
CHAPTER 15

DWIM

A surprisingly large percentage of the errors made by Interlisp users are of the type that could be
corrected by another LISP programmer without any information about the purpose of the program or
expression in question, e.g., misspellings, certain kinds of parentheses errors, etc. To correct these types
of errors we have implemented in Interlisp a DWIM facility, short for Do-What- I-Mean. DWIM is called
automatically whenever an error occurs in the evaluation of an Interlisp expression. (Currently, DWIM
only operates on unbound atoms and unde�ned function errors.) DWIM then proceeds to try to correct
the mistake using the current context of computation plus information about what the user had previously
been doing, (and what mistakes he had been making) as guides to the remedy of the error. If DWIM
is able to make the correction, the computation continues as though no error had occurred. Otherwise,
the procedure is the same as though DWIM had not intervened: a break occurs, or an unwind to the last

(page 9.15). The following protocol illustrates the operation of DWIM.

For example, suppose the user de�nes the factorial function as follows:

Note that the de�nition of contains several mistakes: and have been misspelled; the
in was intended to be a right parenthesis, but the shift key was not depressed; similarly, the in

was intended to be a left parenthesis; and �nally, there is an extra left parenthesis in front of the
that begins the �nal clause in the conditional.

After de�ning , the user wishes to look at its de�nition using , which he unfortunately
misspells. Since there is no function in the system, an unde�ned function error occurs, and
DWIM is called. DWIM invokes its spelling corrector, which searches a list of functions frequently used
(by user) for the best possible match. Finding one that is extremely close, DWIM proceeds on the
assumption that meant , noti�es the user of this, and calls .

At this point, would normally print and exit, since
has no de�nition. Note that this is an Interlisp error condition, so that DWIM would not be called

15.1

ERRORSET

(FACT N)

_DEFINEQ((FACT (LAMBDA (N) (COND
((ZEROP N9 1) ((T (ITIMS N (FACCT 8SUB1 N]
(FACT)
_

FACT ITIMES FACT
9 N9 8
8SUB1
T

_PRETTYPRNT((FACCT]
=PRETTYPRINT
=FACT

(FACT
[LAMBDA (N)

(COND
((ZEROP N9 1)

((T (ITIMS N (FACCT 8SUB1 N])
(FACT)
_

FACT PRETTYPRINT
PRETTYPRNT

this
PRETTYPRNT PRETTYPRINT PRETTYPRINT

PRETTYPRINT (FACCT NOT PRINTABLE) FACCT
not

as described above. However, it is obviously not what the user .

This sort of mistake is corrected by having itself explicitly invoke the spelling corrector
portion of DWIM whenever given a function with no de�nition. Thus, with the aid of DWIM

is able to determine that the user wants to see the de�nition of the function , and
proceeds accordingly.

The user now calls . During its execution, �ve errors occur, and DWIM is called �ve times. At
each point, the error is corrected, a message is printed describing the action taken, and the computation
is allowed to continue as if no error had occurred. Following the last correction, 6 is printed, the value
of . Finally, the user prettyprints the new, now correct, de�nition of .

In this particular example, the user was shown operating in mode, which gives DWIM carte
blanche for most corrections. The user can also operate in mode, in which case DWIM will
inform him of intended corrections before they are made, and allow the user to approve or disapprove of
them. If DWIM was operating in mode in the example above, it would proceed as follows:

For most corrections, if the user does not respond in a speci�ed interval of time, DWIM automatically
proceeds with the correction, so that the user need intervene only when he does not approve. Note that
the user responded to the �rst, second, and �fth questions; DWIM responded for him on the third and

15.2

meant

PRETTYPRINT
EXPR

PRETTYPRINT FACT

_FACT(3]
N9 [IN FACT] -> N) ? YES
[IN FACT] (COND -- ((T --))) ->

(COND -- (T --))
ITIMS [IN FACT] -> ITIMES
FACCT [IN FACT] -> FACT
8SUB1 [IN FACT] -> (SUB1 ? YES
6
_PP FACT
(FACT

[LAMBDA (N)
(COND

((ZEROP N)
1)

(T (ITIMES N (FACT (SUB1 N])
FACT
_

FACT

(FACT 3) FACT

TRUSTING
CAUTIOUS

CAUTIOUS

_FACT(3)
N9 [IN FACT] -> N) ? YES
U.D.F. T [IN FACT] FIX? YES
[IN FACT] (COND -- ((T --))) ->

(COND -- (T --))
ITIMS [IN FACT] -> ITIMES ? ...YES
FACCT [IN FACT] -> FACT ? ...YES
8SUB1 [IN FACT] -> (SUB1 ? NO
U.B.A.
(8SUB1 BROKEN)
:

1

2

3

1

2

3

DWIM

fourth.

A great deal of e�ort has gone into making DWIM ‘‘smart’’, and experience with a large number of users
indicates that DWIM works very well; DWIM seldom fails to correct an error the user feels it should
have, and almost never mistakenly corrects an error. However, it is important to note that even when
DWIM wrong, no harm is done: since an error had occurred, the user would have had to intervene
anyway if DWIM took no action. Thus, if DWIM mistakenly corrects an error, the user simply interrupts
or aborts the computation, es the DWIM change using (page 8.11), and makes the correction
he would have had to make without DWIM. It is this benign quality of DWIM that makes it a valuable
part of Interlisp.

[Function]
Used to enable/disable DWIM. If is the litatom , DWIM is enabled in

mode, so that DWIM will ask the user before making corrections. If
is , DWIM is enabled in mode, so DWIM will make most corrections
automatically. If is , DWIM is disabled. Interlisp initially has DWIM
enabled in mode.

returns , or , depending to what mode it has just
been put into.

For corrections to expressions typed in by the user for immediate execution, DWIM always acts as
though it were in mode, i.e., no approval necessary. For certain types of corrections, e.g.,
run- on spelling corrections, 8-9 errors, etc., DWIM always acts like it was in mode, and asks
for approval. In either case, DWIM always informs the user of its action as described below.

