
CHAPTER 21

ETHERNET

Interlisp was �rst developed on large timesharing machines which provided each user with access to
large amounts of disk storage, printers, mail systems, etc. Interlisp- D, however, was designed to run on
smaller, single-user machines without these facilities. In order to provide Interlisp- D users with access to
all of these services, Interlisp- D supports the Ethernet communications network, which allows multiple
Interlisp- D machines to share common printers, �le servers, etc.

Interlisp- D supports the Experimental Ethernet (3 Megabits per second) and the Ethernet (10 Megabits
per second) local communications networks. These networks may be used for accessing �le servers, remote
printers, mail servers, or other machines. This chapter is divided into three sections: First, an overview of
the various Ethernet and Experimental Ethernet protocols is presented. Then follow sections documenting
the functions used for implementing PUP and NS protocols at various levels.

21.1 ETHERNET PROTOCOLS

The members of the Xerox 1100 family (1100, 1108, 1132), Xerox �le servers and laser xerographic
printers, along with machines made by other manufacturers (most notably DEC) have the capability of
communicating over 3 Megabit per second Experimental Ethernets, 10 Megabit per second Ethernets and
telephone lines.

Xerox pioneered its work with Ethernet using a set of protocols known as PARC Universal Packet (PUP)
computer communication protocols. The architecture has evolved into the newer Network Systems (NS)
protocols developed for use in Xerox o�ce products. All of the members of the Xerox 1100 family can
use both NS and PUP protocols.

21.1.1 Protocol Layering

The communication protocols used by the members of the Xerox 1100 family are implemented in a
‘‘layered’’ fashion, which means that di�erent levels of communication are implemented as di�erent
protocol layers. Protocol Layering allows implementations of speci�c layers to be changed without
requiring changes to any other layers. The layering also allows use of the same higher level software with
di�erent lower levels of protocols. Protocol designers can implement new types of protocols at the correct
protocol level for their speci�c application in a layered system.

At the bottom level, level zero, there is a need to physically transmit data from one point to another.
This level is highly dependent on the particular transmission medium involved. There are many di�erent
level zero protocols, and some of them may contain several internal levels. At level one, there is a need
to decide where the data should go. This level is concerned with how to address a source and destination,
and how to choose the correct transmission medium to use in order to route the packet towards its
destination. A level one packet is transmitted by it in the level zero packet appropriate for

21.1

encapsulating

Level Zero Protocols

the transmission medium selected. For each independent communication protocol system, a single level
one protocol is de�ned. The rule for delivery of a level one packet is that the communication system
must only make a best e�ort to deliver the packet. There is no guarantee that the packet is delivered,
that the packet is not duplicated and delivered twice, or that the packets will be delivered in the same
order as they were sent.

The addresses used in level zero and level one packets are not necessarily the same. Level zero packets are
speci�c to a particular transmission medium. For example, the destination address of a level zero packet
transmitted on one of the two kinds of Ethernet is the Ethernet address (host number) of a machine on
the particular network. Level one packets specify addresses meaningful to the particular class of protocols
being implemented. For the PUP and NS protocols, the destination address comprises a network number,
host number (not necessarily the same as the level zero host number), and a socket number. The socket
number is a higher- level protocol concept, used to multiplex packets arriving at a single machine destined
for separate logical processes on the machine.

Protocols in level two add order and reliability to the level one facilities. They suppress duplicate packets,
and are responsible for retransmission of packets for which acknowledgement has not been received. The
protocol layers above level two add conventions for data structuring, and implement application speci�c
protocols.

21.1.2 Level Zero Protocols

Level zero protocols are used to physically connect computers. The addresses used in level zero protocols
are protocol speci�c. The Ethernet and Experimental Ethernet level zero protocols use host numbers,
but level zero phone line protocols contain less addressing information since there are only two hosts
connected to the telephone line, one at each end. As noted above, a level zero protocol does not include
network numbers.

The 3MB Experimental Ethernet [1] was developed at PARC. Each Experimental Ethernet packet includes
a source and destination host address of eight bits. The Experimental Ethernet standard is used by any
machine attached to an Experimental Ethernet.

The 10MB Ethernet [2] was jointly developed and standardized by Digital, Intel, and Xerox. Each Ethernet
level zero packet includes a source and destination host address that is 48 bits long. The Ethernet standard
is used by any machine attached to an Ethernet.

Both of the level one protocols described later (PUP and NS) can be transported on any of the level zero
protocols described above.

The Ethernet and Experimental Ethernet protocols are broadcast mediums. Data packets can be sent
on these networks to every host attached to the net. A packet directed at every host on a network is a
broadcast packet.

Other Level 0 protocols in use in industry include X.25, broadband networks, and Chaosnet. In
addition, by using the notion of ‘‘mutual encapsulation’’, it is possible to treat a higher- level protocol (e.g.
ARPANET) as if it were a Level Zero Protocol.

21.2

ETHERNET

21.1.3 Level One Protocols

Two Level One Protocols are used in the Xerox 1100 Family, the PUP and the NS protocols. With
the proper software, computers attached to Ethernets or Experimental Ethernets can send PUPs and
NS packets to other computers on the same network, and to computers attached to other Ethernets or
Experimental Ethernets.

The PUP protocols [3] were designed by Xerox computer scientists at the Palo Alto Research Center. The
destination and source addresses in a PUP packet are speci�ed using an 8-bit network number, an 8-bit
host number, and a 32-bit socket number. The 8-bit network number allows an absolute maximum of
256 PUP networks in an internet. The 8-bit host number is network relative. That is, there may be many
host number ‘‘1’’s,but only one per network. 8 bits for the host number limits the number of hosts per
network to 256. The socket number is used for further levels of addressing within a speci�c machine.

The Network Systems (NS) protocols [4, 5] were developed by the Xerox O�ce Products Division. Each
NS packet address includes a 32-bit network number, a 48-bit host number, and a 16-bit socket number.
The NS host and network numbers are unique through all space and time. A speci�c NS host number is
generally assigned to a machine when it is manufactured, and is never changed. In the same fashion, all
networks (including those sold by Xerox and those used within Xerox) use the same network numbering
space� there is only one network ‘‘74’’.

21.1.4 Higher Level Protocols

The higher level PUP protocols include the File Transfer Protocol (FTP) and the Leaf Protocol used
to send and retrieve �les from Interim File Servers (IFSs) and DEC File Servers, the Telnet protocol
implemented by ‘‘Chat’’ windows and servers, and the EFTP protocol used to communicate with the laser
xerographic printers developed by PARC (‘‘Dovers’’ and ‘‘Penguins’’).

The higher level NS protocols include the Filing Protocol which allows workstations to access the product
File Services sold by Xerox, the Clearinghouse Protocol used to access product Clearinghouse Services,
and the TelePress Protocol used to communicate with the Xerox model 8044 Print Server.

21.1.5 Connecting Networks: Routers and Gateways

When a level one packet is sent from one machine to another, and the two machines are not on the same
network, the packet must be passed between networks. Computers that are connected to two or more
level zero mediums are used for this function. In the PUP world, these machines have been historically
called ‘‘Gateways.’’ In the NS world these machines are called Internetwork Routers (Routers), and the
function is packaged and sold by Xerox as the Internetwork Routing Service (IRS).

Every host that uses the PUP protocols requires a PUP address; NS Hosts require NS addresses. An
address consists of two parts: the host number and the network number. A computer learns its network
number by communicating with a Router or Gateway that is attached to the same network. Host number
determination is dependent on the hardware and the type of host number, PUP or NS.

21.3

Addressing Con�icts with Level Zero Mediums

21.1.6 Addressing Con�icts with Level Zero Mediums

For convenience in the respective protocols, a level one PUP (8-bit) host number is the same as a level zero
Experimental Ethernet host number; i.e., when a PUP level one packet is transported by an Experimental
Ethernet to another host on the same network, the level zero packet speci�es the same host number as
the level one packet. Similarly, a level one NS (48-bit) host number is the same as a level zero Ethernet
host number.

