CHAPTER 9

ERRORS AND BREAK HANDLING

Occasionally, while a program is running, an error may occur which will stop the computation. A coding
mistake may have caused the wrong arguments to be passed to a function, or the programmer may have
not forseen a particular unusual situation which came up, causing a function to try doing something
illegal. Interlisp provides extensive facilities for detecting and handling error conditions, to enable testing,
debugging,and revising of imperfect programs.

Errors can be caused in di erent ways. As mentioned above, an Interlisp primitive function may signa an
error if given illegal arguments, for example, PLUS will cause an error if its arguments are not numbers. It
is also possible to interrupt a computation at any time by typing one of the ‘‘interrupt characters,’”’ such as
control- D or control- E (the Interlisp- D interrupt characters are listed on page 18.1; those for Interlisp- 10
on page 22.1). Finally, as an aid to debugging, the programmer can specify that certain functions should
cause an error automatically whenever they are entered (see page 10.1). This alows examination of the
context within the computation.

When an eror occurs, the system can either! reset and unwind the stack, or go into a ‘‘break’’, an
environment where the user can examine the state of the system at the point of the error, and attempt to
debug the program. Within a break, Interlisp oers an extensive set of ‘‘break commands’, which assist
with debugging.

This chapter explains what happens when errors occur. Breaks and break commands are given which
allow the user to handle program errors. Finaly, advanced facilities for modifying and extending the
error mechanism are presented.

9.1 BREAKS

One of the most useful debugging facilities in Interlisp is the ability to put the system into a ‘‘break’’,
stopping a computation at any point and allowing the user to interrogate the state of the world and aect
the course of the computation. A break appears to the user like a top-level executive, except that a break
uses the prompt character ‘“: '’ to indicate it is ready to accept input(s), in the same way that ** '’ is used
a the top-level. However, a break saves the environment where the break occurred, so that the user may
evaluate variables and expressions in the environment that was broken. In addition, the break program
recognizes a number of useful ‘‘break commands'’, which provide an easy way to interrogate the state of
the broken computation.

Note: In Interlisp- D, the break package has been extended to include window operations (see page 20.10).

IThe mechanism used for deciding whether to unwind the stack or to go into a break is described on
page 9.10. The user can modify this mechanism.

9.1

Breaks

Breaks may be entered in several dierent ways. Some interrupt characters (page 9.17) automatically
cause a break to be entered whenever they are typed. Functions errors may also cause a break, depending
on the depth of the computation (see page 9.10). Finaly, Interlisp provides functions which make it
easy to ‘‘break’’ suspect functions so that they aways cause a break whenever they are entered, to alow
examination and debugging (see page 10.4).

Within a break the user has access to all of the power of Interlisp; he can do anything that he can do at
the top-level executive. For example, the user can evaluate an expression, see that the value is incorrect,
call the editor, change the function, and evaluate the expression again, all without leaving the break. The
user can even type in commands to the programmer’s assistant (page 8.1), e.g. to redo or undo previously
executed events, including break commands.

Similarly, the user can prettyprint functions, dene new functions or redene old ones, load a le, compile
functions, time a computation, etc. In short, anything that he can do at the top level can be done while
inside of the break. In addition the user can examine the stack (see page 7.1), and even force a return
back to some higher function via the function RETFROM or RETEVAL.

It is important to emphasize that once a break occurs, the user is in complete control of the ow of
the computation, and the computation will not proceed without speci ¢ instruction from him. If the
user types in an expression whose evaluation causes an error, the break is maintained. Similarly if the
user aborts a computation initiated from within the break (by typing control- E), the break is maintained.
Only if the user gives one of the commands that exits from the break, or evaluates a form which does a
RETFROM or RETEVAL back out of BREAKL, will the computation continue. 2

The basic function of the break package is BREAKL. Note that BREAKL isjust another Interlisp function,
not a specia system feature like the interpreter or the garbage collector.It has arguments, and returns a
value, the same as any other function. The value returned by BREAK1 is caled ‘‘the value of the break.”
The user can specify this value explicitly by using the RETURN command described below. But in most
cases, the value of a break is given implicitly, via a GO or OK command, and is the result of evaluating
‘““the break expression,’”” BRKEXP, which is one of the arguments to BREAKL. For more information on
the function BREAK1, see page 9.11.

The break expression, stored in the variable BRKEXP, is an expression equivalent to the computation that
would have taken place had no break occurred. For example, if the user breaks on the function FQOO, the
break expression isthe body of the denition of FOO. When the user types OK or GO, the body of FOOis
evaluated, and its value returned as the value of the break, i.e.,, to whatever function called FOO. BRKEXP
is set up by the function that created the call to BREAKL. For functions broken with BREAK or TRACE,
BRKEXP is equivalent to the body of the denition of the broken function (see page 10.4). For functions
broken with BREAKI N, using BEFORE or AFTER, BRKEXP is NI L. For BREAKI N AROUND, BRKEXP is
the indicated expression (see page 10.5).

BREAK1 recognizes a large set of bresk commands. These are typed in without parentheses. In order
to facilitate debugging of programs that perform input operations, the carriage return that is typed to

2Except that BREAKL does not ‘‘turn o' control- D, i.e.,, a control- D will force an immediate return back
to the top level.

9.2

ERRORS AND BREAK HANDLING

complete the GO, OK, EVAL, etc. commands is discarded by BREAK1, so that it will not be part of the
input stream after the break.

&0

EVAL

RETURN FORM

[Break Command]
Evaluates BRKEXP, prints this value, and returns it as the value of the break.
Releases the break and allows the computation to proceed.

[Break Command]
Same as GO except that the value of BRKEXP is not printed.

[Break Command]
Same as OK except that the break is maintained after the evauation. The vaue
of this evauation is bound to the local variable ! VALUE, which the user can
interrogate. Typing GO or K following EVAL will not cause BRKEXP to be
reevaluated, but simply return the value of ! VALUE as the value of the break.
Typing another EVAL will cause reevaluation. EVAL is useful when the user is not
sure whether the break will produce the correct value and wishes to examine it
before continuing with the computation.

[Break Command]
FORM isevaluated, and returned asthe value of the break. For example, one could
use the EVAL command and follow this with RETURN (REVERSE ! VALUE) .

[Break Command]
Calls ERROR! and aborts the break, making it ‘‘goaway’’ without returning avaue.
This is a useful way to unwind to a higher level break. All other errors, including
those encountered while executing the GO, OK, EVAL, and RETURN commands,
maintain the break.

The following four commands refer to ‘‘the broken function.”” This is the function that caused the break,
whose name is stored in the BREAK1 argument BRKFN.

I EVAL

uB

[Bresk Command]
The broken function is rst unbroken, then the break expression is evaluated (and
the value stored in ! VALUE), and then the function is rebroken. This command is
very useful for dealing with recursive functions.

[Break Command]
Equivalent to ! EVAL followed by GO. The broken function is unbroken, the break
expression is evaluated, the function is rebroken, and then the break is exited with
the value typed.

[Break Command]
Equivalent to ! EVAL followed by OK. The broken function is unbroken, the break
expression is evaluated, the function is rebroken, and then the break is exited.

[Break Command]
Unbreaks the broken function.

[Break Command]
Resets the variable LASTPGS, which establishes a context for the commands ?=,
ARGS, BT, BTV, BTV*, EDI T, and | N? described below. LASTPCS is the position

9.3

Breaks

of a function call on the stack. It isinitialized to the function just before the call
to BREAK1, i.e., (STKNTH -1 ' BREAK1) 3

@treats the rest of the teletype line as its argument(s). It rst resets LASTPCS to
(STKNTH -1 ' BREAK1) and then for each atom on the line, @searches down
the stack for a call to that atom. The following atoms are treated specialy:

@ Do not reset LASTPOS to (STKNTH -1 ' BREAK1) but leave it as it was,
and continue searching from that point.

a number N
If negative, move LASTPOS down the stack N frames. If positive, move
LASTPOCS up the stack N frames.