15.1 SPELLING CORRECTION PROTOCOL

One type of error that DWIM can correct is the misspelling of a function or a variable name. When
an unbound litatom or unde�ned function error occurs, DWIM tries to correct the spelling of the bad
litatom. If a litatom is found whose spelling is ‘‘close’’to the o�ender, DWIM proceeds as follows:

If the correction occurs in the typed- in expression, DWIM prints and continues
evaluating the expression. For example:

DWIM uses for its interactions with the user (page 6.57). Whenever an interaction is about
to take place and the user has typed ahead, types several bells to warn the user to stop typing,
then clears and saves the input bu�ers, restoring them after the interaction is complete. Thus if the user
has typed ahead before a DWIM interaction, DWIM will not confuse his type ahead with the answer to
its question, nor will his typeahead be lost. The bells are printed by the function , which
can be advised or rede�ned for specialized applications, e.g. to �ash the screen for a display terminal.

Except perhaps if DWIM’s correction mistakenly caused a destructive computation to be initiated, and
information was lost before the user could interrupt. We have not yet had such an incident occur.

Typed into (see page 8.28).

15.3

is

UNDO UNDO

(DWIM)
C

CAUTIOUS
T TRUSTING

NIL
CAUTIOUS

DWIM CAUTIOUS TRUSTING NIL

TRUSTING
CAUTIOUS

= cr

ASKUSER
ASKUSER

PRINTBELLS

LISPX

X

X

X

X

CORRECT- SPELLING

4

4

Spelling Correction Protocol

If the correction does not occur in type- in, DWIM prints

Then, if DWIM is in mode, it prints a carriage return, makes the correction, and continues the
computation. If DWIM is in mode, it prints a few spaces and and then wait for approval.
The user then has six options:

(1) Type . DWIM types , and proceeds with the correction.

(2) Type . DWIM types , and does not make the correction.

(3) Type . DWIM does not make the correction, and furthermore guarantees that the error will not
cause a break.

(4) Type control- E. For error correction, this has the same e�ect as typing .

(5) Do nothing. In this case DWIM waits for seconds, and if the user has not responded,
DWIM will type followed by the default answer.

The default on spelling corrections is determined by the value of the variable , whose
top level value is initially .

(6) Type space or carriage- return. In this case DWIM will wait inde�nitely. This option is intended for
those cases where the user wants to think about his answer, and wants to insure that DWIM does not get
‘‘impatient’’ and answer for him.

The procedure for spelling correction on other than Interlisp errors is analogous. If the correction is
being handled as type- in, DWIM prints followed by the correct spelling, and returns it to the function
that called DWIM. Otherwise, DWIM prints the incorrect spelling, followed by the correct spelling.
Then, if DWIM if in mode, DWIM prints a carriage- return and returns the correct spelling.
Otherwise, DWIM prints a few spaces and a and waits for approval. The user can then respond with

, , control- E, space, carriage return, or do nothing as described above.

Note that the spelling corrector itself is not protected like the DWIM error correction routines.
Therefore, typing and typing control- E may have di�erent e�ects when the spelling corrector is called
directly. The former simply instructs the spelling corrector to return , and lets the calling function

The appearance of is to call attention to the fact that the user’s function will be or has been changed.

15.4

_(SETQ FOO (IPLUSS 1 2))
=IPLUS
3

[IN] ->

TRUSTING
CAUTIOUS ?

Y es

N o

^

N

DWIMWAIT
...

FIXSPELLDEFAULT
Y

=

TRUSTING
?

Y N

ERRORSET
N

NIL

->

BAD- SPELLING FUNCTION- NAME CORRECT- SPELLING

5

5

DWIM

decide what to do next; the latter causes an error which unwinds to the last , however far back
that may be.

15.2 PARENTHESES ERRORS PROTOCOL

When an unbound litatom or unde�ned error occurs, and the o�ending litatom contains or , DWIM
tries to correct errors caused by typing for left parenthesis and for right parenthesis. In these cases,
the interaction with the user is similar to that for spelling correction. If the error occurs in type- in, DWIM
types , and continues evaluating the expression. For example:

If the correction does not occur in type- in, DWIM prints

and then waits for approval. The user then has the same six options as for spelling correction, except
the waiting time is 3* seconds. If the user types , DWIM then operates as if it were in

mode, i.e., it makes the correction and prints its message.

15.3 U.D.F. T ERRORS PROTOCOL

When an unde�ned function error occurs, and the o�ending function is , DWIM tries to correct certain
types of parentheses errors involving a clause in a conditional. DWIM recognizes errors of the following
forms:

The clause appears outside and immediately
following the .

The clause appears inside a previous clause.

The clause has an extra pair of parentheses
around it.

For errors that are not one of these three types, DWIM takes no corrective action at all, and
the error will occur.

Actually, DWIM uses the value of the variables and to determine the corresponding
lower case character for left and right parentheses. and are initially and
respectively, but they can be reset for other keyboard layouts. , e.g., on some terminals left parenthesis is
over , and right parenthesis is over .

15.5

ERRORSET

8 9
8 9

= cr

_(SETQ FOO 8IPLUS 1 2]
= (IPLUS
3

[IN] -> ?

DWIMWAIT Y
TRUSTING

T
T

(COND --) (T --) T
COND

(COND -- (-- & (T --))) T

(COND -- ((T --))) T

U.D.F. T

LPARKEY RPARKEY
LPARKEY RPARKEY 8 9

9 0

CORRECTION

BAD- ATOM FUNCTION- NAME CORRECTION

6

7

6

7

DWIM Operation

If the error occurs in type- in, DWIM simply types and makes the correction. Otherwise if
DWIM is in mode, DWIM makes the correction and prints the message:

If DWIM is in mode, DWIM prints

and waits for approval. The user then has the same options as for spelling corrections and parenthesis
errors. If the user types or defaults, DWIM makes the correction and prints its message.