When a PUP level one packet is transported by an Ethernet, or an NS level one packet is sent on
Experimental Ethernet, the level one host number cannot be used as the level zero address, but rather
some means must be provided to determine the correct level zero address. Xerox solved this problem
by specifying another level-one protocol called to allow hosts on an Experimental Ethernet to
announce their NS host numbers, or hosts on an Ethernet to announce their PUP host numbers. Thus,
both the Ethernet and Experimental Ethernet Level Zero Protocols totally support both families of higher
level protocols.

21.1.7 References

[1] Robert M. Metcalfe and David R. Boggs, Ethernet: Distributed Packet Switching for Local Computer
Networks, , vol. 19 no. 7, July 1976.

[2] Digital Equipment Corporation, Intel Corporation, Xerox Corporation. The Ethernet, A Local Area
Network: Data Link Layer and Physical Layer Speci�cations. September 30, 1980, Version 1.0

[3] D. R. Boggs, J. F. Shoch, E. A. Taft, and R. M. Metcalfe, PUP: An Internetwork Architecture,
, com-28:4, April 1980.

[4] Xerox Corporation. Courier: The Remote Procedure Call Protocol. Xerox System Integration Standard.
Stamford, Connecticut, December, 1981, XSIS 038112.

[5] Xerox Corporation. Internet Transport Protocols. Xerox System Integration Standard. Stamford,
Connecticut, December, 1981, XSIS 028112.

21.2 HIGHER-LEVEL PUP PROTOCOL FUNCTIONS

This section describes some of the functions provided in Interlisp- D to perform protocols above Level
One. Level One functions are described in a later section, for the bene�t of those users who wish to
program new protocols.

The following functions provide assorted network services.

[Function]
Returns the number of the named host. The number is 16-bit quantity, the high
8 bits designating the net and the low 8 bits the host. If is , returns the
number of the local host.

21.4

translation

Communications of the ACM

IEEE
Transactions on Communications

(ETHERHOSTNUMBER)

NIL

NAME

NAME

ETHERNET

[Function]
Returns a port corresponding to . A ‘‘port’’ is a network address that represents
(potentially) one end of a network connection, and includes a socket number in
addition to the network and host numbers. Most network functions that take a
port as argument allow the socket to be zero, in which case a well-known socket is
supplied. A port is currently represented as a dotted pair .

may be a litatom, in which case its address is looked up, or a port, which is
just returned directly. If is true, generates an error ‘‘host not found’’ if
the address lookup fails, else it returns . If is true, returns a list of
alternative port speci�cations for , rather than a single port (this is provided
because it is possible for a single name in the name database to have multiple
addresses). If is and has more than one address, the currently
nearest one is returned. caches its results.

The of a port is usually zero, unless the name explicitly contains a
socket designation, a number or symbolic name following a in , e.g.,

. A port can also be speci�ed in the form ‘‘net#host#socket’’,
where each of net, host and socket is a sequence of octal digits; the socket, but not
the terminating #, can be omitted, in which case the socket is zero.

[Function]
Looks up the name of the host at address . may be a numeric address, a

pair returned from , or a numeric designation
in string form, ‘‘net#host#socket’’, as described above. In the �rst case, the net
defaults to the local net. If is , returns the name of the local host. If there
is no name for the given port, but is true, the function returns
a string specifying the port in octal digits, in the form , with

omitted if it is zero. Most functions that take a port argument will also
accept ports in this octal format.

[Function]
Returns status of , the name of a Press Printer, in the form

. Returns if the printer does not respond in a
reasonable time, which can occur if the printer is very busy, or does not implement
the printer status service. is interpreted as follows:

1 Printer is not spooling (down for servicing)

2 Printer is idle

3 Printer is busy (printing or accepting a �le)

q [Function]
Transmits to using the protocol. The need not be open on
entry, but in any case is closed on exit. The principal use of the protocol
is for transmitting Press �les to a printer. If is non- , assumes
that is a printer and is a press �le, and takes additional action: it
performs a for and prints this information to the prompt
window; and it �lls in the ‘‘printed- by’’ �eld on the last page of the press �le with

, and the ‘‘copies’’ �eld with . For
printers capable of duplex printing, q may be 1 or 2, meaning print one- or

21.5

(ETHERPORT)

(.)

NIL

NIL
ETHERPORT

+
PHYLUM+LEAF

(ETHERHOSTNAME)

(.) ETHERPORT

NIL

" # # "

(PRINTERSTATUS)
(

. "readable string") NIL

(EFTP)
EFTP

EFTP
NIL

PRINTERSTATUS

USERNAME (OR (FIXP) 1)

NAME ERR ORFL G MUL TFL G

NAME

NETHOST SOCKET

NAME

ERR ORFL G

MUL TFL G

NAME

MUL TFL G NAME

SOCKET

NAME

POR T USE.OCT AL.DEF A UL T

POR T POR T

NETHOST SOCKET

POR T

USE.OCT AL.DEF AUL T

NET HOST SOCKET

SOCKET

PRINTERNAME

PRINTERNAME CODE

CODE

HOST FILE PRINTERFL G SIDES

FILE HOST FILE

PRINTERFL G

HOST FILE

HOST

PRINTERFL G

SIDES

Higher-level NS Protocol Functions

two-sided, respectively; means use the printer’s default. returns only
on success; if does not respond, it keeps trying.

21.3 HIGHER-LEVEL NS PROTOCOL FUNCTIONS

The following is a description of the Interlisp- D facilities for using Xerox SPP and Courier protocols and
the services based on them.

21.3.1 SPP Stream Interface

This section describes the stream interface to the Sequenced Packet Protocol.

[Function]
This function is used to open an SPP stream. If is speci�ed, an SPP connection
is initiated to with remote socket . If both and are
speci�ed, then the connection is probed for a response before returning the stream;

is returned if doesn’t respond. If is , a passive connection is
created which listens for an incoming connection to local socket . is
a mnemonic name for the connection process, mainly useful for debugging. The
function returns an SPP stream, for which the standard stream operations ,

, , and are de�ned. In particular, may be used
on SPP streams.

The SPP stream that is returned is open for both input and output, since SPP
connections are bidirectional. However, the underlying stream I/O functions use
only a single bu�er. Some care must therefore be exercised to insure that any
bu�ered output data is forced out before any new data is read, and that all
data up to a message boundary has been read before any new data is written.
Functions described below are used for this purpose. While these restrictions may
seem severe, in practice most use of SPP streams is done by the Courier remote
procedure call facility, rather than directly by the programmer. Courier conforms
to the model of alternating exchanges of messages quite well.

[Variable]
Speci�es the time, in milliseconds, to wait before deciding that a host isn’t
responding.

[Function]
This function forces any bu�ered output data to be transmitted.

[Function]
This function forces out any bu�ered data and causes an End of Message indication
to be sent.

[Function]
This function closes an SPP stream using the reliable termination protocol. If

is not , the stream is closed even if there is an outstanding bulk data

21.6

NIL EFTP

(SPP.OPEN)

NIL NIL

BIN
BOUT CLOSEF EOFP COPYBYTES

SPP.USER.TIMEOUT

(SPP.FLUSH)

(SPP.SENDEOM)

(SPP.CLOSE)

NIL

HOST

HOST SOCKET PR OBEP NAME

HOST

HOST SOCKET HOST PR OBEP

HOST HOST

SOCKET NAME

STREAM

STREAM

STREAM ABOR T?

ABOR T?

ETHERNET

transfer in progress.

[Function]
This function gets or sets the current datastream type. If is speci�ed, all
subsequent packets that are sent will be of this datastream type, until the next call
to . Since this a�ects the current partially- �lled packet, the stream
should probably be �ushed (via) before this function is called. If

is not speci�ed, this function returns the datastream type of the current
packet being read.

[Function]
This function returns or depending on whether or not there is data to be
read without waiting.

[Function]
This function returns or depending on whether or not the connection has
been closed.

[Function]
This function returns or depending on whether or not an End of Message
indication has been reached. This will only be true after the last byte of data in
the message has been read.

