
CHAPTER 17

THE TELETYPE EDITOR

The Interlisp teletype editor allows rapid, convenient modi�cation of list structures. Most often it is
used to edit function de�nitions, (often while the function itself is running) via the function , e.g.,

. However, the editor can also be used to edit the value of a variable, via , to edit a
property list, via , or to edit an arbitrary expression, via . It is an important feature which
allows good on- line interaction in the Interlisp system.

In Interlisp- D, most editing is done using the display editor DEdit (page 20.1), which is an extended,
display- oriented version of the teletype editor. The teletype editor is still available, as it o�ers a facility
for doing complex modi�cations of program structure under program control. For example,
(page 10.5) calls the teletype editor to insert a function break within the body of a function. By calling
the function (page 20.2) it is possible to set the ‘‘default editor’’ (or)
called by Masterscope, the break package, etc.

This chapter begins with a lengthy introduction intended for the new user. The reference portion begins
on page 17.9.

17.1 INTRODUCTION

Let us introduce some of the basic editor commands, and give a �avor for the editor’s language structure
by guiding the reader through a hypothetical editing session. Suppose we are editing the following
incorrect de�nition of :

We call the editor via the function :

The editor responds by typing followed by , which is the editor’s prompt character. This signi�es
that the editor is ready to accept commands. In the examples in this chapter, all lines beginning with
were typed by the user, the rest by the editor.

At any given moment, the editor’s attention is centered on some substructure of the expression being

17.1

EDITF
EDITF(FOO) EDITV

EDITP EDITE

BREAKIN

EDITMODE TELETYPE DISPLAY

APPEND

[LAMBDA (X)
Y
(COND

((NUL X)
Z)

(T (CONS (CAR)
(APPEND (CDR X Y]

EDITF

_EDITF(APPEND)
EDIT
*

EDIT *
*

Introduction

edited. This substructure is called the , and it is what the user sees when he gives the
editor the command , for print. Initially, the current expression is the top level one, i.e., the entire
expression being edited. Thus:

Note that the editor prints the current expression as though printlevel (page 6.18) were set to ,
i.e., sublists of sublists are printed as , tails of long lists printed as . The command will print the
current expression as though printlevel were 1000.

and the command will prettyprint the current expression.

A positive integer is interpreted by the editor as a command to descend into the correspondingly numbered
element of the current expression. Thus:

A negative integer has a similar e�ect, but counting begins from the end of the current expression and
proceeds backward, i.e., refers to the last element in the current expression, the next to the last,
etc. For either positive integer or negative integer, if there is no such element, an error occurs. ‘‘Editor
errors’’ are not the same as Interlisp function errors, i.e., they never cause breaks or even go through the
error machinery but are direct calls to indicating that a command is in some way faulty. What
happens next depends on the context in which the command was being executed. For example, there are
conditional commands which branch on errors. In most situations, though, an error will cause the editor
to type the faulty command followed by a and wait for more input. Note that typing control- E while
a command is being executed aborts the command exactly as though it had caused an error.

Thus:

When the user changes the current expression by descending into it, the old current expression is not lost.
Instead, the editor actually operates by maintaining a of expressions leading to the current one. The

17.2

current expression
P

*P
(LAMBDA (X) Y (COND & &))
*

(2 . 20)
& -- ?

*?
(LAMBDA (X) Y (COND ((NUL X) Z) (T (CONS (CAR) (APPEND (CDR X Y))))))
*

PP

*2
*P
(X)
*

-1 -2

ERROR!

?
The current

expression is never changed when a command causes an error.

*P
(X)
*2

2 ?
*1
*P
X
*

A phrase of the form ‘‘the current expression is changed’’ or ‘‘the current expression becomes’’ refers to a
shift in the editor’s attention, not to a modi�cation of the structure being edited.

chain

THE TELETYPE EDITOR

current expression is simply the last link in the chain. Descending adds the indicated subexpression onto
the end of the chain, thereby making it be the current expression. The command is used to ascend the
chain; it removes the last link of the chain, thereby making the link be the current expression.
Thus:

Note the use of several commands on a single line in the previous output. The editor operates in a line
bu�ered mode, the same as . Thus no command is actually seen by the editor, or executed, until
the line is terminated, either by a carriage return, or a matching right parenthesis. The user can thus use
control- A and control- Q for line-editing edit commands, the same as he does for inputs to the Interlisp
executive.

In our editing session, we will make the following corrections to : delete from where it appears,
add to the end of the argument list, change to , change to , add after , and insert
a right parenthesis following .

First we will delete . By now we have forgotten where we are in the function de�nition, but we want to
be at the ‘‘top’’ so we use the command , which ascends through the entire chain of expressions to the
top level expression, which then becomes the current expression, i.e., removes all links except the �rst
one.

Note that if we are already at the top, has no e�ect, i.e., it is a no-op. However, would generate an
error. In other words, means ‘‘go to the top,’’ while means ‘‘ascend one link.’’

The basic structure modi�cation commands in the editor are:

� [Editor Command]
Deletes the corresponding element from the current expression.

��� � [Editor Command]
Replaces the th element in the current expression with ��� .

��� � [Editor Command]
Inserts ��� before the th element in the current expression.

Thus:

17.3

0
previous

*P
X
*0 P
(X)
*0 -1 P
(COND (& Z) (T &))
*

EVALQT

APPEND Y
Y NUL NULL Z Y X CAR

CDR X

Y
^

^

*^ P
(LAMBDA (X) Y (COND & &))
*

^ 0
^ 0

() (1)

() (1)

(-) (1)

*P
(LAMBDA (X) Y (COND & &))
*(3)
*(2 (X Y))
*P

N N

N E1 EM N

N E1 EM

N E1 EM N

E1 EM N

1

1

Introduction

Note that all three of the above commands perform their operation with respect to the th element from
the front of the current expression; the sign of is used to specify whether the operation is replacement
or insertion. Thus, there is no way to specify deletion or replacement of the th element from the
end of the current expression, or insertion before the th element from the end without counting out
that element’s position from the front of the list. Similarly, because we cannot specify insertion after
a particular element, we cannot attach something at the end of the current expression using the above
commands. Instead, we use the command (for). Thus we could have performed the above
changes instead by:

Now we are ready to change to . Rather than specify the sequence of descent commands
necessary to reach , and then replace it with , e.g., , we will use , the �nd
command, to �nd :

Note that is special in that it corresponds to inputs. In other words, says to the editor, ‘‘treat
your command as an expression to be searched for.’’ The search is carried out in printout order in
the current expression. If the target expression is not found there, automatically ascends and searches
those portions of the higher expressions that would appear after (in a printout) the current expression. If
the search is successful, the new current expression will be the structure where the expression was found,
and the chain will be the same as one resulting from the appropriate sequence of ascent and descent

If the search is for an atom, e.g., , the current expression will be the structure containing the
atom.

17.4

(LAMBDA (X Y) (COND & &))
*

All structure modi�cation done by the editor is destructive, i.e., the editor uses RPLACA and RPLACD to
physically change the structure it was given.

N NCONC

*P
(LAMBDA (X) Y (COND & &))
*(3)
*2 (N Y)
*P
(X Y)
*^ P
*(LAMBDA (X Y) (COND & &))
*

NUL NULL
NUL NULL 3 2 1 (1 NULL) F
NUL

*P
(LAMBDA (X Y) (COND & &))
*F NUL
*P
(NUL X)
*(1 NULL)
*0 P
((NULL X) Z)
*

F two F
next

F

F NUL

N

N

N

N

2

2

THE TELETYPE EDITOR

commands. If the search is not successful, an error occurs, and neither the current expression nor the
chain is changed:

Here the search failed to �nd a following the current expression, although of course a does
appear earlier in the structure. This last example illustrates another facet of the error recovery mechanism:
to avoid further confusion when an error occurs, all commands on the line the one which caused
the error (and all commands that may have been typed ahead while the editor was computing) are
forgotten.

We could also have used the command (for eplace) to change to . A command of the form
will replace all occurrences of in the current expression by . There must be at least one

such occurrence or the command will generate an error. Let us use the command to change all ’s
(even though there is only one) in to :

The next task is to change to . We could do this by , or by:

The expression we now want to change is the next expression after the current expression, i.e., we are
currently looking at in . We could get to the

is never a no-op, i.e., if successful, the current expression after the search will never be the same as the
current expression before the search. Thus repeated without intervening commands that change
the edit chain can be used to �nd successive instances of .

17.5

*P
((NULL X) Z)
*F COND P

COND ?
*P
*((NULL X) Z)
*

COND COND

beyond

R R NUL NULL
(R)

R R Z
APPEND Y

*^ (R Z Y)
*F Z

Z ?
*PP
[LAMBDA (X Y)

(COND
((NULL X)

Y)
(T (CONS (CAR)

(APPEND (CDR X Y]
*

(CAR) (CAR X) (R (CAR) (CAR X))

*F CAR
*(N X)
*P
(CAR X)
*

(CAR X) (CONS (CAR X) (APPEND (CDR X Y)))

F
F

E1 E2 E1 E2

EXPR

EXPR

Introduction

expression by typing and then or , or we can use the command , which does both
operations:

Finally, to change to , we could perform
, or and , or and , deleting the , and then . However, if

were a complex expression, we would not want to have to retype it. Instead, we could use a command
which e�ectively inserts and/or removes left and right parentheses. There are six of these commands:
(‘‘Both In’’), (‘‘Both Out’’), (‘‘Left In’’), (‘‘Left Out’’), (‘‘Right In’’), and (‘‘Right Out’’).
Of course, we will always have the same number of left parentheses as right parentheses, because the
parentheses are just a notational guide to structure that is provided by our print program. Herein lies one
of the principal advantages of a LISP oriented editor over a text editor: unbalanced parentheses errors
are not possible. Thus, , , , and actually do not insert or remove just one parenthesis, but this
is very suggestive of what actually happens.

In this case, we would like a right parenthesis to appear following in . Therefore, we use
the command , which means insert a right parentheses after the second element in the second
element (of the current expression):

We have now �nished our editing, and can exit from the editor, to test , or we could test it while
still inside of the editor, by using the command:

The command causes the next input to be evaluated by Interlisp. If there is another input following
it, as in the above example, the �rst will be applied (with) to the second. Otherwise, the input is
evaluated (with).

We prettyprint , and leave the editor.

17.6

APPEND 0 3 -1 NX

*P
(CAR X)
*NX P
(APPEND (CDR X Y))
*

(APPEND (CDR X Y)) (APPEND (CDR X) Y) (2 (CDR
X) Y) (2 (CDR X)) (N Y) 2 (3) Y 0 (N Y)
Y

BI
BO LI LO RI RO

LI LO RI RO

X (CDR X Y)
(RI 2 2)

*P
(APPEND (CDR X Y))
*(RI 2 2)
*P
(APPEND (CDR X) Y)
*

APPEND
E

*E APPEND((A B) (C D E))
(A B C D E)
*

E
APPLY

EVAL

APPEND

*PP
[LAMBDA (X Y)

(COND
((NULL X)

Y)
(T (CONS (CAR X)

(APPEND (CDR X) Y]
*OK

THE TELETYPE EDITOR

17.2 COMMANDS FOR THE NEW USER

As mentioned earlier, the Interlisp manual is intended primarily as a reference manual, and the remainder
of this chapter is organized and presented accordingly. While the commands introduced in the previous
scenario constitute a complete set, i.e., the user could perform any and all editing operations using just
those commands, there are many situations in which knowing the right command(s) can save the user
considerable e�ort. We include here as part of the introduction a list of those commands which are not
only frequently applicable but also easy to use. They are not presented in any particular order, and are
all discussed in detail in the reference portion of the chapter.

[Editor Command]
Undoes the last modi�cation to the structure being edited, e.g., if the user deletes
the wrong element, will restore it. The availability of should give the
user con�dence to experiment with any and all editing commands, no matter how
complex, because he can always reverse the e�ect of the command.

[Editor Command]
Like , except makes the expression immediately the current expression
become current.

[Editor Command]
ackwards ind. Like , except searches backwards, i.e., in inverse print order.

[Editor Command]
Restores the current expression to the expression before the last ‘‘big jump’’, e.g.,
a �nd command, an , or another . For example, if the user types , and
then , would take him back to the . Another would take him back
to the .

[Editor Command]
Like except it restores the edit chain to its state as of the last print, either by ,

, or . If the edit chain has not been changed since the last print, restores it
to its state as of the printing before that one, i.e., two chains are always saved.

Thus if the user types followed by , will take him back to the �rst , i.e., would be
equivalent to . Another would then take him back to the second . Thus the user can use
to �ip back and forth between two current expressions.

The search expression given to the or command need not be a literal expression. Instead, it can be
a pattern. The symbol can be used anywhere within this pattern to match with any single of a
list, and can be used to match with any of a list. Thus, in the incorrect de�nition of
used earlier, could have been used to �nd , and or ,
but not , to �nd .

Note that and can be nested arbitrarily deeply in the pattern. For example, if there are many places
where the variable is set, may not �nd the desired expression, nor may . It

17.7

APPEND
_

UNDO

UNDO UNDO

BK
NX before

BF
B F F

\

^ \ F COND
F CAR \ COND \

CAR

\P
\ P

? PP \P

P 3 2 1 P \P P
0 0 0 \P P \P

F BF
& element

-- segment APPEND
F (NUL &) (NUL X) F (CDR --) F (CDR & &)

F (CDR &) (CDR X Y)

& --
X F SETQ F (SETQ X &)

Commands for the New User

may be necessary to use . However, the usual technique in such a case is to
pick out a unique atom which occurs prior to the desired expression, and perform two commands. This
‘‘homing in’’ process seems to be more convenient than ultra- precise speci�cation of the pattern.

(<esc>) is equivalent to at the character level, e.g., will match with , as will
, , (but not and . can be nested inside of a pattern, e.g.,

.

If the search is successful, the editor will print followed by the atom which matched with the -atom,
e.g.,

Frequently the user will want to replace the entire current expression, or insert something before it. In
order to do this using a command of the form ��� or ��� , the user must be

the current expression. In other words, he would have to perform a followed by a command
with the appropriate number. However, if he has reached the current expression via an command, he
may not know what that number is. In this case, the user would like a command whose e�ect would be
to modify the edit chain so that the current expression became the �rst element in a new, higher current
expression. Then he could perform the desired operation via ��� or ��� .
is provided for this purpose.

[Editor Command]
After operates, the old current expression is the �rst element of the new current
expression. Note that if the current expression happens to be the �rst element
in the next higher expression, then is exactly the same as . Otherwise,
modi�es the edit chain so that the new current expression is a proper tail (page
2.19) of the next higher expression:

���

The ��� is used by the editor to indicate that the current expression is a of
the next higher expression as opposed to being an element (i.e., a member) of the
next higher expression. Note: if the current expression is a tail, has no
e�ect.

��� [Editor Command]
Inserts ��� before the current expression, i.e., does an and then a

��� .

��� [Editor Command]
Inserts ��� after the current expression, i.e., does an and then either a

��� or an ��� , if the current expression is the last one
in the next higher expression.

17.8

F (SETQ X (LIST --))
F

$ -- VER$ VERYLONGATOM
$ATOM $LONG$ $LONG) VNM $ F (SETQ
VER$ (CONS --))

= $

*F (SETQ VER$ &)
=VERYLONGATOM
*

() (-)
above 0

F

(1) (-1) UP

UP
UP

UP 0 UP

*F APPEND P
(APPEND (CDR X) Y)
*UP P

(APPEND & Y))
*0 P
(CONS (CAR X) (APPEND & Y))
*

tail

already UP

(B)
UP (-1

)

(A)
UP

(-2) (N)

N E1 EM N E1 EM

E1 EM E1 EM

E1 EM
E1 EM

E1 EM

E1 EM
E1 EM

E1 EM E1 EM

THE TELETYPE EDITOR

��� [Editor Command]
Replaces the current expression by ��� , i.e., does an and then a
��� .

[Editor Command]
Deletes the current expression; equivalent to .

Earlier, we introduced the command in the example. The rest of the commands in this
family: , , , , and , perform similar functions and are useful in certain situations. In addition,
the commands and can be used to combine the e�ects of several commands of the
family. (page 17.28) is used to embed the current expression in a larger expression. For example,
if the current expression is , and the user wants to replace it by

, he could accomplish this by , , , and ,
or by a single command.

(page 17.27) is used to e act an expression from the current expression. For example, extracting
the expression from the above could be accomplished by , , , and
or by a single command. The new user is encouraged to include and in his repertoire as
soon as he is familiar with the more basic commands.

17.3 LOCAL ATTENTION- CHANGING COMMANDS

This section describes commands that change the current expression (i.e., change the edit chain) thereby
‘‘shifting the editor’s attention.’’ These commands depend only on the of the edit chain, as
compared to the search commands (presented later), which search the contents of the structure.

[Editor Command]
modi�es the edit chain so that the old current expression (i.e., the one at the

time was called) is the �rst element in the new current expression. If the
current expression is the �rst element in the next higher expression simply does
a . Otherwise adds the corresponding tail to the edit chain.

If a command would cause the editor to type ��� before typing the current
expression, ie., the current expression is a tail of the next higher expression,
has no e�ect.