Having made the correction, DWIM must then decide how to proceed with the computation. In the
�rst case, , DWIM cannot know whether the clause would have been executed
if it had been inside of the . Therefore DWIM asks the user (with a
default of). If the user types , DWIM continues with the form after the , i.e., the form that
originally followed the clause.

In the second case, , DWIM has a di�erent problem. After moving the
clause to its proper place, DWIM must return as the value of as the value of the . Since this

value is no longer around, DWIM asks the user, and then prints the expression
corresponding to . If the user types , or defaults, DWIM continues by reevaluating , otherwise DWIM
aborts, and a error will then occur (even though the has in fact been �xed).

In the third case, , there is no problem with continuation, so no further interaction
is necessary.

15.4 DWIM OPERATION

Whenever the interpreter encounters an atomic form with no binding, or a non- atomic form of which
is not a function or function object, it calls the function . Similarly, when is given an
unde�ned function, is called. When DWIM is enabled, and are
rede�ned to �rst call the DWIM package, which tries to correct the error. If DWIM cannot decide how
to �x the error, or the user disapproves of DWIM’s correction (by typing), or the user types control- E,
then and cause an error or break.

If DWIM can (and is allowed to) correct the error, it exits by performing of the corrected form,
as of the position of the call to or . Thus in the example at the beginning
of the chapter, when DWIM determined that was misspelled, DWIM called

If DWIM can determine for itself that the form can safely be reevaluated, it does not consult the user
before reevaluating. DWIM can do this if the form is atomic, or of the form is a member of the
list , and each of the arguments can safely be reevaluated. For example,

is safe to reevaluate because , , and are all on .

If the user types to DWIM, DWIM exits by performing , so
that an error will be generated at the position of the call to .

15.6

T FIXED
TRUSTING

[IN] {BAD-COND} ->
{CORRECTED- COND}

CAUTIOUS

U.D.F. T
[IN] FIX?

Y

(COND --) (T --) T
COND CONTINUE WITH T CLAUSE

YES N COND
T

(COND -- (-- & (T --)))
T & COND

OK TO REEVALUATE
& Y &

U.D.F. T COND

(COND -- ((T --)))

CAR
FAULTEVAL APPLY

FAULTAPPLY FAULTEVAL FAULTAPPLY

N
FAULTEVAL FAULTAPPLY

RETEVAL
FAULTEVAL FAULTAPPLY

ITIMS ITIMES RETEVAL

CAR
OKREEVALST (SETQ X (CONS

(IPLUS Y Z) W)) SETQ CONS IPLUS OKREEVALST

^ (RETEVAL ’FAULTEVAL ’(ERROR!))
FAULTEVAL

FUNCTION- NAME

FUNCTION- NAME

8

8

DWIM

with . Since the interpreter uses the value returned by
exactly as though it were the value of the erroneous form, the computation will thus proceed exactly as
though no error had occurred.

In addition to continuing the computation, DWIM also repairs the cause of the error whenever possible;
in the above example, DWIM also changed (with) the expression

that caused the error. Note that if the user’s program had the form and called , it
would not be possible to repair the cause of the error, although DWIM could correct the misspelling each
time it occurred.

Error correction in DWIM is divided into three categories: unbound atoms, unde�ned of form, and
unde�ned function in . Assuming that the user approves DWIM’s corrections, the action taken by
DWIM for the various types of errors in each of these categories is summarized below.

15.4.1 DWIM Correction: Unbound Atoms

If DWIM is called as the result of an unbound atom error, it proceeds as follows:

(1) If the �rst character of the unbound atom is , DWIM assumes that the user (intentionally) typed
for and makes the appropriate change. No message is typed, and no approval

is requested.

If the unbound atom is just itself, DWIM assumes the user wants the expression quoted, e.g.,
will be changed to . Again no message will be

printed or approval asked. If no expression follows the , DWIM gives up.

(2) If CLISP (page 16.1) is enabled, and the atom is part of a CLISP construct, the CLISP transformation
is performed and the result returned. For example, is transformed to , and ���
��� is transformed into ��� ��� .

(3) If the atom contains an (actually , see page 15.12), DWIM assumes the was intended
to be a left parenthesis, and calls the editor to make appropriate repairs on the expression containing
the atom. DWIM assumes that the user did not notice the mistake, i.e., that the entire expression was
a�ected by the missing left parenthesis. For example, if the user types

, the expression will be changed to
. Note that the does not have to be the �rst character of the atom: DWIM will handle

correctly.

(4) If the atom contains a (actually , see page 15.12), DWIM assumes the was intended to
be a right parenthesis and operates as in the case above.

(5) If the atom begins with a , the is treated as a . For example, becomes , and then
.

(6) If the atom is an edit command (a member of), and the error occurred in type- in, the
e�ect is the same as though the user typed , followed by the atom, i.e., DWIM assumes the
user wants to be in the editor editing the last thing he referred to. Thus, if the user de�nes the function

is normally de�ned as a read- macro character which converts to on input, so
DWIM will not see the in the case of expressions that are typed- in.

15.7

(ITIMES N (FACCT 8SUB1 N)) FAULTEVAL

RPLACA (ITIMS N (FACCT 8SUB1
N)) computed EVAL

CAR
APPLY

’
’ (QUOTE)

’ next
(CONS X ’(A B C)) (CONS X (QUOTE (A B C)))

’

N-1 (SUB1 N) (FOO_3
) ((SETQ FOO 3))

8 LPARKEY 8

(SETQ X (LIST (CONS 8CAR
Y) (CDR Z)) Y) (SETQ X (LIST (CONS (CAR Y) (CDR Z))
Y)) 8 (CONS
X8CAR Y)

9 RPARKEY 9

7 7 ’ 7FOO ’FOO
(QUOTE FOO)

EDITCOMSA
EDITF()

’ ’FOO (QUOTE FOO)
’

ATOM ATOM

9

9

Unde�ned CAR of Form

and then types , he will see , followed by , followed by the printout associated with the
execution of the command, followed by , at which point he can continue editing .