21.3.2 Courier Remote Procedure Call Protocol

[Function]
This function opens a Courier connection to the speci�ed and returns an SPP
stream. If is a , string, or list representation of a Clearinghouse
name, should specify what type of server is, so that the name
may be looked up in the Clearinghouse database. Currently, must
be one of or . Normally, this function will retry the
connection times before generating an error. If
is speci�ed, will be returned if the connection fails. The Courier connection
will be given , if speci�ed.

��� [NLambda NoSpread Function]
This function is used to de�ne Courier programs. The syntax is

21.7

(SPP.DSTYPE)

SPP.DSTYPE
SPP.FLUSH

(SPP.READP)
T NIL

(SPP.EOFP)
T NIL

(SPP.EOMP)
T NIL

(COURIER.OPEN)

LITATOM

PRINTSERVER FILESERVER
\MAXETHERTRIES
NIL

(COURIERPROGRAM)

(COURIERPROGRAM name (programNumber versionNumber)
TYPES
((typeName typeDefinition)

...)
PROCEDURES
((procedureName ARGS (argType ...)

RESULTS (resultType ...)
ERRORS (errorName ...)
procedureNumber)

...)
ERRORS
((errorName ARGS (argType ...) errorNumber)

STREAM DSTYPE

DSTYPE

DSTYPE

STREAM

STREAM

STREAM

HOSTNAME SER VER TYPE NOERR ORFL G NAME

HOST

HOST

SER VER TYPE HOST

SER VER TYPE

NOERR ORFL G

NAME

NAME

Courier Template Language

Type de�nitions are written in the Courier template language, described below.
Courier types may either be type names that are de�ned in the current Courier
program, quali�ed names of the form ,
or explicit de�nitions in the template language.

21.3.2.1 Courier Template Language

This section describes how Courier types are described in Interlisp, and how corresponding values are
represented. (See also the Courier protocol de�nition.)

Prede�ned types:

is represented by and ; is represented by strings; , ,
, , and are represented by integers.

Constructed types:

Representation of constructed types in Lisp:

Objects of Courier type are represented by the
litatoms , , and .

Objects of Courier type are represented by lists of three integers, such as
.

Objects of Courier type are represented by arbitrary- length lists of and ,
such as .

Objects of Courier type

are represented by lists like .

Objects of Courier type

are rep resented by lists like or .

21.8

...))
)

(otherCourierProgram . typeName)

BOOLEAN T NIL STRING CARDINAL INTEGER
LONGCARDINAL LONGINTEGER UNSPECIFIED

(ENUMERATION (NAME VALUE) ... (NAME VALUE))
(ARRAY LENGTH TYPE)
(SEQUENCE TYPE)
(RECORD (NAME TYPE) ... (NAME TYPE))
(CHOICE (NAME VALUE TYPE) ... (NAME VALUE TYPE))

(ENUMERATION (UNKNOWN 0) (RED 1) (BLUE 2))
UNKNOWN RED BLUE

(ARRAY 3 INTEGER) (10 1
59)

(SEQUENCE BOOLEAN) T NIL
(NIL T T NIL T)

(RECORD (NETWORK LONGCARDINAL)
(HOST (ARRAY 3 CARDINAL))
(SOCKET CARDINAL))

((NETWORK 174) (HOST (100 24 363)) (SOCKET 20))

(CHOICE (STATUS 0 (ENUMERATION (BUSY 0) (COMPLETE 1)))
(MESSAGE 1 STRING))

(STATUS COMPLETE) (MESSAGE "Your request has completed.")

ETHERNET

���
[NoSpread Function]

This function calls the remote procedure of the Courier program
. is the SPP stream returned by . The arguments

should be Lisp values appropriate for the Courier types of the corresponding formal
parameters of the procedure (de�ned under the property for the procedure).
Returns results of the Courier types de�ned under the property. If there
is only a single result, it is returned, otherwise a list of results is returned. The

argument controls the treatment of remote errors. If
is , a Lisp error will be generated. If is , will be returned
as the result of the call. If is , the result of the call
will be a list consisting of the atom followed by the Courier name of the
error and any arguments.

Examples:

De�nes to be Courier program number 17, version number 1. The example de�nes
two types, and , and one procedure, , whose procedure number
is 3. The following code could be used to call the remote procedure on the host with
address .

in this example will return a value such as

21.9

(COURIER.CALL)

COURIER.OPEN

ARGS
RESULTS

NIL T NIL
RETURNERRORS

ERROR

(COURIERPROGRAM EXAMPLEPROGRAM (17 1)
TYPES
((PERSON.NAME (RECORD (FIRST.NAME STRING)

(MIDDLE (CHOICE
(NAME 0 STRING)
(INITIAL 1 STRING)))

(LAST.NAME STRING)))
(BIRTHDAY (RECORD (YEAR CARDINAL)

(MONTH STRING)
(DAY CARDINAL))))

PROCEDURES
((GETBIRTHDAY ARGS (PERSON.NAME)

RESULTS (BIRTHDAY)
3))

)

EXAMPLEPROGRAM
PERSON.NAME BIRTHDAY GETBIRTHDAY

GETBIRTHDAY
HOSTADDRESS

(SETQ STREAM (COURIER.OPEN HOSTADDRESS))
(COURIER.CALL STREAM

(QUOTE EXAMPLEPROGRAM)
(QUOTE GETBIRTHDAY)
(QUOTE ((FIRST.NAME "Eric")

(MIDDLE (INITIAL "C"))
(LAST.NAME "Cooper"))))

COURIER.CALL

((YEAR 1959) (MONTH "January") (DAY 10))

STREAM PR OGRAM PR OCEDURE AR G 1 AR G N NOERR ORFL G

PR OCEDURE

PR OGRAM STREAM

NOERR ORFL G NOERR ORFL G

NOERR ORFL G

NOERR ORFL G

Manipulating Courier Representations

21.3.2.2 Manipulating Courier Representations

Several Courier programs use values of type to handle user- de�ned or
otherwise extensible object types. Often it is necessary to convert between a list of 16 bit words (the
sequence of s) and a Courier value. The following function should be used for this
purpose.

[Function]
This function returns the Lisp representation of the Courier object of type
de�ned in the Courier program whose underlying Courier representation
is .

21.3.2.3 Using Bulk Data Transfer with Courier

Two Courier types are treated specially when they appear in the argument list of a procedure. They are
and . A Courier procedure may have at most one such sink or

source parameter. The result of a on such a procedure is an SPP stream, open for input
or output according to whether the bulk data paramter is a sink or a source. The client uses this stream
to receive or send the appropriate bulk data object. If the object consists of bytes, this may be done
with the usual stream I/O functions such as . If the data is a stream of Courier objects, the
following function should be used.

[Function]
is the bulk data stream returned from . is the type

of each Courier object in the stream. is the Courier program in which
is de�ned. A list of objects of Courier type will be returned.

The observant reader may wonder what happens if the Courier procedure returns one or more results, in
addition to taking a bulk data parameter. If a bulk data stream is returned to the caller, what happens
to the results? The answer is that the results are collected when the bulk data stream is closed, after the
client has transferred the bulk data. The disposition of these results depends on what actual parameter
is supplied for the formal bulk data parameter at the time of the call. If it is , the results, if any,
will be ignored. Otherwise, the value is assumed to be a function which to be applied to the results. A

may be used for full generality.

For example, the Courier procedure to print an Interpress master uses a bulk data source to transfer
the master, and also returns a request identi�er. The Lisp function which performs the
passes a functional to be called on this request identi�er after the stream is closed and printing begins;
this functional in turn spawns a process which monitors the progress of the job.

[Function]
This function controls the tracing of Courier remote procedure calls. It is similar
to and , but operates at the call/return level rather than the
packet level.

21.3.3 NS Printing

This section describes the facilities that are available for printing Interpress masters on NS printservers.