/ The next atom on the line (which should be a number) specify that the
previous atom should be searched for that many times. For example, “‘@
FOO / 3" isequivdent to “‘@ FOO FOO FOO'.

= Resets LASTPCS to the value of the next expression, e.g., if the value
of FOO is a stack pointer, “‘@ = FOO FI E" will search for FI E in the
environment speci ed by (the value of) FOO.

For example, if the push- down stack looks like:

BREAK1 [9]
FOO [8]
COND [7]
FIE [6]
COND [5]
FIE [4]
COND [3]
FIE [2]
FUM [1]

then ““@ FI E COND’’ will set LASTPGS to the position corresponding to [5]; “‘@ @
COND’’ will then set LASTPCS to [3]; and “@FIE / 3 -1""to [1].

If @cannot successfully complete a search for function FN, it searches the stack
again from that point looking for a call to a function whose name is close to that
of FN, in the sense of the spelling corrector (page 15.13). If the search is till
unsuccessful, @types (FN NOT FOUND) , and then aborts.

When @ nishes, it types the name of the function at LASTPCS, i.e., (STKNAMVE
LASTPCS) .

@can be used on BRKCOVS (see page 9.12). In this case, the next command on
BRKCOMS is treated the same as the rest of the teletype line.

SWhen control passes from BREAK1, e.g. as a result of an EVAL, OK, GO, REVERT, ~ command, or via
a RETFROM or RETEVAL typed in by the user, (RELSTK LASTPOS) is executed to release this stack
pointer.

9.4

PB

ERRORS AND BREAK HANDLING

[Break Command]
This is a multi- purpose command. 4 Its most common use is to interrogate the
value(s) of the arguments of the broken function. For example, if FOO has three
arguments (X Y Z), then typing ?= to a break on FOO will produce:

1 ?
value of X
value of Y
value of Z

X
Y
Z

?= operates on the rest of the teletype line as its arguments. If the line is empty,
as in the above case, it operates on al of the arguments of the broken function. If
the user types ?= X (CAR Y), he will see the vaue of X, and the vaue of (CAR
Y) .5 The dierence between using ?= and typing X and (CAR Y) directly to
BREAK1 isthat ?= evaluates its inputs as of the stack frame LASTPCS, i.e, it uses
STKEVAL. This provides a way of examing variables or performing computations
as of a particular point on the stack. For example, @ FOO / 2 followed by ?= X
will allow the user to examine the value of X in the previous call to FOO, etc.

?= aso recognizes numbers asreferring to the correspondingly numbered argument,
i.e, it uses STKARG in this case. Thus

T@FIE
FI E
1?7= 2

will print the name and value of the second argument of Fl E.

?= can also be used on BRKCOMS (page 9.12, in which case the next command
on BRKCOME is treated as the rest of the teletype line. For example, if BRKCOVS
is (EVAL ?= (X Y) GO, BRKEXP will be evaluated, the values of X and Y
printed, and then the function exited with its value being printed.

[Break Command]
Prints the bindings of a given variable. Similar to ?=, except ascends the stack
starting from LASTPCS, and, for each frame in which the given variable is bound,
prints the frame name and vaue of the variable (with PRI NTLEVEL reset to (2

3)), eg.

: PB FOO
@ FN1: 3
@ FN2: 10

@ TOP: NOBIND

4In fact, ?= is a universa mnemonic for displaying argument names and their corresponding values. In
addition to being a break command, ?= is an edit macro which prints the argument names and values
for the current expression (page 17.37), and a read- macro (actually ? is the read- macro character) which
does the same for the current level list being read.

5The value of each variable is printed with the function SHOWPRI NT (page 6.17), so that if
SYSPRETTYFLG= T, the value will be prettyprinted.

9.5

Breaks

PB is dso a programmer’s assistant command (page 8.14) that can be used when
not in a break. PB isimplemented via the function PRI NTBI NDI NGS.

BT [Break Command]
Prints a backtrace of function names only starting at LASTPCS. The severa nested
calls in system packages such as break, edit, and the top level executive appear as
the single entries ** BREAK** | **ED|I TOR** , and ** TOP** respectively.

BTV [Break Command]
Prints a backtrace of function names with variables beginning at LASTPCS.

The value of each variable is printed with the function SHOWPRI NT (page 6.17),
so that if SYSPRETTYFLG= T, the value will be prettyprinted.

BTV+ [Break Command]
Same as BTV except also prints local variables and arguments to SUBRs.

BTV* [Break Command]
Same as BTV except prints arguments to SUBRs, local variables, and temporaries
of the interpreter, i.e. eval blips (see page 7.10).

BTV! [Break Command]
Same as BTV except prints everything on the stack.

BT, BTV, BTV+, BTV*, and BTV! al take optional functional arguments. These arguments are used to
choose functions to be skipped on the backtrace. As the backtrace scans down the stack, the name of
each stack frame is passed to each of the functional arguments to the backtrace command. If any of
these functions returns a non- NI L value, then that frame is skipped, and not shown in the backtrace. For
example, BT SUBRP will skip all SUBRs, BTV (LAMBDA (X) (NOT (MEMB X FOCFNS))) will skip
al but those functions on FOOFNS. If used on BRKCOVS (page 9.12) the functional argument is no longer
optional, i.e, the next element on BRKCOVS must either be a list of functional arguments, or NI L if no
functional argument isto be applied.

For BT, BTV, BTV+, BTV*, and BTV!, if control- P is used to change a printlevel during the backtrace,
the printlevel will be restored after the backtrace is completed.

The value of BREAKDELI M TER, initially " ¢, is printed to delimit the output of ?= and backtrace
commands. This can be reset (eg. to ", ") for more linear output.

ARGS [Break Command]
Prints the names of the variables bound at LASTPGCS, i.e, (VARI ABLES LASTPQOS)
(page 7.5). For most cases, these are the arguments to the function entered at that
position, i.e, (ARGLI ST (STKNAME LASTPOS)) .

REVERT [Break Command]
Goes back to position LASTPOS on stack and reenters the function called at that
point with the arguments found on the stack. If the function is not already broken,
REVERT rst breaks it, and then unbreaks it after it is reentered.

REVERT can be given the position using the conventions described for @ eg.,
REVERT FQO -1 isequivaent to @ FOO - 1 followed by REVERT.

REVERT is useful for restarting a computation in the situation where a bug is

9.6

ORI G NAL

ERRORS AND BREAK HANDLING

discovered at some point below where the problem actually occurred. REVERT
essentially says ‘‘go back there and start over in a break.” REVERT will work
correctly if the names or arguments to the function, or even its function type, have
been changed.

[Bresk Command]
For use in conjunction with BREAKMACROS (see page 9.12). Form is (ORI G NAL
. covs). covs are executed without regard for BREAKMACROS. Useful for
redening a break command in terms of itself.

The following two commands are for use only with unbound atoms or undened function breaks.

= FORM

-> EXPR

[Bresk Command]
Can only be used in a break following an unbound atom error. Sets the atom to
the value of FORM , exits from the break returning that value, and continues the
computation, e.g.,

UNBOUND ATOM

(FOO BROKEN)
.= (COPY FIE)

sets FOO and goes on.
Note: FORM may be given in the form FN[ARGS] .

[Break Command]
Can be used in a break following either with unbound atom error, or an unde ned
function error. Replaces the expression containing the error with EXPR (not the
value of EXPR), and continues the computation. - > does not just change BRKEXP;
it changes the function or expression containing the erroneous form. In other
words, the user does not have to perform any additional editing.