(7) The expressions on (see page 15.10) are evaluated in the order that they appear. If
any of these expressions returns a non- value, this value is treated as the form to be used to continue
the computation, it is evaluated and its value is returned by .

(8) If the unbound atom occurs in a function, DWIM attempts spelling correction using the and
variables of the function as the spelling list.

(9) If the unbound atom occurred in a type- in to a break, DWIM attempts spelling correction using the
and variables of the broken function as the spelling list.

(10) Otherwise, DWIM attempts spelling correction using (see page 15.14).

(11) If all of the above fail, DWIM gives up.

15.4.2 Unde�ned CAR of Form

If DWIM is called as the result of an unde�ned of form error, it proceeds as follows:

(1) If of the form is , DWIM assumes a misplaced clause and operates as described on page 15.5.

(2) If of the form is , DWIM changes the ‘‘ ’’ to ‘‘ ’’. For example,
is changed to .

No message is printed and no approval requested. If the user omits the variable list, DWIM supplies ,
e.g., is changed to .
DWIM determines that the user has supplied the variable list when more than one expression follows

, of the �rst expression is not the name of a function, and every element in the �rst expression
is atomic. For example, DWIM will supply when correcting

.

(3) If of the form is a CLISP word (, , , , etc.), the indicated CLISP transformation
is performed, and the result is returned as the corrected form. See page 16.1.

(4) If of the form has a function de�nition, DWIM attempts spelling correction on of the
de�nition using as spelling list the value of , initially .

(5) If of the form has an or property, DWIM prints , performs
an , and continues. No approval is requested.

(6) If of the form has a property, the de�nition is loaded from a �le. If the value of
the property is atomic, the entire �le is to be loaded. If the value is a list, is the name of the �le
and the relevant functions, and will be used. For both cases, will be
(see page 11.4). DWIM uses (page 15.20), so that the �le can be on any of the directories
on , initially . If the �le is found, DWIM types

followed by the �le name or list of functions. If the user approves, DWIM loads the
function(s) or �le, and continues the computation.

except when ing.

15.8

FOO P =FOO EDIT
P * FOO

DWIMUSERFORMS
NIL

DWIM

LAMBDA
PROG

LAMBDA PROG

SPELLINGS3

CAR

CAR T T

CAR F/L F/L FUNCTION(LAMBDA
(F/L (Y) (PRINT (CAR Y))) (FUNCTION (LAMBDA (Y) (PRINT (CAR Y)))

(X)
(F/L (PRINT (CAR X))) (FUNCTION (LAMBDA (X) (PRINT (CAR X))))

F/L CAR
(X) (F/L (PRINT (CDR X)) (PRINT

(CAR X)))

CAR IF FOR DO FETCH

CAR CAR
LAMBDASPLST (LAMBDA NLAMBDA)

CAR EXPR CODE UNSAVED
UNSAVEDEF

CAR FILEDEF
CAR

CDR LOADFNS SYSLOAD
FINDFILE

DIRECTORIES (NIL NEWLISP LISP LISPUSERS)
SHALL I LOAD

DWIMIFY

CAR- OF-FORM

LDFL G

DWIM

(7) If CLISP is enabled, and of the form is part of a CLISP construct, the indicated transformation
is performed, e.g., becomes .

(8) If of the form contains an , DWIM assumes a left parenthesis was intended e.g.,
.

(9) If of the form contains a , DWIM assumes a right parenthesis was intended.

(10) If of the form is a list, DWIM attempts spelling correction on of the form using
as spelling list. If successful, DWIM returns the corrected expression itself.

(11) If of the form is a small number, and the error occurred in type- in, DWIM assumes the form
is really an edit command and operates as described for unbound atom errors above.

(12) If of the form is an edit command (a member of), DWIM operates as in the
previous case.

(13) The expressions on are evaluated in the order they appear. If any returns a
non- value, this value is treated as the corrected form, it is evaluated, and returns its value.

(14) Otherwise, DWIM attempts spelling correction using as the spelling list (see page
15.14). When ing, also attemps spelling correction on function names not de�ned but
previously encountered, using as a spelling list (see page 16.16).

(15) If all of the above fail, DWIM gives up.

15.4.3 Unde�ned Function in APPLY

If DWIM is called as the result of an unde�ned function in error, it proceeds as follows:

(1) If the function has a de�nition, DWIM attempts spelling correction on of the de�nition using
as spelling list.

(2) If the function has an or property, DWIM prints , performs an
and continues. No approval is requested.

(3) If the function has a property , DWIM proceeds as in case 6 of unde�ned of form.

(4) If the error resulted from type- in, and CLISP is enabled, and the function name contains a CLISP
operator, DWIM performs the indicated transformation, e.g., the user types .

(5) If the function name contains an , DWIM assumes a left parenthesis was intended, e.g., .

(6) If the ‘‘function’’ is a list, DWIM attempts spelling correction on of the list using as
spelling list.

(7) If the function is a number and the error occurred in type- in, DWIM assumes the function is an edit
command, and operates as described in case 6 of unbound atoms, e.g., the user types (on one line)

.

(8) If the function is the name of an edit command (on either or), DWIM
operates as in the previous case, e.g., user types .

15.9

CAR
(N_N-1) (SETQ N (SUB1 N))

CAR 8 (CONS8CAR
X)

CAR 9

CAR CAAR
LAMBDASPLST

CAR

CAR EDITCOMSL

DWIMUSERFORMS
NIL DWIM

SPELLINGS2
DWIMIFY DWIM

NOFIXFNSLST

APPLY

CAR
LAMBDASPLST

EXPR CODE UNSAVED UNSAVEDEF

FILEDEF CAR

FOO_(APPEND FIE FUM)

8 EDIT8FOO]

CAR LAMBDASPLST

3 -1
P

EDITCOMSA EDITCOMSL
F COND

FN

10

10

DWIMUSERFORMS

(9) The expressions on are evaluated in the order they appear, and if any returns a
non- value, this value is treated as the function used to continue the computation, i.e., it will be
applied to its arguments.

