
1

1

CHAPTER 9

ERRORS AND BREAK HANDLING

Occasionally, while a program is running, an error may occur which will stop the computation. A coding
mistake may have caused the wrong arguments to be passed to a function, or the programmer may have
not forseen a particular unusual situation which came up, causing a function to try doing something
illegal. Interlisp provides extensive facilities for detecting and handling error conditions, to enable testing,
debugging,and revising of imperfect programs.

Errors can be caused in di�erent ways. As mentioned above, an Interlisp primitive function may signal an
error if given illegal arguments; for example, will cause an error if its arguments are not numbers. It
is also possible to interrupt a computation at any time by typing one of the ‘‘interrupt characters,’’ such as
control- D or control- E (the Interlisp- D interrupt characters are listed on page 18.1; those for Interlisp- 10
on page 22.1). Finally, as an aid to debugging, the programmer can specify that certain functions should
cause an error automatically whenever they are entered (see page 10.1). This allows examination of the
context within the computation.

When an error occurs, the system can either reset and unwind the stack, or go into a ‘‘break’’, an
environment where the user can examine the state of the system at the point of the error, and attempt to
debug the program. Within a break, Interlisp o�ers an extensive set of ‘‘break commands’’, which assist
with debugging.

This chapter explains what happens when errors occur. Breaks and break commands are given which
allow the user to handle program errors. Finally, advanced facilities for modifying and extending the
error mechanism are presented.

9.1 BREAKS

One of the most useful debugging facilities in Interlisp is the ability to put the system into a ‘‘break’’,
stopping a computation at any point and allowing the user to interrogate the state of the world and a�ect
the course of the computation. A break appears to the user like a top- level executive, except that a break
uses the prompt character ‘‘ ’’ to indicate it is ready to accept input(s), in the same way that ‘‘ ’’ is used
at the top- level. However, a break saves the environment where the break occurred, so that the user may
evaluate variables and expressions in the environment that was broken. In addition, the break program
recognizes a number of useful ‘‘break commands’’, which provide an easy way to interrogate the state of
the broken computation.

Note: In Interlisp- D, the break package has been extended to include window operations (see page 20.10).

The mechanism used for deciding whether to unwind the stack or to go into a break is described on
page 9.10. The user can modify this mechanism.

9.1

PLUS

: _

2

2

Breaks

Breaks may be entered in several di�erent ways. Some interrupt characters (page 9.17) automatically
cause a break to be entered whenever they are typed. Functions errors may also cause a break, depending
on the depth of the computation (see page 9.10). Finally, Interlisp provides functions which make it
easy to ‘‘break’’ suspect functions so that they always cause a break whenever they are entered, to allow
examination and debugging (see page 10.4).

Within a break the user has access to all of the power of Interlisp; he can do anything that he can do at
the top- level executive. For example, the user can evaluate an expression, see that the value is incorrect,
call the editor, change the function, and evaluate the expression again, all without leaving the break. The
user can even type in commands to the programmer’s assistant (page 8.1), e.g. to redo or undo previously
executed events, including break commands.

Similarly, the user can prettyprint functions, de�ne new functions or rede�ne old ones, load a �le, compile
functions, time a computation, etc. In short, anything that he can do at the top level can be done while
inside of the break. In addition the user can examine the stack (see page 7.1), and even force a return
back to some higher function via the function or .

It is important to emphasize that once a break occurs, the user is in complete control of the �ow of
the computation, and the computation will not proceed without speci�c instruction from him. If the
user types in an expression whose evaluation causes an error, the break is maintained. Similarly if the
user aborts a computation initiated from within the break (by typing control- E), the break is maintained.
Only if the user gives one of the commands that exits from the break, or evaluates a form which does a

or back out of , will the computation continue.

The basic function of the break package is . Note that is just another Interlisp function,
not a special system feature like the interpreter or the garbage collector.It has arguments, and returns a
value, the same as any other function. The value returned by is called ‘‘the value of the break.’’
The user can specify this value explicitly by using the command described below. But in most
cases, the value of a break is given implicitly, via a or command, and is the result of evaluating
‘‘the break expression,’’ , which is one of the arguments to . For more information on
the function , see page 9.11.

The break expression, stored in the variable , is an expression equivalent to the computation that
would have taken place had no break occurred. For example, if the user breaks on the function , the
break expression is the body of the de�nition of . When the user types or , the body of is
evaluated, and its value returned as the value of the break, i.e., to whatever function called .
is set up by the function that created the call to . For functions broken with or ,

is equivalent to the body of the de�nition of the broken function (see page 10.4). For functions
broken with , using or , is . For , is
the indicated expression (see page 10.5).

recognizes a large set of break commands. These are typed in parentheses. In order
to facilitate debugging of programs that perform input operations, the carriage return that is typed to

Except that does not ‘‘turn o�’’ control- D, i.e., a control- D will force an immediate return back
to the top level.

9.2

RETFROM RETEVAL

RETFROM RETEVAL BREAK1

BREAK1 BREAK1

BREAK1
RETURN

GO OK
BRKEXP BREAK1

BREAK1

BRKEXP
FOO

FOO OK GO FOO
FOO BRKEXP

BREAK1 BREAK TRACE
BRKEXP

BREAKIN BEFORE AFTER BRKEXP NIL BREAKIN AROUND BRKEXP

BREAK1 without

BREAK1

ERRORS AND BREAK HANDLING

complete the , , , etc. commands is discarded by , so that it will not be part of the
input stream after the break.

[Break Command]
Evaluates , prints this value, and returns it as the value of the break.
Releases the break and allows the computation to proceed.

[Break Command]
Same as except that the value of is not printed.

[Break Command]
Same as except that the break is maintained after the evaluation. The value
of this evaluation is bound to the local variable , which the user can
interrogate. Typing or following will not cause to be
reevaluated, but simply return the value of as the value of the break.
Typing another will cause reevaluation. is useful when the user is not
sure whether the break will produce the correct value and wishes to examine it
before continuing with the computation.

[Break Command]
is evaluated, and returned as the value of the break. For example, one could

use the command and follow this with .

[Break Command]
Calls and aborts the break, making it ‘‘go away’’ without returning a value.
This is a useful way to unwind to a higher level break. All other errors, including
those encountered while executing the , , , and commands,
maintain the break.

The following four commands refer to ‘‘the broken function.’’ This is the function that caused the break,
whose name is stored in the argument .

[Break Command]
The broken function is �rst unbroken, then the break expression is evaluated (and
the value stored in), and then the function is rebroken. This command is
very useful for dealing with recursive functions.

[Break Command]
Equivalent to followed by . The broken function is unbroken, the break
expression is evaluated, the function is rebroken, and then the break is exited with
the value typed.

[Break Command]
Equivalent to followed by . The broken function is unbroken, the break
expression is evaluated, the function is rebroken, and then the break is exited.

[Break Command]
Unbreaks the broken function.

[Break Command]
Resets the variable , which establishes a context for the commands ,

, , , , , and described below. is the position

9.3

GO OK EVAL BREAK1

GO
BRKEXP

OK
GO BRKEXP

EVAL
OK

!VALUE
GO OK EVAL BRKEXP

!VALUE
EVAL EVAL

RETURN

EVAL RETURN (REVERSE !VALUE)

^
ERROR!

GO OK EVAL RETURN

BREAK1 BRKFN

!EVAL

!VALUE

!GO
!EVAL GO

!OK
!EVAL OK

UB

@
LASTPOS ?=

ARGS BT BTV BTV* EDIT IN? LASTPOS

FORM

FORM

3

3

Breaks

of a function call on the stack. It is initialized to the function just before the call
to , i.e., .

treats the rest of the teletype line as its argument(s). It �rst resets to
and then for each atom on the line, searches down

the stack for a call to that atom. The following atoms are treated specially:

Do not reset to but leave it as it was,
and continue searching from that point.

a number
If negative, move down the stack frames. If positive, move

up the stack frames.

The next atom on the line (which should be a number) specify that the
atom should be searched for that many times. For example, ‘‘
’’ is equivalent to ‘‘ ’’.