For example,

UNDEFI NED CAR OF FORM

(FOO1L BROKEN)
:-> FOO

changes the FOOL to FOO and continues the computation. ExXPR need not be
atomic, e.g.,

UNBOUND ATOM

(FOO BROKEN)
. -> (QUOTE FOO)

For undened function breaks, the user can specify afunction and initial arguments,
eg.,

UNDEFI NED CAR OF FORM

9.7

Breaks

(MEVBERX BROKEN)
:-> MEMBER X

Note that in the case of aundened function error occurring immediately following
a cal to APPLY (e.g., (APPLY X Y) where the value of X is FOO and FQO is
undened), or a unbound atom error immediately following a call to EVAL (eg.,
(EVAL X), where the value of X is FOO and FQOO is unbound), there is no
expression containing the oending atom. In this case, - > cannot operate, so ? is
printed and no action is taken.

EDI T [Break Command]
Designed for use in conjunction with breaks caused by errors. Facilitates editing
the expression causing the break:

NON- NUVERI C ARG
NI L

(1 PLUS BROKEN)
"EDI T

IN FOO.. .

(1 PLUS X 2)
EDIT

*(3Y)

* OK

FOO

and the user can continue by typing OK, EVAL, etc.

This command is very simple conceptually, but complicated in its implementation by all of the exceptional
cases involving interactions with compiled functions, breaks on user functions, error breaks, breaks within
breaks, et al. Therefore, we shall give the following simpli ed explanation which will account for 90% of
the situations arising in actual usage. For those others, EDI T will print an appropriate failure message
and return to the break.

EDI T begins by searching up the stack beginning at LASTPOS (set by @command, initially position of the
break) looking for a form, i.e, an interna call to EVAL. Then EDI T continues from that point looking for
a cal to an interpreted function, or to EVAL. It then calls the editor on either the EXPR or the argument
to EVAL in such a way as to look for an expression EQ to the form that it rst found. It then prints
the form, and permits interactive editing to begin. Note that the user can then type successive 0’sto the
editor to see the chain of superforms for this computation.

If the user exits from the edit with an OK, the break expression is reset, if possible, so that the user can
continue with the computation by simply typing OK. (Note that evaluating the new BRKEXP will involve
reevaluating the form that causes the break, so that if (PUTD (QUOTE (FQOO)) BIGCOWPUT ATION)
were handled by EDI T, BiGcowur ATION would be reevaluated) However, in some situations, the
break expression cannot be reset. For example, if a compiled function FQOO incorrectly called PUTD and
caused the error ARG NOT ATOM followed by a break on PUTD, EDI T might be able to nd the form
headed by FOO, and also nd that form in some higher interpreted function. But after the user corrected
the problem in the FOO-form, if any, he would still not have in any way informed EDI T what to do about
the immediate problem, i.e, the incorrect call to PUTD. However, if FOO were interpreted EDI T would
nd the PUTD form itself, so that when the user corrected that form, EDI T could use the new corrected

9.8

ERRORS AND BREAK HANDLING

form to reset the break expression.

If FOO is compiled:

FQOO compiled

ARG NOT ATOM

(FUM

(PUTD BROKEN)

EDIT

IN FIE. ..

(FOO X)

EDIT

*(2 (CAR X))

* OK

NOTE: BRKEXP NOT CHANGED

FIE
T ?2=

The two cases are shown below:

FQO interpreted

ARG NOT ATQOM
(PUTD BROKEN)
CEDIT

IN FQO. ..
(PUTD X)

EDIT

*(2 (CAR X))
*OK

K

PUTD

U = (FUM
:(SETQ U (CAR U))
FUM
K
PUTD
I N? [Break Command]
Similar to EDI T, but just prints parent form, and superform, but does not call
editor, eg.,
ATTEMPT TO RPLAC NI L
T
(RPLACD BROKEN)
N \te
FOO (RPLACD X 2)

Although EDI T and | N? were designed for error breaks, they can also be useful for user breaks. For
example, if upon reaching a break on his function FOO, the user determines that there is a problem in
the call to FOO, he can edit the calling form and reset the bresk expression with one operation by using
EDI T. The following two protocol’s with and without the use of EDI T, illustrate this:

Without EDI T: With EDI T:

(FOO BROKEN) (FOO BROKEN)

- 9=

X =(ABO X =(ABC

Y =D Y =D

:BT CEDIT
*(SW 2 3)

FOO K

SETQ FI E®

COND K

PROG FOO

FIE

9.9

When to Break

COND nd which function
FOO is called from
(aborted with "E)

: EDI TF(FI E)

ED T

*F FOO P

(FOO V U edit it

*(SW2 3)

*OK

FI E

(SETQ Y X) reset X and Y

(ABO

: (SETQQ X D)

-<><:|‘;)U

8Ruu

(A B QO check them

-

9.2 WHEN TO BREAK

When an error occurs, the system has to decide whether to reset and unwind the stack, or go into a
break. In the middle of a complex computation, it is usualy helpful to go into a break, so that the
user may examine the state of the computation. However, if the computation has only proceeded a little
when the error occurs, such as when the user mistypes a function name, the user would normaly just
terminate a break, and it would be more convenient for the system to simply cause an error and unwind
the stack in this situatuation. The decision over whether or not to induce a break depends on the depth
of computation, and the amount of time invested in the computation. The actual algorithm is described
in detail below; suce it to say that the parameters aecting this decision have been adjusted empirically
so that trivial type-in errors do not cause breaks, but deep errors do.

(BREAKCHECK ERR ORPOS ERXN) [Function]
BREAKCHECK is called by the error routine to decide whether or not to induce
a break when a error occurs. ERR ORPOS is the stack position at which the error
occurred; ERXN is the error number. Returns T if a break should occur; NI L

otherwise.

BREAKCHECK returns T (and a break occurs) if the ‘‘computation depth’’ is greater
than or equal to HELPDEPTH. HELPDEPTH isinitially set to 7, arrived at empiricaly
by taking into account the overhead due to LI SPX or BREAK.

If the depth of the computation is less than HELPDEPTH, BREAKCHECK next
calculates the length of time spent in the computation. If this time is greater than

6X and Y have not been changed, but BRKEXP has.

9.10

ERRORS AND BREAK HANDLING

HELPTI ME milliseconds, initially set to 1000, then BREAKCHECK returns T (and a
break occurs), otherwise NI L.

BREAKCHECK determines the ‘‘computation depth’” by searching back up the stack looking for an
ERRORSET frame (ERRORSETSs indicate how far back unwinding is to take place when an error occurs,
see page 9.15). At the same time, it counts the number of internal calls to EVAL. As soon as (if)
the number of calls to EVAL exceeds HELPDEPTH, BREAKCHECK immediately stops searching for an
ERRORSET and returns T. Otherwise, BREAKCHECK continues searching until either an ERRORSET is
found or the top of the stack is reached. (Note: If the second argument to ERRORSET is | NTERNAL, the
ERRORSET is ignored by BREAKCHECK during this search.) BREAKCHECK then counts the number of
function calls between the error and the last ERRORSET, or the top of the stack. The number of function
calls plus the number of calls to EVAL (aready counted) is used as the ‘‘computation depth’’.

BREAKCHECK determines the computation time by subtracting the value of the variable HELPCLOCK from
the value of (CLOCK 2), the number of milliseconds of compute time (see page 14.10). HELPCLOCK
is rebound to the current value of (CLOCK 2) for each computation typed in to LI SPX or to a break.
The time criterion for breaking can be suppressed by setting HELPTI ME to NI L (or a very big number),
or by setting HELPCLOCK to NI L. Note that setting HELPCLOCK to NI L will not have any eect beyond
the current computation, because HELPCLOCK is rebound for each computation typed in to LI SPX and
BREAK.