(10) DWIM attempts spelling correction using as the spelling list.

(11) DWIM attempts spelling correction using as the spelling list.

(12) If all fail, DWIM gives up.

15.5 DWIMUSERFORMS

The variable provides a convenient way of adding to the transformations that DWIM
performs. For example, the user might want to change atoms of the form to .
Before attempting spelling correction, but after performing other transformations (, , , CLISP, etc.),
DWIM evaluates the expressions on in the order they appear. If any expression returns
a non- value, this value is treated as the transformed form to be used. If DWIM was called from

, this form is evaluated and the resulting value is returned as the value of . If
DWIM is called from , this form is treated as a function to be applied to , and
the resulting value is returned as the value of . If all of the expressions on
return , DWIM proceeds as though = , and attempts spelling correction. Note
that DWIM simply takes the value and returns it; the expressions on are responsible
for making any modi�cations to the original expression.

In order for an expression on to be able to be e�ective, it needs to know various
things about the context of the error. Therefore, several of DWIM’s internal variables have been made

(see page 12.4) and are therefore ‘‘visible’’ to . Below are a list of those
variables that may be useful.

[Variable]
For unbound atom and unde�ned car of form errors, is the atom or form.
For unde�ned function in errors, is the name of the function.

[Variable]
For unde�ned function in errors, is the list of arguments.

may be modi�ed or reset by expressions on .

[Variable]
Value is for unde�ned function in errors; otherwise. The value
of an expression on returns a non-

value determines how the latter value is to be treated. Following an
unde�ned function in error, if an expression on sets

to , the value returned is treated as a form to be evaluated,
rather than a function to be applied.

The expressions on should make the transformation permanent, either by associating
it with via , or by physically smashing .

15.10

DWIMUSERFORMS
NIL

SPELLINGS1

SPELLINGS2

DWIMUSERFORMS
$X (QA4LOOKUP X)

F/L 8 9
DWIMUSERFORMS

NIL
FAULTEVAL FAULTEVAL

FAULTAPPLY FAULTARGS
FAULTAPPLY DWIMUSERFORMS

NIL DWIMUSERFORMS NIL
DWIMUSERFORMS

DWIMUSERFORMS

SPECVARS DWIMUSERFORMS

FAULTX
FAULTX

APPLY FAULTX

FAULTARGS
APPLY FAULTARGS

FAULTARGS DWIMUSERFORMS

FAULTAPPLYFLG
T APPLY NIL

FAULTAPPLYFLG after DWIMUSERFORMS
NIL

APPLY DWIMUSERFORMS
FAULTAPPLYFLG NIL

DWIMUSERFORMS
FAULTX CLISPTRAN FAULTX

DWIM

is necessary to distinguish between unbound atom and unde�ned
function in errors, since may be and atomic in
both cases.

[Variable]
For unbound atom errors, is the tail of the expression of which is the
unbound atom. expression can replace the atom by another
expression by performing

[Variable]
For unbound atom errors, is the form in which the unbound atom appears.

is a tail of .

[Variable]
True if the error occurred in type- in.

[Variable]
Name of the function in which error occurred. is when the
error occurred in type- in, and or when the error occurred under an
explicit call to or .

[Variable]
True if the error was encountered while ing (as opposed to happening
while running a program).

[Variable]
De�nition of , or argument to , i.e., the superform in which the
error occurs.

The initial value of is . is a package
for running interpreted programs containing statements or calls to ‘‘functions’’ de�ned only
by properties (see page 5.19). is a function for automatically loading functions
from �les. If is (its initial value), and of the form is the name of a function,
and the function is contained on a �le that has been noticed by the �le package, the function is loaded,
and the computation continues.

15.6 DWIM FUNCTIONS AND VARIABLES

[Variable]
Value is the number of seconds that DWIM will wait before it assumes that
the user is not going to respond to a question and uses the default response

.

DWIM operates by dismissing for 250 milliseconds, then checking to see if anything
has been typed. If not, it dismisses again, etc. until seconds have
elapsed. Thus, there will be a delay of at most 1/4 second before DWIM responds
to the user’s answer.

15.11

FAULTAPPLYFLG
APPLY FAULTARGS NIL FAULTX

TAIL
TAIL CAR

DWIMUSERFORMS
(/RPLACA TAIL)

PARENT
PARENT

TAIL PARENT

TYPE-IN?

FAULTFN
FAULTFN TYPE-IN

EVAL APPLY
EVAL APPLY

DWIMIFYFLG
DWIMIFY

EXPR
FAULTFN EVAL

DWIMUSERFORMS ((MACROTRAN) (DWIMLOADFNS?)) MACROTRAN
ASSEMBLE

MACRO DWIMLOADFNS?
DWIMLOADFNSFLG T CAR

DWIMWAIT

FIXSPELLDEFAULT

DWIMWAIT

EXPR

DWIM Functions and Variables

[Variable]
If approval is requested for a spelling correction, and user does not respond, defaults
to value of , initially . is rebound to
when ing.

[Variable]
If , suppresses calls to . Initially .

[Variable]
If , suppresses spelling correction. If some other non- value, suppresses
spelling correction in programs but not type- in. is initially . It
is rebound to when compiling from a �le.

[Variable]
If , suppresses run- on spelling corrections. Initially .

[Variable]
If , tells DWIM that when it encounters a call to an unde�ned function contained
on a �le that has been noticed by the �le package, to simply load the function.

is initially . See page 15.11.

[Variable]
[Variable]

DWIM uses the value of the variables and (initially and
respectively) to determine the corresponding lower case character for left and right
parentheses. and can be reset for other keyboard layouts. ,
For example, on some terminals left parenthesis is over , and right parenthesis is
over .