For Example:

17.9

(:)
UP (1

)

DELETE
(:)

RI APPEND
BI BO LI LO RO

MBD XTR BI-BO
MBD

(PRINT) (COND (FLG
(PRINT))) (LI 1) (-1 FLG) (LI 1) (-1 COND)

MBD

XTR XTR
PRINT COND (1) (LO 1) (1) (LO 1)

XTR XTR MBD

structure

UP
UP

UP
UP

0 UP

P
UP

*PP
(COND ((NULL X) (RETURN Y)))
*1 P
COND
*UP P
(COND (& &))
*-1 P
((NULL X) (RETURN Y))
*UP P
... ((NULL X) (RETURN Y))
*UP P

E1 EM
E1 EM E1

EM

bigexpression

bigexpression

3

4

3

4

Local Attention-Changing Commands

The execution of is straightforward, except in those cases where the current expression appears more
than once in the next higher expression. For example, if the current expression is

and the user performs followed by , the current expression should then be .
can determine which tail is the correct one because the commands that descend save the last tail on an

internal editor variable, . Thus after the command is executed, is .
When is called, it �rst determines if the current expression is a tail of the next higher expression. If it
is, is �nished. Otherwise, computes
to obtain a tail beginning with the current expression. If there are no other instances of the current
expression in the next higher expression, this tail is the correct one. Otherwise uses to select
the correct tail.

� [Editor Command]
Adds the th element of the current expression to the front of the edit chain,
thereby making it be the new current expression. Sets for use by .
Generates an error if the current expression is not a list that contains at least
elements.

� [Editor Command]
Adds the th element from the end of the current expression to the front of the
edit chain, thereby making it be the new current expression. Sets for
use by . Generates an error if the current expression is not a list that contains
at least elements.

[Editor Command]
Sets the edit chain to of the edit chain, thereby making the next higher
expression be the new current expression. Generates an error if there is no higher
expression, i.e., of edit chain is .

Note that usually corresponds to going back to the next higher left parenthesis, but not always. For
example:

The current expression should be either a tail or an element of the next higher expression. If it
is neither, for example the user has directly (and incorrectly) manipulated the edit chain, generates an
error.

Occasionally the user can get the edit chain into a state where cannot resolve the ambiguity,
for example if there were two non- atomic structures in the same expression that were , and the user
descended more than one level into one of them and then tried to come back out using . In this case,

prints and generates an error. Of course, we could have solved this problem
completely in our implementation by saving at each descent elements and tails. However, this would
be a costly solution to a situation that arises infrequently, and when it does, has no detrimental e�ects.
The solution is cheap and resolves 99% of the ambiguities.

17.10

... ((NULL X) (RETURN Y)))
*F NULL P
(NULL X)
*UP P
((NULL X) (RETURN Y))
*UP P
... ((NULL X) (RETURN Y)))

UP
(A NIL B NIL C

NIL) 4 UP ... NIL C NIL)
UP

LASTAIL 4 LASTAIL (NIL C NIL)
UP

UP UP (MEMB)

UP LASTAIL

(1)

LASTAIL UP

- (1)

LASTAIL
UP

0
CDR

CDR NIL

0

always
UP

LASTAIL
EQ
UP

UP LOCATION UNCERTAIN
both

LASTAIL

CURRENT- EXPRESSION NEXT- HIGHER- EXPRESSION

N N

N

N

N N

N

N

THE TELETYPE EDITOR

If the intention is to go back to the next higher left parenthesis, regardless of any intervening tails, the
command can be used.

[Editor Command]
Does repeated ’s until it reaches a point where the current expression is a
tail of the next higher expression, i.e., always goes back to the next higher left
parenthesis.

[Editor Command]
Sets the edit chain to of edit chain, thereby making the top level expression
be the current expression. Never generates an error.

[Editor Command]
E�ectively does an followed by a , thereby making the current expression be
the next expression. Generates an error if the current expression is the last one in
a list. (However, described below will handle this case.)

[Editor Command]
Makes the current expression be the previous expression in the next higher
expression. Generates an error if the current expression is the �rst expression
in a list.

For example,

Both and operate by performing a followed by an appropriate number, i.e., there won’t be
an extra tail above the new current expression, as there would be if operated by performing an
followed by a .

[Editor Command]
(� 1) Equivalent to commands, except if an error occurs, the edit chain
is not changed.

[Editor Command]
(� 1) Equivalent to commands, except if an error occurs, the edit chain
is not changed.

17.11

*P
(A B C D E F B)
*3 UP P
... C D E F G)
*3 UP P
... E F G)
*0 P
... C D E F G)

!0

!0
0 not

^
LAST

NX
UP 2

!NX

BK

*PP
(COND ((NULL X) (RETURN Y)))
*F RETURN P
(RETURN Y)
*BK P
(NULL X)

NX BK !0
NX UP

2

(NX)
NX

(BK)
BK

N

N N

N

N N

Local Attention-Changing Commands

Note: is equivalent to , and vice versa.

[Editor Command]
Makes the current expression be the next expression at a higher level, i.e., goes
through any number of right parentheses to get to the next expression. For
example:

operates by doing ’s until it reaches a stage where the current expression is the last expression
in the next higher expression, and then does a . Thus always goes through at least one unmatched
right parenthesis, and the new current expression is always on a di�erent level, i.e., and always
produce di�erent results. For example using the previous current expression:

[Editor Command]
(� 0) Equivalent to followed by , i.e., causes the list starting with the th
element of the current expression (or th from the end if < 0) to become the
current expression. Causes an error if current expression does not have at least
elements.

17.12

(NX -) (BK)

!NX

*PP
(PROG ((L L)

(UF L))
LP (COND

((NULL (SETQ L (CDR L)))
(ERROR!))

([NULL (CDR (FMEMB (CAR L) (CADR L]
(GO LP)))

(EDITCOM (QUOTE NX))
(SETQ UNFIND UF)
(RETURN L))

*F CDR P
(CDR L)
*NX

NX ?
*!NX P
(ERROR!)
*!NX P
((NULL &) (GO LP))
*!NX P
(EDITCOM (QUOTE NX))
*

!NX 0 not
NX !NX

!NX NX

*F CAR P
(CAR L)
*!NX P
(GO LP)
*\P P
(CAR L)
*NX P
(CADR L)
*

(NTH)
UP

N N

N

N N N

N N

N

5

6

5

6

THE TELETYPE EDITOR

is a no-op, as is where is the length of the current
expression.

[Editor Command]
Moves to the ‘‘next’’ expression and prints it, i.e. performs a if possible,
otherwise performs a . (The latter case is indcated by �rst printing ‘‘ ’’.)

[Editor Command]
Control- X moves to the ‘‘previous’’ thing and then prints it, i.e. performs a if
possible, otherwise a followed by a .

[Editor Command]
Control- Z moves to the last expression and prints it, i.e. does followed by .

Line- feed, control- X, and control- Z are implemented as read macros; as soon as they are read,
they abort the current printout. They thus provide a convenient way of moving around in the editor.
In order to facilitate using di�erent control characters for those macros, the function is
provided (see page 17.59).

17.4 COMMANDS THAT SEARCH

All of the editor commands that search use the same pattern matching routine (the function , page
17.57). We will therefore begin our discussion of searching by describing the pattern match mechanism.
A pattern matches with if any of the following conditions are true:

(1) If is to .

(2) If is .

(3) If is a number and to .

(4) If is a string and is true.

(5) If is the atom , is a list of patterns, and one of the patterns on
matches .

(6) If is a literal atom or string containing one or more s (<esc>s), each can match an
inde�nite number (including 0) of contiguous characters in the atom or string , e.g.,
matches both and as do (but not ,
and . Note: the atom (<esc>) matches only with itself.

(7) If is a literal atom or string ending in <esc>s, matches with the atom or string
if it is ‘‘close’’ to , in the sense used by the spelling corrector (page 15.13). E.g.
matches with , with or .

Control- A in Interlisp on TOPS- 20.

Control- L in Interlisp on TOPS- 20.

17.13

(NTH 1) (NTH -)

line-feed
NX

!NX >

control-X
BK

!0 BK

control-Z
-1 P

immediate

SETTERMCHARS

EDIT4E

EQ

&

EQP

(STREQUAL)

(CAR) *ANY* (CDR)
(CDR)

$ $
VER$

VERYLONGATOM "VERYLONGSTRING" $LONG$ $LONG)
VLT $

two
CONSS$$

CONS CNONC$$ NCONC NCONC1

L L

PAT X

PAT X

PAT

PAT X

PAT PAT X

PAT PAT

PAT X

PAT

X

PAT PAT X

PAT

Commands That Search

The pattern matching routine always types a message of the form to inform the user
of the object matched by a pattern of the above two types, unless = . For example, if

matches , the editor would print .

(8) If is the atom , matches if matches with some tail of .
For example, will match with , but not , or

. However, note that will match with . In other
words, can match any interior segment of a list.

If = , i.e., = , then it matches any tail of a list. Therefore,
matches , and .

(9) If is the atom , matches if and only if is to .

This pattern is for use by programs that call the editor as a subroutine, since any non- atomic
expression in a command in by the user obviously cannot be to already existing
structure.

(10) If is the atom (two periods), matches if matches
and is contained in , as described on page 17.20.

(11) Otherwise if is a list, matches if matches , and
matches .

When the editor is searching, the pattern matching routine is called to match with in the structure,
unless the pattern begins with (three periods), in which case of the pattern is matched against
proper tails in the structure. Thus,

Matching is also attempted with atomic tails (except for). Thus,

Although the current expression is the atom after the �nal command, it is printed as to
alert the user to the fact that is a , not an element. Note that the pattern will match with either
instance of in , whereas will match only the second . The pattern
will only match with as an element, i.e., it will not match in , even though of
is . However, (or equivalently) may be used to specify a , e.g.,

17.14

=
EDITQUIETFLG T

VER$ VERYLONGATOM =VERYLONGATOM

(CAR) -- (CDR)
(A -- (&)) (A B C (D)) (A B C D) (A B C

(D) E) (A -- (&) --) (A B C (D) E)
--

(CDR) NIL (--) (A --)
(A) (A B C) (A . B)

(CAR) == (CDR) EQ

typed EQ

(CADR) .. (CAR) (CAR
) (CDDR)

(CAR) (CAR) (CDR)
(CDR)

elements
... CDR

*P
(A B C (B C))
*F (B --)
*P
(B C)
*0 F (... B --)
*P
... B C (B C))

NIL

*P
(A (B . C))
*F C
*P
... . C)

C C)
C tail C

C (A C (B . C)) (... . C) C NIL
NIL (A B) CDDR (A B)

NIL (... . NIL) (...) NIL tail (...

MA TCHING- ITEM

PAT PAT X PAT X

PAT PAT

PAT PAT X PAT X

PAT PAT X PAT

X PAT X

X PAT X PAT X PAT

X

7

7

THE TELETYPE EDITOR

will match with of the third subexpression of .

17.4.1 Search Algorithm

Searching begins with the current expression and proceeds in print order. Searching usually means �nd
the next instance of this pattern, and consequently a match is not attempted that would leave the edit
chain unchanged. At each step, the pattern is matched against the next element in the expression currently
being searched, unless the pattern begins with (three periods) in which case it is matched against
the next tail of the expression.

If the match is not successful, the search operation is recursive �rst in the direction, and then in the
direction, i.e., if the element under examination is a list, the search descends into that list before

attempting to match with other elements (or tails) at the same level. Note: A �nd command of the form
will only attempts matches at the top level of the current expression, i.e., it does not

descend into elements, or ascend to higher expressions.

However, at no point is the total recursive depth of the search (sum of number of s and s
descended into) allowed to exceed the value of the variable . At that point, the search of
that element or tail is abandoned, exactly as though the element or tail had been completely searched
without �nding a match, and the search continues with the element or tail for which the recursive depth is
below . This feature is designed to enable the user to search circular list structures (by setting

small), as well as protecting him from accidentally encountering a circular list structure in the
course of normal editing. can also be set to , which is equivalent to in�nity.
is initially set to 300.

If a successful match is not found in the current expression, the search automatically ascends to the next
higher expression, and continues searching there on the next expression after the expression it just �nished
searching. If there is none, it ascends again, etc. This process continues until the entire edit chain has
been searched, at which point the search fails, and an error is generated. If the search fails (or is aborted
by control- E), the edit chain is not changed (nor are any es performed).

If the search is successful, i.e., an expression is found that the pattern matches, the edit chain is set to the
value it would have had had the user reached that expression via a sequence of integer commands.

If the expression that matched was a list, it will be the �nal link in the edit chain, i.e., the new current
expression. If the expression that matched is not a list, e.g., is an atom, the current expression will be
the tail beginning with that atom, unless the atom is a tail, e.g., in . In this case, the current
expression will be , but will print as . In other words, the search e�ectively does an .

17.4.2 Search Commands

All of the commands below set for use by , set for use by (page 17.21), and do
not change the edit chain or perform any es if they are unsuccessful or aborted.

[Editor Command]
Actually two commands: the informs the editor that the command is to be

Unless = (initially set to). For discussion, see ‘‘Form Oriented Editing’’, page 17.26.

17.15

. NIL) CDR ((A . B) (C . D) (E))

...

CAR
CDR

(F NIL)

CAR CDR
MAXLEVEL

MAXLEVEL
MAXLEVEL

MAXLEVEL NIL MAXLEVEL

CONS

B (A . B)
B B) UP

LASTAIL UP UNFIND \
CONS

F
F next

UPFINDFLG NIL T

PATTERN

PATTERN

Search Commands

interpreted as a pattern. This is the most common and useful form of the �nd
command. If successful, the edit chain always changes, i.e., means
�nd the next instance of .

If is true, does not proceed with
a full recursive search. If the value of the is , invokes the search
algorithm described on page 17.15.

Note that if the current expression is ��� ��� , then
will �nd the label, not the inside of the expression, even though the latter appears

�rst (in print order) in the current expression. Note that typing (making the atom be the current
expression) followed by �nd the �rst .

[Editor Command]
Same as , i.e., inds the ext instance of , except that the

check of is not performed.

[Editor Command]
Similar to , except that it may succeed without changing the edit chain,
and it does not perform the check.

For example, if the current expression is ��� , will look for the
next , but will ‘‘stay here’’.

[Editor Command]
(� 1) Finds the th place that matches. Equivalent to

followed by repeated -1 times. Each time
successfully matches, is decremented by 1, and the search continues, until
reaches 0. Note that does not have to match with identical expressions;
it just has to match times. Thus if the current expression is

, will �nd .

If does not match successfully times, an error is generated and the edit
chain is unchanged (even if matched -1 times).

[Editor Command]
[Editor Command]

Similar to , except that it only matches with elements at the top level of
the current expression, i.e., the search will not descend into the current expression,
nor will it go outside of the current expression. May succeed without changing the
edit chain.

For example, if the current expression is , the
command will �nd the inside the , whereas will �nd the top level

, i.e., the second one.

��� [Editor Command]
Equivalent to followed by ��� followed by ,
so that if fails, the edit chain is left at the place
matched.

17.16

F

(MEMB) F
MEMB NIL F

(PROG NIL LP (COND (-- (GO LP1))) LP1)
F LP1 PROG LP1 GO

1 PROG
F LP1 would LP1

F N
F F N

MEMB F

F T
F

MEMB

(COND) F COND
COND (F COND T)

(F)
(F

T) (F N)

(FOO1 FOO2
FOO3) (F FOO$ 3) FOO3

(F)
F NIL

F

(PROG NIL (SETQ X (COND & &)) (COND &) ...)
F COND COND SETQ (F (COND --))

COND

(FS)
F F F

F

PATTERN

PATTERN

PATTERN CURRENT- EXPRESSION

PATTERN

PATTERN PATTERN

PATTERN

PATTERN

PATTERN

PATTERN N

N N PATTERN PATTERN

PATTERN N PATTERN

N N

PATTERN N

N

PATTERN N

PATTERN N

PATTERN

PATTERN

PATTERN

PATTERN 1 PATTERN N
PATTERN 1 PATTERN 2 PATTERN N

PATTERN M PATTERN M-1

THE TELETYPE EDITOR

[Editor Command]
Equivalent to , i.e., searches for a structure to

(see page 17.13).

��� [Editor Command]
Equivalent to ��� , i.e., searches for an
expression that is matched by either , , ��� or (see
page 17.13).

[Editor Command]
‘‘Backwards Find’’. Searches in reverse print order, beginning with the expression
immediately before the current expression (unless the current expression is the top
level expression, in which case searches the entire expression, in reverse order).

uses the same pattern match routine as , and and
have the same e�ect, but the searching begins at the of each list, and descends
into each element before attempting to match that element. If unsuccessful, the
search continues with the next previous element, etc., until the front of the list is
reached, at which point ascends and backs up, etc.

For example, if the current expression is

,

the command followed by will leave the current expression as ,
as will followed by .

[Editor Command]
Similar to , except that the search always includes the current
expression, i.e., starts at the end of current expression and works backward, then
ascends and backs up, etc.

Thus in the previous example, where followed by found ,
followed by would �nd the expression.

[Editor Command]
[Editor Command]

Same as .

[Editor Command]
Makes the current expression be the �rst thing after the label , i.e.
goes where an executed would go.