21.10

(SEQUENCE UNSPECIFIED)

UNSPECIFIED

(COURIER.READ.REP)

BULK.DATA.SINK BULK.DATA.SOURCE
COURIER.CALL

COPYBYTES

(COURIER.READ.BULKDATA)
COURIER.CALL

NIL

FUNARG

COURIER.CALL

(COURIERTRACE)

PUPTRACE XIPTRACE

LIST.OF.W ORDS PR OGRAM TYPE

TYPE

PR OGRAM

LIST.OF.W ORDS

STREAM PR OGRAM TYPE

STREAM TYPE

PR OGRAM

TYPE TYPE

FL G REGION

ETHERNET

[Variable]
The value of this variable is used whenever no printserver is speci�ed for the
functions described below. If its value is a , string, or Clearinghouse
name, the Clearinghouse is queried to �nd the address of the printserver with that
name. If its value is , it will be set automatically to some printserver in the
local Clearinghouse domain. In environments where there is no Clearinghouse, the
value of must be an appropriate record.

q [Function]
This function returns a stream for printing an Interpress master on or
on as mentioned above. The caller should write the
Interpress data to the stream and then close it using . Printing begins after
the stream is closed.

is the document name to appear on the header page (a string).

is the creation date to appear on the header page (a
Lisp integer date). The default value is the time of the call.

is the name of the sender to appear on the header page (a string).
The default value is the name of the user.

is the name of the recipient to appear on the header page (a
string). The default value is the name of the user.

q is the number of copies to be printed. The default value is 1.

is the medium on which the master is to be printed. This must be a
Courier value of type , which is a list of the form

, where is one of the LITATOMs , ,
through , through , and through . The
default value is determined by the printer.

is the priority of this print request (, , or). The default
value is .

is or depending on whether the document should be stapled. The
default value is .

is or depending on whether the document should be printed
on two sides. The default value is .

is non- if the client does not want a watchdog process to
monitor the status of the printing job.

q [Function]
This func tion prints an Interpress master on or on
as men tioned above. should be the name of an Interpress �le to
be printed. The remain ing arguments are all optional, and are as described
for above. defaults to the full
name of the �le, and defaults to the creation date of

21.11

NS.DEFAULT.PRINTER

LITATOM

NIL

NS.DEFAULT.PRINTER NSADDRESS

(OPEN.NS.PRINTING.STREAM
)

NS.DEFAULT.PRINTER
CLOSEF

MEDIUM (PAPER (KNOWN.SIZE
NAME)) NAME US.LETTER US.LEGAL A0

A10 ISO.B0 ISO.B10 JIS.B0 JIS.B10

LOW NORMAL HIGH
NORMAL

T NIL
NIL

T NIL
NIL

NIL

(NSPRINT
)

NS.DEFAULT.PRINTER

OPEN.NS.PRINTING.STREAM

PRINTER DOCUMENT.NAME DOCUMENT.CREA TION.D ATE SENDER.NAME

RECIPIENT.NAME COPIES MEDIUM PRIORITY STAPLE? TW O.SIDED? NO W ATCHDOG?

PRINTER

DOCUMENT.NAME

DOCUMENT.CREA TION.D ATE

SENDER.NAME

RECIPIENT.NAME

COPIES

MEDIUM

PRIORITY

STAPLE?

TW O.SIDED?

NO W ATCHDOG?

PRINTER FILE.NAME DOCUMENT.NAME DOCUMENT.CREA TION.D ATE SENDER.NAME

RECIPIENT.NAME COPIES MEDIUM PRIORITY STAPLE? TW O.SIDED?

PRINTER

FILE.NAME

DOCUMENT.NAME

DOCUMENT.CREA TION.D ATE

Clearinghouse

the �le.

[Function]
This function returns the Courier value resulting from the
call.

[Function]
This func tion returns the Courier value result ing from the
call.

21.3.4 Clearinghouse

This section describes functions that may be used to access Clearinghouse servers. Note that these
functions are used by the NS printing functions if the printserver is speci�ed by name rather than address.

[Function]
This function enables Clearinghouse access. It performs an expanding ring
broadcast in order to �nd the �rst Clearinghouse server. If is non-

, the cache of Clearinghouse information is invalidated and a new broadcast is
done. This may be necessary if the local Clearinghouse server goes down.

[Variable]
Hint as to which network the local Clearinghouse server is on, for use by

above. If is bound to a network
number, that network will be tried �rst, followed by the others in the routing
table. If the local Clearinghouse server is not on the directly connected network,
setting to the proper network number in the local �le will
speed up considerably.

[Function]
This function displays the structure of the cached Clearinghouse information in a
window. Once created, it will be redisplayed whenever the cache is updated. The
structure is shown using ‘‘.

[Function]
This function attempts to cache information about all the Clearinghouse domains,
so that the Clearinghouse structure window will show the entire database.

[Variable]
This is a string specifying the default Clearinghouse domain. If it is , it will
be set automatically by . Otherwise, it should be set in
an �le.

[Variable]
This is a string specifying the default Clearinghouse organization. If it is , it
will be set automatically by . Otherwise, it should be set
in an �le.

[Function]
This function returns the list of organization names in the Clearinghouse database
matching . The default pattern is , which matches

21.12

(NSPRINTER.STATUS)
GET.PRINTER.STATUS

(NSPRINTER.PROPERTIES)
GET.PRINTER.PROPERTIES

(START.CLEARINGHOUSE)

NIL

CH.NET.HINT

START.CLEARINGHOUSE CH.NET.HINT

CH.NET.HINT INIT
START.CLEARINGHOUSE

(SHOW.CLEARINGHOUSE)

GRAPHER

(SHOW.ENTIRE.CLEARINGHOUSE)

CH.DEFAULT.DOMAIN
NIL

START.CLEARINGHOUSE
INIT

CH.DEFAULT.ORGANIZATION
NIL

START.CLEARINGHOUSE
INIT

(CH.ORGANIZATIONS)

"*"

PRINTER

PRINTER

REST AR TFL G

REST AR TFL G

OR GANIZA TIONP ATTERN

OR GANIZA TIONP ATTERN

ETHERNET

anything.

[Function]
This function returns the list of domain names in the Clearinghouse database
matching . The default pattern is , which matches anything.

[Function]
This function returns the list of object names matching and
having the property . Currently, must be one of ,

, , and . For example,

will return a list of the names of users at Xerox PARC.

[Function]
This function returns the user information for the �rst user whose name matches

.

[Function]
This function returns the for the �rst server whose name matches

and has the property , which must be or .

21.3.5 NS Filing

This section describes functions that may be used to access NS �leservers.

21.3.5.1 Pathnames and NS Fileservers

The NS Filing protocol does not support conventional �le system pathnames directly. However, the
Interlisp- D software that supports access to NS �leservers uses IFS- style pathnames and does the
appropriate mapping in software. One important di�erence, however, is that �leserver, directory, and �le
names may have spaces in them, each of which must be preceded by a percent sign. The name of an
NS �leserver is required to have a colon in it. Thus, even if the �leserver is in the local Clearinghouse
domain, a trailing colon should be appended to the name. Case is not signi�cant. For example,

is a valid name for a �le on the NS �leserver .

[Function]
This function returns a list of �le names in , which must be the NS
pathname for a directory. (Any wildcards in the name �eld of the pathname are
ignored.)

[Function]
This function creates a new directory with pathname . Top level directories
(‘‘�le drawers’’) cannot be created in this way.

21.13

(CH.DOMAINS)

"*"

(CH.ENUMERATE)

USER
PRINTSERVER FILESERVER ALL

(CH.ENUMERATE "*:PARC:Xerox" (QUOTE USER))

(CH.LOOKUP.USER)

(LOOKUP.NS.SERVER)
NSADDRESS

PRINTSERVER FILESERVER

{LISPFILE:}<LISPDRAWER>XYZ;3

"LispFile:Parc Place:Xerox"

(NSDIRECTORY)

(NSCREATEDIRECTORY)

DOMAINP ATTERN

DOMAINP ATTERN

OBJECTP ATTERN PR OPER TY

OBJECTP ATTERN

PR OPER TY PR OPER TY

NAME

NAME

NAME TYPE

NAME TYPE

PATTERN

PATTERN

HOST/DIR

HOST/DIR

Level One Ether Packet Format

[Function]
This function closes any open connections to NS �leservers.

