes a fast version of the
function, which is used when the debugged system is compiled.

Macro de�nitions are represented by lists that are stored on the property list of a litatom. Macros are
often used for functions that should be compiled di�erently in di�erent Interlisp implementations, and
the exact property name a macro de�nition is stored under determines whether it should be used in a
particular implementation. The global variable contains a list of all possible macro property
names which should be saved by the �le package command. Typical macro property names
are for Interlisp- 10, for Interlisp- D, and for ‘‘implementation independent’’
macros. The global variable is a list of macro property names. Interlisp
determines whether a litatom has a macro de�nition by checking these property names, in order, and

also for Interlisp- VAX, and for Interlisp- Jerico.

5.17

_ (APPLY C1)
2
_ (SETQ C2 (MAKECOUNTER 17))
(FUNARG (LAMBDA NIL (PROG1 CNT (SETQ CNT (ADD1 CNT)))) #1,13736/*FUNARG)
_ (APPLY C2)
17
_ (APPLY C2)
18
_ (APPLY C1)
3
_ (APPLY C2)
19

FUNARG FUNCTION
between

FUNARG

FUNARG

translating

CAR
CAR

MACROPROPS
MACROS

10MACRO DMACRO MACRO
COMPILERMACROPROPS

VAXMACRO JMACRO

Macros

using the �rst non- property value as the macro de�nition. In Interlisp- D this list contains and
in that order so that s will override the implementation- independent properties.

In general, use a property for macros that are to be used only in Interlisp- D, use for
macros that are to be used only in Interlisp- 10, and use for macros that are to a�ect both systems.

Macro de�nitions can take the following forms:

��� or ���
A function can be made to compile open by giving it a macro de�nition of the form
��� or ��� , e.g.,

for . The e�ect is as if the macro de�nition were written in place of the function
wherever it appears in a function being compiled, i.e., it compiles as a lambda or nlambda
expression. This saves the time necessary to call the function at the price of more compiled code
generated in-line.

or
‘‘Substitution’’ macro. Each argument in the form being evaluated or compiled is substituted for
the corresponding atom in , and the result of the substitution is used instead of the form. For
example, if the macro de�nition of is , then, is
compiled as .

Note that could be de�ned by the substitution macro
. In this case, however, would compile as

and would be evaluated two times. (Code to evaluate would be generated
three times.)

This is a cross between substitution and macros. When the compiler processes an
, it attempts to substitute the actual arguments for the formals wherever this preserves

the frequency and order of evaluation that would have resulted from a expression, and
produces a binding only for those that require it.

When a macro de�nition is the atom , it means that the compiler should ignore the macro, and
compile the function de�nition; this is a simple way of turning o� other macros. For example,
the user may have a function that runs in both Interlisp- D and Interlisp- 10, but has a macro
de�nition that should only be used when compiling in Interlisp- 10. If the property has
the macro speci�cation, a of will cause it to be ignored by the Interlisp- D compiler.
Note that this would not be necessary if the macro were speci�ed by a instead
of a .

A simple way to tell the compiler to compile one function exactly as it would compile another.
For example, when compiling in Interlisp- D, s are treated as s. This is achieved
by having have a of .

5.18

NIL DMACRO
MACRO DMACRO MACRO

DMACRO 10MACRO
MACRO

(LAMBDA) (NLAMBDA)
(LAMBDA

) (NLAMBDA) (LAMBDA (X) (COND ((GREATERP X 0) X) (T (MINUS
X)))) ABS

(NIL) ()

ADD1 ((X) (IPLUS X 1)) (ADD1 (CAR Y))
(IPLUS (CAR Y) 1)

ABS ((X) (COND ((GREATERP X 0)
X) (T (MINUS X)))) (ABS (FOO X))

(COND ((GREATERP (FOO X) 0)
(FOO X))

(T (MINUS (FOO X))))

(FOO X) (FOO X)

(OPENLAMBDA)
LAMBDA

OPENLAMBDA
LAMBDA

LAMBDA

T
T

MACRO
DMACRO T

DMACRO 10MACRO
MACRO

(= .)