[Variable]
The value of is a list of functions that DWIM can safely reevaluate.
If a form is atomic, or of the form is a member of , and each of
the arguments can safely be reevaluated, then the form can be safely reevaluated.
For example, is safe to reevaluate because

, , and are all on .

[Variable]
= , all DWIM operations are disabled. and

set to ; sets to .

[Variable]
= if DWIM should ask the user for approval before making a

correction that will modify the de�nition of one of his functions; otherwise.

When DWIM is put into mode with , is set
to ; for mode, is set to .

[Variable]
DWIM uses the value of as the spelling list when correcting ‘‘bad’’
function de�nitions. Initially . The user may wish to add
to if he elects to de�ne new ‘‘function types’’ via an appropriate

entry. For example, the s of SRI’s QLISP are handled

15.12

FIXSPELLDEFAULT

FIXSPELLDEFAULT Y FIXSPELLDEFAULT N
DWIMIFY

ADDSPELLFLG
NIL ADDSPELL T

NOSPELLFLG
T all NIL

NOSPELLFLG NIL
T

RUNONFLG
NIL T

DWIMLOADFNSFLG
T

DWIMLOADFNSFLG T

LPARKEY
RPARKEY

LPARKEY RPARKEY 8 9

LPARKEY RPARKEY
9

0

OKREEVALST
OKREEVALST

CAR OKREEVALST

(SETQ X (CONS (IPLUS Y Z) W))
SETQ CONS IPLUS OKREEVALST

DWIMFLG
DWIMFLG NIL (DWIM ’C) (DWIM T)

DWIMFLG T (DWIM NIL) DWIMFLG NIL

APPROVEFLG
APPROVEFLG T

NIL

CAUTIOUS (DWIM ’C) APPROVEFLG
T TRUSTING APPROVEFLG NIL

LAMBDASPLST
LAMBDASPLST

(LAMBDA NLAMBDA)
LAMBDASPLST

DWIMUSERFORMS QLAMBDA

DWIM

in this way.

15.7 SPELLING CORRECTION

The spelling corrector is given as arguments a misspelled word (word means literal atom), a spelling list (a
list of words), and a number: , , and respectively. Its task is to �nd that word on
which is closest to , in the sense described below. This word is called a of .
speci�es the minimum ‘‘closeness’’between and a respelling. If the spelling corrector cannot �nd
a word on closer to than , or if it �nds two or more words equally close, its value is

, otherwise its value is the respelling. The spelling corrector can also be given an optional functional
argument, , to be used for selecting out a subset of , i.e., only those members of that
satisfy will be considered as possible respellings.

The exact algorithm for computing the spelling metric is described later, but brie�y ‘‘closeness’’is inversely
proportional to the number of disagreements between the two words, and directly proportional to the
length of the longer word. For example, is ‘‘closer’’ to than is to
even though both pairs of words have the same number of disagreements. The spelling corrector operates
by proceeding down , and computing the closeness between each word and , and keeping
a list of those that are closest. Certain di�erences between words are not counted as disagreements, for
example a single transposition, e.g., to , or a doubled letter, e.g., to , etc. In the
event that the spelling corrector �nds a word on with disagreements, it will stop searching and
return this word as the respelling. Otherwise, the spelling corrector continues through the entire spelling
list. Then if it has found one and only one ‘‘closest’’ word, it returns this word as the respelling. For
example, if is , the spelling corrector will probably return as the respelling. However,
if is , the spelling corrector will not be able to return a respelling, since is equally
close to both and . If the spelling corrector �nds an acceptable respelling, it interacts with the
user as described earlier.

In the special case that the misspelled word contains one or more s (<esc>s, alt-mode on some
terminals), the spelling corrector searches for those words on that match , where a can
match any number of characters (including 0), e.g., matches and , but not .

matches all three. Both completion and correction may be involved, e.g. will match
, with one mistake. The entire spelling list is always searched, and if more than one

respelling is found, the spelling corrector prints , and returns . For example, would
be ambiguous if both and were on the spelling list. If the spelling corrector �nds one and
only one respelling, it interacts with the user as described earlier.

For both spelling correction and spelling completion, regardless of whether or not the user approves of
the spelling corrector’s choice, the respelling is moved to the front of . Since many respellings are of
the type with no disagreements, this procedure has the e�ect of considerably reducing the time required
to correct the spelling of frequently misspelled words.

15.7.1 Synonyms

Spelling lists also provide a way of de�ning synonyms for a particular context. If a dotted pair appears
on a spelling list (instead of just an atom), is interpreted as the correct spelling of the misspelled
word, and as the antecedent for that word. If is with the misspelled word, the

15.13

respelling

NIL

PRTTYPRNT PRETTYPRINT CS CONS

CONS CNOS CONS CONSS
no

VONS CONS
CONZ CONZ
CONS COND

$
$

FOO$ FOO1 FOO NEWFOO
FOO RPETTY$
PRETTYPRINT

AMBIGUOUS NIL CON$
CONS COND

CAR
CDR CAR identical

XW ORD SPLST REL SPLST

XW ORD XW ORD REL

XW ORD

SPLST XW ORD REL

FN SPLST SPLST

FN

SPLST XW ORD

SPLST

XW ORD

XW ORD

SPLST XW ORD

SPLST

Spelling Lists

antecedent is returned without any interaction or approval being necessary. If the misspelled word
to of the dotted pair, the usual interaction and approval will take place, and then the

antecedent, i.e., of the dotted pair, is returned. For example, the user could make synonymous
with by adding to , the spelling list
for unbound atoms. Similarly, the user could make mean the same as by adding

to , or make be synonymous with by adding
to . Note that could also be used as a variable without confusion, since

the association of with occurs only in the appropriate context.