Resets to the of the next expression, e.g., if the value
of is a stack pointer, ‘‘ ’’ will search for in the
environment speci�ed by (the value of) .

For example, if the push- down stack looks like:

then ‘‘ ’’ will set to the position corresponding to ; ‘‘
’’ will then set to ; and ‘‘ ’’ to .

If cannot successfully complete a search for function , it searches the stack
again from that point looking for a call to a function whose name is close to that
of , in the sense of the spelling corrector (page 15.13). If the search is still
unsuccessful, types , and then aborts.

When �nishes, it types the name of the function at , i.e.,
.

can be used on (see page 9.12). In this case, the command on
is treated the same as the rest of the teletype line.

When control passes from , e.g. as a result of an , , , , command, or via
a or typed in by the user, is executed to release this stack
pointer.

9.4

BREAK1 (STKNTH -1 ’BREAK1)

@ LASTPOS
(STKNTH -1 ’BREAK1) @

@ LASTPOS (STKNTH -1 ’BREAK1)

LASTPOS
LASTPOS

/
previous @
FOO / 3 @ FOO FOO FOO

= LASTPOS value
FOO @ = FOO FIE FIE

FOO

BREAK1 [9]
FOO [8]
COND [7]
FIE [6]
COND [5]
FIE [4]
COND [3]
FIE [2]
FUM [1]

@ FIE COND LASTPOS [5] @ @
COND LASTPOS [3] @ FIE / 3 -1 [1]

@

@ (NOT FOUND)

@ LASTPOS (STKNAME
LASTPOS)

@ BRKCOMS next
BRKCOMS

BREAK1 EVAL OK GO REVERT ^
RETFROM RETEVAL (RELSTK LASTPOS)

N

N

N

FN

FN

FN

4

5

4

5

ERRORS AND BREAK HANDLING

[Break Command]
This is a multi- purpose command. Its most common use is to interrogate the
value(s) of the arguments of the broken function. For example, if has three
arguments , then typing to a break on will produce:

operates on the rest of the teletype line as its arguments. If the line is empty,
as in the above case, it operates on all of the arguments of the broken function. If
the user types , he will see the value of , and the value of

. The di�erence between using and typing and directly to
is that evaluates its inputs as of the stack frame , i.e., it uses
. This provides a way of examing variables or performing computations

For example, followed by
will allow the user to examine the value of in the previous call to , etc.

also recognizes numbers as referring to the correspondingly numbered argument,
i.e., it uses in this case. Thus

will print the name and value of the second argument of .

can also be used on (page 9.12, in which case the next command
on is treated as the rest of the teletype line. For example, if
is , will be evaluated, the values of and
printed, and then the function exited with its value being printed.

[Break Command]
Prints the bindings of a given variable. Similar to , except ascends the stack
starting from , and, for each frame in which the given variable is bound,
prints the frame name and value of the variable (with reset to

), e.g.

In fact, is a universal mnemonic for displaying argument names and their corresponding values. In
addition to being a break command, is an edit macro which prints the argument names and values
for the current expression (page 17.37), and a read- macro (actually is the read- macro character) which
does the same for the current level list being read.

The value of each variable is printed with the function (page 6.17), so that if
= , the value will be prettyprinted.

9.5

?=

FOO
(X Y Z) ?= FOO

:?=
X = value of X
Y = value of Y
Z = value of Z
:

?=

?= X (CAR Y) X (CAR
Y) ?= X (CAR Y)
BREAK1 ?= LASTPOS
STKEVAL
as of a particular point on the stack. @ FOO / 2 ?= X

X FOO

?=
STKARG

:@ FIE
FIE
:?= 2

FIE

?= BRKCOMS
BRKCOMS BRKCOMS

(EVAL ?= (X Y) GO) BRKEXP X Y

PB
?=

LASTPOS
PRINTLEVEL (2

. 3)

:PB FOO
@ FN1: 3
@ FN2: 10
@ TOP: NOBIND

?=
?=

?

SHOWPRINT
SYSPRETTYFLG T

Breaks

is also a programmer’s assistant command (page 8.14) that can be used when
not in a break. is implemented via the function .

[Break Command]
Prints a backtrace of function names only starting at . The several nested
calls in system packages such as break, edit, and the top level executive appear as
the single entries , , and respectively.

[Break Command]
Prints a backtrace of function names variables beginning at .

The value of each variable is printed with the function (page 6.17),
so that if = , the value will be prettyprinted.

[Break Command]
Same as except also prints local variables and arguments to s.

[Break Command]
Same as except prints arguments to s, local variables, and temporaries
of the interpreter, i.e. eval blips (see page 7.10).

[Break Command]
Same as except prints on the stack.

, , , , and all take optional functional arguments. These arguments are used to
choose functions to be on the backtrace. As the backtrace scans down the stack, the name of
each stack frame is passed to each of the functional arguments to the backtrace command. If any of
these functions returns a non- value, then that frame is skipped, and not shown in the backtrace. For
example, will skip all s, will skip
all but those functions on . If used on (page 9.12) the functional argument is no longer
optional, i.e., the next element on must either be a list of functional arguments, or if no
functional argument is to be applied.

For , , , , and , if control- P is used to change a printlevel during the backtrace,
the printlevel will be restored after the backtrace is completed.

The value of , initially , is printed to delimit the output of and backtrace
commands. This can be reset (e.g. to) for more linear output.

[Break Command]
Prints the names of the variables bound at , i.e.,
(page 7.5). For most cases, these are the arguments to the func tion entered at that
position, i.e., .

[Break Command]
Goes back to position on stack and reenters the function called at that
point with the arguments found on the stack. If the function is not already broken,

�rst breaks it, and then unbreaks it after it is reentered.

can be given the position using the conventions described for , e.g.,
is equivalent to followed by .

is useful for restarting a computation in the situation where a bug is

9.6

PB
PB PRINTBINDINGS

BT
LASTPOS

BREAK **EDITOR** **TOP**

BTV
with LASTPOS

SHOWPRINT
SYSPRETTYFLG T

BTV+
BTV SUBR

BTV*
BTV SUBR

BTV!
BTV everything

BT BTV BTV+ BTV* BTV!
skipped

NIL
BT SUBRP SUBR BTV (LAMBDA (X) (NOT (MEMB X FOOFNS)))

FOOFNS BRKCOMS
BRKCOMS NIL

BT BTV BTV+ BTV* BTV!

BREAKDELIMITER " cr" ?=
","

ARGS
LASTPOS (VARIABLES LASTPOS)

(ARGLIST (STKNAME LASTPOS))

REVERT
LASTPOS

REVERT

REVERT @
REVERT FOO -1 @ FOO -1 REVERT

REVERT

ERRORS AND BREAK HANDLING

discovered at some point where the problem actually occurred.
essentially says ‘‘go back there and start over in a break.’’ will work
correctly if the names or arguments to the function, or even its function type, have
been changed.

[Break Command]
For use in conjunction with (see page 9.12). Form is

. are executed without regard for . Useful for
rede�ning a break command in terms of itself.

The following two commands are for use only with unbound atoms or unde�ned function breaks.

[Break Command]
Can only be used in a break following an unbound atom error. Sets the atom to
the value of , exits from the break returning that value, and continues the
computation, e.g.,

sets and goes on.

Note: may be given in the form .

[Break Command]
Can be used in a break following either with unbound atom error, or an unde�ned
function error. Replaces the expression containing the error with (not the
value of), and continues the computation. does not just change ;
it changes the function or expression containing the erroneous form. In other
words, the user does not have to perform any additional editing.