17.4.3 Location Speci�cation

Many of the more sophisticated commands described later in this chapter use a more general method of
specifying position called a location speci�cation . A location speci�cation is a list of edit commands that
are executed in the normal fashion with two exceptions. First, all commands not recognized by the editor
are interpreted as though they had been preceded by ; normally such commands would cause errors.
For example, the location speci�cation speci�es the 3rd element in the �rst clause of the

17.17

(F=)
(F (== .)) EQ

(ORF)
(F (*ANY*) N)

BF

BF

BF F MAXLEVEL UPFINDFLG
end

BF

(PROG NIL (SETQ X (SETQ Y (LIST Z))) (COND ((SETQ W --) --)) --)

F LIST BF SETQ (SETQ Y (LIST Z))
F COND BF SETQ

BF T
BF

F COND BF SETQ (SETQ Y (LIST Z)) F
COND (BF SETQ T) (SETQ W --)

(BF)
BF NIL

BF

(GO)
PROG

GO

F
(COND 2 3)

EXPRESSION X

EXPRESSION X

EXPRESSION

PATTERN 1 PATTERN N
PATTERN 1 PATTERN N

PATTERN 1 PATTERN 2 PATTERN N

PATTERN

PATTERN

PATTERN

PATTERN

PATTERN

PATTERN

LABEL

LABEL

8

8

Location Speci�cation

next .

Secondly, if an error occurs while evaluating one of the commands in the location speci�cation, and the
edit chain had been changed, i.e., was not the same as it was at the beginning of that execution of the
location speci�cation, the location operation will continue. In other words, the location operation keeps
going unless it reaches a state where it detects that it is ‘‘looping’’, at which point it gives up. Thus, if

is being located, and the �rst clause of the next contained only two elements, the
execution of the command 3 would cause an error. The search would then continue by looking for the
next . However, if a point were reached where there were no further s, then the �rst command,

, would cause the error; the edit chain would not have been changed, and so the entire location
operation would fail, and cause an error.

The command (page 17.46) in conjunction with the function (page 17.46) provide a way of using
arbitrary predicates applied to elements in the current expression. and will be described in detail
later in the chapter, along with examples illustrating their use in location speci�cations.

Throughout this chapter, the meta- symbol is used to denote a location speci�cation. Thus is a list of
commands interpreted as described above. can also be atomic, in which case it is interpreted as

.

[Editor Command]
Provides a way of explicitly invoking the location operation, e.g.,

will perform the the search described above.

[Editor Command]
Same as except the search is con�ned to the current expression, i.e., the edit
chain is rebound during the search so that it looks as though the editor were called
on just the current expression. For example, to �nd a containing a ,
one might use the location speci�cation where the

would reverse the e�ects of the command, and make the �nal current
expression be the .

[Editor Command]
Same as followed by another except that if the �rst succeeds
and second fails, no change is made to the edit chain.

[Editor Command]
Similar to .

[Editor Command]
Ascends the edit chain looking for a link which matches . In other words,
it keeps doing ’s until it gets to a speci�ed point. If is atomic, it is
matched with the �rst element of each link, otherwise with the entire link. If no
match is found, an error is generated, and the edit chain is unchanged.

Note: If is of the form , is evaluated
at each link, and if its value is , or the evaluation causes an error, the ascent
continues. See page 17.46.

Note that the user could always write followed by 2 and 3 for if he were not
sure whether or not was the name of an atomic command.

17.18

COND

(COND 2 3) COND

COND COND
COND

IF ##
IF ##

@ @
@ (LIST

@)

(LC . @)
(LC COND 2

3)

(LCL . @)
LC

COND RETURN
(COND (LCL RETURN) \)

\ LCL
COND

(2ND . @)
(LC . @) (LC . @)

(3ND . @)
2ND

(_)

0

(IF)
NIL

F COND (COND 2 3)
COND

PATTERN

PATTERN

PATTERN

PATTERN EXPRESSION EXPRESSION

THE TELETYPE EDITOR

For example:

Note that this command di�ers from in that it does not search of each link, it simply ascends.
Thus in the above example, followed by would �nd ,
not the higher .

[Editor Command]
Ascends the edit chain looking for a link speci�ed by , and stops links below
that (only links that are elements are counted, not tails). In other words
keeps doing ’s until it gets to a speci�ed point, and then backs o� ’s.

Note that is evaluated, so one can type .

[Editor Command]
Same as .

For example, will cause the containing the current expression to become
the new current expression. Thus if the current expression is as shown above, followed by

will make the new expression be
, and is therefore equivalent to .

The command is useful for locating a substructure by specifying something it contains. For
example, suppose the user is editing a list of lists, and wants to �nd a sublist that contains a (at any
depth). He simply executes .

[Editor Command]
Same as followed by .

For example, if the user is deep inside of a clause, he can advance to the next clause with
.

[Editor Command]
Same as .

The atomic form of is useful if the user will be performing repeated executions of . By
simply ing (see page 17.21) the chain corresponding to , he can use to step through the

17.19

*PP
[PROG NIL

(COND
[(NULL (SETQ L (CDR L)))

(COND
(FLG (RETURN L]

([NULL (CDR (FMEMB (CAR L)
(CADR L]]

*F CADR
*(_ COND)
*P
(COND (& &) (& &))
*

BF inside
F CADR BF COND (COND (FLG (RETURN L)))

COND

(BELOW)

BELOW
0 0

(BELOW (IPLUS X Y))

(BELOW)
(BELOW 1)

(BELOW COND) COND clause
F CADR

(BELOW COND) ([NULL (CDR (FMEMB (CAR L) (CADR L] (GO
LP)) 0 0 0 0

BELOW
FOO

F FOO (BELOW \)

(NEX)
(BELOW) NX

SELECTQ
(NEX SELECTQ)

NEX
(NEX _)

NEX (NEX)
MARK NEX

COM X

COM X

X

X COM

COM

COM

COM

COM

COM

COM

Commands That Save and Restore the Edit Chain

sublists.

[Editor Command]
Generalized command. E�ectively performs , followed by

, followed by .

If the search is unsuccessful, generates an error and the edit chain is not
changed.

Note that is just a special case of , and in fact, no
special check is made for a number; both commands are executed identically.

In other words, locates , using a search restricted to the current expression, and then backs up
to the current level, where the new current expression is the tail whose �rst element contains, however
deeply, the expression that was the terminus of the location operation. For example:

[Editor Command]
E.g., . Finds a that contains a , at any depth.
Equivalent to (but more e�cient than) , followed
by .

An in�x command, ‘‘ ’’ is not a meta- symbol, it the name of the command.
is of the command. Note that can also be used directly
as an edit pattern as described on page 17.13, e.g. .

For example, if the current expression is

,

then will make be the current expression. Note
that it is the innermost that is found, because this is the �rst encountered when ascending
from the . In other words, is not equivalent to ,
followed by followed by .

Note that is a location speci�cation, not just a pattern. Thus can be used
to �nd the which contains a whose �rst clause contains (at least) three elements. Note also
that since permits any edit command, the user can write commands of the form

, which will locate the �rst that contains a that contains a .

17.5 COMMANDS THAT SAVE AND RESTORE THE EDIT CHAIN

Several facilities are available for saving the current edit chain and later retrieving it: , which marks

17.20

(NTH)
NTH (LCL .)

(BELOW \) UP

NTH

(NTH) (NTH)

NTH

*P
(PROG (& &) LP (COND & &) (EDITCOM &) (SETQ UNFIND UF) (RETURN L))
*(NTH UF)
*P
... (SETQ UNFIND UF) (RETURN L))
*

.. @
(COND .. RETURN) COND RETURN

(F N) (LCL . @)
(_)

.. is @
CDDR (.. @)

F (.. @)

(PROG NIL [COND ((NULL L) (COND (FLG (RETURN L] --)

(COND .. RETURN) (COND (FLG (RETURN L)))
COND COND

RETURN (.. @) always (F N)
(LCL . @) \

@ (RETURN .. COND 2 3)
RETURN COND

@ (COND .. (RETURN
.. COND)) COND RETURN COND

MARK

COM

COM

NUMBER COM

COM

COM

PATTERN

PATTERN

PATTERN

PATTERN

PATTERN

PATTERN PATTERN

THE TELETYPE EDITOR

the current chain for future reference, , which returns to the last mark without destroying it, and ,
which returns to the last mark and also erases it.

[Editor Command]
Adds the current edit chain to the front of the list .

[Editor Command]
Makes the new edit chain be . Generates an error if
is , i.e., no s have been performed, or all have been erased.

This is an atomic command; do not confuse it with the list command
.

[Editor Command]
Similar to but also erases the last , i.e., performs

.

Note that if the user has two chains marked, and wishes to return to the �rst chain, he must perform ,
which removes the second mark, and then . However, the second mark is then no longer accessible. If
the user wants to be able to return to either of two (or more) chains, he can use the following generalized

:

[Editor Command]
Sets to the current edit chain,

[Editor Command]
Makes the current edit chain become the value of .

If the user did not prepare in advance for returning to a particular edit chain, he may still be able to
return to that chain with a single command by using or .

[Editor Command]
Makes the edit chain be the value of . Generates an error if = .

is set to the current edit chain by each command that makes a ‘‘big jump’’, i.e., a command that
usually performs more than a single ascent or descent, namely , , , , all commands that involve
a search, e.g., , , , , et al and and themselves. One exception is that is not
reset when the current edit chain is the top level expression, since this could always be returned to via
the command.

For example, if the user types , and then , would take him back to the . Another
would take him back to the , etc.

[Editor Command]
Restores the edit chain to its state as of the last print operation, i.e., , , or .
If the edit chain has not changed since the last printing, restores it to its state
as of the printing before that one, i.e., two chains are always saved.

For example, if the user types followed by , will return to the �rst , i.e., would be
equivalent to . Another would then take him back to the second , i.e., the user could use
to �ip back and forth between the two edit chains.

Note that if the user had typed followed by , he could use or to return to the ,

17.21

_ __

MARK
MARKLST

_
(CAR MARKLST) MARKLST

NIL MARK

(_
)

__
_ MARK (SETQ MARKLST (CDR

MARKLST))

__
_

MARK

(MARK)

(\)

\ \P

\
UNFIND UNFIND NIL

UNFIND
^ _ __ !NX

F LC .. BELOW \ \P UNFIND

^

F COND F CAR \ COND
\ CAR

\P
P ? PP

\P

P 3 2 1 P \P P
0 0 0 \P P \P

P F COND either \ \P P

PATTERN

LITATOM

LITATOM

LITATOM

LITATOM

Commands That Modify Structure

i.e., the action of and are independent.

[Editor Command]
Sets (using) to the current expression after performing .
The edit chain is not changed.

Thus will set to the current expression, and will set to the �rst
element in the last element of the current expression.

17.6 COMMANDS THAT MODIFY STRUCTURE

The basic structure modi�cation commands in the editor are:

� [Editor Command]
Deletes the corresponding element from the current expression.

��� � [Editor Command]
Replaces the th element in the current expression with ��� .

��� � [Editor Command]
Inserts ��� before the th element in the current expression.

��� [Editor Command]
Attaches ��� at the end of the current expression.

As mentioned earlier:
However, all structure modi�cation

is undoable, see (page 17.50).

All of the above commands generate errors if the current expression is not a list, or in the case of the �rst
three commands, if the list contains fewer than elements. In addition, the command , i.e., delete
the �rst element, will cause an error if there is only one element, since deleting the �rst element must
be done by replacing it with the second element, and then deleting the second element. Or, to look at it
another way, deleting the �rst element when there is only one element would require changing a list to
an atom (i.e., to) which cannot be done. However, the command will work even if there is
only one element in the current expression, since it will ascend to a point where it do the deletion.

If the value of is a hash array, the editor will mark all structures that are changed
by doing , where is the name of the function. The
algorithm used for marking is as follows: (1) If the expression is inside of another expression already
marked as being changed, do nothing. (2) If the change is an insertion of or replacement with a list,
mark the list as changed. (3) If the change is an insertion of or replacement with an atom, or a deletion,
mark the parent as changed.

is primarily for use by (page 6.47). When the value of is
non- , , when printing to a �le or display terminal, prints in the right
margin while printing an expression marked as having been changed. is initially .

17.22

\ \P

S @
SETQ (LC . @)

(S FOO) FOO (S FOO -1 1) FOO

() (1)

() (1)

(-) (1)

(N)

all structure modi�cation done by the editor is destructive, i.e., the editor uses
RPLACA and RPLACD to physically change the structure it was given.

UNDO

(1)

NIL DELETE
can

CHANGESARRAY
(PUTHASH CHANGESARRAY)

CHANGESARRAY PRETTYPRINT CHANGECHAR
NIL PRETTYPRINT CHANGECHAR

CHANGECHAR |

LITATOM

LITATOM

N N

N E1 EM N

N E1 EM

N E1 EM N

E1 EM N

E1 EM
E1 EM

N

STR UCTURE FN FN

9

10

11

9

10

11

THE TELETYPE EDITOR

17.6.1 Implementation of Structure Modi�cation Commands

For all replacement, insertion, and attaching at the end of a list, unless the command was typed in directly
to the editor, of the corresponding structure are used, because of the possibility that the exact
same command, (i.e., same list structure) might be used again. Thus if a program constructs the command

e.g., via , and gives this command to the editor, the used for
the replacement will be to .

The rest of this section is included for applications wherein the editor is used to modify a data structure,
and pointers into that data structure are stored elsewhere. In these cases, the actual mechanics of structure
modi�cation must be known in order to predict the e�ect that various commands may have on these
outside pointers. For example, if the value of is of the current expression, what will the
commands , , , , etc. do to ?

Deletion of the �rst element in the current expression is performed by replacing it with the second
element and deleting the second element by patching around it. Deletion of any other element is done by
patching around it, i.e., the previous tail is altered. Thus if is to the current expression which is

, and is of , after executing the command , will be (which
is but not to). However, under the same initial conditions, after executing will
be unchanged, i.e., will still be even though the current expression and are now

.

Both replacement and insertion are accomplished by smashing both and of the corresponding
tail. Thus, if were to the current expression, , after , would be

. Similarly, if were to the current expression, , then after
, would be .

The command is accomplished by smashing the last of the current expression a la . Thus
if were to any tail of the current expression, after executing an command, the corresponding
expressions would also appear at the end of .

In summary, the only situation in which an edit operation will change an external pointer occurs when
the external pointer is to a of the data structure, i.e., to of some node in the structure,
and the operation is deletion. If all external pointers are to of the structure, i.e., to of some

Some editor commands take as arguments a list of edit commands, e.g., .
In this case, the command is not considered to have been ‘‘typed in’’ even though the

command itself may have been typed in. Similarly, commands originating from macros, or commands
given to the editor as arguments to , , et al, e.g., are not
considered typed in.

The user can circumvent this by using the command (page 17.45), which computes the structure to
be used. In the above example, the form of the command would be , which would replace
the �rst element with the value of itself.

A general solution of the problem just isn’t possible, as it would require being able to make two lists
to each other that were originally di�erent. Thus if is of the current expression, and is

of the current expression, performing would have to make be to if all subsequent
operations were to update both and correctly.

17.23

Note: Since all commands that insert, replace, delete or attach structure use the same low level editor
functions, the remarks made here are valid for all structure changing commands.

copies

(1 (A B C)) (LIST 1 FOO) (A B C)
not EQ FOO

FOO CDR
(2) (3) (2 X Y Z) (-2 X Y Z) FOO

FOO EQ
(A B C D) FIE CDR FOO (1) FOO (B C D)

EQUAL EQ FIE (2) FIE
FIE (B C D) FOO (A

C D)

CAR CDR
FOO EQ (A B C D) (1 X Y Z) FOO (X

Y Z B C D) FOO EQ (A B C D) (-1 X Y
Z) FOO (X Y Z A B C D)

N CDR NCONC
FOO EQ N

FOO

not
proper tail CDR

elements CAR

(LP F FOO (1 (CAR FOO)))
(1 (CAR FOO))

LP
EDITF EDITV EDITF(FOO F COND (N --))

I
(I 1 FOO)

FOO

EQ FIE CDR FUM
CDDR (2) FIE EQ FUM

FIE FUM

The A, B, and : Commands

node, or if only insertions, replacements, or attachments are performed, the edit operation will
have the same e�ect on an external pointer as it does on the current expression.

17.6.2 The A, B, and : Commands

In the , ��� , and ��� commands, the sign of the integer is used to indicate
the operation. As a result, there is no direct way to express insertion after a particular element, (hence
the necessity for a separate command). Similarly, the user cannot specify deletion or replacement of
the th element from the end of a list without �rst converting to the corresponding positive integer.
Accordingly, we have:

��� [Editor Command]
Inserts ��� before the current expression. Equivalent to followed by

��� .

For example, to insert before the last element in the current expression, perform and then
.

��� [Editor Command]
Inserts ��� after the current expression. Equivalent to followed by

��� or ��� , whichever is appropriate.

��� [Editor Command]
Replaces the current expression by ��� . Equivalent to followed by

��� .

[Editor Command]
[Editor Command]

Deletes the current expression.

�rst tries to delete the current expression by performing an and then a . This works
in most cases. However, if after performing , the new current expression contains only one element,
the command will not work. Therefore, starts over and performs a , followed by ,
followed by . For example, if the current expression is , and the
user performs , and then , the method is used, and the new current expression
will be .

However, if the next higher expression contains only one element, will not work. So in this case,
performs , followed by , i.e., it the higher expression by . For example,

if the current expression is and the user performs and then
, the new current expression will be and the original expression would now

be . The rationale behind this is that deleting from
changes a list of one element to a list of no elements, i.e., or .

If the current expression is a tail, then , , , and all work exactly the same as though the
current expression were the �rst element in that tail. Thus if the current expression were

, would insert before , leaving the current
expression .