FRPLACA RPLACA
FRPLACA DMACRO (= . RPLACA)

()

EXPRESSION LIST EXPRESSION

LIST

AR GS BOD Y

OTHER- FUNCTION

LITATOM EXPRESSION

3

3

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

If a macro de�nition begins with a litatom other than those given above, this allows
of the Interlisp expression to be evaluated or compiled in place of the form. is bound
to the of the calling form, is evaluated, and the result of this evaluation is
evaluated or compiled in place of the form. For example, could be compiled using the
computed macro:

This would cause to compile as . Note
the recursion in the macro expansion.

If the result of the evaluation is the litatom , the macro is ignored and the
compilation of the expression proceeds as if there were no macro de�nition. If the litatom in
question is normally treated specially by the compiler (, , , , etc.), and also has
a macro, if the macro expansion returns , the litatom will still be treated specially.

In Interlisp- 10, if the result of the evaluation is the atom , no code will be
generated by the compiler. It is then assumed the evaluation was done for e�ect and the
necessary code, if any, has been added. This is a way of giving direct instructions to the compiler
if you understand it.

Note: It is often useful, when constructing complex macro expressions, to use the facility (see
page 6.39).

The following function is quite useful for debugging macro de�nitions:

[Function]
Takes a form whose has a macro de�nition and expands the form as it would
be compiled. The result is prettyprinted, unless = , in which case the
result is simply returned.

5.5.1 MACROTRAN

Interpreted macros are implemented by the function . When the interpreter encounters a
form of which is an unde�ned function, is called. If of the form has a macro
de�nition, the macro is expanded, and the result of this expansion is evaluated in place of the original
form. (page 16.19) is used to save the result of this expansion so that the expansion only has
to be done once. On subsequent occasions, the translation (expansion) is retrieved from
the same as for other CLISP constructs; never even has to be invoked.

Sometimes, macros contain calls to functions that assume that the macro is being compiled. The
variable is a list of functions that should be compiled to work correctly
(initially in Interlisp- D, in Interlisp- 10). is a list

In other words, if you have a macro on , then typing will work, but will
not work.

5.19

computation

CDR
LIST

[X (LIST ’CONS
(CAR X)
(AND (CDR X)

(CONS ’LIST
(CDR X]

(LIST X Y Z) (CONS X (CONS Y (CONS Z NIL)))

IGNOREMACRO

CAR CDR COND AND
IGNOREMACRO

INSTRUCTIONS

BQUOTE

(EXPANDMACRO)
CAR

T

MACROTRAN
CAR MACROTRAN CAR

CLISPTRAN
CLISPARRAY

MACROTRAN

SHOULDCOMPILEMACROATOMS
(OPCODES) (ASSEMBLE LOC) UNSAFEMACROATOMS

FOO (FOO ’A ’B) FOO(A B)

LITATOM

EXPRESSION

FORM QUIETFL G _

QUIETFL G

MACROTRAN

of functions which e�ect the operation of the compiler, so such macro forms shouldn’t even be expanded
except by the compiler (initially in Interlisp- D, in Interlisp- 10). If

encounters a macro containing calls to functions on these two lists, instead of the macro
being expanded, a dummy function is created with the form as its de�nition, and the dummy function is
then compiled. A form consisting of a call to this dummy function with no arguments is then evaluated
in place of the original form, and is used to save the translation as described above. There
are some situations for which this procedure is not amenable, e.g. a inside the form which is being
compiled will cause the compiler to give an error message because it is not compiling
the entire function, just a part of it.

Note: is an entry on (page 15.10) and thus will not work if DWIM is not
enabled.

5.20

NIL (C2EXP STORIN CEXP COMP)
MACROTRAN

CLISPTRAN
GO

UNDEFINED TAG

MACROTRAN DWIMUSERFORMS