For example,

changes the to and continues the computation. need not be
atomic, e.g.,

For unde�ned function breaks, the user can specify a function initial arguments,
e.g.,

9.7

below REVERT
REVERT

ORIGINAL
BREAKMACROS (ORIGINAL

.) BREAKMACROS

=

UNBOUND ATOM

(FOO BROKEN)
:= (COPY FIE)

FOO

[]

->

-> BRKEXP

UNDEFINED CAR OF FORM

(FOO1 BROKEN)
:-> FOO

FOO1 FOO

UNBOUND ATOM

(FOO BROKEN)
:-> (QUOTE FOO)

and

UNDEFINED CAR OF FORM

COMS COMS

FORM

FORM

FORM FN AR GS

EXPR

EXPR

EXPR

EXPR

Breaks

Note that in the case of a unde�ned function error occurring immediately following
a call to (e.g., where the value of is and is
unde�ned), or a unbound atom error immediately following a call to (e.g.,

, where the value of is and is unbound), there no
expression containing the o�ending atom. In this case, cannot operate, so is
printed and no action is taken.

[Break Command]
Designed for use in conjunction with breaks caused by errors. Facilitates editing
the expression causing the break:

and the user can continue by typing , , etc.

This command is very simple conceptually, but complicated in its implementation by all of the exceptional
cases involving interactions with compiled functions, breaks on user functions, error breaks, breaks within
breaks, et al. Therefore, we shall give the following simpli�ed explanation which will account for 90% of
the situations arising in actual usage. For those others, will print an appropriate failure message
and return to the break.

begins by searching up the stack beginning at (set by command, initially position of the
break) looking for a form, i.e., an internal call to . Then continues from that point looking for
a call to an interpreted function, or to . It then calls the editor on either the or the argument
to in such a way as to look for an expression to the form that it �rst found. It then prints
the form, and permits interactive editing to begin. Note that the user can then type successive ’s to the
editor to see the chain of superforms for this computation.

If the user exits from the edit with an , the break expression is reset, if possible, so that the user can
continue with the computation by simply typing . (Note that evaluating the new will involve
reevaluating the form that causes the break, so that if
were handled by , would be reevaluated.) However, in some situations, the
break expression cannot be reset. For example, if a compiled function incorrectly called and
caused the error followed by a break on , might be able to �nd the form
headed by , and also �nd form in some higher interpreted function. But after the user corrected
the problem in the -form, if any, he would still not have in any way informed what to do about
the immediate problem, i.e., the incorrect call to . However, if were would
�nd the form itself, so that when the user corrected that form, could use the new corrected

9.8

(MEMBERX BROKEN)
:-> MEMBER X

APPLY (APPLY X Y) X FOO FOO
EVAL

(EVAL X) X FOO FOO is
-> ?

EDIT

NON-NUMERIC ARG
NIL
(IPLUS BROKEN)
:EDIT
IN FOO...
(IPLUS X Z)
EDIT
*(3 Y)
*OK
FOO
:

OK EVAL

EDIT

EDIT LASTPOS @
EVAL EDIT

EVAL EXPR
EVAL EQ

0

OK
OK BRKEXP

(PUTD (QUOTE (FOO)))
EDIT

FOO PUTD
ARG NOT ATOM PUTD EDIT

FOO that
FOO EDIT

PUTD FOO interpreted EDIT
PUTD EDIT

BIG-COMPUT ATION

BIG-COMPUT ATION

6

ERRORS AND BREAK HANDLING

form to reset the break expression. The two cases are shown below:

If is compiled:

[Break Command]
Similar to , but just prints parent form, and superform, but does not call
editor, e.g.,

Although and were designed for error breaks, they can also be useful for user breaks. For
example, if upon reaching a break on his function , the user determines that there is a problem in
the to , he can edit the calling form and reset the break expression with one operation by using

. The following two protocol’s with and without the use of , illustrate this:

9.9

FOO

FOO compiled FOO interpreted

ARG NOT ATOM ARG NOT ATOM
(FUM) (PUTD BROKEN)
(PUTD BROKEN) :EDIT
:EDIT IN FOO...
IN FIE... (PUTD X)
(FOO X) EDIT
EDIT *(2 (CAR X))
*(2 (CAR X)) *OK
*OK :OK
NOTE: BRKEXP NOT CHANGED PUTD
FIE
:?=
U = (FUM)
:(SETQ U (CAR U))
FUM
:OK
PUTD

IN?
EDIT

ATTEMPT TO RPLAC NIL
T
(RPLACD BROKEN)
:IN?
FOO: (RPLACD X Z)

EDIT IN?
FOO

call FOO
EDIT EDIT

Without EDIT: With EDIT:

(FOO BROKEN) (FOO BROKEN)
:?= :?=
X = (A B C) X = (A B C)
Y = D Y = D
:BT :EDIT

*(SW 2 3)
FOO *OK
SETQ FIE
COND :OK
PROG FOO
FIE

6

When to Break

9.2 WHEN TO BREAK

When an error occurs, the system has to decide whether to reset and unwind the stack, or go into a
break. In the middle of a complex computation, it is usually helpful to go into a break, so that the
user may examine the state of the computation. However, if the computation has only proceeded a little
when the error occurs, such as when the user mistypes a function name, the user would normally just
terminate a break, and it would be more convenient for the system to simply cause an error and unwind
the stack in this situatuation. The decision over whether or not to induce a break depends on the depth
of computation, and the amount of time invested in the computation. The actual algorithm is described
in detail below; su�ce it to say that the parameters a�ecting this decision have been adjusted empirically
so that trivial type- in errors do not cause breaks, but deep errors do.

[Function]
is called by the error routine to decide whether or not to induce

a break when a error occurs. is the stack position at which the error
occurred; is the error number. Returns if a break should occur;
otherwise.

returns (and a break occurs) if the ‘‘computation depth’’ is greater
than or equal to . is initially set to 7, arrived at empirically
by taking into account the overhead due to or .

If the depth of the computation is less than , next
calculates the length of time spent in the computation. If this time is greater than

and have not been changed, but has.

9.10

COND �nd which function
FOO is called from
(aborted with ^E)

:EDITF(FIE)
EDIT
*F FOO P
(FOO V U) edit it
*(SW 2 3)
*OK
FIE
:(SETQ Y X) reset X and Y
(A B C)
:(SETQQ X D)
D
:?=
X = D
Y = (A B C) check them
:OK
FOO

(BREAKCHECK)
BREAKCHECK

T NIL

BREAKCHECK T
HELPDEPTH HELPDEPTH

LISPX BREAK

HELPDEPTH BREAKCHECK

X Y BRKEXP

ERR ORPOS ERXN

ERR ORPOS

ERXN

ERRORS AND BREAK HANDLING

milliseconds, initially set to 1000, then returns (and a
break occurs), otherwise .

determines the ‘‘computation depth’’ by searching back up the stack looking for an
frame (s indicate how far back unwinding is to take place when an error occurs,

see page 9.15). At the same time, it counts the number of internal calls to . As soon as (if)
the number of calls to exceeds , immediately stops searching for an

and returns . Otherwise, continues searching until either an is
found or the top of the stack is reached. (Note: If the second argument to is , the

is ignored by during this search.) then counts the number of
function calls between the error and the last , or the top of the stack. The number of function
calls plus the number of calls to (already counted) is used as the ‘‘computation depth’’.

determines the computation time by subtracting the value of the variable from
the value of , the number of milliseconds of compute time (see page 14.10).
is rebound to the current value of for each computation typed in to or to a break.
The time criterion for breaking can be suppressed by setting to (or a very big number),
or by setting to . Note that setting to will not have any e�ect beyond
the current computation, because is rebound for each computation typed in to and

.

The user can suppress all error breaks by setting the top level binding of the variable to
using (is bound as a local variable in , and reset to the global value

of on every line, so just ing it will not work.) If = (the initial
value), the decision whether to cause an error or break is decided based on the computation time and
the computation depth, as described above. Finally, if = , a break will always occur
following an error.

9.3 BREAK1

The basic function of the break package is , which creates a break. A break appears to be a
regular executive, with the prompt ‘‘ ’’, but also detects and interpretes break commands (page
9.3).

[NLambda Function]
If is , is evaluated and returned as the value of .
Otherwise a break occurs and commands are then taken from or the
terminal and interpreted. All inputs not recognized by are simply passed
on to the programmer’s assistant.