17.24

always

() () (-)

N

(B)
UP (-1

)

FOO -1 (B
FOO)

(A)
UP (-2

) (N)

(:)
UP (1

)

DELETE
(:)

DELETE UP (1)
UP

(1) DELETE BK UP
(2) (COND ((MEMB X Y)) (T Y))

-1 DELETE BK-UP-(2)
... ((MEMB X Y)))

BK
DELETE UP (: NIL) replaces NIL

(COND ((MEMB X Y)) (T Y)) F MEMB
DELETE ... NIL (T Y))

(COND NIL (T Y)) (MEMB X Y) ((MEMB X Y))
() NIL

B A : DELETE
... (PRINT

Y) (PRINT Z)) (B (PRINT X)) (PRINT X) (PRINT Y)
... (PRINT X) (PRINT Y) (PRINT Z))

N N E1 EM N E1 EM

N N

E1 EM
E1 EM

E1 EM

E1 EM
E1 EM

E1 EM E1 EM

E1 EM
E1 EM

E1 EM

12

12

THE TELETYPE EDITOR

The following forms of the , , and commands incorporate a location speci�cation:

��� [Editor Command]
(is) Similar to followed by

��� .

Warning: If causes an error, the location process does continue as described
on page 17.17. For example if = and the next does not have a
3rd element, the search stops and the fails. Note that the user can always
write if he intends the search to continue.

Current edit chain is not changed, but is set to the edit chain after the was performed, i.e.,
will make the edit chain be that chain where the insertion was performed.

��� [Editor Command]
Similar to except uses instead of .

��� [Editor Command]
Similar to except uses for .

��� [Editor Command]
��� [Editor Command]

Here is the of the command between and . Same as
��� .

Example:

��� [Editor Command]
Same as .

[Editor Command]
Does a followed by . The current edit chain is not changed,
but is set to the edit chain after the was performed.

Note: the edit chain will be changed if the current expression is no longer a part
of the expression being edited, e.g., if the current expression is and the
user performs , the tail, , will have been cut o�. Similarly, if the

See warning about , page 17.25.

17.25

A B :

(INSERT BEFORE . @)
@ (CDR (MEMBER ’BEFORE)) (LC .@)

(B)

@ not
@ (COND 3) COND

INSERT
(LC COND 3)

*P
(PROG (& & X) **COMMENT** (SELECTQ ATM & NIL) (OR & &) (PRIN1 & T)
(PRIN1 & T) (SETQ X &

*(INSERT LABEL BEFORE PRIN1)
*P
(PROG (& & X) **COMMENT** (SELECTQ ATM & NIL) (OR & &) LABEL
(PRIN1 & T) (user typed control-E

*

UNFIND B \

(INSERT AFTER . @)
INSERT BEFORE A B

(INSERT FOR . @)
INSERT BEFORE : B

(REPLACE @ BY)
(REPLACE @ WITH)

@ segment REPLACE WITH
(INSERT FOR . @)

(REPLACE COND -1 WITH (T (RETURN L)))

(CHANGE @ TO)
REPLACE WITH

(DELETE . @)
(LC . @) DELETE

UNFIND DELETE

... C)
(DELETE 1) (C)

INSERT

E1 EM
COMMAND

E1 EM

E1 EM

E1 EM

E1 EM
E1 EM

E1 EM

E1 EM

13

14

15

13

14

15

Form Oriented Editing and the Role of UP

current expression is and the user performs
.

Example: ,

For example, is equivalent to . For added readability,
is also permitted, e.g., will insert before the

current expression (but not change the edit chain).

For example, will go to the top, �nd the �rst , and
insert a at its end, and not change the current edit chain.

The , , and commands, commands, (and consequently , , and), all make
special checks in thru for expressions of the form . In this case, the expression
used for inserting or replacing is a of the current expression after executing , a list of edit
commands (the execution of does not change the current edit chain). For example,

will make a copy of the last form in the last clause of the next , and
insert it after the third element of the current expression. Note that this is not the same as

, which inserts four elements after the third element, namely , ,
, and a copy of the last element in the current expression.

17.6.3 Form Oriented Editing and the Role of UP

The that is performed before , , and commands makes these operations form- oriented. For
example, if the user types , and then , or simply , he will delete the
entire expression, whereas if is a variable, deletes just the variable . In both
cases, the operation is performed on the corresponding , and in both cases is probably what the
user intended. Similarly, if the user types , he means before
the expression, not before the atom . A consequent of this procedure is that a pattern of
the form can be viewed as simply an elaboration and further re�nement of the pattern

. Thus and
perform the same operation and, in fact, this is one of the motivations behind making the

current expression after , and be the same.

Occasionally, however, a user may have a data structure in which no special signi�cance or meaning is
attached to the position of an atom in a list, as Interlisp attaches to atoms that appear as of a list,

and therefore in , , , and commands after the location portion of
the operation has been performed.

There is some ambiguity in , as the user might mean make
be the function’s �rst argument. Similarly, the user cannot write

meaning change the name of the function. The user must in these cases write
, and .

assuming the next is of the form .

17.26

(CDR Y) (REPLACE WITH (CAR
X))

(DELETE -1) (DELETE COND 3)

Note: if @ is NIL (i.e., empty), the corresponding operation is performed on the current edit chain.

(REPLACE WITH (CAR X)) (: (CAR X))
HERE (INSERT (PRINT X) BEFORE HERE) (PRINT X)

Note: @ does not have to specify a location within the current expression, i.e., it is perfectly legal to ascend
to INSERT, REPLACE, or DELETE

(INSERT (RETURN) AFTER ^ PROG -1) PROG
(RETURN)

A B : INSERT REPLACE CHANGE
(## .)

copy
(INSERT (##

F COND -1 -1) AFTER 3) COND
(INSERT F

COND -1 (## -1) AFTER 3) F COND
-1

UP A B :
F SETQ DELETE (DELETE SETQ)

SETQ (DELETE X) X X
form

(INSERT (RETURN Y) BEFORE SETQ)
SETQ SETQ

(SETQ Y --)
SETQ (INSERT (RETURN Y) BEFORE SETQ) (INSERT (RETURN Y) BEFORE (SETQ
Y --))

F SETQ F (SETQ Y --)

CAR

INSERT CHANGE REPLACE DELETE

(INSERT AFTER)
(REPLACE SETQ WITH SETQQ)

(INSERT AFTER
1) (REPLACE SETQ 1 WITH SETQQ)

SETQ (SETQ Y --)

E1 EM COMS

COMS

COMS

EXPR FUNCTIONNAME

EXPR

EXPR

FUNCTIONNAME

16

17

16

17

THE TELETYPE EDITOR

versus those appearing elsewhere in a list. In general, the user may not even whether a particular
atom is at the head of a list or not. Thus, when he writes , he means
before the atom , whether or not it is of a list. By setting the variable to
(initially), the user can suppress the implicit that follows searches for atoms, and thus achieve the
desired e�ect. With = , following , for example, the current expression will be
the atom . In this case, the , , and operations will operate with respect to the atom . If the
user intends the operation to refer to the list which heads, he simply uses instead the pattern

.

17.6.4 Extract and Embed

Extraction involves replacing the current expression with one of its subexpressions (from any depth).

[Editor Command]
Replaces the original current expression with the expression that is current after
performing . If the current expression after is a of
a higher expression, its �rst element is used.

If the extracted expression is a list, then after has �nished, the current
expression will be that list. If the extracted expression is not a list, the new current
expression will be a tail whose �rst element is that non- list.

For example, if the current expression is , , or
will replace the by the . The current expression after the would be .

If the current expression is , then will replace the with
, even though the current expression after performing is . The current expression

after the would be followed by whatever followed the .

If the current expression is a tail, extraction works exactly the same as though the current
expression were the �rst element in that tail. Thus if the current expression is

, then will replace the by the , leaving
as the current expression.

The extract command can also incorporate a location speci�cation:

[Editor Command]
(is the between and .) Performs and
then . The current edit chain is not changed, but is set to
the edit chain after the was performed.

For example: If the current expression is then following
, the current expression will be .

, , and will all produce the same result.

See warning about , page 17.25.

See warning about , page 17.25.

17.27

know
(INSERT BEFORE FOO)

FOO CAR UPFINDFLG NIL
T UP

UPFINDFLG NIL F FOO
FOO A B : FOO

FOO (FOO
--)

(XTR . @)

(LCL . @) (LCL . @) tail

XTR

(COND ((NULL X) (PRINT Y))) (XTR PRINT) (XTR
2 2) COND PRINT XTR (PRINT Y)

(COND ((NULL X) Y) (T Z)) (XTR Y) COND
Y (LCL Y) ... Y)

XTR ... Y COND

initially
... (COND ((NULL

X) (PRINT Y))) (RETURN Z)) (XTR PRINT) COND PRINT
(PRINT Y)

(EXTRACT @1 FROM . @2)
@1 segment EXTRACT FROM (LC . @2)

(XTR . @1) UNFIND
XTR

(PRINT (COND ((NULL X) Y) (T Z)))
(EXTRACT Y FROM COND) (PRINT Y) (EXTRACT 2 -1 FROM
COND) (EXTRACT Y FROM 2) (EXTRACT 2 -1 FROM 2)

INSERT

INSERT

EXPR

18

18

Extract and Embed

While extracting replaces the current expression by a subexpression, embedding replaces the current
expression with one containing as a subexpression.

��� [Editor Command]
substitutes the current expression for all instances of the atom in ��� ,

and replaces the current expression with the result of that substitution. As with
, a fresh copy is used for each substitution.

If does not appear in ��� , the is interpreted as ���
.

leaves the edit chain so that the larger expression is the new current expression.

Examples:

If the current expression is ,
would replace with

.

If the current expression is , would replace it with
the expressions and i.e., if the appeared in
the cond clause , after the , the clause would be

.

If the current expression is , then will replace it with
. If the current expression is , will replace it with
.

If the current expression is a tail, embedding works exactly the same as though the current
expression were the �rst element in that tail. Thus if the current expression were

, would replace with .

The embed command can also incorporate a location speci�cation:

[Editor Command]
(is the segment between and .) Does and then

. Edit chain is not changed, but is set to the edit chain after the
was performed.

Examples: , ,
.

can be used for , and can be used for , e.g.,
.

[Variable]
The special atom used in the and commands is the value of this
variable, initially .

See warning about , page 17.25.

17.28

it

(MBD)
MBD &

SUBST

& MBD (MBD (
&))

MBD

(PRINT Y) (MBD (COND ((NULL X) &) ((NULL (CAR Y)) & (GO
LP)))) (PRINT Y) (COND ((NULL X) (PRINT Y)) ((NULL (CAR Y))
(PRINT Y) (GO LP)))

(RETURN X) (MBD (PRINT Y) (AND FLG &))
two (PRINT Y) (AND FLG (RETURN X)) (RETURN X)

(T (RETURN X)) MBD (T (PRINT Y) (AND FLG
(RETURN X)))

(PRINT Y) (MBD SETQ X) (SETQ X (PRINT
Y)) (PRINT Y) (MBD RETURN) (RETURN (PRINT
Y))

initially
... (PRINT Y)

(PRINT Z)) (MBD SETQ X) (PRINT Y) (SETQ X (PRINT Y))

(EMBED @ IN .)
@ EMBED IN (LC . @) (MBD .
) UNFIND MBD

(EMBED PRINT IN SETQ X) (EMBED 3 2 IN RETURN) (EMBED COND 3 1 IN (OR
& (NULL X)))

WITH IN SURROUND EMBED (SURROUND NUMBERP WITH
(AND & (MINUSP X)))

EDITEMBEDTOKEN
MBD EMBED

&

INSERT

E1 EM
E1 EM

E1 EM E1 EM

X

X

19

19

THE TELETYPE EDITOR

17.6.5 The MOVE Command

The command allows the user to specify (1) the expression to be moved, (2) the place it is to be
moved to, and (3) the operation to be performed there, e.g., insert it before, insert it after, replace, etc.

[Editor Command]
(is the segment between and .) is , , or the name
of a list command, e.g., , , etc. Performs , and obtains the current
expression there (or its �rst element, if it is a tail), which we will call ;
then goes back to the original edit chain, performs followed by

(setting an internal �ag so is not copied), then goes back to and
deletes . The edit chain is not changed. is set to the edit chain after

was performed.

If speci�es a location a message is printed
and an error is generated, e.g., , where is contained
inside of the second element.

For example, if the current expression is , will make the new
current expression be . Note that was executed as of the original edit chain, and that the
second element had not yet been removed.

As the following examples taken from actual editing will show, the command is an extremely
versatile and powerful feature of the editor.

See warning about , page 17.25.

17.29

MOVE

(MOVE @1 TO . @2)
@1 MOVE TO BEFORE AFTER

: N (LC . @1)
MOVE

(LC . @2) (
) @1

UNFIND
()

@2 inside of the expression to be moved,
(MOVE 2 TO AFTER X) X

(A B C D) (MOVE 2 TO AFTER 4)
(A C D B) 4

MOVE

*?
(PROG ((L L)) (EDLOC (CDDR C)) (RETURN (CAR L)))
*(MOVE 3 TO : CAR)
*?
(PROG ((L L)) (RETURN (EDLOC (CDDR C))))
*

*P
... (SELECTQ OBJPR & &) (RETURN &) LP2 (COND & &))
*(MOVE 2 TO N 1)
*P
... (SELECTQ OBJPR & & &) LP2 (COND & &))

*

*P
(OR (EQ X LASTAIL) (NOT &) (AND & & &))
*(MOVE 4 TO AFTER (BELOW COND))
*P
(OR (EQ X LASTAIL) (NOT &))
*\ P
... (& &) (AND & & &) (T & &))
*

INSERT

COM

COM

EXPR

COM

EXPR EXPR

EXPR

COM EXPR

The MOVE Command

Note that in the last example, the user could have added the label and moved the in one
operation by performing . Similarly, in the next example, in
the course of specifying , the location where the expression was to be moved to, the user also performs
a structure modi�cation, via , thus creating the structure that will receive the expression being
moved.

If is , or , the current position speci�es where the operation is to take place. In this case,
is set to where the expression that was moved was originally located, i.e., . For example:

17.30

*P
((NULL X) **COMMENT** (COND & &))
*(-3 (GO NXT]
*(MOVE 4 TO N (_ PROG))
*P
((NULL X) **COMMENT** (GO NXT))
*\ P
(PROG (&) **COMMENT** (COND & & &) (COND & & &) (COND & &))
*(INSERT NXT BEFORE -1)
*P
(PROG (&) **COMMENT** (COND & & &) (COND & & &) NXT (COND & &))

PROG NXT COND
(MOVE 4 TO N (_ PROG) (N NXT))

@2
(N (T))

*P
((CDR &) **COMMENT** (SETQ CL &) (EDITSMASH CL & &))
*MOVE 4 TO N 0 (N (T)) -1]
*P
((CDR &) **COMMENT** (SETQ CL &))
*\ P
*(T (EDITSMASH CL & &))
*

@2 NIL (HERE)
UNFIND @1

*P
(TENEX)
*(MOVE ^ F APPLY TO N HERE)
*P
(TENEX (APPLY & &))
*

*P
(PROG (& & & ATM IND VAL) (OR & &) **COMMENT** (OR & &)
(PRIN1 & T) (
PRIN1 & T) (SETQ IND user typed control-E

*(MOVE * TO BEFORE HERE)
*P
(PROG (& & & ATM IND VAL) (OR & &) (OR & &) (PRIN1 &

*P
(T (PRIN1 C-EXP T))
*(MOVE ^ BF PRIN1 TO N HERE)
*P
(T (PRIN1 C-EXP T) (PRIN1 & T))

THE TELETYPE EDITOR

Finally, if is , the command allows the user to specify where the is to
be moved to. In this case, the edit chain is changed, and is the chain where the current expression was
moved to; is set to where it was.

17.6.6 Commands That Move Parentheses

The commands presented in this section permit modi�cation of the list structure itself, as opposed to
modifying components thereof. Their e�ect can be described as inserting or removing a single left or
right parenthesis, or pair of left and right parentheses. Of course, there will always be the same number
of left parentheses as right parentheses in any list structure, since the parentheses are just a notational
guide to the structure provided by . Thus, no command can insert or remove just one parenthesis,
but this is suggestive of what actually happens.

In all six commands, and are used to specify an element of a list, usually of the current expression.
In practice, and are usually positive or negative integers with the obvious interpretation. However,
all six commands use the generalized command to �nd their element(s), so that th
element means the �rst element of the tail found by performing . In other words, if the
current expression is , then , ,
and all specify the exact same operation.

All six commands generate an error if the element is not found, i.e., the fails. All are undoable.

[Editor Command]
‘‘Both In’’. Inserts a left parentheses before the th element and after the th
element in the current expression. Generates an error if the th element is not
contained in the th tail, i.e., the th element must be ‘‘to the right’’ of the th
element.

Example: If the current expression is , then will modify it to be
.

[Editor Command]
Same as .

Example: If the current expression is , then will modify it to be
.

[Editor Command]
‘‘Both Out’’. Removes both parentheses from the th element. Generates an error
if th element is not a list.

17.31

*

@1 NIL MOVE current expression

UNFIND

*P
(SELECTQ OBJPR (&) (PROGN & &))
*(MOVE TO BEFORE LOOP)
*P
... (SELECTQ OBJPR & &) LOOP (FRPLACA DFPRP &) (FRPLACD DFPRP
&) (SELECTQ user typed control-E

*

PRINT

NTH (NTH)
(NTH)

(LIST (CAR X) (SETQ Y (CONS W Z))) (BI 2 CONS) (BI X -1)
(BI X Z)

NTH

(BI)

(A B (C D E) F G) (BI 2 4) (A
(B (C D E) F) G)

(BI)
(BI)

(A B (C D E) F G) (BI -2) (A B
(C D E) (F) G)

(BO)

N M

N M

COM N

N

N M

N M

M

N M N

N

N N

N

N

N

TO and THRU

Example: If the current expression is , then will modify it to be
.