21.4 LEVEL ONE ETHER PACKET FORMAT

The datatype is the vehicle for all kinds of packets transmitted on an Ethernet or
Experimental Ethernet. An contains several �elds for use by the Ethernet drivers and a
large, contiguous data area making up the data of the level zero packet. The �rst several words of the
area are reserved for the level one to zero encapsulation, and the remainder (starting at �eld)
make up the level one packet. Typically, each level one protocol de�nes a that overlays
the starting at the �eld, describing the format of a packet for that particular
protocol. For example, the records and de�ne the format of level one packets in the PUP and
NS protocols.

The extra �elds in the beginning of an have mostly a �xed interpretation over all protocols.
Among the interesting ones are:

A pointer used to link packets, used by the mechanism (page 21.25).
Since this �eld is used by the system for maintaining the free packet queue and
ether transmission queues, do not use this �eld unless you understand it.

A byte �eld that can be used for any purpose by the user.

A pointer �eld that can be used for any purpose by the user. It is set to when
a packet is released.

A �ag that is true while the packet is ‘‘being transmitted’’, i.e., from the time that
the user instructs the system to transmit the packet until the packet is gathered up
from the transmitter’s �nished queue. While this �ag is true, the user must
modify the packet.

A pointer �eld that speci�es the desired disposition of the packet after transmission.
The possible values are: means no special treatment; means the packet
is to be released after transmission; an instance of a means the packet
is to be enqueued on the speci�ed queue (page 21.25).

The normal life of an outgoing Ether packet is that a program obtains a blank packet, �lls it in according
to protocol, then sends the packet over the Ethernet. If the packet needs to be retained for possible
retransmission, the �eld is used to specify a queue to place the packet on after its transmission,
or the caller hangs on to the packet explicitly.

There are rede�nitions, or ‘‘overlays’’ of the record speci�cally for use with the PUP and
NS protocols. The following sections describe those records and the handling of the PUP and NS level
one protocols, how to add new level one protocols, and the queueing mechanism associated with the

�eld.

21.14

(CLOSE.NSFILING.CONNECTIONS)

ETHERPACKET
ETHERPACKET

EPBODY
BLOCKRECORD

ETHERPACKET EPBODY
PUP XIP

ETHERPACKET

EPLINK SYSQUEUE

EPFLAGS

EPUSERFIELD NIL

EPTRANSMITTING

not

EPREQUEUE
NIL FREE

SYSQUEUE

EPREQUEUE

ETHERPACKET

EPREQUEUE

ETHERNET

21.5 PUP LEVEL ONE FUNCTIONS

The functions in this section are used to implement level two and higher PUP protocols. That is, they
deal with sending and receiving PUP packets. It is assumed the reader is familiar with the format and
use of pups, e.g., from reading reference [3] in section 21.1.7.

[Function]
This function is intended to be invoked from the executive on those rare occasions
when the Ethernet appears completely unresponsive, due to Lisp having gotten
into a bad state. reinitializes Lisp’s Ethernet driver(s), just as
when the Lisp system is started up following a , , etc. This aborts
any Ethernet activity and clears several internal caches, including the routing table.

21.5.1 Creating and Managing Pups

There is a record that overlays the data portion of an and describes the format of a pup.
This record de�nes the following numeric �elds: (16 bits), (transmit control, 8 bits,
cleared when a PUP is transmitted), (8 bits), (32 bits), and (16 bits
each overlaying), (16 bits overlayed by 8-bit �elds and),

(32 bits, overlayed by 16-bit �elds and),
and , , , , ,
and , analagously. The �eld is a pointer to the start of the data
portion of the pup.

[Function]
Returns a (possibly used) pup. Keeps a free pool, creating new pups only when
necessary. The pup header �elds of the pup returned are guaranteed to be zero,
but there may be garbage in the data portion if the pup had been recycled, so the
caller should clear the data if desired.

[Function]
Clears information from , including the pointer �elds of the
and the pup data portion.

[Function]
Releases to the free pool.

21.5.2 Sockets

Pups are sent and received on a . Generally, for each ‘‘conversation’’ between one machine and
another, there is a distinct socket. When a pup arrives at a machine, the low-level pup software examines
the pup’s destination socket number. If there is a socket on the machine with that number, the incoming
pup is handed over to the socket; otherwise the incoming pup is discarded. When a process initiates
a conversation, it generally selects a large, random socket number di�erent from any other in use on
the machine. A process, on the other hand, provides a speci�c service at a ‘‘well-known’’ socket,
usually a fairly small number. In the PUP world, advertised sockets are in the range 0 to 100Q.

21.15

(RESTART.ETHER)

RESTART.ETHER
LOGOUT SYSOUT

PUP ETHERPACKET
PUPLENGTH TCONTROL

PUPTYPE PUPID PUPIDHI PUPIDLO
PUPID PUPDEST PUPDESTNET PUPDESTHOST

PUPDESTSOCKET PUPDESTSOCKETHI PUPDESTSOCKETLO
PUPSOURCE PUPSOURCENET PUPSOURCEHOST PUPSOURCESOCKET PUPSOURCESOCKETHI
PUPSOURCESOCKETLO PUPCONTENTS

(ALLOCATE.PUP)

(CLEARPUP)
all ETHERPACKET

(RELEASE.PUP)

socket

user

server

PUP

PUP

PUP

PUP

Sending and Receiving Pups

q [Function]
Opens a new pup socket. If q is (the normal case), a socket number is
chosen automatically, guaranteed to be unique, and probably di�erent from any
socket opened this way in the last 18 hours (the low half of the time of day clock
is sampled).

If a speci�c local socket is desired, as is typically the case when implementing a
server, q is given, and must be a (up to 32-bit) number. indicates
what to do in the case that the designated socket is already in use: if ,
an error is generated; if , the socket is quietly returned; if , then

returns without causing an error. Note that ‘‘well-known’’
socket numbers should be avoided unless the caller is actually implementing one
of the services advertised as provided at the socket.

[Function]
Closes and releases socket . If is , closes all pup sockets (this
must be used with caution, since it will also close system sockets!). If is
already closed, an error is generated unless is true.

[Function]
Returns the socket number (a 32-bit integer) of .

[Function]
Returns the of (page 18.30). This event is noti�ed whenever a pup
arrives on , so pup clients can perform an on this event if
they have nothing else to do at the moment.

21.5.3 Sending and Receiving Pups

[Function]
Sends on socket . If any of the , ,
or �elds is zero, �lls them in using the pup address
of this machine and/or the socket number of , as needed.

[Function]
Returns the next pup that has arrived addressed to socket . If there are no
pups waiting on , then returns , or waits for a pup to arrive if

is . If is an integer, interprets it as a number of milliseconds
to wait, �nally returning if a pup does not arrive within that time.

[Function]
Discards without examination any pups that have arrived on and not yet been
read by a .

[Function]
Sends on , then waits for a responding pup, which it returns. If

is true, ignores pups whose is di�erent from that of .
is the length of time (msecs) to wait for a response before giving up and

returning . defaults to . discards
without examination any pups that are currently waiting on before gets

21.16

(OPENPUPSOCKET)
NIL

NIL
ACCEPT FAIL

OPENPUPSOCKET NIL

(CLOSEPUPSOCKET)
T

(PUPSOCKETNUMBER)

(PUPSOCKETEVENT)
EVENT

AWAIT.EVENT

(SENDPUP)
PUPSOURCESHOST PUPSOURCENET

PUPSOURCESOCKET SENDPUP

(GETPUP)

GETPUP NIL
T GETPUP

NIL

(DISCARDPUPS)

GETPUP

(EXCHANGEPUPS)

PUPID

NIL \ETHERTIMEOUT EXCHANGEPUPS

SKT IFCLASH

SKT

SKT IFCLASH

PUPSOC NOERR ORFL G

PUPSOC PUPSOC

PUPSOC

NOERR ORFL G

PUPSOC

PUPSOC

PUPSOC

PUPSOC

PUPSOC

PUPSOC PUP

PUP PUPSOC

PUPSOC

PUPSOC W AIT

PUPSOC

PUPSOC

W AIT W AIT

SOC

SOC

SOC OUTPUP DUMMY IDFILTER TIMEOUT

OUTPUP SOC

IDFILTER OUTPUP

TIMEOUT

TIMEOUT

SOC OUTPUP

ETHERNET

sent. (is ignored; it exists for compatibility with an earlier implementation).