The user can suppress al error breaks by setting the top level binding of the variable HELPFLAG to
NI L using SETTOPVAL (HELPFLAG is bound as a local variable in LI SPX, and reset to the global value
of HELPFLAG on every LI SPX line, so just SETQing it will not work.) If HELPFLAG= T (the initial
value), the decision whether to cause an error or break is decided based on the computation time and
the computation depth, as described above. Findly, if HELPFLAG= BREAK! , a break will always occur
following an error.

9.3 BREAK1

The basic function of the break package is BREAKL, which creates a break. A break appears to be a

regular executive, with the prompt ‘" '’, but BREAK1 also detects and interpretes break commands (page
9.3).
(BREAK1 BRKEXP BRKWHEN BRKFN BRK COMS BRKTYPE ERR ORN) [NLambda Function]

If BRKWHEN is NI L, BRKEXP is evaluated and returned as the value of BREAKL.
Otherwise a break occurs and commands are then taken from BRK covs or the
terminal and interpreted. All inputs not recognized by BREAK1 are simply passed
on to the programmer's assistant.

When a break occurs, if ERR ORN is a list whose CAR is a number, ERRORMESS
is caled to print an identifying message. If ERR ORN is a list whose CAR is not
a number, ERRORMESSL is caled. Otherwise, no preliminary message is printed.
Following this, the message (BRKFN br oken) is printed.

Since BREAKL itself calls functions, when one of these is broken, an innite loop
would occur. BREAK1 detects this situation, and prints Break within a break

911

BREAK1

on FN, and then simply calls the function without going into a break.

The commands GO, ! GO, OK, ! OK, RETURN and ”~ are the only ways to leave
BREAK1. The command EVAL causes BRKEXP to be evaluated, and saves the
value on the variable ! VALUE. Other commands can be dened for BREAKL via
BREAKMACRGCS (below).

BRKTYPE is NI L for user bresks, | NTERRUPT for control-H breaks, and
ERRORX for error breaks. For breaks when BRKTYPE is not NI L, BREAKL will
clear and save the input buer. If the bresk returns a value (i.e, is not aborted
via” or control- D) the input buer will be restored.

The fourth argument to BREAK1 is BRK covs , a list of bresk commands that BREAKL interprets and
executes as though they were keyboard input. One can think of BRK covs as another input le which
always has priority over the keyboard. Whenever BR< covs = NI L, BREAK1 reads its next command from
the keyboard. Whenever BRK covs is not NI L, BREAKL takes (CAR BRKCOWS) as its next command
and sets BRK covs to (CDR BRKCOMVS) . For example, suppose the user wished to see the value of the
variable X after a function was evaluated. He could set up a bresk with BrR< covs = (EVAL (PRI NT
X) OK), which would have the desired eect. Note that if BRK cows isnot NI L, the value of a break
command is not printed. If you desire to see a value, you must print it yourself, asin the above example.
The function TRACE (page 10.4) uses BRK COVs : it sets up a break with two commands; the rst one
prints the arguments of the function, or whatever the user speci es, and the second is the command GO,
which causes the function to be evaluated and its value printed.

Note: If an error occurs while interpreting the BRK covs commands, BRK covs isset to NI L, and a full
interactive break occurs.

The break package has a facility for redirecting ouput to a le. All output resulting from BRK covs will
be output to the vaue of the variable BRKFI LE, which should be the name of an open le. Output due
to user typein isnot aected, and will always go to the terminal. BRKFI LE is initiadly T.

BREAKMACROS [Variable]
BREAKMACROS is a list of the form ((NAME ; COM 14 oM 1) (NAME
COM 54 CoM 5,)). Whenever an atomic command is given to BREAKL, it

rst searches the list BREAKMACROS for the command. If the command is equal
to NAVE ;, BREAKL simply appends the corresponding commands to the front of
BRK covs , and goes on. If the command is not found on BREAKMACROS, BREAKL
then checks to see if it is one of the built in commands, and nally, treats it as a
function or variable as before.”

Examplee The command ARGS could be dened by including on BREAKMACROS
the form: (ARGS (PRI NT (VARI ABLES LASTPCS T)))

(BREAKREAD TYPE) [Function]
Useful within BREAKMACRGCS for reading arguments. |If BRKCOMS is non-NI L (the
command in which the call to BREAKREAD appears was not typed in), returns the
next break command from BRKCOMS, and sets BRKCOMVS to (CDR BRKCOMS) .

7If the command is not the name of adened function, bound variable, or LI SPX command, BREAK1 will
attempt spelling correction using BREAKCOVSLST as a spelling list. If spelling correction is unsuccessful,
BREAK1 will go ahead and call LI SPX anyway, since the atom may also be a misspelled history command.

9.12

ERRORS AND BREAK HANDLING

If BRKCOVS is NI L (the command was typed in), then BREAKREAD returns either
the rest of the commands on the line as a list (if TYPE = LI NE) or just the next
command on the line (if TYPE isnot LI NE).

For example, the BT command isdened as(BAKTRACE LASTPOS NI L (BREAKREAD
"LINE) O T). Thus, if the user types BT, the third argument to BAKTRACE will
be NI L. If the user types BT SUBRP, the third argument will be (SUBRP) .

BREAKRESETFORMS [Variable]
If the user isdeveloping programs that change the way a user and Interlisp normally
interact (e.g., change or disable the interrupt or line-editing characters, turn o
echoing, etc.), debugging them by breaking or tracing may be di cult, because
Interlisp might be in a‘‘funny’’ state at the time of the break. BREAKRESETFORNMB
is designed to solve this problem. The user puts on BREAKRESETFORNMS
expressions suitable for use in conjunction with RESETFORM or RESETSAVE
(page 9.19). When a break occurs, BREAK1 evaluates each expression on
BREAKRESETFORMS before any interaction with the termina, and saves the
values. When the break expression is evaluated via an EVAL, OK, or GO, BREAK1
rst restores the state of the system with respect to the various expressions on
BREAKRESETFORMS. When (if) control returns to BREAK1, the expressions on
BREAKRESETFORMS are again evaluated, and their values saved. When the break
is exited with an OK, GO, RETURN, or ~ command, by typing control-D, or by a
RETFROM or RETEVAL typed in by the user,® BREAK1 again restores state. Thus
the net eect isto make the break invisible with respect to the user's programs,
but nevertheless alow the user to interact in the bresk in the norma fashion.

As mentioned earlier, BREAKL detects ‘‘Break within a break’’ situations, and avoids
innite loops. If the loop occurs because of an error, BREAK1 simply rebinds
BREAKRESETFORMS to NI L, and calls HELP. This situation most frequently occurs
when there isabug in a function caled by BREAKRESETFORMS.

Note: SETQ expressions can aso be included on BREAKRESETFORMS for saving
and restoring system parameters, eg. (SETQ LI SPXH STORY NI L), (SETQ
DW MFLG NI L), etc. These are handled specially by BREAKL in that the current
value of the variable is saved before the SETQ is executed, and upon restoration,
the variable is set back to this value.

9.4 ERROR FUNCTIONS

(ERRORX ERXM) [Function]
The entry to the error routines. If ERxM = NI L, (ERRORN) is used to determine
the error- message. Otherwise, (SETERRORN (CAR ERXM) (CADR ERXM)) is
performed, ‘‘setting’’ the error number and argument. Thus following either

8All user type-in is scanned in order to make the operations undoable as described on page 8.22. At
this point, RETFROMs and RETEVALs are also noticed. However, if the user types in an expression
which calls a function that then does a RETFROM, this RETFROM will not be noticed, and the eects of
BREAKRESETFORMS will not be reversed.

9.13

Error Functions

(ERRORX " (10 T)) or (PLUS T), (ERRORN) is (10 T). ERRORX cdls
BREAKCHECK, and either induces a break or prints the message and unwinds to
the last ERRORSET (page 9.10). Note that ERRORX can be caled by any program
to intentionally induce an error of any type. However, for most applications, the
function ERROR will be more useful.