[Editor Command]
‘‘Left In’’. Inserts a left parenthesis before the th element (and a matching right
parenthesis at the end of the current expression), i.e. equivalent to .

Example: if the current expression is , then will modify it to be
.

[Editor Command]
‘‘Left Out’’. Removes a left parenthesis from the th element.

Generates an error if th element is not a
list.

Example: If the current expression is , then will modify it to be
.

[Editor Command]
‘‘Right In’’. Inserts a right parenthesis after the th element of the th element.
The rest of the th element is brought up to the level of the current expression.

Example: If the current expression is , will modify it to be
. Another way of thinking about is to read it as ‘‘move the right parenthesis at the

end of the th element to after its th element.’’

[Editor Command]
‘‘Right Out’’. Removes the right parenthesis from the th element, moving it to
the end of the current expression. All elements following the th element are
moved inside of the th element. Generates an error if th element is not a list.

Example: If the current expression is , will modify it to be
. Another way of thinking about is to read it as ‘‘move the right parenthesis at the end of

the th element to the end of the current expression.’’

17.6.7 TO and THRU

, , , , and can be made to operate on several contiguous elements,
i.e., a segment of a list, by using in their respective location speci�cations the or command.

[Editor Command]
Does a , followed by an , and then a , thereby grouping
the segment into a single element, and �nally does a , making the �nal current
expression be that element.

For example, if the current expression is , following
, the current expression will be .

[Editor Command]
Same as except the last element not included, i.e., after the , an

is performed.

17.32

(A B (C D E) F G) (BO D) (A B
C D E F G)

(LI)

(BI -1)

(A B (C D E) F G) (LI 2) (A (B
(C D E) F G))

(LO)
All elements

following the th element are deleted.

(A B (C D E) F G) (LO 3) (A B
C D E)

(RI)

(A (B C D E) F G) (RI 2 2) (A (B
C) D E F G) RI

in

(RO)

(A B (C D E) F G) (RO 3) (A B (C D
E F G)) RO

out

EXTRACT EMBED DELETE REPLACE MOVE
TO THRU

(@1 THRU @2)
(LC . @1) UP (BI 1 @2)

1

(A (B (C D) (E) (F G H) I) J K) (C THRU
G) ((C D) (E) (F G H))

(@1 TO @2)
THRU BI (RI 1

-2)

N

N

N

N

N

N N

N M

M N

N

N N

N

N

N

N N

N

THE TELETYPE EDITOR

If both and are numbers, and is greater than , then counts from the beginning of the
current expression, the same as . In other words, if the current expression is ,

means not . In this case, the corresponding command is
.

and are not very useful commands by themselves; they are intended to be used in conjunction
with , , , , and . After and have operated, they set an
internal editor �ag informing the above commands that the element they are operating on is actually a
segment, and that the extra pair of parentheses should be removed when the operation is complete. Thus:

17.33

@1 @2 @2 @1 @2
@1 (A B C D E F G) (3

THRU 5) (C THRU E) (C THRU G) BI (BI
1 @2-@1+1)

THRU TO
EXTRACT EMBED DELETE REPLACE MOVE THRU TO

*P
(PROG (& & ATM IND VAL WORD) (PRIN1 & T) (PRIN1 & T) (SETQ IND &)
(SETQ VAL &) **COMMENT** (SETQQ user typed control-E

*(MOVE (3 THRU 4) TO BEFORE 7)
*P
(PROG (& & ATM IND VAL WORD) (SETQ IND &) (SETQ VAL &) (PRIN1 & T)
(PRIN1 & T) **COMMENT** user typed control-E

*

*P
(* FAIL RETURN FROM EDITOR. USER SHOULD NOTE THE VALUES OF SOURCEXPR
AND CURRENTFORM. CURRENTFORM IS THE LAST FORM IN SOURCEXPR WHICH WILL
HAVE BEEN TRANSLATED, AND IT CAUSED THE ERROR.)
*(DELETE (USER THRU CURR$))
=CURRENTFORM.
*P
(* FAIL RETURN FROM EDITOR. CURRENTFORM IS user typed control-E

*

*P
... LP (SELECTO & & & & NIL) (SETQ Y &) OUT (SETQ FLG &) (RETURN Y))
*(MOVE (1 TO OUT) TO N HERE]
*P
... OUT (SETQ FLG &) (RETURN Y) LP (SELECTQ & & & & NIL) (SETQ Y &))
*

*PP
[PROG (RF TEMP1 TEMP2)

(COND
((NOT (MEMB REMARG LISTING))

(SETQ TEMP1 (ASSOC REMARG NAMEDREMARKS)) **COMMENT**
(SETQ TEMP2 (CADR TEMP1))
(GO SKIP))

(T **COMMENT**
(SETQ TEMP1 REMARG)))

(NCONC1 LISTING REMARG)
(COND

((NOT (SETQ TEMP2 (SASSOC

TO and THRU

and can also be used directly with , because involves a location speci�cation while ,
, , and do not. Thus in the previous example, if the current expression had been the , e.g.,

the user had �rst performed , he could have used to perform the
extraction.

[Editor Command]
[Editor Command]

Both are the same as , i.e., from through the end of the list.

Examples:

17.34

*(EXTRACT (SETQ THRU CADR) FROM COND)
*P
(PROG (RF TEMP1 TEMP2) (SETQ TEMP1 &) **COMMENT** (SETQ TEMP2 &) (NCONC1 LISTING
REMARG) (COND & & user typed control-E

*

TO THRU XTR XTR A
B : MBD COND

F COND (XTR (SETQ THRU CADR))

(@1 TO)
(@1 THRU)

(@1 THRU -1) @1

*P
(VALUE (RPLACA DEPRP &) (RPLACD &) (RPLACA VARSWORD &) (RETURN))
*(MOVE (2 TO) TO N (_ PROG))
*(N (GO VAR))
*P
(VALUE (GO VAR))

*P
(T **COMMENT** (COND &) **COMMENT** (EDITSMASH CL & &) (COND &))
*(-3 (GO REPLACE))
*(MOVE (COND TO) TO N ^ PROG (N REPLACE))
*P
(T **COMMENT** (GO REPLACE))
*\ P
(PROG (&) **COMMENT** (COND & & &) (COND & & &) DELETE (COND & &) REPLACE
(COND &) **COMMENT** (EDITSMASH CL & &) (COND &))
*

*PP
[LAMBDA (CLAUSALA X)

(PROG (A D)
(SETQ A CLAUSALA)

LP (COND
((NULL A)

(RETURN)))
(SERCH X A)
(RUMARK (CDR A))
(NOTICECL (CAR A))
(SETQ A (CDR A))
(GO LP]

*(EXTRACT (SERCH THRU NOT$) FROM PROG)
=NOTICECL
*P

20

20

THE TELETYPE EDITOR

17.6.8 The R Command

[Editor Command]
Replaces all instances of by in the current expression, e.g., .
Generates an error if there is not at least one instance.

The command operates in conjunction with the search mechanism of the editor. The search proceeds
as described on page 17.15, and can employ any of the patterns on page 17.13. Each time matches
an element of the structure, the element is replaced by (a copy of) ; each time matches a tail of the
structure, the tail is replaced by (a copy of) .

For example, if the current expression is ,

will change it to ,

will change it to ,

will change it to , and

will change it to .

If is an atom or string containing s (<esc>s), s appearing in stand for the characters matched
by the corresponding in . For example, means for all atoms or strings that
begin with , replace the characters ‘‘ ’’ by ‘‘ ’’. Applied to the list ,

� � would produce , and would produce
. Similarly, will change to

. Note that was changed to , i.e., does not
mean replace every with , but replace the �rst in every atom or string by . If the user wanted to
replace every by , he could perform .

The user will be informed of all such replacements by a message of the form , e.g., .

Note that the feature can be used to delete or add characters, as well as replace them. For example,
will delete the terminating ’s from all literal atoms and strings. Similarly, if an in does

If matches a string, it will be replaced by a string. Note that it does not matter whether or
themselves are strings, i.e. , , , and

are equivalent. Note also that will never match with a number, i.e., will not
change 11 to 12.

17.35

(LAMBDA (CLAUSALA X) (SERCH X A) (RUMARK &) (NOTICECL &))
*(EMBED (SERCH TO) IN (MAP CLAUSALA (FUNCTION (LAMBDA (A) *]
*PP
[LAMBDA (CLAUSALA X)

(MAP CLAUSALA
(FUNCTION (LAMBDA (A)

(SERCH X A)
(RUMARK (CDR A))
(NOTICECL (CAR A]

*

(R)
(R CAADR CADAR)

R

(A (B C) (B . C))

(R C D) (A (B D) (B . D))

(R (... . C) D) (A (B C) (B . D))

(R C (D E)) (A (B (D E)) (B D E))

(R (... . NIL) D) (A (B C . D) (B . C) . D)

$ $
$ (R FOO$ FIE$)

FOO FOO FIE (FOO FOO2 XFOO1)
(FIE FIE2 XFOO1) (R FOO FIE) (FIE

FIE2 XFIE1) (R D A) (LIST (CADR X) (CADDR Y)) (LIST
(CAAR X) (CAADR)) CADDR not CAAAR (R D A)

D A D A
D A (LP (R D A))

$ -> CADR->CAAR

$
(R $1 $) 1 $

(R D A) (R "D" A) (R D "A") (R "D"
"A") (R $1 $2)

X Y

X Y

X X

Y X

Y

X Y

X

(R FOO FIE)

X Y

X

X X

Y

X

21

22

21

22

The R Command

not have a mate in , the characters matched by the are e�ectively deleted. For example,
will change to . can also be a list containing s, e.g., will change

to , to .

If does not contain s, appearing in refers to the expression matched by , e.g.,
changes to , changes every

to .

Since is a frequently used operation for eplacing haracters, the following command is
provided:

[Editor Command]
Equivalent to

and change all instances of to . The commands and are available for changing just one,
(i.e., the �rst) instance of to .

[Editor Command]
Find the �rst instance of and replace it by .

[Editor Command]
.

In addition, while and only operate within the current expression, and will continue
searching, a la the command, until they �nd an instance of , even if the search carries them beyond
the current expression.

[Editor Command]
Switches the th and th elements of the current expression.

For example, if the current expression is
, will modify it to be
. The relative order of and is not important, i.e., and are equivalent.

uses the generalized command to �nd the th and th elements, a la the -
commands.

Thus in the previous example, would produce the same result.

[Editor Command]
Like except switches the expressions speci�ed by and , not the
corresponding elements of the current expression, i.e. and can be at di�erent
levels in current expression, or one or both be outside of current expression.

There is no similar operation for changing to , since the �rst in always corresponds to
the �rst in , the second in to the second in , etc.

If is a pattern containing an pattern somewhere it, the characters matched by the s are not
available, and for the purposes of replacement, the e�ect is the same as though did not contain any

s. For example, if the user types , the second will refer to the entire
expression matched by .

17.36

$ (R $/$ $)
AND/OR AND $ (R $1 (CAR $))

FOO1 (CAR FOO) FIE1 (CAR FIE)

$ $ entire (R
LONGATOM ’$) LONGATOM ’LONGATOM (R (SETQ X &) (PRINT $))
(SETQ X &) (PRINT (SETQ X &))

(R $ $ $ $) R C

(RC)
(R $ $ $ $)

R RC R1 RC1

(R1)

(RC1)
(R1 $ $ $ $)

R RC R1 RC1
F

(SW)

(LIST (CONS (CAR X) (CAR Y)) (CONS (CDR X) (CDR
Y))) (SW 2 3) (LIST (CONS (CDR X) (CDR Y)) (CONS (CAR X) (CAR
Y))) (SW 3 2) (SW 2 3)

SW NTH (NTH) BI BO

(SW CAR CDR)

(SWAP @1 @2)
SW @1 @2

@1 @2

AND/OR OR $
$ $

$ within $

$ (R (CAR F$) (PRINT $)) $
(CAR F$)

Y

Y

X Y X

X Y

X Y

X Y

X Y

X Y

X Y

X Y

X Y

X Y

x

N M

N M

N M

COM N M

Y

X Y X

X

X

THE TELETYPE EDITOR

Thus, using the previous example, would result in
.

17.7 COMMANDS THAT PRINT

[Editor Command]
Prettyprints the current expression.

[Editor Command]
Prints the current expression as though (page 6.18) were set to 2.

[Editor Command]
Prints the th element of the current expression as though were set
to 2.

[Editor Command]
Same as .

[Editor Command]
Prints the th element of the current expression as though were set
to .

[Editor Command]
Prints the current expression as though were set to .

[Editor Command]
Same as .

Both and use the generalized command to obtain the corresponding
element, so that does not have to be a number, e.g., will work. causes all comments
to be printed as (see page 6.50). and print as only those comments
that are (top level) elements of the current expression. Lower expressions are not really seen by the
editor; the printing command simply sets and calls .

[Editor Command]
Prettyprints current expression, comments.

is equivalent to except that it �rst resets to (see
page 6.50).

[Editor Command]
Prettyprints the current expression as a variable, i.e., no special treatment for

, , , etc., or for CLISP.

[Editor Command]
Prettyprints the current expression, printing CLISP translations, if any.

[Editor Command]
Prints the argument names and corresponding values for the current expression.
Analagous to the break command (page 9.5). For example,

17.37

(SWAP CAR CDR) (LIST (CONS (CDR X) (CAR
Y)) (CONS (CAR X) (CDR Y)))

PP

P
PRINTLEVEL

(P)
PRINTLEVEL

(P 0)
P

(P)
PRINTLEVEL

(P 0)
PRINTLEVEL

?
(P 0 100)

(P) (P) NTH (NTH)
(P COND 3) PP

COMMENT P ? **COMMENT**

PRINTLEVEL PRINT

PP*
including

PP* PP **COMMENT**FLG NIL

PPV

LAMBDA COND SETQ

PPT

?=

?=

M

M

M N

M

N

N

N

M M N COM

M

Commands for Leaving the Editor

The command (page 17.44) is an imperative form of . It allows the user to specify a change to
the element of the current expression that corresponds to a particular argument name.

All printing functions print to the terminal, regardless of the primary output �le. All use the readtable .
No printing function ever changes the edit chain. All record the current edit chain for use by (page
17.21). All can be aborted with control- E.

17.8 COMMANDS FOR LEAVING THE EDITOR

[Editor Command]
Exits from the editor.

[Editor Command]
Exits from the editor with an error. Mainly for use in conjunction with
commands (page 17.40) that the user wants to abort.

Since all of the commands in the editor are errorset protected, the user must exit from the editor via a
command. provides a way of distinguishing between a successful and unsuccessful (from the user’s
standpoint) editing session. For example, if the user is executing ,
and he exits from the lower editor with an , the command will then complete its operation. If
the user wants to abort the command, he must make the command generate an error. He
does this by exiting from the lower editor with a command. In this case, the higher editor’s edit
chain will not be changed by the command.

Actually, it is also possible to exit the editor by typing control- D. is preferred even if the user is
editing at the level, as it will perform the necessary ‘‘wrapup’’ to insure that the changes made
while editing will be undoable.

[Editor Command]
Exits from the editor and saves the ‘‘state of the edit’’ on the property list of the
function or variable being edited under the property . If the editor is
called again on the same structure, the editing is e�ectively ‘‘continued,’’ i.e., the
edit chain, mark list, value of and are restored.

For example:

17.38

*P
(STRPOS "A0???" X N (QUOTE ?) T)
*?=
X = "A0???"
Y = X
START = N
SKIP = (QUOTE ?)
ANCHOR = T
TAIL =

MAKE ?=

T
\P

OK

STOP
TTY:

STOP
(MOVE 3 TO AFTER COND TTY:)

OK MOVE
MOVE TTY:

STOP
TTY:

STOP
EVALQT

SAVE

EDIT-SAVE

UNFIND UNDOLST

*P
(NULL X)
*F COND P

23

23

THE TELETYPE EDITOR

is necessary only if the user is editing many di�erent expressions; an exit from the editor via
always saves the state of the edit of that call to the editor on the property list of the atom , under
the property name . also remprops from the property list of the function or
variable being edited.

Whenever the editor is entered, it checks to see if it is editing the same expression as the last one edited.
In this case, it restores the mark list and , and sets to be the edit chain as of the
previous exit from the editor. For example:

Furthermore, as a result of the history feature, if the editor is called on the same expression within a
certain number of inputs, the state of the edit of that expression is restored, regardless of how
many other expressions may have been edited in the meantime. For example:

Namely, the size of the history list, which can be changed with , (page 8.18).

17.39

(COND (& &) (T &))
*SAVE
FOO
_ .

.

.
_EDITF(FOO)
EDIT
*P
(COND (& &) (T &))
*\ P
(NULL X)
*

SAVE OK
EDIT

LASTVALUE OK EDIT-SAVE

UNDOLST UNFIND

_EDITF(FOO)
EDIT
*P
(LAMBDA (X) (PROG & & LP & & & &))

.

.

.
*P
(COND & &)
*OK
FOO
_ .

. any number of LISPX inputs

. except for calls to the editor
_EDITF(FOO)
EDIT
*P
(LAMBDA (X) (PROG & & LP & & & &))
*\ P
(COND & &)
*

LISPX

CHANGESLICE

Nested Calls to Editor

Thus the user can always continue editing, including undoing changes from a previous editing session,
if (1) No other expressions have been edited since that session (since saving takes place at time,
intervening calls that were aborted via control- D or exited via will not a�ect the editor’s memory);
or (2) That session was ‘‘su�ciently’’ recent; or (3) It was ended with a command.