21.5.4 Pup Routing Information

Ordinarily, a program calls and does not worry at all about the route taken to get the pup to
its destination. There is an internet routing process in Lisp whose job it is to maintain information about
the best routes to networks of interest. However, there are some algorithms for which routing information
and/or the topology of the net are explicitly desired. To this end, the following functions are supplied:

q [Function]
Returns the ‘‘hop count’’ to network q , i.e., the number of gateways through
which a pup must pass to reach q , according to the best routing information
known at this point. The local (directly- connected) network is considered to be
zero hops away. Current convention is that an inaccessible network is 16 hops
away. may need to wait to obtain routing information from
an Internetwork Router if q is not currently in its routing cache.

[Function]
Sorts by increasing distance, in the sense of .

is a list of lists, the of each list being a 16-bit Net/Host address,
such as returned by . In particular, a list of ports ((nethost .
socket) pairs) is in this format.

[Function]
Prints to the current routing cache. The table is sorted by network number
if is true. = (the default) prints the PUP routing table;
= prints the NS routing table..

21.5.5 Miscellaneous PUP Utilities

[Function]
Fills in various �elds in ’s header: its length (the header overhead length;
assumes data length of zero), , (if is , generates a new one itself
from an internal 16-bit counter), destination host and socket (may
be anything that accepts; an explicit nonzero socket in
overrides). If is not supplied, a new socket is opened.
�lls the packets �eld (see above). Value of is the socket.

[Function]
Swaps the source and destination addresses in . This is useful in simple packet
exchange protocols, where you want to respond to an input packet by diddling the
data portion and then sending the pup back whence it came.

q [Function]
Returns as a 16-bit integer the contents of the q th word of ’s data
portion, counting the �rst word as word zero.

q [Function]
Stores 16-bit integer in the q th word of ’s data portion.

21.17

SENDPUP

(PUPNET.DISTANCE)

PUPNET.DISTANCE

(SORT.PUPHOSTS.BY.DISTANCE)
PUPNET.DISTANCE

CAR
ETHERHOSTNUMBER

(PRINTROUTINGTABLE)

PUP
NS

(SETUPPUP)

NIL

ETHERPORT

EPREQUEUE SETUPPUP

(SWAPPUPPORTS)

(GETPUPWORD)

(PUTPUPWORD)

DUMMY

NET

NET

NET

NET

HOSTLIST

HOSTLIST

HOSTLIST

TABLE SOR T FILE

FILE

SOR T TABLE TABLE

PUP DESTHOST DESTSOCKET TYPE ID SOC REQUEUE

PUP

TYPE ID ID

DESTHOST

DESTHOST

DESTSOCKET SOC REQUEUE

PUP

PUP

PUP W ORD

W ORD PUP

PUP W ORD VAL UE

VAL UE W ORD PUP

PUP Debugging Aids

q [Function]
Returns as an integer the contents of the q th 8-bit byte of ’s data portion,
counting the �rst byte as byte zero.

q [Function]
Stores in the q th 8-bit byte of ’s data portion.

[Function]
Returns a string consisting of the characters in ’s data portion starting at byte

(default zero) through the end of .

[Function]
Appends to the data portion of , incrementing ’s length appropriately.

21.5.6 PUP Debugging Aids

Tracing facilities are provided to allow the user to see the pup tra�c that passes through and
. The tracing can be verbose, displaying much information about each packet, or terse, which

shows a concise ‘‘picture’’ of the tra�c.

[Variable]
Controls tracing information provided by and . Legal values:

No tracing.

Every and every successful call of the pup
at hand (see below).

Allows a concise ‘‘picture’’ of the tra�c. For normal, non- broadcast
packets, prints ‘‘ ’’, prints ‘‘ ’’. For broadcast packets,

prints ‘‘ ’’, prints ‘‘ ’’. In addition, for packets that
arrive not addressed to any socket on this machine (e.g., broadcast packets
for a service not implemented on this machine), a ‘‘ ’’ is printed.

[Variable]
A list of pup types (small integers). If the type of a pup is on this list, then

and will not print the pup verbosely, but treat it as though
were . This allows the user to �lter out ‘‘uninteresting’’ pups,

e.g., routine routing information pups (type 201Q).

[Variable]
A list of pup types. If this variable is non- , then and
print verbosely pups whose types appear on the list, treating others as though

were . This lets the tracing be con�ned to only a certain class
of pup tra�c.

[Variable]
The �le to which pup tracing output is sent by default. The �le must be open.

is initially .

21.18

(GETPUPBYTE)

(PUTPUPBYTE)

(GETPUPSTRING)

(PUTPUPSTRING)

SENDPUP
GETPUP

PUPTRACEFLG
SENDPUP GETPUP

NIL

T SENDPUP GETPUP PRINTPUP

PEEK
SENDPUP ! GETPUP +

SENDPUP ^ GETPUP *

&

PUPIGNORETYPES

GETPUP SENDPUP
PUPTRACEFLG PEEK

PUPONLYTYPES
NIL GETPUP SENDPUP

only
PUPTRACEFLG PEEK

PUPTRACEFILE

PUPTRACEFILE T

PUP BYTE

BYTE PUP

PUP BYTE VAL UE

VAL UE BYTE PUP

PUP OFFSET

PUP

OFFSET PUP

PUP STR

STR PUP PUP

ETHERNET

[Variable]
If this variable is true, then each printout of a pup is accompanied by a relative
timestamp (in seconds, with 2 decimal places) of the current time (i.e., when the

or was called; for incoming pups, this is not the same as when
the pup actually arrived).

[Function]
Creates a window for puptrac ing, and sets to it. If
is currently a window and is , closes the window. Sets
to be . If is supplied, the window is created with that region. The
window’s is set to cycle through the values ,

, and when the mouse is clicked in the window.

[Function]
Prints the information in the header and possibly data portions of pup
to . If is supplied, it identi�es the direction of the pup (or

), and is printed in front of the header. defaults to . If
is non- , it is ’ed �rst. If is true, then if ’s type

fails the �ltering criteria of or , then is
printed ‘‘tersely’’, i.e., as a , , , or , as described above.

and , when is non- , call
or .

The form of printing provided by can be in�uenced by adding elements to .

[Variable]
An association list of elements (.) for printing pups. The
(of each element) tells how to print the information in a pup of type
(of the element). If is a litatom, then it is a function of two arguments
() that is applied to the pup to do the printing. Otherwise, is a
list describing how to print the data portion of the pup (the header is printed in a
standard way).

The list form of consists of ‘‘commands’’ that specify a ‘‘datatype’’ to
interpret the data, and an indication of how far that datatype extends in the packet.
Each element of is one of the following: (a) a byte o�set (positive integer),
indicating the byte at which the next element, if any, takes e�ect; (b) a negative
integer, the absolute value of which is the number of bytes until the next element,
if any, takes e�ect; or (c) an atom giving the format in which to print the data,
one of the following:

Print the data as 8-bit bytes, enclosed in brackets. This is
the default format to start with.

Print the data as (8-bit) characters. Non- printing characters
are printed as if the format were , except that the
sequence 15Q, 12Q is printed specially as [crlf].

Print the data as 16-bit integers, separated by commas (or
the current).