(ERROR MESS1 MESS2 NOBREAK) [Function]

(HELP wMESS1 MESS2

(SHOULDNT MESS)

Prints Mess1 (using PRI N1), followed by a space if MESS1 is an atom, otherwise a
carriage return. Then Mess2 isprinted (using PRI N1 if MESS2 isa string, otherwise
PRI NT). For example, (ERROR "NON- NUMERI C ARG' T) prints

NON- NUMERI C ARG
T

and (ERROR ' FOO "NOT A FUNCTION') prints FOO NOT A FUNCTI ON. If
both MESs1 and MESS2 are NI L, the message printed is simply ERROR.

If NOBREAK = T, ERROR prints its message and then calls ERROR! .2 Otherwise it
cals (ERRORX ' (17 (MESSL . MESS2))), i.e, generates error number 17, in
which case the decision as to whether or not to break, and whether or not to print
a message, is handled as per any other error.

BRKTYPE) [Function]
Prints MESS1 and Mess2 similar to ERROR, and then calls BREAKL passing BRKTYPE
as the BRKTYPE argument. If both mMessi and mess2 are NI L, HELP! is used
for the message. HELP is a convenient way to program a default condition, or to
terminate some portion of a program which the computation is theoreticaly never
supposed to reach.

[Function]
Useful in those situations when a program detects a condition that should
never occur. Calls HELP with the message arguments MESS and " Shoul dn’ t
happen! " and a BRKTYPE argument of ' ERRORX.

(ERROR!) [Function]
Programmable control- E; immediately returns from last ERRORSET or resets.

(RESET) [Function]
Programmable control- D; immediately returns to the top level.

(ERRORN) [Function]
Returns information about the last error in the form (NUM EXP) where NUM s
the error number (page 9.22) and ExP is the expression which was (would have
been) printed out after the error message. For example, following (PLUS T),
(ERRORN) would return (10 T).

(SETERRORN NuM MESS) [Function]

Sets the value returned by ERRORN to (NUM MESS) .

9unless the value of HELPFLAG is BREAK! , in which case a break will always occur (see page 9.11).

9.14

ERRORS AND BREAK HANDLING

(ERRORMESS U) [Function]
Prints message corresponding to an ERRORN that yielded u. For example,
(ERRORMESS ' (10 T)) would print

NON- NUMERI C ARG
T

(ERRORMESS1 MESS1 MESS2 MESS3) [Function]
Prints the message corresponding to a HELP or ERROR break.

(ERRORSTRI NG N) [Function]
Returns as a new string the message corresponding to error number N, eg.,
(ERRORSTRI NG 10) = "NON- NUMERI C ARG' .

(ERRORSET FORM FLAG _) [Function]
Performs (EVAL FOrRM). If no error occurs in the evaluation of FOrRM , the value
of ERRORSET is a list containing one element, the value of (EVAL ForM). If an
error did occur, the value of ERRORSET is NI L.

Note that ERRORSET is a lambda function, so its arguments are evaluated before
it is entered, i.e., (ERRORSET X) means EVAL is caled with the value of X. In
most cases, ERSETQ and NLSETQ (described below) are more useful.

The argument FLA G controls the printing of error messages if an error occurs:

If FLAG=T, the error message is printed; if FLAG= N L it is not (unless
NLSETQGAG is NI L, see below). Note that if a break occurs below an ERRORSET,
the message is printed regardless of the value of FLAG.

If FLAG= | NTERNAL, this ERRORSET is ignored for the purpose of deciding
whether or not to break or print a message (see page 9.10). However, the
ERRORSET isin eect for the purpose of ow of control, i.e, if an error occurs,
this ERRORSET returns NI L.

If FLA G= NOBREAK, no break will occur, even if the time criterion for breaking
is met. Note that FLA G= NOBREAK will not prevent a break from occurring if
the error occurs more than HELPDEPTH function calls below the errorset, since
BREAKCHECK will stop searching before it reaches the ERRORSET. To guarantee
that no bresk occurs, the user would also either have to reset HELPDEPTH or

HELPFLAG.

(ERSETQ FORM) [NLambda Function]
Performs (ERRORSET ' ForM T), evauating FORM and printing error messages.

(NLSETQ FORM) [NLambda Function]
Performs (ERRORSET 'ForRM NI L), evaluating FORM without printing error
messages.

NLSETQGAG [Variable]

If NLSETQGAG is NIL, error messages will print, regardless of the FLAG
argument of ERRORSET. NLSETQGAG e ectively changes all NLSETQs to ERSETQs.
NLSETQGAG is initidly T.

9.15

Error Handling by Error Type

9.5 ERROR HANDLING BY ERROR TYPE

Occasionally the user may want to treat certain types of errors di erently from others, e.g., dways break,
never break, or perhaps take some corrective action. This can be accomplished via ERRORTYPELST :

ERRORTYPELST [Variable]
ERRORTYPELST is a list of elements of the form (NUM FORM 4 FORM) »
where NuM is one of the error numbers (page 9.22). During an error,
after BREAKCHECK has been completed, but before any other action is taken,
ERRORTYPELST is searched for an element with the same error number as that
causing the error. If one is found, the corresponding forms are evaluated, and if
the last one produces a non-NI L value, this value is substituted for the o ender,
and the function causing the error is reentered.

Within ERRORTYPELST entries, the following variables may be useful:

ERRORMESS [Variable]
CAR is the error number, CADR the ‘‘oender’’, eg., (10 NI L) corresponds to a
NON- NUMERI C ARG NI L error.

ERRORPCS [Variable]
Stack pointer to the function in which the error occurred, eg., (STKNAME
ERRORPCS) might be | PLUS, RPLACA, | NFI LE, etc.

Note: If the error is going to be handled by a RETFROW, RETTO, or a RETEVAL
in the ERRORTYPELST entry, it probably is a good idea to rst release the stack
pointer ERRORPCS, e.g. by performing (RELSTK ERRORPOS) .

BREAKCHK [Variable]
Vaue of BREAKCHECK, i.e.,, T means a break will occur, NI L means one will not.
This may be reset within the ERRORTYPELST entry.

PRI NTMSG [Variable]
If T, means print error message, if NI L, don’t print error message, i.e., corresponds
to second argument to ERRORSET. The user can force or suppress the printing of
error message for various errortypes by including on ERRORTYPELST an expression
which explicitly sets PRI NTMSG.

For example, putting

[10 (AND (NULL (CADR ERRORMESS))
(SELECTQ (STKNAME ERRORPOS)
((1PLUS ADDL SUB1) 0)
(I TIMES 1)
(PROGN (SETQ BREAKCHK T) NI L]

on ERRORTYPELST would specify that whenever a NON- NUVERI C ARG - NI L error occurred, and the
function in question was | PLUS, ADD1, or SUB1, O should be used for the NI L. If the function was
I TI MES, 1 should be used. Otherwise, always break. Note that the latter case is achieved not by the
value returned, but by the eect of the evauation, i.e, setting BREAKCHK to T. Similarly, (16 (SETQ
BREAKCHK NI L)) would prevent END OF FI LE errors from ever breaking.

9.16

ERRORS AND BREAK HANDLING

ERRORTYPELST is initidly ((23 (SPELLFILE (CADR ERRORMESS) N L NOFI LESPELLFLG))) ,
which causes SPELLFI LE to be cdled in case of a FILE NOT FOUND error (see page 15.20). |If
SPELLFI LE is successful, the operation will be reexecuted with the new (corrected) le name.