17.9 NESTED CALLS TO EDITOR

[Editor Command]
Calls the editor recursively. The user can then type in commands, and have them
executed. The command is completed when the user exits from the lower
editor. (see and above).

The command is extremely useful. It enables the user to set up a complex operation, and perform
interactive attention- changing commands part way through it. For example the command

allows the user to interact, in e�ect, the command. Thus he can
verify for himself that the correct location has been found, or complete the speci�cation ‘‘by hand.’’ In
e�ect, says ‘‘I’ll tell you what you should do when you get there.’’

The command operates by printing and then calling the editor. The initial edit chain in the
lower editor is the one that existed in the higher editor at the time the command was entered. Until
the user exits from the lower editor, any attention changing commands he executes only a�ect the lower
editor’s edit chain. Of course, if the user performs any structure modi�cation commands while under a

command, these will modify the structure in both editors, since it is the same structure. When the
command �nishes, the lower editor’s edit chain becomes the edit chain of the higher editor.

[Editor Command]
[Editor Command]
[Editor Command]

Calls or or on of current expression.

17.40

_EDITF(FOO)
EDIT
*

.

.

.
*P
(COND (& &) (& &) (&) (T &))
*OK
FOO

. a small number of LISPX inputs,

. including editing

.
_EDITF(FOO)
EDIT
*\ P
(COND (& &) (& &) (&) (T &))
*

exit
STOP

SAVE

TTY:

TTY:
OK STOP

TTY:
(MOVE 3 TO

AFTER COND 3 P TTY:) within MOVE

TTY:

TTY: TTY:
TTY:

TTY:
TTY:

EF
EV
EP

EDITF EDITV EDITP CAR

THE TELETYPE EDITOR

17.10 MANIPULATING THE CHARACTERS OF AN ATOM OR STRING

[Editor Command]
An edit macro de�ned as followed by , i.e., it
raises to upper- case the current expression, or if a tail, the �rst element of the
current expression.

[Editor Command]
Similar to , except uses .

[Editor Command]
First does a , and then lowers all but the �rst character, i.e., the �rst character
is left capitalized.

Note: , , and are all no-ops if the corresponding atom or string is already in that state.

[Editor Command]
Equivalent to , i.e., changes every lower-case to upper-
case in the current expression.

[Editor Command]
Similar to , except performs .

Note that in both and , should be typed in upper case.

[Editor Command]
Permits the ‘‘editing’’ of an atom or string.

operates by calling the editor recursively on of the current
expression, or if it is a list, on of its �rst element. If the lower editor is
exited successfully, i.e., via as opposed to , the list of atoms is made into
a single atom or string, which replaces the atom or string being ‘‘repacked.’’ The
new atom or string is always printed.

Example:

Note that this could also have been accomplished by or simply .

[Editor Command]
Does followed by , e.g. .

17.41

RAISE
UP (I 1 (U-CASE (## 1)))

LOWER
RAISE L-CASE

CAP
RAISE

RAISE LOWER CAP

(RAISE)
(I R (L-CASE))

(LOWER)
RAISE (I R (L-CASE))

(RAISE) (LOWER)

REPACK

REPACK UNPACK
UNPACK

OK STOP

*P
... "THIS IS A LOGN STRING")
*REPACK
*EDIT
P
(T H I S % I S % A % L O G N % S T R I N G)
*(SW G N)
*OK
"THIS IS A LONG STRING"
*

(R GN NG) (RC GN NG)

(REPACK @)
(LC . @) REPACK (REPACK THIS$)

X

X X X

X

X X

X X X

Manipulating Predicates and Conditional Expressions

17.11 MANIPULATING PREDICATES AND CONDITIONAL EXPRESSIONS

[Editor Command]
Used to join two neigh bor ing ’s together, e.g.
followed by becomes

. does an �rst so that you don’t have to be at the
�rst .

[Editor Command]
Splits one into two. speci�es the last clause in the �rst , e.g.

splits into
. Uses the generalized command

, so that does not have to be a number, e.g., the user can say
, meaning split after the clause containing . also does

an �rst.

[Editor Command]
Negates the current expression, i.e. performs , except that is smart
about simplifying. For example, if the current expression is:

, would change it to .

is implemented via the function (page 14.2).

[Editor Command]
Takes a conditional expression of the form and rearranges
it to an equivalent , or
to .

is smart about negations (uses) and simplifying s. It always produces an equivalent
expression. It is useful for those cases where one wants to insert extra clauses or tests.

17.12 HISTORY COMMANDS IN THE EDITOR

As described on page 8.35, all of the user’s inputs to the editor are stored on , the editor’s
history list, and all of the programmer’s assistant commands for manipulating the history list, e.g. ,

, , , etc., are available for use on events on . In addition, the following four
history commands are recognized specially by the editor. They always operate on the last, i.e. most
recent, event.

[Editor Command]
Allows the user to supply the command name when it was omitted.

is useful when a command name is .

For example, suppose the user wants to perform but instead types just
. The editor will type , whereupon the user can type . The

e�ect is the same as though the user had typed , followed by , , and , i.e.,
the command is executed. also works if the command is a line

17.42

JOINC
COND (COND)

(COND) (COND
) JOINC (F COND T)

COND

(SPLITC)
COND COND (SPLITC

3) (COND) (COND
) (COND) NTH (NTH

) (SPLITC
RETURN) RETURN SPLITC

(F COND T)

NEGATE
(MBD NOT)

(OR (NULL X)
(LISTP X)) NEGATE (AND X (NLISTP X))

NEGATE NEGATE

SWAPC
(COND (A B)(T C))

(COND ((NOT A) C)(T B)) (COND (A B) (C D))
(COND ((NOT A) (COND (C D))) (T B))

SWAPC NEGATE COND

EDITHISTORY
REDO

USE FIX NAME EDITHISTORY

DO

USE incorrect

(-2 (SETQ X (LIST Y Z)))
(SETQ X (LIST Y Z)) SETQ ? DO -2

FIX (LI 1) (-1 -2) OK
(-2 (SETQ X (LIST Y Z))) DO

CLA USE 1 CLA USE 2
CLA USE 3 CLA USE 4 CLA USE 1 CLA USE 2 CLA USE 3

CLA USE 4

X

X

CLA USE 1 CLA USE 2 CLA USE 3 CLA USE 4 CLA USE 1
CLA USE 2 CLA USE 3 CLA USE 4
COM X

COM

24

24

THE TELETYPE EDITOR

command.

[Editor Command]
Same as .

In the case of , the previous command is always treated as though it were a line command, e.g., if the
user types and then , the e�ect is the same as though he had typed ,
not .

[Editor Command]
Same as .

[Editor Command]
Same as .

17.13 MISCELLANEOUS COMMANDS

[Editor Command]
Unless preceded by or , is always a no-op. Thus extra right parentheses or
square brackets at the ends of commands are ignored.

[Editor Command]
Clispi�es the current expression (see page 16.17).

[Editor Command]
Dwimi�es the current expression (see page 16.14).

[Editor Command]
If the current expression is a comment pointer (see page 6.51), reads in the full
text of the comment, and replaces the current expression by it.

[Editor Command]
is the text of a comment. ascends the edit chain looking for a ‘‘safe’’ place

to insert the comment, e.g., in a clause, after a statement, etc., and
inserts that point, if possible, otherwise before. For example, if the
current expression is in

would insert
the expres sion.

If inserted after the , the comment would then be (incorrectly) returned as the value of the
. However, if the was itself a statement, and hence its value was not being used, the

comment could be (and would be) inserted after the expression.

17.43

!F
DO F

!F
(SETQ X &) !F F (SETQ X &)

(F (SETQ X &))

!E
DO E

!N
DO N

NIL
F BF

CL

DW

GET*

(* .)
*

COND PROG
(* .) after

(FACT (SUB1 N))

[COND
((ZEROP N) 1)
(T (ITIMES N (FACT (SUB1 N]

(* CALL FACT RECURSIVELY) (* CALL FACT RECURSIVELY)
before ITIMES

ITIMES
COND COND PROG

ITIMES

X

X

X

Miscellaneous Commands

does not change the edit chain, but is set to where the comment was
actually inserted.

[Editor Command]
Essentially ‘‘expands’’ the current expression in line: (1) if (of) the current
expression is the name of a macro, expands the macro in line; (2) if a CLISP word,
translates the current expression and replaces it with the translation; (3) if is
the name of a function for which the editor can obtain a symbolic de�nition, either
in-core or from a �le, substitutes the argument expressions for the corresponding
argument names in the body of the de�nition and replaces the current expression
with the result; (4) if of the current expression is an open lambda, substitutes
the arguments for the corresponding argument names in the body of the lambda,
and then removes the lambda and argument list.

[Editor Command]
The inverse of : makes the current expression into a function. is the
function name, its arguments. The argument names are substituted for
the corresponding argument values in , and the result becomes the
body of the function de�nition for . The current expression is then replaced
with .

If and are supplied, is used rather than the current
expression; if just is supplied, is used.

If is omitted, will make up some arguments, using elements of
, if they are literal atoms, otherwise arguments selected from

, avoiding duplicate argument names.

Example: If the current expression is , then
will de�ne as

and then replace the current expression with .

[Editor Command]
Makes the value of be in the call which is the current expression,
i.e. a command following a will always print = . For
example:

[Editor Command]
Quotes the current expression, i.e. .

[Editor Command]
Deletes the current expression, then prints new current expression, i.e. .

17.44

* UNFIND

GETD
CAR

CAR

CAR

(MAKEFN (.))
GETD

(.)

(THRU)
(THRU -1)

MAKEFN
(X Y

Z A B C ...)

(COND ((CAR X) (PRINT Y T)) (T (HELP)))
(MAKEFN (FOO (CAR X) Y) (A B)) FOO (LAMBDA (A B) (COND (A (PRINT B
T)) (T (HELP)))) (FOO (CAR X) Y)

(MAKE)

?= MAKE

*P
(JSYS)
*?=
JSYS[N;AC1,AC2,AC3,RESULTAC]
*(MAKE N 10)
*(MAKE RESULTAC 3)
*P
(JSYS 10 NIL NIL NIL 3)

Q
MBD QUOTE

D
(:) I P

FN A CTUALAR GS AR GLIST N 1 N 2
FN

AR GLIST

ACTUALAR GS

FN

FN A CTUALAR GS

N 1 N 2 N 1 N 2
N 1 N 1

AR GLIST

A CTUALAR GS

AR GNAME EXP

AR GNAME EXP

AR GNAME EXP

THE TELETYPE EDITOR

17.14 COMMANDS THAT EVALUATE

[Editor Command]
Causes the editor to call the Interlisp executive giving it the next input as
argument. Example:

Note: only works when when typed in, e.g, will treat
as a pattern, and search for .

[Editor Command]
Evaluates , i.e., performs , and prints the result on the terminal.

[Editor Command]
Same as but does not print.

The and commands are mainly intended for use by macros and subroutine calls to the
editor; the user would probably type in a form for evaluation using the more convenient format of the
(atomic) command.

��� [Editor Command]
Executes the ��� where = . If is not
an atom, is evaluated also.

Examples:

will replace the 3rd element of the current expression with
the de�nition of .

will attach the value of and of the value of
to the end of the current expression.

will search for an expression to the value of .

, if is , inserts the
value of before the �rst element of the current expression, otherwise replaces
the �rst element by the value of .

The command sets an internal �ag to indicate to the structure modi�cation
commands to copy expression(s) when inserting, replacing, or attaching.

[Editor Command]
Does an of the current expression.

Note that , line- feed, and the command together e�ectively allow the user to ‘‘single-step’’ a
program through its symbolic de�nition.

17.45

E
LISPX

*E BREAK(FIE FUM)
(FIE FUM)
*E (FOO)

(FIE BROKEN)
:

E (INSERT D BEFORE E)
E E

(E)
(EVAL)

(E T)
(E)

(E) (E T)

E

(I)
editor command () (EVAL)

(I 3 (GETD ’FOO))
FOO

(I N FOO (CAR FIE)) FOO CAR
FIE

(I F= FOO T) EQ FOO

(I (COND ((NULL FLG) ’-1) (T 1)) FOO) FLG NIL
FOO

FOO

I
not

EVAL
EVAL

EVAL GO

X

X X

X

x

X X

C X 1 X N
C Y 1 Y N Y i X i C

C

25

26

25

26

Commands That Test

[Editor Command]
Replaces the current expression by the result of evaluating it.

��� [NLambda NoSpread Function]
An nlambda, nospread function (not a command). Its value is what the current
expression would be after executing the edit commands ��� starting
from the present edit chain. Generates an error if any of thru COM N cause
errors. The current edit chain is never changed.

Example: replaces all ’s in the current expression by the �rst
containing a .

The command is not very convenient for computing an edit command for execution, since it
computes the command name and its arguments separately. Also, the command cannot be used to
compute an atomic command. The following two commands provide more general ways of computing
commands.

��� [Editor Command]
Each is evaluated and its value is executed as a command.

For example, will replace the �rst element of the current expression
with the value of if non- , otherwise do nothing.

��� [Editor Command]
Executes ��� .

is mainly useful in conjunction with the command. For example, suppose the user wishes
to compute an entire list of commands for evaluation, as opposed to computing each command one at a
time as does the command. He would then write where computed
the list of commands, e.g., .

17.15 COMMANDS THAT TEST

[Editor Command]
Generates an error the value of is true. In other words, if

causes an error or = , will cause an error.

For some editor commands, the occurrence of an error has a well de�ned meaning, i.e., they use errors to
branch on, as uses and non- . For example, an error condition in a location speci�cation may
simply mean ‘‘not this one, try the next.’’ Thus the location speci�cation

speci�es the �rst whose second argument is a number. The
command, by equating to error, provides a more natural way of accomplishing the same result. Thus,
an equivalent location speci�cation is .

The , , , , , and commands make special checks for ## forms in the
expressions used for inserting or replacing, and use a copy of ## form instead (see page 17.26). Thus,

is equivalent to .

The editor command is a no-op, see page 17.43.

17.46

GETVAL

(##)

(I R ’X (## (CONS .. Z))) X CONS
Z

I entire
I

(COMS)

(COMS (COND (X (LIST 1 X))))
X NIL

(COMSQ)

COMSQ COMS

COMS (COMS (CONS ’COMSQ))
(COMS (CONS ’COMSQ (GETP FOO ’COMMANDS)))

(IF)
unless (EVAL) (EVAL

) (EVAL) NIL IF

COND NIL NIL
(IPLUS (E (OR (NUMBERP

(## 3)) (ERROR!)) T)) IPLUS IF
NIL

(IPLUS (IF (NUMBERP (## 3))))

A B : INSERT REPLACE CHANGE

(INSERT (## 3 2) AFTER 1) (I INSERT (COPY (## 3 2)) ’AFTER 1)

NIL

COM 1 COM 2 COM N

COM 1 COM N
COM 1

X 1 X M
X i

COM 1 COM N
COM 1 COM N

X X

X

X

X X

27

27

THE TELETYPE EDITOR

The command can also be used to select between two alternate lists of commands for execution.

[Editor Command]
If is true, execute ; if causes an error or is equal to

, execute .

Thus is equivalent to

For example, the command will print the current expression provided the
input bu�er is empty.

[Editor Command]
If is true, execute ; otherwise generate an error.

��� [Editor Command]
Repeatedly executes ��� until an error occurs.

For example, will attach a at the end of every
expression. will attach a at
the end of each print expression which does not already have a second argument.

When an error occurs, prints where is the number of
times the commands were successfully executed. The edit chain is left as of the
last complete successful execution of ��� .

��� [Editor Command]
Same as but does not print the message .

In order to prevent non- terminating loops, both and terminate when the number of iterations
reaches , initially set to 30. can be set to , which is equivalent to setting it to
in�nity. Since the edit chain is left as of the last successful completion of the loop, the user can simply
continue the command with (page 8.7).

[Editor Command]
is a list of patterns. does a printing all instances of the indicated

expression(s), e.g. will print all ’s and all
’s. Generates an error if there aren’t any instances of the

expression(s).

The form will cause an error if the edit command causes an error, thereby selecting
as the list of commands to be executed. The could also be written as

.

17.47

IF

(IF)
(EVAL) (EVAL)

NIL

IF

(COMS (CONS ’COMSQ
(COND

((CAR (NLSETQ (EVAL X)))
)

(T))))

(IF (READP T) NIL (P))

(IF)
(EVAL)

(LP)

(LP F PRINT (N T)) T PRINT
(LP F PRINT (IF (## 3) NIL ((N T)))) T

LP OCCURRENCES

(LPQ)
LP OCCURRENCES

LP LPQ
MAXLOOP MAXLOOP NIL

LP REDO

(SHOW)
SHOW LPQ

(SHOW FOO (SETQ FIE &)) FOO
(SETQ FIE &)

(## 3) 3 ((N
T)) IF (IF (CDDR (##)) NIL
((N T)))

X COMS 1 COMS 2
X COMS 1 X

COMS 2

COMS 1
COMS 2

X COMS 1
X COMS 1

COMS 1 COMS N
COMS 1 COMS N

N N

COMS 1 COMS N

COMS 1 COMS N
N

X

X

28

28

Edit Macros

[Editor Command]
Like except calls the editor recursively (via the command, see page
17.40) on each instance of the indicated espression(s) so that the user can examine
and/or change them.