When a break occurs, if is a list whose is a number,
is called to print an identifying message. If is a list whose is not
a number, is called. Otherwise, no preliminary message is printed.
Following this, the message is printed.

Since itself calls functions, when one of these is broken, an in�nite loop
would occur. detects this situation, and prints

9.11

HELPTIME BREAKCHECK T
NIL

BREAKCHECK
ERRORSET ERRORSET

EVAL
EVAL HELPDEPTH BREAKCHECK

ERRORSET T BREAKCHECK ERRORSET
ERRORSET INTERNAL

ERRORSET BREAKCHECK BREAKCHECK
ERRORSET

EVAL

BREAKCHECK HELPCLOCK
(CLOCK 2) HELPCLOCK

(CLOCK 2) LISPX
HELPTIME NIL

HELPCLOCK NIL HELPCLOCK NIL
HELPCLOCK LISPX

BREAK

HELPFLAG
NIL SETTOPVAL HELPFLAG LISPX

HELPFLAG LISPX SETQ HELPFLAG T

HELPFLAG BREAK!

BREAK1
: BREAK1

(BREAK1)
NIL BREAK1

BREAK1

CAR ERRORMESS
CAR

ERRORMESS1
(broken)

BREAK1
BREAK1 Break within a break

BRKEXP BRKWHEN BRKFN BRK COMS BRKTYPE ERR ORN

BRKWHEN BRKEXP

BRK COMS

ERR ORN

ERR ORN

BRKFN

7

7

BREAK1

, and then simply calls the function without going into a break.

The commands , , , , and are the only ways to leave
. The command causes to be evaluated, and saves the

value on the variable . Other commands can be de�ned for via
(below).

is for user breaks, for control- H breaks, and
for error breaks. For breaks when is not , will

clear and save the input bu�er. If the break returns a value (i.e., is not aborted
via or control- D) the input bu�er will be restored.

The fourth argument to is , a list of break commands that interprets and
executes as though they were keyboard input. One can think of as another input �le which
always has priority over the keyboard. Whenever = , reads its next command from
the keyboard. Whenever is not , takes as its next command
and sets to . For example, suppose the user wished to see the value of the
variable a function was evaluated. He could set up a break with =

, which would have the desired e�ect. Note that if is not , the value of a break
command is not printed. If you desire to see a value, you must print it yourself, as in the above example.
The function (page 10.4) uses : it sets up a break with two commands; the �rst one
prints the arguments of the function, or whatever the user speci�es, and the second is the command ,
which causes the function to be evaluated and its value printed.

Note: If an error occurs while interpreting the commands, is set to , and a full
interactive break occurs.

The break package has a facility for redirecting ouput to a �le. All output resulting from will
be output to the value of the variable , which should be the name of an open �le. Output due
to user typein is not a�ected, and will always go to the terminal. is initially .

[Variable]
is a list of the form ���

��� ��� . Whenever an atomic command is given to , it
�rst searches the list for the command. If the command is equal
to , simply appends the corresponding commands to the front of

, and goes on. If the command is not found on ,
then checks to see if it is one of the built in commands, and �nally, treats it as a
function or variable as before.

Example: The command could be de�ned by including on
the form:

[Function]
Useful within for reading arguments. If is non- (the
command in which the call to appears was not typed in), returns the
next break command from , and sets to .

If the command is not the name of a de�ned function, bound variable, or command, will
attempt spelling correction using as a spelling list. If spelling correction is unsuccessful,

will go ahead and call anyway, since the atom may also be a misspelled history command.

9.12

on

GO !GO OK !OK RETURN ^
BREAK1 EVAL

!VALUE BREAK1
BREAKMACROS

NIL INTERRUPT
ERRORX NIL BREAK1

^

BREAK1 BREAK1

NIL BREAK1
NIL BREAK1 (CAR BRKCOMS)

(CDR BRKCOMS)
X after (EVAL (PRINT

X) OK) NIL

TRACE
GO

NIL

BRKFILE
BRKFILE T

BREAKMACROS
BREAKMACROS (() (

)) BREAK1
BREAKMACROS

BREAK1
BREAKMACROS BREAK1

ARGS BREAKMACROS
(ARGS (PRINT (VARIABLES LASTPOS T)))

(BREAKREAD)
BREAKMACROS BRKCOMS NIL

BREAKREAD
BRKCOMS BRKCOMS (CDR BRKCOMS)

LISPX BREAK1
BREAKCOMSLST

BREAK1 LISPX

FN

BRKEXP

BRKTYPE

BRKTYPE

BRK COMS

BRK COMS

BRK COMS

BRK COMS

BRK COMS

BRK COMS

BRK COMS

BRK COMS

BRK COMS BRK COMS

BRK COMS

NAME 1 COM 11 COM 1n NAME 2
COM 21 COM 2n

NAME i
BRK COMS

TYPE

8

8

ERRORS AND BREAK HANDLING

If is (the command was typed in), then returns either
the rest of the commands on the line as a list (if =) or just the next
command on the line (if is not).

For example, the command is de�ned as
. Thus, if the user types , the third argument to will

be . If the user types , the third argument will be .

[Variable]
If the user is developing programs that change the way a user and Interlisp normally
interact (e.g., change or disable the interrupt or line-editing characters, turn o�
echoing, etc.), debugging them by breaking or tracing may be di�cult, because
Interlisp might be in a ‘‘funny’’ state at the time of the break.
is designed to solve this problem. The user puts on
expressions suitable for use in conjunction with or
(page 9.19). When a break occurs, evaluates each expression on

any interaction with the terminal, and saves the
values. When the break expression is evaluated via an , , or ,
�rst restores the state of the system with respect to the various expressions on

. When (if) control returns to , the expressions on
are evaluated, and their values saved. When the break

is exited with an , , , or command, by typing control- D, or by a
or typed in by the user, again restores state. Thus

the net e�ect is to make the break invisible with respect to the user’s programs,
but nevertheless allow the user to interact in the break in the normal fashion.

As mentioned earlier, detects ‘‘Break within a break’’ situations, and avoids
in�nite loops. If the loop occurs because of an error, simply rebinds

to , and calls . This situation most frequently occurs
when there is a bug in a function called by .

Note: expressions can also be included on for saving
and restoring system parameters, e.g. ,

, etc. These are handled specially by in that the current
value of the variable is saved before the is executed, and upon restoration,
the variable is set back to this value.

9.4 ERROR FUNCTIONS

[Function]
The entry to the error routines. If = , is used to determine
the error- message. Otherwise, is
performed, ‘‘setting’’ the error number and argument. Thus following either

All user type- in is scanned in order to make the operations undoable as described on page 8.22. At
this point, s and s are also noticed. However, if the user types in an expression
which calls a function that then does a , this will not be noticed, and the e�ects of

will be reversed.

9.13

BRKCOMS NIL BREAKREAD
LINE

LINE

BT (BAKTRACE LASTPOS NIL (BREAKREAD
’LINE) 0 T) BT BAKTRACE

NIL BT SUBRP (SUBRP)

BREAKRESETFORMS

BREAKRESETFORMS
BREAKRESETFORMS

RESETFORM RESETSAVE
BREAK1

BREAKRESETFORMS before
EVAL OK GO BREAK1

BREAKRESETFORMS BREAK1
BREAKRESETFORMS again

OK GO RETURN ^
RETFROM RETEVAL BREAK1

BREAK1
BREAK1

BREAKRESETFORMS NIL HELP
BREAKRESETFORMS

SETQ BREAKRESETFORMS
(SETQ LISPXHISTORY NIL) (SETQ

DWIMFLG NIL) BREAK1
SETQ

(ERRORX)
NIL (ERRORN)

(SETERRORN (CAR) (CADR))

RETFROM RETEVAL
RETFROM RETFROM

BREAKRESETFORMS not

TYPE

TYPE

ERXM

ERXM

ERXM ERXM

9

9

Error Functions

or , is . calls
, and either induces a break or prints the message and unwinds to

the last (page 9.10). Note that can be called by any program
to intentionally induce an error of any type. However, for most applications, the
function will be more useful.