15.7.2 Spelling Lists

Any list of atoms can be used as a spelling list, e.g., , , etc. Various system packages
have their own spellings lists, e.g., , , , etc. These are
documented under their corresponding sections, and are also indexed under ‘‘spelling lists.’’ In addition
to these spelling lists, the system maintains, i.e., automatically adds to, and occasionally prunes, four lists
used solely for spelling correction: , , , and . These
spelling lists are maintained when is non- . is initially .

[Variable]
is a list of functions used for spelling correction when an input

is typed in apply format, and the function is unde�ned, e.g., .
is initialized to contain , , , ,

, , etc. Whenever is given an input in apply format, i.e., a
function and arguments, the name of the function is added to if the
function has a de�nition.

For example, typing will cause to be added to .
Thus if the user typed and later typed , since

would then contain , DWIM would be successful in correct ing
to .

[Variable]
is a list of functions used for spelling correction for all other

unde�ned functions. It is initialized to contain functions such as , ,
, , , , , , , , , etc. Whenever

is given a non- atomic form, the name of the function is added to
. For example, typing

to a break would add to . Function names are also added
to by , , (when loading compiled code),

, , and .

[Variable]
is a list of words used for spelling correction on all unbound atoms.
is initialized to , , , and

. Whenever is given an atom to evaluate, the name of the
atom is added to if the atom has a value. Atoms are also added
to whenever they are edited by , and whenever they are set
via or . For example, when a �le is loaded, all of the variables set in
the �le are added to . Atoms are also added to when
they are set by a input, e.g., typing

15.14

corrects CAR
CDR IFLG

CLISPIFTRANFLG (IFLG . CLISPIFTRANFLG) SPELLINGS3
OTHERWISE ELSEIF

(OTHERWISE . ELSEIF) CLISPIFWORDSPLST L LAMBDA
(L . LAMBDA) LAMBDASPLST L

L LAMBDA

BROKENFNS FILELST
LISPXCOMS CLISPFORWORDSPLST EDITCOMSA

SPELLINGS1 SPELLINGS2 SPELLINGS3 USERWORDS
only ADDSPELLFLG NIL ADDSPELLFLG T

SPELLINGS1
SPELLINGS1

EDTIF(FOO)
SPELLINGS1 DEFINEQ BREAK MAKEFILE EDITF
TCOMPL LOAD LISPX

SPELLINGS1

CALLS(EDITF) CALLS SPELLINGS1
CALLS(EDITF) CALLLS(EDITV)

SPELLINGS1 CALLS
CALLLS CALLS

SPELLINGS2
SPELLINGS2

ADD1 APPEND
COND CONS GO LIST NCONC PRINT PROG RETURN SETQ
LISPX
SPELLINGS2 (RETFROM (STKPOS (QUOTE FOO) 2))

RETFROM SPELLINGS2
SPELLINGS2 DEFINE DEFINEQ LOAD

UNSAVEDEF EDITF PRETTYPRINT

SPELLINGS3
SPELLINGS3
SPELLINGS3 EDITMACROS BREAKMACROS BROKENFNS
ADVISEDFNS LISPX

SPELLINGS3
SPELLINGS3 EDITV
RPAQ RPAQQ

SPELLINGS3 SPELLINGS3
LISPX (SETQ FOO (REVERSE (SETQ FIE

DWIM

��� will add both and to .

[Variable]
is a list containing both functions and variables that the user has

to, e.g., by breaking or editing. is used for spelling
correction by , , , , , ,
etc. is initially . Function names are added to it by ,

, , (when loading compiled code, or loading exprs to property
lists) , , , , , etc. Variable names
are added to at the same time as they are added to .
In addition, the variable is always set to the last word added to

, i.e., the last function or variable referred to by the user, and the
respelling of is de�ned to be the value of . Thus, if the user
has just de�ned a function, he can then edit it by simply typing , or
prettyprint it by typing .

Each of the above four spelling lists are divided into two sections separated by a special marker. The �rst
section contains the ‘‘permanent’’ words; the second section contains the temporary words. New words are
added to the corresponding spelling list at the front of its temporary section (except that functions added
to or by are always added to the end of the permanent section. If
the word is already in the temporary section, it is moved to the front of that section; if the word is in
the permanent section, no action is taken. If the length of the temporary section then exceeds a speci�ed
number, the last (oldest) word in the temporary section is forgotten, i.e., deleted. This procedure prevents
the spelling lists from becoming cluttered with unimportant words that are no longer being used, and
thereby slowing down spelling correction time. Since the spelling corrector usually moves each word
selected as a respelling to the front of its spelling list, the word is thereby moved into the permanent
section. Thus once a word is misspelled and corrected, it is considered important and will never be
forgotten.

[Variable]
[Variable]
[Variable]
[Variable]

The maximum length of the temporary section for , ,
and is given by the value of , ,
, and , initialized to 30, 30, 30, and 60 respec tively.

Users can alter these values to modify the performance behavior of spelling
correction.

15.7.3 Generators for Spelling Correction

For some applications, it is more convenient to candidates for a respelling one by one, rather
than construct a complete list of all possible candidates, e.g., spelling correction involving a large directory
of �les, or a natural language data base. For these purposes, can be an array (of any size). The
�rst element of this array is the generator function, which is called with the array itself as its argument.
Thus the function can use the remainder of the array to store ‘‘state’’ information, e.g., the last position
on a �le, a pointer into a data structure, etc. The value returned by the function is the next candidate
for respelling. If is returned, the spelling ‘‘list’’is considered to be exhausted, and the closest match
is returned. If a candidate is found with no disagreements, it is returned immediately without waiting for

15.15

))) FOO FIE SPELLINGS3

USERWORDS
USERWORDS
referred USERWORDS

ARGLIST UNSAVEDEF PRETTYPRINT BREAK EDITF ADVISE
USERWORDS NIL DEFINE

DEFINEQ LOAD
UNSAVEDEF EDITF EDITV EDITP PRETTYPRINT

USERWORDS SPELLINGS3
LASTWORD

USERWORDS
NIL LASTWORD

EDITF()
PP()