��� [Editor Command]
begins by executing , a list of commands. If no error occurs, is

�nished. Otherwise, restores the edit chain to its original value, and continues
by executing , etc. If none of the command lists execute without errors, i.e.,
the ‘‘drops o� the end’’, generates an error. Otherwise, the edit chain is
left as of the completion of the �rst command list which executes without an error.

as a command list is perfectly legal, and will always execute successfully.
Thus, making the last ‘‘argument’’ to be will insure that the never
causes an error. Any other atom is treated as , i.e., the above example
could be written as .

For example, will perform a , if possible, otherwise a , if possible,
otherwise do nothing. Similarly, could be written as

.

17.16 EDIT MACROS

Many of the more sophisticated branching commands in the editor, such as , , etc., are most often
used in conjunction with edit macros. The macro feature permits the user to de�ne new commands and
thereby expand the editor’s repertoire, or rede�ne existing commands. Macros are de�ned by using the

command:

��� [Editor Command]
For an atom, de�nes as an atomic command. If a macro is rede�ned, its
new de�nition replaces its old. Executing is then the same as executing the list
of commands ��� .

For example, will de�ne as an atomic command which does three things, a ,
and , and a . Macros can use commands de�ned by macros as well as built in commands in their
de�nitions. For example, suppose is de�ned by , i.e., does
a , and then if nothing has been typed, a . Now we can de�ne by , and by

or .

Macros can also de�ne list commands, i.e., commands that take arguments.

��� ��� [Editor Command]
an atom. de�nes as a list command. Executing ��� is then

performed by substituting for , ��� for throughout ���
, and then executing ��� .

To refer to the original de�nition of a built- in command when rede�ning it via a macro, use the
command (page 17.50).

17.48

(EXAM)
SHOW TTY:

(ORR)
ORR ORR

ORR

ORR ORR

NIL
ORR NIL ORR

()
(ORR NX !NX NIL)

(ORR (NX) (!NX) NIL) NX !NX
DELETE (ORR (UP (1)) (BK UP (2)) (UP

(: NIL)))

ORR IF

M

(M)
M

(M BP BK UP P) BP BK
UP P

Z (M Z -1 (IF (READP T) NIL (P))) Z
-1 P ZZ (M ZZ -1 Z) ZZZ

(M ZZZ -1 -1 Z) (M ZZZ -1 ZZ)

(M () ())
M ()

ORIGINAL

X

COMS 1 COMS N
COMS 1

COMS 2

ATOM

C COMS 1 COMS N
C C

C

COMS 1 COMS N

C AR G 1 AR G N COMS 1 COMS M
C C C E1 EN

E1 AR G 1 EN AR G N COMS 1
COMS M COMS 1 COMS M

THE TELETYPE EDITOR

For example, we could de�ne a more general by . Thus,
would perform , followed by an , followed by a .

A list command can be de�ned via a macro so as to take a �xed or inde�nite number of ‘‘arguments’’,
as with spread vs. nospread functions. The form given above speci�ed a macro with a �xed number
of arguments, as indicated by its argument list. If the ‘‘argument list’’ is , the command takes an
inde�nite number of arguments.

��� [Editor Command]
If , are both atoms, this de�nes as a list command. Executing
��� is performed by substituting ��� , i.e., of the command, for

throughout ��� , and then executing ��� .

For example, the command (page 17.18), could be de�ned as a macro by
.

Note that for all editor commands, ‘‘built in’’ commands as well as commands de�ned by macros as
atomic commands and list de�nitions are independent. In other words, the existence of an
atomic de�nition for in way a�ects the treatment of when it appears as of a list command,
and the existence of a list de�nition for in way a�ects the treatment of when it appears as an
atom. In particular, can be used as the name of either an atomic command, or a list command, or
both. In the latter case, two entirely di�erent de�nitions can be used.

Note also that once is de�ned as an atomic command via a macro de�nition, it will be searched for
when used in a location speci�cation, unless it is preceded by an . Thus
would not search for , but instead perform a , and , and a , and then do the insertion. The
corresponding also holds true for list commands.

Occasionally, the user will want to employ the command in a macro to save some temporary result.
For example, the command could be de�ned as:

Since this version of sets and , using may have undesirable side e�ects, especially when
the editor was called from deep in a computation, we would have to be careful to make up unique names
for dummy variables used in edit macros, which is bothersome. Furthermore, it would be impossible to
de�ne a command that called itself recursively while setting free variables. The command solves
both problems.

��� [Editor Command]
Binds three dummy variables , , , (initialized to), and then executes
the edit commands ��� . Note that these bindings are only in e�ect
while the commands are being executed, and that can be used recursively;

17.49

BP (M (BP) (N) (BK N) UP P) (BP 3)
(BK 3) UP P

atomic

(M ())
(

) () CDR

2ND (M (2ND) X (ORR ((LC
. X) (LC . X))))

completely
no CAR

no

not
F (INSERT -- BEFORE BP)

BP BK UP P

S
SW

(M (SW) (N M)
(NTH N)
(S FOO 1)
MARK
0
(NTH M)
(S FIE 1)
(I 1 FOO)
__
(I 1 FIE))

SW FOO FIE SW

BIND

(BIND)
#1 #2 #3 NIL

BIND

C AR G COMS 1 COMS M
C AR G C C E1

EN E1 EN
AR G COMS 1 COMS M COMS 1 COMS M

C C

C C

C

C

COMS 1 COMS N

COMS 1 COMS N

Undo

it will rebind , , and each time it is invoked.

is implemented by
where corresponds to the entire command, and is an
internal editor function which executes a list of commands.

Thus we could now write safely as:

��� [Editor Command]
Executes ��� without regard to macro de�nitions. Useful for
rede�ning a built in command in terms of itself., i.e. e�ectively allows user to
‘‘advise’’ edit commands.

User macros are stored on a list . The �le package command (page 11.24), is
available for dumping all or selected user macros.

17.17 UNDO

Each command that causes structure modi�cation automatically adds an entry to the front of
that contains the information required to restore all pointers that were changed by that command.

[Editor Command]
Undoes the last, i.e., most recent, structure modi�cation command that has not
yet been undone, and prints the name of that command, e.g., . The
edit chain is then what it was before the ‘‘undone’’ command had been
performed. If there are no commands to undo, types .

[Editor Command]
Undoes all modi�cations performed during this editing session, i.e. this call to the
editor. As each command is undone, its name is printed a la . If there is
nothing to be undone, prints .

Undoing an event containing an , , or command will also undo the side e�ects of the evaluation(s),
e.g., undoing will not only restore the 3rd element but also restore .
Similarly, undoing an command will undo the set. See the discussion of in page 8.11. (Note
that if the command was typed directly to the editor, would automatically be substituted for

as described in page 8.22.)

17.50

#1 #2 #3

BIND (PROG (#1 #2 #3) (EDITCOMS (CDR)))
BIND EDITCOMS

SW

(M (SW) (N M)
(BIND (NTH N)

(S #1 1)
MARK
0
(NTH M)
(S #2 1)
(I 1 #1)
__
(I 1 #2)))

(ORIGINAL)

USERMACROS USERMACROS

UNDOLST

UNDO

MBD UNDONE
exactly

UNDO NOTHING SAVED

!UNDO

UNDO
!UNDO NOTHING SAVED

I E S
(I 3 (/NCONC FOO FIE)) FOO

S UNDO
I /NCONC

NCONC

COM

COM

COMS 1 COMS N
COMS 1 COMS N

29

29

THE TELETYPE EDITOR

Since and cause structure modi�cation, they also add an entry to . However,
and entries are skipped by , e.g., if the user performs an , and then an , the
�rst will undo the , and the second will undo the . However, the user can also specify
precisely which commands he wants undone by identifying the corresponding entry on the history list. In
this case, he can undo an command, e.g., by typing , or undo a command, or
undo a command other than that most recently performed.

Whenever the user an editing session, the undo information of the previous session is protected
by inserting a special blip, called an undo- block, on the front of . This undo- block will terminate
the operation of a , thereby con�ning its e�ect to the current session, and will similarly prevent an

command from operating on commands executed in the previous session.

Thus, if the user enters the editor continuing a session, and immediately executes an or , the
editor will type instead of . Similarly, if the user executes several commands
and then undoes them all, another or will also cause to be typed.

[Editor Command]
Removes an undo- block. If executed at a non- blocked state, i.e., if or

operate, types .

[Editor Command]
Adds an undo- block at the front of .

Note that together with provide a ‘‘tentative’’ mode for editing, i.e., the user can perform
a number of changes, and then undo all of them with a single command.

[Editor Command]
is an event speci�cation (see page 8.5). Undoes the indicated event on

the history list. In this case, the event does not have to be in the current editing
session, even if the previous session has not been unblocked as described above.
However, the user does have to be editing the same expression as was being edited
in the indicated event.

If the expressions di�er, the editor types the warning message ‘‘
’’, and does not undo the event. The editor enforces this to avoid

the user accidentally undoing a random command by giving the wrong event
speci�cation.

17.18 EDITDEFAULT

Whenever a command is not recognized, i.e., is not ‘‘built in’’ or de�ned as a macro, the editor calls an
internal function, , to determine what action to take. If a location speci�cation is being

Since is part of the edit block, the user cannot advise or rede�ne it as a means of
augmenting or extending the editor. However, the user can accomplish this via . If the
value of the variable is , calls the function giving it the
command as an argument. If returns a non- value, its value is interpreted as a single
command and executed. Otherwise, the error correction procedure described below is performed.

17.51

UNDO !UNDO UNDOLST UNDO
!UNDO UNDO INSERT MBD
UNDO MBD INSERT

UNDO UNDO UNDO !UNDO

continues
UNDOLST

!UNDO
UNDO

UNDO !UNDO
BLOCKED NOTHING SAVED

UNDO !UNDO BLOCKED

UNBLOCK
UNDO !UNDO

could NOT BLOCKED

TEST
UNDOLST

TEST !UNDO
!UNDO

(UNDO)

different
expression

EDITDEFAULT

EDITDEFAULT
EDITUSERFN

EDITUSERFN T EDITDEFAULT EDITUSERFN
EDITUSERFN NIL

EventSpec

EventSpec

30

31

32

33

30

31

32

33

EDITDEFAULT

executed, an internal �ag informs to treat the command as though it had been preceded
by an .

If the command is a list, an attempt is made to perform spelling correction on of the command
using , a list of all list edit commands. If spelling correction is successful, the correct

command name is ed into the command, and the editor continues by executing the command. In
other words, if the user types , only one spelling correction
will be necessary to change to . If spelling correction is not successful, an error is generated.

If the command is atomic, the procedure followed is a little more elaborate.

(1) If the command is one of the list commands, i.e., a member of , and there is
additional input on the same terminal line, treat the entire line as a single list command.
Thus, the user may omit parentheses for any list command typed in at the top level (provided
the command is not also an atomic command, e.g. , . For example,

If the command is on the list but no additional input is on the terminal line, an
error is generated, e.g.

If the command is on , and typed in directly, e.g., it appears as one of the
commands in a command, the procedure is similar, with the rest of the command stream
at that level being treated as ‘‘the terminal line’’, e.g. .

(2) If the command was typed in and the �rst character in the command is an 8, treat the 8 as a
mistyped left parenthesis, and and the rest of the line as the arguments to the command, e.g.,

unless = .

When a macro is de�ned via the command, the command name is added to or
, depending on whether it is an atomic or list command. The �le package

command is aware of this, and provides for restoring and .

The line is read using (page 8.30). Thus the line can be terminated by a square bracket, or
by a carriage return not preceded by a space.

Note that if the command is being executed in location context, does not get this
far, e.g., will search for , execute it. However,

will work.

17.52

EDITDEFAULT
F

CAR
EDITCOMSL

RPLACA
(LP F PRINT (MBBD AND (NULL FLG)))

MBBD MBD

EDITCOMSL

NX BK

*P
(COND (& &) (T &))
*XTR 3 2]
*MOVE TO AFTER LP
*

EDITCOMSL

*P
(COND (& &) (T &))
*MOVE

MOVE ?
*

EDITCOMSL not
LP

(LP F (COND (T &)) XTR 2 2)

*P
(COND (& &) (T &))

DWIMFLG NIL

M EDITCOMSA
EDITCOMSL USERMACROS

EDITCOMSA EDITCOMSL

READLINE

EDITDEFAULT
(MOVE TO AFTER COND XTR 3) XTR not (MOVE TO

AFTER COND (XTR 3))

THE TELETYPE EDITOR

(3) If the command was typed in, is the name of a function, and is followed by or a list
of which is not an edit command, assume the user forgot to type and means to apply

the function to its arguments, type and the function name, and perform the indicated
computation, e.g.

(4) If the last character in the command is , and the �rst -1 characters comprise a number,
assume that the user intended two commands, e.g.,

(5) Attempt spelling correction using , and if successful, execute the corrected
command.

(6) If there is additional input on the same line, or command stream, spelling correct using
as a spelling list, e.g.,

(6) Otherwise, generate an error.

17.19 EDITOR FUNCTIONS

��� [NLambda NoSpread Function]
Nlambda, nospread function for ing a unction. is the name of the
function, , , ��� , are (optional) edit commands.

The value of is .

The action of is somewhat complicated:

(1) In the most common case, if the de�nition of is an (not as a result of its being
broken or advised), and simply performs

��� .

17.53

*8-2 (Y (RETURN Z)))
=(-2
*P
(COND (Y &) (& &) (T &))

NIL
CAR E

=E

*BREAK(FOO)
=E BREAK
(FOO)
*

P

*P
(COND (& &) (T &))
*0P
=0 P
(SETQ X (COND & &))

EDITCOMSA

EDITCOMSL

*MBBD SETQ X
=MBD
*

(EDITF)
EDIT F

EDITF

EDITF

EXPR
EDITF (PUTD (EDITE (GETD ’)

(LIST ’ ’ ’) ’ ’FNS))

N

NAME COM 1 COM 2 COM N
NAME

COM 1 COM 2 COM n

NAME

NAME

NAME NAME

COM 1 COM 2 COM N NAME

34

35

34

35

Editor Functions

(2) If is an by virtue of its being broken or advised, and the original de�nition is also
an , then the broken/advised de�nition is given to to be edited (since any changes
there will also a�ect the original de�nition because all changes are destructive). However, a
warning message is printed to alert the user that he must �rst position himself correctly before
he can begin typing commands such as , , etc.

(3) If is an by virtue of its being broken or advised, the original de�nition is not an
, there is no property, and the �le package ‘‘knows’’ which �le is contained

in (see , page 17.58), then the de�nition of is loaded onto its
property list as described below, and the proceeds to the next possibility. Otherwise, a
warning message is printed, and the edit proceeds, e.g., the user may have called the editor to
examine the advice on a .

(4) If is an by virtue of its being broken or advised, the original de�nition is not an
, and there is an property, then the function is unbroken/unadvised (latter only

with user’s approval, since the user may really want to edit the advice) and proceeds to
the next possibility.

(5) If is not an , but has an property, prints , and per-
forms ���

. In this case, if the edit completes and no changes have been made, prints
. If changes were made, but the value of (page

5.9) is , prints . Otherwise if changes were made,
prints and does an .

(6) If is neither an nor has an property, and the �le package ‘‘knows’’ which
�le is contained in (see , page 17.58), the de�nition of
is automatically loaded (using) onto the property, and proceeds as
described above. In addition, if is a member of a block, the user will be asked whether
he wishes the rest of the functions in the block to be loaded at the same time.

(7) If is neither an nor has an property, but it does have a de�nition,
generates an error.

(8) If is neither de�ned, nor has an property, but its top level value is a list,
assumes the user meant to call , prints , calls and returns. Similarly, if

has a non- property list, prints , calls and returns.

Because of the existence of the �le map (see page 11.38), this operation is extremely fast, essentially
requiring only the time to perform the to obtain the actual de�nition.

The editor’s behaviour in this case is controlled by the value of , which is a dotted
pair of two �ags. The of controls the loading of the function, and the
controls the loading of the block. A value of for either �ag means ‘‘load but ask �rst,’’ a value of

means ‘‘don’t ask, just do it’’ and anything else means ‘‘don’t ask, don’t do it.’’ The initial value of
is , meaning to load the function without asking, and ask about loading

the block.

17.54

EXPR
EXPR EDITE

(-3 --) (N --)

EXPR
EXPR EXPR

EDITLOADFNS? EXPR
EDITF

SUBR

EXPR
EXPR EXPR

EDITF

EXPR EXPR EDITF PROP
(EDITE (GETPROP ’ ’EXPR) (LIST ’ ’ ’) ’

’PROP) EDITE
NOT CHANGED, SO NOT UNSAVED DFNFLG

PROP EDITE CHANGED, BUT NOT UNSAVED
EDITE UNSAVED UNSAVEDEF

EXPR EXPR
EDITLOADFNS? EXPR

LOADFNS EXPR EDITE

EXPR EXPR EDITF
NOT EDITABLE

EXPR EDITF
EDITV =EDITV EDITV

NIL EDITF =EDITP EDITP

READ

EDITLOADFNSFLG
CAR EDITLOADFNSFLG CDR

NIL
T
EDITLOADFNSFLG (T . NIL)

NAME

NAME

NAME

NAME

NAME

NAME

NAME COM 1 COM 2 COM N NAME

NAME

NAME NAME

NAME

NAME

NAME

NAME

NAME

36

37

38

36

37

38

THE TELETYPE EDITOR

(9) If is neither a function, nor has an property, nor a top level value that is a
list, nor a non- property list, attempts spelling correction using the spelling list

, and, if successful, goes back to the beginning.