[Function]
Prints (using), followed by a space if is an atom, otherwise a
carriage return. Then is printed (using if is a string, otherwise

). For example, prints

and prints . If
both and are , the message printed is simply .

If = , prints its message and then calls . Otherwise it
calls , i.e., generates error number 17, in
which case the decision as to whether or not to break, and whether or not to print
a message, is handled as per any other error.

[Function]
Prints and similar to , and then calls passing
as the argument. If both and are , is used
for the message. is a convenient way to program a default condition, or to
terminate some portion of a program which the computation is theoretically never
supposed to reach.

[Function]
Useful in those situations when a program detects a condition that should
never occur. Calls with the message arguments and

and a argument of .

[Function]
Programmable control- E; immediately returns from last or resets.

[Function]
Programmable control- D; immediately returns to the top level.

[Function]
Returns information about the last error in the form where is
the error number (page 9.22) and is the expression which was (would have
been) printed out after the error message. For example, following ,

would return .

[Function]
Sets the value returned by to .

unless the value of is , in which case a break will always occur (see page 9.11).

9.14

(ERRORX ’(10 T)) (PLUS T) (ERRORN) (10 T) ERRORX
BREAKCHECK

ERRORSET ERRORX

ERROR

(ERROR)
PRIN1

PRIN1
PRINT (ERROR "NON-NUMERIC ARG" T)

NON-NUMERIC ARG
T

(ERROR ’FOO "NOT A FUNCTION") FOO NOT A FUNCTION
NIL ERROR

T ERROR ERROR!
(ERRORX ’(17 (.)))

(HELP)
ERROR BREAK1

BRKTYPE NIL HELP!
HELP

(SHOULDNT)

HELP "Shouldn’t
happen!" BRKTYPE ’ERRORX

(ERROR!)
ERRORSET

(RESET)

(ERRORN)
()

(PLUS T)
(ERRORN) (10 T)

(SETERRORN)
ERRORN ()

HELPFLAG BREAK!

MESS1 MESS2 NOBREAK

MESS1 MESS1

MESS2 MESS2

MESS1 MESS2

NOBREAK

MESS1 MESS2

MESS1 MESS2 BRKTYPE

MESS1 MESS2 BRKTYPE

MESS1 MESS2

MESS

MESS

NUM EXP NUM

EXP

NUM MESS

NUM MESS

ERRORS AND BREAK HANDLING

[Function]
Prints message corresponding to an that yielded . For example,

would print

[Function]
Prints the message corresponding to a or break.

[Function]
Returns as a new string the message corresponding to error number , e.g.,

= .

[Function]
Performs . If no error occurs in the evaluation of , the value
of is a list containing one element, the value of . If an
error did occur, the value of is .

Note that is a lambda function, so its arguments are evaluated
it is entered, i.e., means is called with the of . In
most cases, and (described below) are more useful.

The argument controls the printing of error messages if an error occurs:

If = , the error message is printed; if = it is not (unless
is , see below). Note that if a occurs below an ,

the message is printed regardless of the value of .

If = , this is ignored for the purpose of deciding
whether or not to break or print a message (see page 9.10). However, the

is in e�ect for the purpose of �ow of control, i.e., if an error occurs,
this returns .

If = , no break will occur, even if the time criterion for breaking
is met. Note that = will prevent a break from occurring if
the error occurs more than function calls below the errorset, since

will stop searching before it reaches the . To guarantee
that no break occurs, the user would also either have to reset or

.

[NLambda Function]
Performs , evaluating and printing error messages.

[NLambda Function]
Performs , evaluating without printing error
messages.

[Variable]
If is , error messages will print, regardless of the
argument of . e�ectively changes all s to s.

is initially .

9.15

(ERRORMESS)
ERRORN

(ERRORMESS ’(10 T))

NON-NUMERIC ARG
T

(ERRORMESS1)
HELP ERROR

(ERRORSTRING)

(ERRORSTRING 10) "NON-NUMERIC ARG"

(ERRORSET)
(EVAL)

ERRORSET (EVAL)
ERRORSET NIL

ERRORSET before
(ERRORSET X) EVAL value X

ERSETQ NLSETQ

T NIL
NLSETQGAG NIL break ERRORSET

INTERNAL ERRORSET

ERRORSET
ERRORSET NIL

NOBREAK
NOBREAK not

HELPDEPTH
BREAKCHECK ERRORSET

HELPDEPTH
HELPFLAG

(ERSETQ)
(ERRORSET ’ T)

(NLSETQ)
(ERRORSET ’ NIL)

NLSETQGAG
NLSETQGAG NIL

ERRORSET NLSETQGAG NLSETQ ERSETQ
NLSETQGAG T

U

U

MESS1 MESS2 MESS3

N

N

FORM FLA G _

FORM FORM

FORM

FLA G

FLA G FLA G

FLA G

FLA G

FLA G

FLA G

FORM

FORM FORM

FORM

FORM FORM

FLA G

Error Handling by Error Type

9.5 ERROR HANDLING BY ERROR TYPE

Occasionally the user may want to treat certain types of errors di�erently from others, e.g., always break,
never break, or perhaps take some corrective action. This can be accomplished via :

[Variable]
is a list of elements of the form ��� ,

where is one of the error numbers (page 9.22). During an error,
after has been completed, but before any other action is taken,

is searched for an element with the same error number as that
causing the error. If one is found, the corresponding forms are evaluated, and if
the last one produces a non- value, this value is substituted for the o�ender,
and the function causing the error is reentered.

Within entries, the following variables may be useful:

[Variable]
is the error number, the ‘‘o�ender’’, e.g., corresponds to a

error.

[Variable]
Stack pointer to the function in which the error occurred, e.g.,

might be , , , etc.

Note: If the error is going to be handled by a , , or a
in the entry, it probably is a good idea to �rst release the stack
pointer , e.g. by performing .

[Variable]
Value of , i.e., means a break will occur, means one will not.
This may be reset within the entry.

[Variable]
If , means print error message, if , don’t print error message, i.e., corresponds
to second argument to . The user can force or suppress the printing of
error message for various errortypes by including on an expression
which explicitly sets .

For example, putting

on would specify that whenever a error occurred, and the
function in question was , , or , should be used for the . If the function was

, should be used. Otherwise, always break. Note that the latter case is achieved not by the
value returned, but by the of the evaluation, i.e., setting to . Similarly,

would prevent errors from ever breaking.

9.16

ERRORTYPELST

ERRORTYPELST
ERRORTYPELST ()

BREAKCHECK
ERRORTYPELST

NIL

ERRORTYPELST

ERRORMESS
CAR CADR (10 NIL)
NON-NUMERIC ARG NIL

ERRORPOS
(STKNAME

ERRORPOS) IPLUS RPLACA INFILE

RETFROM RETTO RETEVAL
ERRORTYPELST
ERRORPOS (RELSTK ERRORPOS)

BREAKCHK
BREAKCHECK T NIL

ERRORTYPELST

PRINTMSG
T NIL

ERRORSET
ERRORTYPELST

PRINTMSG

[10 (AND (NULL (CADR ERRORMESS))
(SELECTQ (STKNAME ERRORPOS)

((IPLUS ADD1 SUB1) 0)
(ITIMES 1)
(PROGN (SETQ BREAKCHK T) NIL]

ERRORTYPELST NON-NUMERIC ARG - NIL
IPLUS ADD1 SUB1 0 NIL

ITIMES 1
e�ect BREAKCHK T (16 (SETQ

BREAKCHK NIL)) END OF FILE

NUM FORM 1 FORM N
NUM

ERRORS AND BREAK HANDLING

is initially ,
which causes to be called in case of a error (see page 15.20). If

is successful, the operation will be reexecuted with the new (corrected) �le name.

9.6 INTERRUPT CHARACTERS

Errors and breaks can be caused by errors within functions, or by explicitly breaking a function. The user
can also indicate his desire to go into a break at while a program is running by typing certain control
characters known as ‘‘interrupt characters’’. The interrupt characters in Interlisp- D are listed on page 18.1;
those in Interlisp- 10 are listed on page 22.1.