21.19

PUPTRACETIME

SENDPUP GETPUP

(PUPTRACE)
PUPTRACEFILE PUPTRACEFILE

NIL PUPTRACEFLG

BUTTONEVENTFN PUPTRACEFLG NIL
T PEEK

(PRINTPUP)

GET
PUT PUPTRACEFILE

NIL PRIN1
PUPIGNORETYPES PUPONLYTYPES

! + ^ *

GETPUP SENDPUP PUPTRACEFLG NIL (PRINTPUP
{’GET ’PUT} NIL NIL T)

PRINTPUP PUPPRINTMACROS

PUPPRINTMACROS

CDR
CAR

BYTES

CHARS
BYTES

WORDS
SEPR

FL G REGION

FL G

FL G REGION

PACKET CALLER FILE PRE.NOTE DOFIL TER

PACKET

FILE CALLER

FILE

PRE.NOTE DOFIL TER PUP

PUP

PUP

PUPTYPE MA CR O MA CR O

PUPTYPE

MA CR O

PUP FILE MA CR O

MA CR O

MA CR O

PUP Debugging Aids

Print the data as 32-bit integers, separated by commas
(or the current). Note: the singular , ,

, are accepted as synonyms for these four
commands.

Set the separator for and to be the next
element of the macro. The separator is initially the two
characters, comma, space.

Interprets the data as a 16-bit length followed by that many
8-bit bytes or characters. If the current datatype is ,
leaves it alone; otherwise, sets it to be .

If there is still data left in the packet by the time processing
reaches this command, prints ‘‘��� ’’ and stops.

The next element of the macro is printed when the end of
the packet is reached (or printing stops because of a ���).
This command does not alter the datatype, and can appear
anywhere in the macro as long as it is encountered before
the actual end of the packet.

Perform a .

The remainder of the macro is itself treated as a macro
to be applied over and over until the packet is exhausted.
Note that the o�sets speci�ed in the macro must be in the
relative form, i.e., negative integers. For example, the macro

says to
print the �rst 4 bytes of the data as one 32-bit integer, then
print the rest of the data as sets of 2 8-bit bytes and 2 16-bit
words.

Only as much of the macro is processed as is needed to print the data in the given
packet. The default macro for printing a pup is , meaning to
print the �rst up to 12 bytes as bytes, and then print ‘‘��� ’’ if there is anything left.

The following functions are used by and similar functions, and may be of interest in special
cases.

[Function]
Converts the pup address , into the following octal string format:
net#host#socket. may be a port (dotted pair of nethost and socket),
in which case is ignored, and the socket portion of is omitted
from the string if it is zero.

[Function]
Prints the source and destination addresses of pup to in the

format, preceded by (interpreted as with).

[Function]
Prints data accord ing to , which is a list interpreted as described under

21.20

INTEGERS
SEPR BYTE CHAR

WORD INTEGER

SEPR WORDS INTEGERS

IFSSTRING
BYTES

CHARS

...

FINALLY

T TERPRI

REPEAT

(INTEGERS 4 REPEAT BYTES -2 WORDS -4)

(BYTES 12 ...)

PRINTPUP

(PORTSTRING)

(PRINTPUPROUTE)

PORTSTRING PRINTPUP

(PRINTPACKETDATA)

NETHOST SOCKET

NETHOST SOCKET

NETHOST

SOCKET NETHOST

PA CKET CALLER FILE

PACKET FILE

CALLER

BASE OFFSET MA CR O LENGTH FILE

MA CR O

ETHERNET

, to . The data starts at and extends for bytes.
The actual print ing starts at the th byte, which defaults to zero. For example,

ordinarily calls
.

[Function]
is a list of pairs (), of the form given to the

File Package Command. prints to ,
followed in parentheses by the out of whose is

to , or if it �nds no such element. If is non- and is an initial
substring of the selected , then is printed without the pre�x.

For example, if is
, then

produces ‘‘ ’’.

[Function]
Returns a string of octal digits representing in radix 8.

21.6 NS LEVEL ONE FUNCTIONS

The functions in this section are used to implement level two and higher NS protocols. The packets used
in the NS protocol are termed Xerox Internet Packets (XIPs). The functions for manipulating XIPs are
similar to those for managing PUPs, so will be described in less detail here. The major di�erence is
that NS host addresses are 48-bit numbers. Since Interlisp- D cannot currently represent 48-bit numbers
directly as integers, there is an interim form called , which is de�ned as a
of three �elds, each of them being a 16-bit portion of the 48-bit number.

21.6.1 Creating and Managing XIPs

There is a record that overlays the data portion of an and describes the
format of a XIP. This record de�nes the following �elds: (16 bits),
(transmit control, 8 bits, cleared when a XIP is transmitted), (8 bits),
(32 bits), (an), (16 bits), and ,

, and , analagously. The �eld is a pointer to the
start of the data portion of the XIP.

[Function]
Returns a (possibly used) XIP. As with , the header �elds are
guaranteed to be zero, but there may be garbage in the data portion if the pup
had been recycled.

[Function]
Releases to the free pool.

21.21

PUPPRINTMACROS

PRINTPUP (PRINTPACKETDATA (fetch PUPCONTENTS of
) 0 (IDIFFERENCE (fetch PUPLENGTH of) 20))

(PRINTCONSTANT)

CONSTANTS PRINTCONSTANT

EQ ? NIL

FOOCONSTANTS ((FOO.REQUEST 1) (FOO.ANSWER 2)
(FOO.ERROR 3)) (PRINTCONSTANT 2 FOOCONSTANTS T "FOO.")

2 (ANSWER)

(OCTALSTRING)

NSHOSTNUMBER TYPERECORD

XIP ETHERPACKET
XIPLENGTH XIPTCONTROL

XIPTYPE XIPDESTNET
XIPDESTHOST NSHOSTNUMBER XIPDESTSOCKET XIPSOURCENET

XIPSOURCEHOST XIPSOURCESOCKET XIPCONTENTS

(ALLOCATE.XIP)
ALLOCATE.PUP

(RELEASE.XIP)

FILE BASE LENGTH

OFFSET

PUP MA CR O PUP FILE

VAR CONST ANTLIST FILE PREFIX

CONST ANTLIST VARNAME VAL UE

VAR FILE

VARNAME CONST ANTLIST VAL UE

VAR PREFIX

VARNAME VARNAME

N

N

XIP

XIP

NS Sockets

21.6.2 NS Sockets

As with pups, XIPs are sent and received on a . The same comments apply as with pup sockets
(page 21.16), except that NS socket numbers are only 16 bits.

q [Function]
Opens a new NS socket. If q is (the normal case), a socket number is
chosen automatically, guaranteed to be unique, and probably di�erent from any
socket opened this way in the last 18 hours. If a speci�c local socket is desired,
as is typically the case when implementing a server, q is given, and must be a
(up to 16-bit) number. governs what to do if q is already in use, as
with .

[Function]
Closes and releases socket . If is , closes all NS sockets (this must
be used with caution, since it will also close system sockets!). If is already
closed, an error is generated unless is true.

[Function]
Returns the socket number (a 16-bit integer) of .

[Function]
Returns the of . This event is noti�ed whenever a XIP arrives on

.

21.6.3 Sending and Receiving XIPs

[Function]
Sends on socket . If any of the , , or

�elds is zero, �lls them in using the NS address of
this machine and/or the socket number of , as needed.

[Function]
Returns the next XIP that has arrived addressed to socket . If there are no
XIPs waiting on , then returns , or waits for a XIP to arrive if

is . If is an integer, interprets it as a number of milliseconds
to wait, �nally returning if a XIP does not arrive within that time.

[Function]
Discards without examination any XIPs that have arrived on and not yet
been read by a .

[Function]
Useful for simple NS packet exchange protocls. Sends on , then waits
for a responding XIP, which it returns. If is true, ignores XIPs whose
packet exchange ID (the �rst 32 bits of the data portion) is di�erent from that of

. is the length of time (msecs) to wait for a response before giving
up and returning . defaults to .
discards without examination any XIPs that are currently waiting on before

gets sent.