9.6 INTERRUPT CHARACTERS

Errors and breaks can be caused by errors within functions, or by explicitly breaking a function. The user
can also indicate his desire to go into a break at while a program is running by typing certain control
characters known as ‘‘interrupt characters’. The interrupt characters in Interlisp- D are listed on page 18.1;
those in Interlisp- 10 are listed on page 22.1.

The user can disable and/or redene Interlisp interrupt characters, as well as dene new interrupt
characters. Interlisp- 10 is initialized with 9 interrupt channels: RESET (control- D), ERROR (control- E),
BREAK (control- B), HELP (control- H), PRI NTLEVEL (control- P), CONTRCL- T (control- T), RUBOUT (del),
STORAGE (control- S), and QUTPUTBUFFER (control- O). Interlisp- D does not have the STORAGE and
QUTPUTBUFFER interrupt channels, and has the additional channel RAI D (control- C). Each of these
channels independently can be disabled, or have a new interrupt character assigned to it via the function
| NTERRUPTCHAR described below. In addition, the user can enable up to 9 new interrupt channels, and
associate with each channel an interrupt character and an expression to be evaluated when that character
is typed.

User interrupts can be either “*hard’” or ‘‘soft’’. A “*hard’’ interrupt is like control- E or control- D: it takes
place as soon as it istyped. A soft interrupt is like control- H; it does not occur until the next function
call. Soft interrupts can always be safely continued from. Hard interrupts rip the system out of the
function currently being executed and unwind back to the last function call, i.e. part of the computation
that was interrupted islost and cannot be continued.

Hard interrupts are implemented by generating error number 43, and retrieving the corresponding form
from the list USERI NTERRUPTS once inside of ERRORX. Soft interrupts are implemented by calling
| NTERRUPT with an appropriate third argument, and then obtaining the corresponding form from
USERI NTERRUPTS. As soon as a soft interrupt character is typed, Interlisp clears and saves the input
buers, and then rings the bell. After the interrupt form is evaluated, the input buers are restored.
In either case, if a character is enabled as a user interrupt, but for some reason it is not found on
USERI NTERRUPTS, an UNDEFI NED USER | NTERRUPT error will be generated.

(I NTERRUPTCHAR CHAR TYP/F ORM HARDFL G) [Function]
Denes CHAR as an interrupt character. If cHAR was previoudy dened as an
interrupt character, that interpretation is disabled.

CHAR is either a character or a character code (as returned by CHCON1). TENEX
requires that interrupt characters be one of control- A, B,...,.Z, space, esc(alt-mode),
rubout(delete), or break.

If TYmF ORM = NI L, cHAR is disabled.

If TyrrFOrRM = T, the current state of CHAR is returned without changing or
disabling it.

If TYP/F ORM isone of the 8 literal atoms HELP, PRI NTLEVEL , STORAGE, RUBQUT,

9.17

Changing and Restoring System State

ERROR, RESET, OQUTPUTBUFFER, or BREAK, then | NTERRUPTCHAR assigns CHAR
to the indicated Interlisp interrupt channel, (reenabling the channel if previously
disabled).

If TYPrF ORM is any other literal atom, cHAR is enabled as an interrupt character
that when typed causes the atom TYyr/F ORM to be immediately set to T.

If TYPIF ORM isalist, CHAR isenabled asauser interrupt character, and TYP/ F ORM
is the form that is evaluated when cHAR is typed. The interrupt will be hard if
HARDFL G= T, otherwise soft.

(1 NTERRUPTCHAR T) restores al Interlisp channels to their original state, and
disables al user interrupts.

| NTERRUPTCHAR returns an expression which, when given as an argument to

| NTERRUPTCHAR, will restore things asthey were before the call to | NTERRUPTCHAR.
Therefore, | NTERRUPTCHAR can be used in conjunction with RESETFORM or
RESETLST (page 9.20).

| NTERRUPTCHAR is undoable.

(RESET. | NTERRUPTS PERM TTEDI NTERR UPTS SAVECURRENT?) [Function]
PERM TTEDI NTERR UPTS is a list of interrupt character settings to be performed,
each of the foom (cHAR . TYPPFORM). The eect of RESET. | NTERRUPTS

is as if (I NTERRUPTCHAR cHAR TYP/F ORM) were performed for each item
on PERM TTEDINTERR UPTS, and (| NTERRUPTCHAR OTHER cHAR NI L) were
performed on every other existing interrupt character.

If SAVECURRENT? isnon- NI L, then RESET. | NTERRUPTS returns the current state
of the interrupts in aform that could be passed to RESET. | NTERRUPTS, otherwise
it returns NI L. This can be used with a RESET. | NTERRUPTS that appears in a
RESETFORM, so that the list is built at “‘entry’’, but not upon ‘‘exit’’.

(I NTERRUPTABLE FLAG) [Function]
if FLAG= NIL, turns interrupt o. If FLAG= T, turns interrupt on. Vaue is
previous setting. | NTERRUPTABLE compiles open.

Note: Any interrupt character typed while interrupts are o is treated the same as any other character,
i.e. placed in the input buer, and will not cause an interrupt when interrupts are turned back on.

(1 NTERRUPTABLEP) [Function]
(Interlisp- 10) Returns T if interrupts are enabled; NI L if disabled.

9.7 CHANGING AND RESTORING SYSTEM STATE

In Interlisp, a computation can be interrupted/aborted at any point due to an error, or more forcefully,
because a control-D was typed, causing return to the top level. This situation creates problems for
programs that need to perform a computation with the system in a ‘‘di erent state’’, eg., di erent radix,
input le, readtable, etc. but want to ‘‘protect’’ the calling environment, i.e.,, be able to restore the state

9.18

ERRORS AND BREAK HANDLING

when the computation has completed. While program errors and control- E can be ‘‘caught’’ by errorsets,
control- D is not.10 Thus the system may be left in its changed state as a result of the computation being
aborted. The following functions address this problem.

Note that these functions do not and cannot handle the situation where their environment is exited via
anything other than a normal return, an error, or areset. E.g. a RETEVAL, RETFROM, RESUME, etc., will

never be seen.

(RESETLST FORM 4

(RESETSAVE X Y)

FORM) [NLambda NoSpread Function]
RESETLST evaluates its arguments in order, after setting up an ERRORSET so that
any reset operations performed by RESETSAVE (see below) are restored when the
forms have been evaluated (or an error occurs, or a control-D is typed). If no
error occurs, the value of RESETLST is the value of FORM , otherwise RESETLST
generates an error (after performing the necessary restorations).

RESETLST compiles open.

[NLambda NoSpread Function]
RESETSAVE isused within acall to RESETLST to change the system state by calling
a function or setting a variable, while specifying how to restore the original system
state when the RESETLST is exited (normally, or with an error or control- D).

If x is aomic, resets the top level vaue of x to the vaue of y. For
example, (RESETSAVE LI SPXH STORY EDI THI STORY) resets the value of
LI SPXH STORY to the value of EDI THI STORY, and provides for the original
value of LI SPXHI STORY to be restored when the RESETLST completes operation,
(or an error occurs, or a control- D istyped). This use is somewhat anachronistic in
Interlisp- 10 in that in a shallow bound system, it issucient to ssimply rebind the
variable. Furthermore, if there are any rebindings, the RESETSAVE will not aect
the most recent binding but will change only the top level value, and therefore
probably not have the intended e ect.

If X is not atomic, it is aform that is evaluated. If Y isNI L, X must return as its
value its ‘‘former state’’, so that the eect of evaluating the form can be reversed,
and the system state can be restored, by applying CAR of X to the value of X.
For example, (RESETSAVE (RADI X 8)) performs (RADI X 8), and provides
for RADI X to be reset to its original value when the RESETLST completes by
applying RADI X to the value returned by (RADI X 8).