The user can disable and/or rede�ne Interlisp interrupt characters, as well as de�ne new interrupt
characters. Interlisp- 10 is initialized with 9 interrupt channels: (control- D), (control- E),

(control- B), (control- H), (control- P), (control- T), (del),
(control- S), and (control- O). Interlisp- D does not have the and

interrupt channels, and has the additional channel (control- C). Each of these
channels independently can be disabled, or have a new interrupt character assigned to it via the function

described below. In addition, the user can enable up to 9 new interrupt channels, and
associate with each channel an interrupt character and an expression to be evaluated when that character
is typed.

User interrupts can be either ‘‘hard’’ or ‘‘soft’’. A ‘‘hard’’ interrupt is like control- E or control- D: it takes
place as soon as it is typed. A soft interrupt is like control- H; it does not occur until the next function
call. Soft interrupts can always be safely continued from. Hard interrupts rip the system out of the
function currently being executed and unwind back to the last function call, i.e. part of the computation
that was interrupted is lost and cannot be continued.

Hard interrupts are implemented by generating error number 43, and retrieving the corresponding form
from the list once inside of . Soft interrupts are implemented by calling

with an appropriate third argument, and then obtaining the corresponding form from
. As soon as a soft interrupt character is typed, Interlisp clears and saves the input

bu�ers, and then rings the bell. After the interrupt form is evaluated, the input bu�ers are restored.
In either case, if a character is enabled as a user interrupt, but for some reason it is not found on

, an error will be generated.

[Function]
De�nes as an interrupt character. If was previously de�ned as an
interrupt character, that interpretation is disabled.

is either a character or a character code (as returned by). TENEX
requires that interrupt characters be one of control- A, B,...,Z, space, esc(alt-mode),
rubout(delete), or break.

If = , is disabled.

If = , the current state of is returned without changing or
disabling it.

If is one of the 8 literal atoms , , , ,

9.17

ERRORTYPELST ((23 (SPELLFILE (CADR ERRORMESS) NIL NOFILESPELLFLG)))
SPELLFILE FILE NOT FOUND

SPELLFILE

RESET ERROR
BREAK HELP PRINTLEVEL CONTROL-T RUBOUT
STORAGE OUTPUTBUFFER STORAGE
OUTPUTBUFFER RAID

INTERRUPTCHAR

USERINTERRUPTS ERRORX
INTERRUPT
USERINTERRUPTS

USERINTERRUPTS UNDEFINED USER INTERRUPT

(INTERRUPTCHAR)

CHCON1

NIL

T

HELP PRINTLEVEL STORAGE RUBOUT

CHAR TYP/F ORM HARDFL G

CHAR CHAR

CHAR

TYP/F ORM CHAR

TYP/F ORM CHAR

TYP/F ORM

Changing and Restoring System State

, , , or , then assigns
to the indicated Interlisp interrupt channel, (reenabling the channel if previously
disabled).

If is any other literal atom, is enabled as an interrupt character
that when typed causes the atom to be set to .

If is a list, is enabled as a user interrupt character, and
is the form that is evaluated when is typed. The interrupt will be hard if

= , otherwise soft.

restores all Interlisp channels to their original state, and
disables all user interrupts.

returns an expression which, when given as an argument to
, will restore things as they were before the call to .

Therefore, can be used in conjunc tion with or
(page 9.20).

is undoable.

[Function]
is a list of interrupt character settings to be performed,

each of the form . The e�ect of
is as if were performed for each item
on , and were
performed on every other existing interrupt character.

If is non- , then returns the current state
of the interrupts in a form that could be passed to , otherwise
it returns . This can be used with a that appears in a

, so that the list is built at ‘‘entry’’, but not upon ‘‘exit’’.

[Function]
if = , turns interrupt o�. If = , turns interrupt on. Value is
previous setting. compiles open.

Note: Any interrupt character typed while interrupts are o� is treated the same as any other character,
i.e. placed in the input bu�er, and will not cause an interrupt when interrupts are turned back on.

[Function]
(Interlisp- 10) Returns if interrupts are enabled; if disabled.

9.7 CHANGING AND RESTORING SYSTEM STATE

In Interlisp, a computation can be interrupted/aborted at any point due to an error, or more forcefully,
because a control- D was typed, causing return to the top level. This situation creates problems for
programs that need to perform a computation with the system in a ‘‘di�erent state’’, e.g., di�erent radix,
input �le, readtable, etc. but want to ‘‘protect’’ the calling environment, i.e., be able to restore the state

9.18

ERROR RESET OUTPUTBUFFER BREAK INTERRUPTCHAR

immediately T

T

(INTERRUPTCHAR T)

INTERRUPTCHAR
INTERRUPTCHAR INTERRUPTCHAR

INTERRUPTCHAR RESETFORM
RESETLST

INTERRUPTCHAR

(RESET.INTERRUPTS)

(.) RESET.INTERRUPTS
(INTERRUPTCHAR)

(INTERRUPTCHAR NIL)

NIL RESET.INTERRUPTS
RESET.INTERRUPTS

NIL RESET.INTERRUPTS
RESETFORM

(INTERRUPTABLE)
NIL T

INTERRUPTABLE

(INTERRUPTABLEP)
T NIL

CHAR

TYP/F ORM CHAR

TYP/F ORM

TYP/F ORM CHAR TYP/F ORM

CHAR

HARDFL G

PERMITTEDINTERR UPTS SAVECURRENT?

PERMITTEDINTERR UPTS

CHAR TYP/F ORM

CHAR TYP/F ORM

PERMITTEDINTERR UPTS OTHER CHAR

SAVECURRENT?

FLA G

FLA G FLA G

10

10

ERRORS AND BREAK HANDLING

when the computation has completed. While program errors and control- E can be ‘‘caught’’ by errorsets,
control- D is not. Thus the system may be left in its changed state as a result of the computation being
aborted. The following functions address this problem.

Note that these functions do not and cannot handle the situation where their environment is exited via
anything other than a normal return, an error, or a reset. E.g. a , , , etc., will
never be seen.

��� [NLambda NoSpread Function]
evaluates its arguments in order, after setting up an so that

any reset operations performed by (see below) are restored when the
forms have been evaluated (or an error occurs, or a control- D is typed). If no
error occurs, the value of is the value of , otherwise
generates an error (after performing the necessary restorations).

compiles open.

[NLambda NoSpread Function]
is used within a call to to change the system state by calling

a function or setting a variable, while specifying how to restore the original system
state when the is exited (normally, or with an error or control- D).

If is atomic, resets the top level value of to the value of . For
example, resets the value of

to the value of , and provides for the original
value of to be restored when the completes operation,
(or an error occurs, or a control- D is typed). This use is somewhat anachronistic in
Interlisp- 10 in that in a shallow bound system, it is su�cient to simply rebind the
variable. Furthermore, if there are any rebindings, the will a�ect
the most recent binding but will change only the top level value, and therefore
probably not have the intended e�ect.

If is not atomic, it is a form that is evaluated. If is , must return as its
value its ‘‘former state’’, so that the e�ect of evaluating the form can be reversed,
and the system state can be restored, by applying of to the value of .
For example, performs , and provides
for to be reset to its original value when the completes by
applying to the value returned by .

In the special case that of is , the is transparent for the purposes
of , i.e. the user could also have written

, and restoration would be performed by applying , not
, to the previous value of .

If is not , it is evaluated (before), and its is used as the restoring
expression. This is useful for functions which do not return their ‘‘previous setting’’.
For example,

Note that the program could rede�ne control- D as a user interrupt (page 9.17), check for it, reenable
it, and call or something similar.