21.22

socket

(OPENNSOCKET)
NIL

OPENPUPSOCKET

(CLOSENSOCKET)
T

(NSOCKETNUMBER)

(NSOCKETEVENT)
EVENT

(SENDXIP)
XIPSOURCESHOST XIPSOURCENET

XIPSOURCESOCKET SENDXIP

(GETXIP)

GETXIP NIL
T GETXIP

NIL

(DISCARDXIPS)

GETXIP

(EXCHANGEXIPS)

NIL \ETHERTIMEOUT EXCHANGEXIPS

SKT IFCLASH

SKT

SKT

IFCLASH SKT

NSOC NOERR ORFL G

NSOC NSOC

NSOC

NOERR ORFL G

NSOC

NSOC

NSOC

NSOC

NSOC

NSOC XIP

XIP NSOC

NSOC

NSOC W AIT

NSOC

NSOC

W AIT W AIT

NSOC

NSOC

SOC OUTXIP IDFILTER TIMEOUT

OUTXIP SOC

IDFILTER

OUTXIP TIMEOUT

TIMEOUT

SOC

OUTXIP

ETHERNET

21.6.4 NS Debugging Aids

XIPs can be printed automatically by and analogously to the way pups are. The
following variables behave with respect to XIPs the same way that the corresponding PUP- named variables
behave with respect to PUPs: , , , ,

. In addition, the functions , and are directly
analogous to , , and .

21.7 SUPPORT FOR OTHER LEVEL ONE PROTOCOLS

Raw packets other than of type PUP or NS can also be sent and received. This section describes facilities
to support such protocols. Many of these functions have a in their names to designate that they are
system internal, not to be dealt with as casually as user- level functions.

[Function]
Returns an datum. Enough of the packet is cleared so that if the
packet represents a or packet, that its header is all zeros; no guarantee is
made about the remainder of the packet.

[Function]
Returns to the pool of free packets. This operation is dangerous if the
caller actually is still holding on to , e.g., in some queue, since this packet
could be returned to someone else (via) and su�er
the resulting contention.

From a logical standpoint, programs need never call ,
since the packets are eventually garbage- collected after all pointers to them drop.
However, since the packets are so large, normal garbage collections tend not to
occur frequently enough. Thus, for best performance, a well-disciplined program
should explicitly release packets when it knows it is �nished with them.

A locally-connected network for the transmission and receipt of Ether packets is speci�ed by a
, an object of type . There is one for each directly- connected network; ordinarily

there is only one. The contains information speci�c to the network, e.g., its and network
numbers, and information about how to send and receive packets on it.

[Variable]
The �rst connected to this machine, or if there is no network. Any other

s are linked to this �rst one via the �eld of the .

In order to transmit an Ether packet, a program must specify the packet’s type and its immediate
destination. The type is a 16-bit integer identifying the packet’s protocol. There are preassigned types
for and . The destination is a host address on the local network, in whatever form the local
network uses for addressing; it is not necessarily related to the logical ultimate destination of the packet.
Determining the immediate destination of a packet is the task of . The functions and

take care of this for the and protocols, routing a packet directly to its destination if
that host is on the local network, or routing it to a gateway if the host is on some other network accessible
via the gateway. Of course, a gateway must know about the type (protocol) of a packet in order to be

21.23

SENDXIP GETXIP

XIPTRACEFLG XIPTRACEFILE XIPIGNORETYPES XIPONLYTYPES
XIPPRINTMACROS PRINTXIP PRINTXIPROUTE XIPTRACE

PRINTPUP PRINTPUPROUTE PUPTRACE

\

(\ALLOCATE.ETHERPACKET)
ETHERPACKET

PUP NS

(\RELEASE.ETHERPACKET)

\ALLOCATE.ETHERPACKET

\RELEASE.ETHERPACKET

network
descriptor block NDB NDB

NDB PUP NS

\LOCALNDBS
NDB NIL

NDB NDBNEXT NDB

PUP NS

routing SENDPUP
SENDXIP PUP NS

EPKT

EPKT

EPKT

Support for Other Level One Protocols

able to forward it.

[Function]
Encapsulates for transmission on network . is the physical
destination host (e.g., an 8-bit pup host number or a 48-bit NS host number);

is the length of the packet in bytes; is the packet’s encapsulation
type (an integer).

[Function]
Transmits , which must already have been encapsulated, on network .
Disposition of the packet after transmission is complete is determined by the value
of ’s �eld.

In order to receive Ether packets of type other than or , the programmer must specify what to do
with incoming packets. Lisp maintains a set of , functions whose job it is to appropriately
dispose of incoming packets of the kind they want. When a packet arrives, the Ethernet driver calls each
�lter function in turn until it �nds one that accepts the packet. The �lter function is called with two
arguments: (), where is the actual packet, and is its Ethernet encapsulation
type (a number). If a �lter function accepts the packet, it should do what it wants to with it, and return

; else it should return , allowing other packet �lters to see the packet.

Since the �lter function is run at interrupt level, it should keep its computation to a minimum. For
example, if there is a lot to be done with the packet, the �lter function can place it on a queue and notify
another process of its arrival.

The system already supplies packet �lters for packets of type and ; these �lters enqueue the
incoming packet on the input queue of the socket to which the packet is addressed, after checking that
the packet is well-formed and indeed addressed to an existing socket on this machine.

Incoming packets have their �eld �lled in with the of the network on which the packet
arrived.

[Function]
Adds function to the list of packet �lters if it is not already there.

[Function]
Removes from the list of packet �lters.

[Function]
Computes the one’s complement add and cycle checksum for the words
starting at address . If is supplied, it is treated as the accumulated
checksum for some set of words preceding ; normally is omitted
(and thus treated as zero).

[Function]
Prints by invoking a function appropriate to ’s type. See

for the intended meaning of the other arguments. In order for
to work on a non- standard packet, there must be information

on the list .

[Variable]
An association list mapping packet type into the name of a function for printing

21.24

(ENCAPSULATE.ETHERPACKET)

(TRANSMIT.ETHERPACKET)

EPREQUEUE

PUP NS
packet �lters

T NIL

PUP NS

EPNETWORK NDB

(\ADD.PACKET.FILTER)

(\DEL.PACKET.FILTER)

(\CHECKSUM)

(PRINTPACKET)

PRINTPUP
PRINTPACKET

\PACKET.PRINTERS

\PACKET.PRINTERS

NDB PACKET PDH NBYTES ETYPE

PACKET NDB PDH

NBYTES ETYPE

NDB PA CKET

PA CKET NDB

PACKET

PA CKET TYPE PA CKET TYPE

FILTER

FILTER

FILTER

FILTER

BASE NW ORDS INITSUM

NW ORDS

BASE INITSUM

BASE INITSUM

PA CKET CALLER FILE PRE.NOTE DOFIL TER

PA CKET PA CKET

ETHERNET

that type of packet.

21.8 THE SYSQUEUE MECHANISM

The facility provides a low-level queueing facility. The functions described herein are all
system internal: they can cause much confusion if misused.

A is a datum containing a pointer to the �rst element of the queue and a pointer to the last;
each item in the queue points to the next via a pointer �eld located at o�set 0 in the item (its
�eld in the record). A can be created by calling .

[Function]
Enqueues on , i.e., links it to the tail of the queue, updating ’s tail pointer
appropriately.

[Function]
Removes the �rst item from and returns it, or returns if is empty.

[Function]
Removes the from , wherever it is located in the queue, and returns it. If

is not in , causes an error, unless is true, in which case it
returns .

[Function]
Returns the number of elements in .

[Function]
True if is an element of .

21.25

SYSQUEUE

SYSQUEUE
QLINK

QABLEITEM SYSQUEUE (NCREATE ’SYSQUEUE)

(\ENQUEUE)

(\DEQUEUE)
NIL

(\UNQUEUE)

NIL

(\QUEUELENGTH)

(\ONQUEUE)

Q ITEM

ITEM Q Q

Q

Q Q

Q ITEM NOERR ORFL G

ITEM Q

ITEM Q NOERR ORFL G

Q

Q

ITEM Q

ITEM Q

The SYSQUEUE mechanism

21.26