(10) Otherwise, generates an error.

In all cases, if a function is edited, and changes were made, the function is time- stamped (by),
which consists of inserting a comment of the form (see page 17.60). If the
function was already time- stamped, then only the date is changed.

��� [NLambda NoSpread Function]
An nlambda, nospread function, used to perform the same editing operations
on several functions. is evaluated to obtain a list of functions. ,

, ��� , are (optional) edit commands. maps down the list of
functions, prints the name of each function, and calls the editor (via) on
that function. The value of is .

For example, will change every to
in each of the functions on .

The call to the editor is protected, so that if the editing of one function
causes an error, will proceed to the next function. In particular, if an
error occurred while editing a function via its property, the function would
not be unsaved. Thus in the above example, if one of the functions did not contain
a , the command would cause an error, it would not be unsaved, and editing
would continue with the next function.

��� [NLambda NoSpread Function]
Similar to , for editing values of variables.

The value of is the name of the variable whose value was edited.

If is a list, it is evaluated and its value given to , e.g.,
. In this case, the value of is .

However, for most applications, is a variable name, i.e., atomic, as in . If the value
of this variable is , checks to see if it is the name of a function, and if so, assumes the
user meant to call , prints , calls and returns. Otherwise, attempts spelling
correction using the list . Then will call on the value of (or the
corrected spelling thereof), and = . Thus, if the value of is , and the user performs

, no spelling correction will occur, since is the name of a variable in the user’s system,
i.e., it has a value. However, will generate an error, since ’s value is not a list, and hence

Unless = . Spelling correction is performed using the function (page
15.18). If = , returns the last ‘‘word’’ referenced, e.g., by , ,

etc. Thus if the user de�nes and then types , the editor will assume he
meant , type , and then type .

If is atomic, and its value is not a list, and it is the name of a �le, will
be used as the list of functions to be edited.

Unless = . is also called if is , so that will edit
.

17.55

EXPR
NIL EDITF

USERWORDS

EDITF NOT EDITABLE

EDITE
(*)

(EDITFNS)

EDITFNS
EDITF

EDITFNS NIL

(EDITFNS FOOFNS (R FIE FUM)) FIE FUM
FOOFNS

ERRORSET
EDITFNS

EXPR

FIE R

(EDITV)
EDITF

EDITV

EDITE (EDITV (CDR (ASSOC ’FOO
DICTIONARY))) EDITV T

EDITV(FOO)
NOBIND EDITV
EDITF =EDITF EDITF EDITV

USERWORDS EDITV EDITE
VARS FOO NIL

(EDITV FOO) FOO
EDITE FOO

DWIMFLG NIL MISSPELLED?
NIL MISSPELLED? DEFINEQ EDITF

PRETTYPRINT FOO (EDITF)
FOO =FOO EDIT

(FILEFNSLST ’)

DWIMFLG NIL MISSPELLED? NIL (EDITV)
LASTWORD

NAME

NAME

USERS- INITIALS D ATE

NAME COM 1 COM 2 COM N

NAME COM 1
COM 2 COM N

NAME COM 1 COM 2 COM N

NAME

NAME

NAME

TYPE

NAME

NAME NAME

NAME

39

40

39

40

Editor Functions

not editable. If the user performs , where the value of is , and is on
the user’s spelling list, the spelling corrector will correct to . Then will be called on the
value of . Note that this may still result in an error if the value of is not a list.

��� [NLambda NoSpread Function]
Similar to for editing property lists. If the property list of is

, attempts spelling correction using . Then calls
on the property list of , (or the corrected spelling thereof), with

= . When (if) returns, calls on
with the value returned.

The value of is the atom whose property list was edited.

[Function]
Edits the expression, , by calling on and returning the
last element of the value returned by . Generates an error if is not a
list.

and are for use in conjunction with the �le package. If supplied,
is the of the object that is associated with, and describes the
association (i.e., corresponds to the argument of ,
page 11.11.) For example, if is the de�nition of , = and

= . When is called from , is the property list of ,
and = , etc..

calls to do the editing (described below). Upon return, if both
and are non- , is called to add to the appropriate spelling
list. Then, if was changed, and the value of is not , the
value of is applied to the arguments , , , and a �ag
which is for normal edits from editor, for calls that were aborted via control- D
or . Otherwise, if was changed, and the value of is ,
and is not , (page 11.11) is called on and .

uses to insure that and are
called if any change was made even if editing is subsequently aborted via control- D.
(In this case, the fourth argument to wil be .)

[Function]
the editor. Its �rst argument is the edit chain, and its value is an edit

chain, namely the value of at the time is exited.

is an optional list of commands. For interactive editing, coms is . In this
case, types (or , if it not) and then waits for input from
terminal. All input is done with as the readtable. Exit occurs only
via an , , or command.

For = or = , i.e., calls from , performs some additional operations
as described earlier under .

is a , and so can be examined or set by edit commands. For example, is equivalent to
. However, the user should only manipulate or examine directly as a last

resort, and then with caution.

17.56

(EDITV FOOO) FOOO NOBIND FOO
FOOO FOO EDITE

FOO FOO

(EDITP)
EDITF

NIL EDITP USERWORDS EDITP
EDITE

PROPLST EDITE EDITP SETPROPLIST

EDITP

(EDITE)
EDITL (LIST)
EDITL

name
MARKASCHANGED

FOO FOO
FNS EDITE EDITP

PROPLST

EDITE EDITL
NIL ADDSPELL

NIL

T NIL
STOP NIL

NIL MARKASCHANGED
EDITE RESETSAVE MARKASCHANGED

NIL

(EDITL)
EDITL is

EDITL

NIL
EDITL EDIT NIL

EDITRDTBL
OK STOP SAVE

FNS PROP EDITF EDITE
EDITF

SPECVAR ^ (E
(SETQ L (LAST L)) T)

NAME COM 1 COM 2 COM N
NAME

NAME

TYPE NAME

EXPR COMS ATM TYPE IFCHANGEDFN

EXPR EXPR

EXPR

ATM TYPE ATM

EXPR TYPE

TYPE TYPE

EXPR ATM

TYPE EXPR ATM

TYPE

ATM

TYPE ATM

EXPR IFCHANGEDFN

IFCHANGEDFN ATM EXPR TYPE

EXPR IFCHANGEDFN

TYPE ATM TYPE

IFCHANGEDFN

IFCHANGEDFN

L COMS ATM MESS EDITCHANGES

L

COMS

MESS

TYPE TYPE

L

L

THE TELETYPE EDITOR

If is , no message is typed, and each member of is treated
as a command and executed. If an error occurs in the execution of one of the
commands, no error message is printed, the rest of the commands are ignored, and

exits with an error, i.e., the e�ect is the same as though a command
had been executed. If all commands execute successfully, returns the
current value of .

is optional. On calls from , it is the name of the function being edited;
on calls from , the name of the variable, and calls from , the atom
whose property list is being edited. The property list of is used by the
command for saving the state of the edit. Thus will not save anything if

= , i.e., when editing arbitrary expressions via or directly.

is used for communicating with .

[Function]
Like , except it does not rebind or initialize the editor’s various state
variables, such as , , , , etc. Should only be
called when already under a call to .

[Function]
The editor’s pattern match routine. Returns , if matches . See page 17.13
for de�nition of ‘‘match’’.

Note: Before each search operation in the editor begins, the entire pattern is scanned for atoms or strings
containing s (<esc>s). Atoms or strings containing s are replaced by lists of the form ��� , and
atoms or strings ending in double s are replaced by lists of the form ��� . Thus from the standpoint
of , single and double patterns are detected by being the atom (<esc>) or the
atom (<esc><esc>). Therefore, if the user wishes to call directly, he must �rst convert any
patterns which contain atoms or strings containing s to the form recognized by . This is done
with the function :

[Function]
Makes a copy of with all atoms or strings containing s (<esc>s) converted to
the form expected by .

[Function]
Allows a program to use the edit �nd command as a pure predicate from outside
the editor. is an expression, a pattern. The value of is if the
command succeed, otherwise. calls to
convert to the form expected by , unless = . Thus, if the program
is applying to several di�erent expressions using the same pattern, it
will be more e�cient to call once, and then call with the
converted pattern and = .

[Function]
Equivalent to performing with as the current expression,
i.e., the order of arguments is the same as for . Note that and/or
can employ s (<esc>s). The value of is the modi�ed . Generates an
error if not found in . If = , also prints an error message of
the form .

17.57

not NIL

EDITL STOP
EDITL

EDITF
EDITV EDITP

SAVE
SAVE

NIL EDITE EDITL

EDITE

(EDITL0)
EDITL

LASTAIL UNFIND UNDOLST MARKLST
EDITL

(EDIT4E)
T

$ $ ($)
$ ($$)

EDIT4E $ (CAR) $
$$ EDIT4E

$ EDIT4E
EDITFPAT

(EDITFPAT)
$

EDIT4E

(EDITFINDP)

EDITFINDP T
F would NIL EDITFINDP EDITFPAT

EDIT4E T
EDITFINDP

EDITFPAT EDITFINDP
T

(ESUBST)
(R)

SUBST
$ ESUBST

T
?

COMS COMS

L

ATM

ATM

ATM

EDITCHANGES

L COMS MESS _

PAT X _

PAT X

PAT

PAT _

PAT

X PAT FL G

X PAT

PAT

PAT FL G

FL G

NEW OLD EXPR ERR ORFL G CHARFL G

OLD NEW EXPR

OLD NEW

EXPR

OLD EXPR ERR ORFL G

OLD

41

41

Editor Functions

If = and no s (<esc>s) are speci�ed in or , it is equivalent
to . In other words, if = , and no s appear,
will supply them.

is always undoable.

[Function]
is the name of a function. returns the name of �le is

contained in, or .

performs to obtain the name of
the �le(s) containing , if any (see page 11.10). If there is more than one
�le, asks the user to indicate which �le. It then checks the

property for each �le to see if the version that was originally loaded
still exists. If the �le that was loaded no longer exists, but there is a
di�erent version of the �le on that directory, prints ‘‘

’’, and then uses the version that it could �nd. Similarly, if the
original version found, but a newer version is also found, prints

and then uses the
newest version.

Having decided which �le the function is on, if = ,
prints the value of followed by the name of the �le, and returns the name
of the �le. If = , calls giving

as , the message to be printed. If returns ,
returns the �lename. If = , is used.

is used by the editor, (when the �le name is not supplied), by ,
and by .

[Function]
Replaces all occurrences of by in the de�nition of . If is an ,

performs . If
is searches the literals of (and all of its compiler
generated subfunctions), replacing each occurrence of with . This will
succeed even if is called from via a linked call. In this case, the call will
also be relinked to call instead.

The value of is if at least one instance of was found,
otherwise .

is used by and for changing calls to to calls to .

The function provides a way of rapidly searching a �le or entire set of �les, even �les
not loaded into Interlisp or ‘‘noticed’’ by the �le package, for the appearance of one or more key words
(atoms) anywhere in the �le.

In the case that = and the WHEREIS package has been loaded (page 23.40), �les(s) may be
found that have not been loaded or otherwise noticed, and thus will not have property. In
this case, does not do any version checks, but simply uses the latest version.

17.58

T $
(RC) T $ ESUBST

ESUBST

(EDITLOADFNS?)
EDITLOADFNS?

NIL

EDITLOADFNS? (WHEREIS FNS)

EDITLOADFNS?
FILEDATES

originally
EDITLOADFNS? ****can’t

find
is EDITLOADFNS?

"****Note: is not the newest version"

NIL EDITLOADFNS?

T EDITLOADFNS? ASKUSER (LIST
) ASKUSER Y

EDITLOADFNS? NIL "loading from"

EDITLOADFNS? LOADFNS PRETTYPRINT
DWIM

(CHANGENAME)
EXPR

CHANGENAME (NLSETQ (ESUBST (GETD)))
compiled, CHANGENAME

CHANGENAME
NIL

CHANGENAME BREAK ADVISE -IN-

EDITCALLERS

T
FILEDATES

EDITLOADFNS?

CHARFL G NEW OLD

OLD NEW CHARFL G

FN STR ASKFL G FILES

FN FN

FN FILES

FN

FILENAME

FILENAME

ASKFL G

STR

ASKFL G FN

STR FILENAME MESS

STR

FN FR OM TO

FR OM TO FN FN

TO FR OM FN FN

FN

FR OM TO

FR OM FN

TO

FN FR OM

FN 1 FN 1 FN 2

FILES

42

42

THE TELETYPE EDITOR

[Function]
Uses to search the �le(s) for occurrences of the atom(s) .
It then calls on each of those objects, performing the edit commands

. If = , then is used. Both and
may be single atoms. If is , is used. Elements on may
contain $s (<esc>s).

prints the name of each �le as it searches it, and when it �nds
an occurrence of one of , it prints out either the name of the containing
function or, if the atom occurred outside a function de�nition, it prints out the
byte position that the atom was found.

will read in and use the �lemap of the �le. In the case that the
editor is actually called, will the �le if the �le has not
previously been noticed.

[Function]
Like , except does not call the editor, but instead simply returns
the list of �les that contain one of .

[Function]
Is available to help the user debug complex edit macros, or subroutine calls to the
editor. If is set to , the function is called whenever
a command that was not typed in by the user is about to be executed, giving it
that command as its argument. However, the and options described
below are probably su�cient for most applications.

If is set to , the name of the command and the current
expression are printed. If = , the same information is printed,
and the editor goes into a break. The user can then examine the state of the editor.

is initially .

[Function]
Used to set up the immediate read macros used by the editor, as well as the
control- Y read macro (page 6.39). , , , and

specify which control character should perform the edit commands ,
, , and , respectively; corresponds to control- Y.

For each non- argument, makes the corresponding control
character have the indicated function. The arguments to can
be character codes, the control characters themselves, or the alphabetic letters
corresponding to the control characters.

If an argument to is currently assigned as an interrupt character, it cannot be a read
macro (since the reader will never see it); prints a message to that e�ect and makes no
change to the control character. However, if is given a list as one of its arguments, it
uses of the list even if the character is an interrupt. In this case, if of the list is non- ,

reassigns the interrupt function to . For example, if control- X is an interrupt,

uses (page 11.17) to obtain the ‘‘de�nition’’ for each object. When
returns, if a change was made, is called to store the changed object.

17.59

(EDITCALLERS)
FFILEPOS

EDITE
NIL (EXAM .)

NIL FILELST

EDITCALLERS

EDITCALLERS
EDITCALLERS LOADFROM

(FINDCALLERS)
EDITCALLERS

(EDITRACEFN)

EDITRACEFN T EDITRACEFN

TRACE BREAK

EDITRACEFN TRACE
EDITRACEFN BREAK

EDITRACEFN NIL

(SETTERMCHARS)

NXP
BKP -1P 2P PP*

NIL SETTERMCHARS
SETTERMCHARS

SETTERMCHARS
SETTERMCHARS

SETTERMCHARS
CAR CADR NIL

SETTERMCHARS CADR

EDITCALLERS GETDEF EDITE
PUTDEF

ATOMS FILES COMS

FILES ATOMS

COMS COMS ATOMS ATOMS FILES

FILES ATOMS

ATOMS

ATOMS FILES

ATOMS

COM

NEXTCHAR BK CHAR LASTCHAR UNQUOTECHAR 2CHAR PPCHAR

NEXTCHAR BK CHAR LASTCHAR 2CHAR

PPCHAR

UNQUOTECHAR

Time Stamps

assigns control- W the interrupt control- X had, and makes control- X be the
operator.

As part of the greeting operation, is applied to the value of , which
is initially in Interlisp- D and in Interlisp- 10 under Tenex, under Tops- 20
(control- J is line- feed). is called the user’s init �le is loaded, so it works to reset

in the init �le; alternatively, can be called explicitly.

17.20 TIME STAMPS

Whenever a function is edited, and changes were made, the function is time- stamped (by), which
consists of inserting a comment of the form . is the value
of the variable . After greeting, or following a , the function is called.

searches , a list of elements of the form or
. If the user’s name is found, is set accordingly. If the

user’s name is found on , is set to the value of ,
initially . Thus, the default is to always time stamp. To suppress time stamping, the user must
either include an entry of the form on , or set to
before greeting, i.e. in his user pro�le, or else, greeting, explicitly set to .

If the user wishes his functions to be time stamped with his initials when edited, he should include a �le
package command command of the form in
the user’s �le (see page 14.5).

The following three functions may be of use for specialized applications with respect to time- stamping:
which, given a lambda expression, inserts or smashes a time- stamp comment;

which returns if is a time stamp; and
which returns a new time- stamp comment. If is a time- stamp comment, it will be reused.

17.60

(SETTERMCHARS ’(X W))

SETTERMCHARS EDITCHARACTERS
(J X Z Y N) (J A L Y K)

SETTERMCHARS after
EDITCHARACTERS SETTERMCHARS

EDITE
(*)

INITIALS SYSIN SETINITIALS
SETINITIALS INITIALSLST (.)
() INITIALS

not INITIALSLST INITIALS DEFAULTINITIALS
edited:

() INITIALSLST DEFAULTINITIALS NIL
after INITIALS NIL

(ADDVARS (INITIALSLST (.)))
INIT.LISP

(FIXEDITDATE)
(EDITDATE?) T (EDITDATE

)

NEXTCHAR

USERS- INITIALS DATE USERS- INITIALS

USERNAME INITIALS

USERNAME FIRSTNAME INITIALS

USERNAME

USERNAME INITIALS

EXPR

COMMENT COMMENT OLD ATE

INITLS OLD ATE