9.19

RETEVAL RETFROM RESUME

(RESETLST)
RESETLST ERRORSET

RESETSAVE

RESETLST RESETLST

RESETLST

(RESETSAVE)
RESETSAVE RESETLST

RESETLST

(RESETSAVE LISPXHISTORY EDITHISTORY)
LISPXHISTORY EDITHISTORY

LISPXHISTORY RESETLST

RESETSAVE not

NIL

CAR
(RESETSAVE (RADIX 8)) (RADIX 8)

RADIX RESETLST
RADIX (RADIX 8)

CAR SETQ SETQ
RESETSAVE (RESETSAVE (SETQ X

(RADIX 8))) RADIX
SETQ RADIX

NIL value

RESET

FORM 1 FORM N

FORM N

X Y

X X Y

X Y X

X X

X

Y X

11

12

11

12

Changing and Restoring System State

���

will restore the break characters by applying to the value returned
by , which was computed before the ��� expression was
evaluated. Note that the restoration expression is still ‘‘evaluated’’ by its

to its .

If is , is still treated as a restoration expression. Therefore,

will cause to be closed when the that the is under
completes (or an error occurs or a control- D is typed).

Note: can be called when under a . In this case, the
restoration will be performed at the next , i.e., control- D or call to .
In other words, there is an ‘‘implicit’’ at the top- level executive.

compiles open. Its value is not a ‘‘useful’’ quantity.

[NLambda Function]
Simpli�ed form of and for resetting and restoring
global variables. Equivalent to

. For example,
resets to the value of while evaluating .

compiles open. If no error occurs, its value is the value of .

��� [NLambda NoSpread Function]
Similar to , except the variables in are global variables. In a shallow
bound system (Interlisp- 10) and are identical. In a deep bound
system, each variable is ‘‘rebound’’ using .

, like and (page 2.6), is provided to permit compatibility (i.e.
transportablility) between a shallow bound and deep bound system with respect to conceptually global
variables.

��� [NLambda NoSpread Function]
Simpli�ed form of and for resetting a system state when
the corresponding function returns as its value the ‘‘previous setting.’’ Equivalent
to ��� . For
example, . compiles open. If
no error occurs, it returns the value returned by .

For some applications, the restoration operation must be di�erent depending on whether the computation
completed successfully or was aborted by an error or control- D. To facilitate this, while the restoration
operation is being performed, the value of will be bound to , , or ,

Unnecessarily expensive in a shallow bound system as the variable can simply be rebound.

Except that the compiler insures that variables bound in a are declared as (see
page 12.4).

9.20

[RESETSAVE (SETBRK) (LIST ’SETBRK (GETBRK]

SETBRK
(GETBRK) (SETBRK)

applying
CAR CDR

NIL

(RESETSAVE NIL (LIST ’CLOSEF FILE))

FILE RESETLST RESETSAVE

RESETSAVE not RESETLST
RESET RESET

RESETLST

RESETSAVE

(RESETVAR)
RESETLST RESETSAVE

(RESETLST (RESETSAVE)
) (RESETVAR LISPXHISTORY EDITHISTORY (FOO))
LISPXHISTORY EDITHISTORY (FOO)

RESETVAR

(RESETVARS)
PROG

RESETVARS PROG
RESETSAVE

RESETVARS GETATOMVAL SETATOMVAL

(RESETFORM)
RESETLST RESETSAVE

(RESETLST (RESETSAVE))
(RESETFORM (RADIX 8) (FOO)) RESETFORM

RESETSTATE NIL ERROR RESET

RESETVARS SPECVARS

X Y

VAR NEWV AL UE FORM

VAR NEWV AL UE

FORM

FORM

VARSLST E1 E2 EN
VARSLST

RESETF ORM FORM 1 FORM 2 FORM N

RESETF ORM FORM 1 FORM 2 FORM N

FORM N

ERRORS AND BREAK HANDLING

depending on whether the exit was normal, due to an error, or reset (i.e., control- D, or in Interlisp- 10,
control- C followed by reenter). For example,

will cause to be closed and deleted only if a control- D was typed during the execution of .

When specifying complicated restoring expressions, it is often necessary to use the old value of the saving
expression. For example, the following expression will set the primary input �le (to) and execute
some forms, but reset the primary input �le only if an error or control- D occurs.

So that you will not have to explicitely save the old value, the variable is bound at the time the
restoring operation is performed to the value of the saving expression. Using this, the previous example
could be recoded as:

As mentioned earlier, restoring is performed by applying of the restoring expression to the
, so and will not be evaluated by the . This particular

example works because is an nlambda function that explicitly evaluates its arguments, so ing
to is the same as ing

. also has this property, so you can use a lambda function as a restoring form by
enclosing it within a .

The function (page 8.25) can be used in conjunction with and to
provide a way of specifying that the system be restored to its prior state by the side e�ects of
the computations performed under the .

9.8 ERROR LIST

There are currently �fty- plus types of errors in the Interlisp system. Some of these errors are
implementation dependent, i.e., appear in Interlisp- 10 but may not appear in other Interlisp systems.

9.21

(RESETLST
(RESETSAVE (INFILE X)

(LIST ’[LAMBDA (FL)
(COND ((EQ RESETSTATE ’RESET)

(CLOSEF FL)
(DELFILE FL]

X))
)

X

FL

(RESETLST
(SETQ TEM (INPUT FL))
(RESETSAVE NIL

(LIST ’(LAMBDA (X) (AND RESETSTATE (INPUT X)))
TEM))

)

OLDVALUE

(RESETLST
(RESETSAVE (INPUT FL)

’(AND RESETSTATE (INPUT OLDVALUE)))
)

CAR
CDR RESETSTATE (INPUT OLDVALUE) APPLY

AND APPLY
AND (RESETSTATE (INPUT OLDVALUE)) EVAL (AND RESETSTATE (INPUT
OLDVALUE)) PROGN

PROGN

RESETUNDO RESETLST RESETSAVE
undoing

RESETLST

FORMS

FORMS

FORMS

FORMS

Error List

The error number is set internally by the code that detects the error before it calls the error handling
functions. It is also the value returned by if called subsequent to that type of error, and is used
by for printing the error message.

Most errors will print the o�ending expression following the message, e.g., is
very common. Error number 18 (control- B) always causes a break (unless is). All other
errors cause breaks if returns (see page 9.10).

The errors are listed below by error number:

0 - (Interlisp- 10) Occurs following a trap in a JSYS. As described on page 22.6,
is printed, followed by the diagnostic, and control returns

to the operating system executive. The user can then safely , and the
Interlisp error, is then generated. A can
also occur if an illegal instruction is executed. In this case, the operating system
also prints . This can happen for example if the user is
programming directly in code, or if his system somehow got smashed.
In the latter case, it is quite possible that random programs or data structures might
have already been smashed. Unless he is sure he knows what the problem is, the
user is best advised to abandon this system as soon as possible. (If the user does
elect to , Interlisp will (try to) generate a and unwind. In
some cases, however, the system may be so badly smashed that the error message
won’t even print.) Note that in some cases, e.g. illegal instruction trap while in the
garbage collector, Interlisp will print out , because traps under
those conditions are fatal. The user be able to reenter his sytem via the
command, and, if lucky, dump some data or functions before the system totally
collapses.

In Interlisp- D, this error is named .

1 No longer used.

2 -
Occurs when computation is too deep, either with respect to number of function
calls, or number of variable bindings. Usually because of a non- terminating
recursive computation, i.e., a bug.

In Interlisp- 10, the garbage collector uses the same stack as the rest of the system,
so that if a garbage collection occurs when deep in a computation, the stack can
over�ow (particularly if there is a lot of list structure that is deep in the
direction). If this does happen, the garbage collector will �ush the stack used by
the computation in order that the garbage collection can complete. Afterwards,
the error message is printed,
followed by a , i.e., return to top level.

3 -
Call to when not inside of an interpreted .

4 - E.g., called on a non- list.

5 -
(Interlisp- D) An error with the local disk drive.