In the special case that CAR of X is SETQ, the SETQ is transparent for the purposes
of RESETSAVE, i.e. the user could aso have written (RESETSAVE (SETQ X
(RADI X 8))), and restoration would be performed by applying RADI X, not
SETQ, to the previous value of RADI X.

If vy isnot NI'L, it is evaluated (before x), and its value is used as the restoring
expression. This isuseful for functions which do not return their ‘‘previous setting’’.
For example,

10Note that the program could redene control-D as a user interrupt (page 9.17), check for it, reenable
it, and call RESET or something similar.

9.19

Changing and Restoring System State

[RESETSAVE (SETBRK) (LIST ' SETBRK (GETBRK]

will restore the break characters by applying SETBRK to the vaue returned
by (GETBRK) , which was computed before the (SETBRK) expression was
evaluated. Note that the restoration expression is still ‘“‘evaluated’” by applying its
CAR to its CDR.

If Xx isNI'L, v is still treated as a restoration expression. Therefore,
(RESETSAVE NIL (LIST ' CLCSEF FILE))

will cause FI LE to be closed when the RESETLST that the RESETSAVE is under
completes (or an error occurs or a control- D is typed).

Note: RESETSAVE can be called when not under a RESETLST. In this case, the
restoration will be performed at the next RESET, i.e., control- D or call to RESET.
In other words, there isan “‘implicit’” RESETLST at the top-level executive.

RESETSAVE compiles open. Its value is not a ‘‘useful’’ quantity.

(RESETVAR VAR NEW/ ALUE FORM) [NLambda Function]
Simplied form of RESETLST and RESETSAVE for resetting and restoring
global variables.1l Equivalent to (RESETLST (RESETSAVE VAR NEW AL UE)
FORM). For example, (RESETVAR LI SPXHI STORY EDI TH STORY (FQO))
resets LI SPXHI STORY to the value of EDI THI STORY while evaluating (FOO) .
RESETVAR compiles open. If no error occurs, its value is the value of FORM .

(RESETVARS VARSLST E; E, EN) [NLambda NoSpread Function]
Similar to PROG, except the variables in vaRSLST are global variables. In a shallow
bound system (Interlisp- 10) RESETVARS and PROG are identical. 12 In a degp bound
system, each variable is ‘‘rebound’’ using RESETSAVE.

RESETVARS, like GETATOWAL and SETATOWAL (page 2.6), is provided to permit compatibility (i.e.
transportablility) between a shallow bound and deep bound system with respect to conceptually global
variables.

(RESETFORM RESETF CRM FORM ; FCRM , FORM) [NLambda NoSpread Function]
Simpli ed form of RESETLST and RESETSAVE for resetting a system state when
the corresponding function returns as its value the “‘previous setting.”” Equivalent
to (RESETLST (RESETSAVE RESETF ORM) FORM ; FORM , FORM) . For
example, (RESETFORM (RADI X 8) (FOO)). RESETFORM compiles open. If
no error occurs, it returns the value returned by FORM .

For some applications, the restoration operation must be di erent depending on whether the computation
completed successfully or was aborted by an error or control- D. To facilitate this, while the restoration
operation is being performed, the value of RESETSTATE will be bound to NI L, ERROR, or RESET,

11Unnecessarily expensive in a shalow bound system as the variable can simply be rebound.

12Except that the compiler insures that variables bound in a RESETVARS are declared as SPECVARS (see
page 12.4).

9.20

ERRORS AND BREAK HANDLING

depending on whether the exit was normal, due to an error, or reset (i.e., control- D, or in Interlisp- 10,
control- C followed by reenter). For example,

(RESETLST
(RESETSAVE (I NFILE X)
(LI ST ’[LAVBDA (FL)
(COND ((EQ RESETSTATE ' RESET)
(CLOSEF FL)
(DELFI LE FL]
X))

FORVS)
will cause X to be closed and deleted only if a control-D was typed during the execution of FORVS .

When specifying complicated restoring expressions, it is often necessary to use the old value of the saving
expression. For example, the following expression will set the primary input le (to FL) and execute
some forms, but reset the primary input le only if an error or control- D occurs.

(RESETLST
(SETQ TEM (I NPUT FL))
(RESETSAVE NI L
(LIST * (LAVMBDA (X) (AND RESETSTATE (INPUT X)))
TEM)

FORMS)

So that you will not have to explicitely save the old value, the variable OLDVALUE isbound at the time the
restoring operation is performed to the value of the saving expression. Using this, the previous example
could be recoded as:

(RESETLST
(RESETSAVE (| NPUT FL)
" (AND RESETSTATE (I NPUT OLDVALUE)))
FORMVS)

As mentioned earlier, restoring is performed by applying CAR of the restoring expression to the
CDR, so RESETSTATE and (1 NPUT OLDVALUE) will not be evaluated by the APPLY. This particular
example works because AND is an nlambda function that explicitly evaluates its arguments, so APPLYing
AND to (RESETSTATE (I NPUT OLDVALUE)) isthe same as EVALing (AND RESETSTATE (| NPUT
OLDVALUE)) . PROGN also has this property, so you can use a lambda function as a restoring form by
enclosing it within a PROGN.

The function RESETUNDO (page 8.25) can be used in conjunction with RESETLST and RESETSAVE to
provide a way of specifying that the system be restored to its prior state by undoing the side eects of
the computations performed under the RESETLST.

9.8 ERROR LIST

There are currently fty- plus types of errors in the Interlisp system. Some of these errors are
implementation dependent, i.e., appear in Interlisp- 10 but may not appear in other Interlisp systems.

9.21

Error List

The error number is set internally by the code that detects the error before it calls the error handling
functions. It is also the value returned by ERRORN if called subsequent to that type of error, and is used
by ERRORVMVESS for printing the error message.

Most errors will print the oending expression following the message, e.g., NON- NUMERI C ARG NI L is
very common. Error number 18 (control- B) always causes a break (unless HELPFLAG is NI L). All other
errors cause breaks if BREAKCHECK returns T (see page 9.10).

The errors are listed below by error number:

0 - JSYS ERROR

1

(Interlisp- 10) Occurs following atrap in a JSYS. As described on page 22.6, TRAP
AT LOCATI ON is printed, followed by the JSYS diagnostic, and control returns
to the operating system executive. The user can then safely CONTI NUE, and the
Interlisp error, JSYS ERROR is then generated. A TRAP AT LOCATI ON can
also occur if an illegal instruction is executed. In this case, the operating system
aso prints | LLEGAL | NSTRUCTI ON. This can happen for example if the user is
programming directly in ASSEMBLE code, or if his system somehow got smashed.
In the latter case, it is quite possible that random programs or data structures might
have aready been smashed. Unless he is sure he knows what the problem is, the
user is best advised to abandon this system as soon as possible. (If the user does
elect to CONTI NUE, Interlisp will (try to) generate a JSYS ERROR and unwind. In
some cases, however, the system may be so badly smashed that the error message
won't even print.) Note that in some cases, e.g. illega instruction trap while in the
garbage collector, Interlisp will print out CAN' T CONTI NUE, because traps under
those conditions are fatal. The user may be able to reenter his sytem via the START
command, and, if lucky, dump some data or functions before the system totally
collapses.

In Interlisp- D, this error is named SYSTEM ERROR.

No longer used.

2 - STACK OVERFLOW

Occurs when computation is too deep, either with respect to number of function
calls, or number of variable bindings. Usualy because of a non-terminating
recursive computation, i.e., a bug.

In Interlisp- 10, the garbage collector uses the same stack as the rest of the system,
so that if a garbage collection occurs when deep in a computation, the stack can
over ow (particularly if there is a lot of list structure that is deep in the CAR
direction). If this does happen, the garbage collector will ush the stack used by
the computation in order that the garbage collection can complete. Afterwards,
the error message STACK OVERFLOW | N GC - COVPUTATI ON LOST isprinted,
followed by a (RESET) , i.e, return to top level.