9.22

ERRORN
ERRORMESS

NON-NUMERIC ARG NIL
HELPFLAG NIL

BREAKCHECK T

JSYS ERROR TRAP
AT LOCATION JSYS

CONTINUE
JSYS ERROR TRAP AT LOCATION

ILLEGAL INSTRUCTION
ASSEMBLE

CONTINUE JSYS ERROR

CAN’T CONTINUE
may START

SYSTEM ERROR

STACK OVERFLOW

CAR

STACK OVERFLOW IN GC - COMPUTATION LOST
(RESET)

ILLEGAL RETURN
RETURN PROG

ARG NOT LIST RPLACA

HARD DISK ERROR

ERRORS AND BREAK HANDLING

6 -
Via or

7 -
Attempt either to or to with something other than .

8 -
when not inside of a , or to nonexistent label.

9 -
From or , page 6.2.

10 -
A numeric function e.g., , , , expected a number.

11 -
Attempted to create a litatom (via , or typing one in, or reading from a �le)
with too many characters. In Interlisp- D, the maximum number of characters in a
litatom is 255. In Interlisp- 10, the maximum is 127 characters.

12 -
No room for any more (new) atoms.

In Interlisp- 10, the atom hash table will automatically expand by a speci�ed number
of pages each time it �lls up until an upper limit of 32K atoms is reached.

13 -
From an I/O function, e.g., , , .

14 -
E.g., , , , etc., given a non- atomic arg.

15 -
� 30, excluding the terminal.

16 - From an input function, e.g., , , . After the error, the �le will
then be closed.

Note: The entries on (page 9.16) are processed before the �le
is closed, so that the user can intercept and process this error via an entry on

, thereby preventing the �le from being closed. It is also possible
to use an entry to return a character as the value of the call
to , and the program will continue, e.g. returning ‘‘ ’’ may be used to
complete a read operation.

17 - Call to (page 9.14).

18 - Control- B was typed.

19 -
A stack function expected a stack position and was given something else. This
might occur if the arguments to a stack function are reversed. Also occurs if user
speci�ed a stack position with a function name, and that function was not found

9.23

ATTEMPT TO SET NIL
SET SETQ

ATTEMPT TO RPLAC NIL
RPLACA RPLACD NIL NIL

UNDEFINED OR ILLEGAL GO
GO PROG GO

FILE WON’T OPEN
INFILE OUTFILE

NON-NUMERIC ARG
IPLUS ITIMES IGREATERP

ATOM TOO LONG
PACK

ATOM HASH TABLE FULL

FILE NOT OPEN
READ PRINT CLOSEF

ARG NOT LITATOM
SETQ PUTPROP GETTOPVAL

TOO MANY FILES OPEN

END OF FILE READ READC RATOM

ERRORTYPELST

ERRORTYPELST
ERRORTYPELST

ERRORX]

ERROR ERROR

BREAK

ILLEGAL STACK ARG

Error List

on the stack. See page 7.1.

20 -
Artifact of bootstrap. Never occurs after has been de�ned as described
earlier.

21 - System will �rst initiate a garbage collection of array space, and if no array space
is reclaimed, will then generate this error.

22 -
(Interlisp- 10) Includes no more disk space, disk quota exceeded, directory full, too
many jfbs, job full.

23 -
File name does not correspond to a �le in the corresponding directory. Can also
occur if �le name is ambiguous.

Interlisp is initialized with an entry on (page 9.16) to call
for error 23. will search alternate directories or perform

spelling correction on the connected directory. If fails, then the user
will see this error.

24 -
Date does not agree with date of , or �le is not a sysout �le at all (see
page 14.3).

25 -
A form ends in a non- list other than , e.g., .

26 -
See hash array functions, page 2.35.

27 - Catch- all error. Currently used by , , , , ,
, etc.

28 -
or given an argument that is not a pointer to the beginning of an array

(see page 2.33).

29 -
(Interlisp- 10) From or (see page 22.20).

30 -
A released stack pointer was supplied as a stack descriptor for a purpose other than
as a stack pointer to be re-used (see page 7.1).

31 -
Following a garbage collection, if a su�cient amount of words has not been
collected, and there is no un- allocated space left in the system, this error is
generated.

32 -
Before a �eld of a user data type is changed, the type of the item is �rst checked

9.24

FAULT IN EVAL
FAULTEVAL

ARRAYS FULL

FILE SYSTEM RESOURCES EXCEEDED

FILE NOT FOUND

ERRORTYPELST
SPELLFILE SPELLFILE

SPELLFILE

BAD SYSOUT FILE
MAKESYS

UNUSUAL CDR ARG LIST
NIL (CONS T . 3)

HASH TABLE FULL

ILLEGAL ARG PUTD EVALA ARG FUNARG ALLOCATE
RPLSTRING

ARG NOT ARRAY
ELT SETA

ILLEGAL OR IMPOSSIBLE BLOCK
GETBLK RELBLK

STACK PTR HAS BEEN RELEASED

STORAGE FULL

ATTEMPT TO USE ITEM OF INCORRECT TYPE

ERRORS AND BREAK HANDLING

to be sure that it is of the expected type. If not, this error is generated (see page
3.14).

33 -
The argument is not a valid user data type number (see page 3.14).

34 -
All available user data types have been allocated. (see page 3.14).

35 -
In a or expression.

36 -
Attempt to enable a user interrupt character when all 9 user channels are currently
enabled (see page 9.17).

37 -
(Interlisp- 10) Occurs when a is executed from within a read- macro function
and the next token is a or a (see page 6.36).

38 -
The argument was expected to be a valid readtable (see page 6.32).

39 -
The argument was expected to be a valid terminal table (see page 6.40).

40 -
(Interlisp- 10) An attempt was made to swap in a function/array which is too large
for the swapping bu�er. See , page 22.26.

41 -
(Interlisp- 10) Attempt to open a �le that user does not have access to. Also
reference to unassigned device.

42 -
Illegal character in �le speci�cation, illegal syntax, e.g. in Interlisp- 10, two ’s etc.

43 - Error corresponding to ‘‘hard’’ user- interrupt character. See page 9.17.

44 -
Unbound atom error. When this occurs, a variable (atom) was used which had
neither a stack binding (wasn’t an argument to a function nor a variable)
nor a top level value. The ‘‘culprit’’ () is the atom. Note
that if DWIM corrects the error, no error occurs and the error number is not set.
However, if an error is going to occur, whether or not it will cause a break, the
error number will be set.

45 -
Unde�ned function error. When is occurs, a form was evaluated whose function
position () does not have a de�nition as a function. Culprit is the form.

46 -
This error is generated if is given an unde�ned function. Culprit is

9.25

ILLEGAL DATA TYPE NUMBER

DATA TYPES FULL

ATTEMPT TO BIND NIL OR T
PROG LAMBDA

TOO MANY USER INTERRUPT CHARACTERS

READ-MACRO CONTEXT ERROR
READ

)]

ILLEGAL READTABLE

ILLEGAL TERMINAL TABLE

SWAPBLOCK TOO BIG FOR BUFFER

SETSBSIZE

PROTECTION VIOLATION

BAD FILE NAME
;

USER BREAK

UNBOUND ATOM

PROG
(CADR ERRORMESS)

UNDEFINED CAR OF FORM

CAR

UNDEFINED FUNCTION
APPLY (LIST

Error List

47 - The user typed Control- E.

48 -
(Interlisp- D) Under�ow during �oating- point operation.

49 -
(Interlisp- D) Over�ow during �oating- point operation.

50 - (Interlisp- D) Over�ow during integer operation.

51 -
(Interlisp- D) Signaled by hash array operations when given an argument that is not
a hash array. (In Interlisp- 10, this still triggers error 28,).

52 -
(Interlisp- D) Signaled when too many arguments are given to a lambda- spread,
lambda- nospread, or nlambda- spread function.

In addition, many system functions, e.g., , , , , , etc, also generate
errors with appropriate messages by calling (see page 9.14) which causes error number 17.

9.26

)

CONTROL-E

FLOATING UNDERFLOW

FLOATING OVERFLOW

OVERFLOW

ARG NOT HARRAY

ARG NOT ARRAY

TOO MANY ARGUMENTS

DEFINE ARGLIST ADVISE LOG EXPT
ERROR

FN AR GS