3-1LLEGAL RETURN

Call to RETURN when not inside of an interpreted PROG.

4 - ARG NOT LI ST E.g.,, RPLACA caled on a non-list.

5- HARD DI SK ERROR

(Interlisp- D) An error with the local disk drive.

9.22

ERRORS AND BREAK HANDLING

6 - ATTEMPT TO SET NI L
Via SET or SETQ

7 - ATTEMPT TO RPLAC NI L
Attempt either to RPLACA or to RPLACD NI L with something other than NI L.

8 - UNDEFI NED OR | LLEGAL GO
GO when not inside of a PROG, or GO to nonexistent |abel.

9-FILE WON T OPEN
From | NFI LE or QUTFI LE, page 6.2.

10 - NON- NUMERI C ARG
A numeric function eg., | PLUS, | TI MES, | GREATERP, expected a number.

11 - ATOM TOO LONG
Attempted to create a litatom (via PACK, or typing one in, or reading from a le)
with too many characters. In Interlisp- D, the maximum number of characters in a
litatom is 255. In Interlisp- 10, the maximum is 127 characters.

12 - ATOM HASH TABLE FULL
No room for any more (new) atoms.

In Interlisp- 10, the atom hash table will automatically expand by a speci ed number
of pages each time it IIs up until an upper limit of 32K atoms is reached.

13 - FILE NOT OPEN
From an I/O function, eg., READ, PRI NT, CLCSEF.

14 - ARG NOT LI TATOM
E.g., SETQ, PUTPROP, GETTOPVAL, etc., given a non-atomic arg.

15- TOO MANY FI LES OPEN
30, excluding the terminal.

16 - END OF FILE From an input function, e.g., READ, READC, RATOM After the error, the le will
then be closed.

Note: The entries on ERRORTYPELST (page 9.16) are processed before the le
is closed, so that the user can intercept and process this error via an entry on
ERRORTYPELST, thereby preventing the le from being closed. It is aso possible
to use an ERRORTYPELST entry to return a character as the value of the call
to ERRORX, and the program will continue, e.g. returning ‘]’ may be used to
complete a read operation.

17 - ERROR Cadl to ERROR (page 9.14).
18 - BREAK Control- B was typed.

19 - ILLEGAL STACK ARG
A stack function expected a stack position and was given something else. This
might occur if the arguments to a stack function are reversed. Also occurs if user
speci ed a stack position with a function name, and that function was not found

9.23

Error List

on the stack. See page 7.1.

20 - FAULT I N EVAL
Artifact of bootstrap. Never occurs after FAULTEVAL has been dened as described
earlier.

21 - ARRAYS FULL System will rst initiate a garbage collection of array space, and if no array space
is reclaimed, will then generate this error.

22 - FI LE SYSTEM RESOURCES EXCEEDED
(Interlisp- 10) Includes no more disk space, disk quota exceeded, directory full, too
many jfbs, job full.

23 - FI LE NOT FOUND
File name does not correspond to a le in the corresponding directory. Can also
occur if le name is ambiguous.

Interlisp is initiadlized with an entry on ERRORTYPELST (page 9.16) to cal
SPELLFI LE for error 23. SPELLFI LE will search aternate directories or perform
spelling correction on the connected directory. |f SPELLFI LE fails, then the user
will see this error.

24 - BAD SYSQUT FILE
Date does not agree with date of MAKESYS, or le isnot a sysout le at al (see
page 14.3).

25 - UNUSUAL CDR ARG LI ST
A form ends in a non-list other than NI L, eg., (CONS T . 3).

26 - HASH TABLE FULL
See hash array functions, page 2.35.

27 - | LLEGAL ARG Catch-dl error. Currently used by PUTD, EVALA, ARG, FUNARG, ALLOCATE,
RPLSTRI NG, etc.

28 - ARG NOT ARRAY
ELT or SETA given an argument that is not a pointer to the beginning of an array
(see page 2.33).

29 - | LLEGAL OR | MPCSSI BLE BLOCK
(Interlisp- 10) From GETBLK or RELBLK (see page 22.20).

30 - STACK PTR HAS BEEN RELEASED
A released stack pointer was supplied as a stack descriptor for a purpose other than
as a stack pointer to be re-used (see page 7.1).

31 - STORAGE FULL
Following a garbage collection, if a sucient amount of words has not been
collected, and there is no un-alocated space left in the system, this error is
generated.

32 - ATTEMPT TO USE | TEM OF | NCORRECT TYPE
Before a eld of a user data type is changed, the type of the item is rst checked

9.24

ERRORS AND BREAK HANDLING

to be sure that it is of the expected type. If not, this error is generated (see page
3.14).

33 - | LLEGAL DATA TYPE NUMBER
The argument is not a valid user data type number (see page 3.14).

34 - DATA TYPES FULL
All available user data types have been allocated. (see page 3.14).

35- ATTEMPT TOBIND NNL OR T
In a PROG or LAMBDA expression.

36 - TOO MANY USER | NTERRUPT CHARACTERS
Attempt to enable a user interrupt character when al 9 user channels are currently
enabled (see page 9.17).

37 - READ- MACRO CONTEXT ERROR
(Interlisp- 10) Occurs when a READ is executed from within a read- macro function
and the next token isa) or a] (see page 6.36).

38 - | LLEGAL READTABLE
The argument was expected to be a vaid readtable (see page 6.32).

39 - | LLEGAL TERM NAL TABLE
The argument was expected to be a vaid termina table (see page 6.40).

40 - SWAPBLOCK TOO Bl G FOR BUFFER
(Interlisp- 10) An attempt was made to swap in a function/array which is too large
for the swapping buer. See SETSBSI ZE, page 22.26.

41 - PROTECTI ON VI OLATI ON
(Interlisp- 10) Attempt to open a le that user does not have access to. Also
reference to unassigned device.

42 - BAD FI LE NAME
Illegal character in le speci cation, illega syntax, e.g. in Interlisp- 10, two ; 's etc.

43 - USER BREAK Error corresponding to ‘‘hard’’ user-interrupt character. See page 9.17.

44 - UNBOUND ATOM
Unbound atom error. When this occurs, a variable (atom) was used which had
neither a stack binding (wasn't an argument to a function nor a PROG variable)
nor a top level value. The *‘culprit’” ((CADR ERRORMESS)) is the atom. Note
that if DWIM corrects the error, no error occurs and the error number is not set.
However, if an error is going to occur, whether or not it will cause a break, the
error number will be set.

45 - UNDEFI NED CAR OF FORM
Undened function error. When is occurs, a form was evaluated whose function
position (CAR) does not have a denition as a function. Culprit is the form.

46 - UNDEFI NED FUNCTI ON
This error is generated if APPLY is given an undened function. Culprit is (LI ST

9.25

Error List

FN ARGS)
47 - CONTROL- E The user typed Control- E.

48 - FLOATI NG UNDERFLOW
(Interlisp- D) Under ow during oating- point operation.

49 - FLOATI NG OVERFLOW
(Interlisp- D) Over ow during oating- point operation.

50 - OVERFLOW (Interlisp- D) Over ow during integer operation.

51 - ARG NOT HARRAY
(Interlisp- D) Signaled by hash array operations when given an argument that is not
a hash array. (In Interlisp- 10, this still triggers error 28, ARG NOT ARRAY).

52 - TOO MANY ARGUMENTS
(Interlisp- D) Signaled when too many arguments are given to a lambda- spread,
lambda- nospread, or nlambda- spread function.

In addition, many system functions, e.g., DEFI NE, ARGLI ST, ADVI SE, LOG, EXPT, etc, aso generate
errors with appropriate messages by calling ERROR (see page 9.14) which causes error number 17.

9.26