SPELLINGS1 SPELLINGS2 LISPX

#SPELLINGS1
#SPELLINGS2
#SPELLINGS3
#USERWORDS

SPELLINGS1 SPELLINGS2
SPELLINGS3 USERWORDS #SPELLINGS1 #SPELLINGS2
#SPELLINGS3 #USERWORDS

generate

NIL

SPLST

Spelling Corrector Algorithm

the ‘‘list’’to exhaust.

can also be a generator, i.e. the value of the function (page 7.13). The generator
will be started up whenever the spelling corrector needs the next candidate, and it should return

candidates via the function . For example, the following could be used as a ‘‘spelling list’’ which
e�ectively contains all functions in the system:

15.7.4 Spelling Corrector Algorithm

The basic philosophy of DWIM spelling correction is to count the number of disagreements between two
words, and use this number divided by the length of the longer of the two words as a measure of their
relative disagreement. One minus this number is then the relative agreement or closeness. For example,

and di�er only in their last character. Such substitution errors count as one disagreement,
so that the two words are in 75% agreement. Most calls to the spelling corrector specify a relative
agreement of 70, so that a single substitution error is permitted in words of four characters or longer.
However, spelling correction on shorter words is possible since certain types of di�erences such as single
transpositions are not counted as disagreements. For example, and have a relative agreement
of 100. Calls to the spelling corrector from use the value of , which is initially
70. Note that by setting to 100, only spelling corrections with ‘‘zero’’ mistakes, will be
considered, e.g., transpositions, double characters, etc.

The central function of the spelling corrector is . takes as arguments: a word, a minimum
relative agreement, a spelling list, and an optional functional argument, , , , and
respectively.

proceeds down examining each word. Words not satisfying (if is non-), or those
obviously too long or too short to be su�ciently close to are immediately rejected. For example,
if =70, and is 5 characters long, words longer than 7 characters will be rejected.

Special treatment is necessary for words shorter than , since doubled letters are not counted as
disagreements. For example, and have a relative agreement of 100. (keyboard bounce
on many di�erent kinds of keyboards actually produce this sort of stuttering.) handles this by
counting the number of doubled characters in before it begins scanning , and taking this
into account when deciding whether to reject shorter words.

If , the current word on , is not rejected, computes the number of disagreements
between it and by calling a subfunction, .

operates by scanning both words from left to right one character at a time. operates on the
list of character codes for each word. This list is computed by before calling . Characters
are considered to agree if they are the same characters; or appear on the same key (i.e., a shift mistake),
for example, agrees with , with , etc.; or if the character in is a lower case version of the
character in . Characters that agree are discarded, and the ing continues on the rest of the
characters in and .

If the �rst character in and do agree, checks to see if either character is the
same as one previously encountered, and not accounted- for at that time. (In other words, transpositions

15.16

GENERATOR

PRODUCE

[GENERATOR
(MAPATOMS (FUNCTION (LAMBDA (X) (if (GETD X) then (PRODUCE X]

CONS CONX

AND NAD
DWIM FIXSPELLREL

FIXSPELLREL

CHOOZ CHOOZ

CHOOZ NIL

CONNSSS CONS
CHOOZ

CHOOZ
SKOR

SKOR SKOR
CHOOZ SKOR

* : 1 !
SKOR

not SKOR

SPLST

SPLST

XW ORD REL SPLST FN

SPLST FN FN

XW ORD

REL XW ORD

XW ORD

XW ORD SPLST

TW ORD SPLST

XW ORD

XW ORD

TW ORD

XW ORD TW ORD

XW ORD TW ORD

DWIM

are not handled by lookahead, but by .) A displacement of two or fewer positions is counted
as a tranposition; a displacement by more than two positions is counted as a disagreement.In either case,
both characters are now considered as accounted for and are discarded, and ing continues.

If the �rst character in and do not agree, and neither agree with previously unaccounted-
for characters, and has more characters remaining than , removes and saves the �rst
character of , and continues by comparing the rest of with as described above. If

has the same or fewer characters remaining than , the procedure is the same except that
the character is removed from . In this case, a special check is �rst made to see if that character
is equal to the character in , or to the character in , i.e., a double character
typo, and if so, the character is considered accounted- for, and not counted as a disagreement. In this
case, the ‘‘length’’ of is also decremented. Otherwise making su�ciently long by adding
double characters would make it be arbitrarily close to , e.g., would correct to .

When has �nished processing both and in this fashion, the value of is the
number of unaccounted- for characters, plus the number of disagreements, plus the number of tranpositions,
with two quali�cations: (1) if both and have a character unaccounted- for in the same
position, the two characters are counted only once, i.e., substitution errors count as only one disagreement,
not two; and (2) if there are no unaccounted- for characters and no disagreements, transpositions are not
counted. This permits spelling correction on very short words, such as edit commands, e.g., .
Transpositions are also not counted when = , for example, and will be in
80% agreement with = , only 60% with = . The rationale behind this is
that transpositions are much more common for fast typists, and should not be counted as disagreements,
whereas more deliberate typists are not as likely to combine tranpositions and other mistakes in a single
word, and therefore can use more conservative metric. is initially .

15.7.5 Spelling Corrector Functions and Variables

[Function]
Adds to one of the four spelling lists as follows:

If is already on the spelling list, and in its temporary section, moves
to the front of that section.

If = , adds to and to . Used by .

If =0, adds to . Used by when loading s to
property lists.

If =1, adds to (at end of permanent section). Used by
.

If =2, adds to (at end of permanent section). Used by
.

If =3, adds to and .

can also be a spelling list, in which case is the (optional) length of the
temporary section.

sets to when = , or .

15.17

lookback

SKOR

SKOR

previous next

XXXXXX PP

SKOR SKOR

XRT->XTR
FASTYPEFLG T IPULX IPLUS

FASTYPEFLG T FASTYPEFLG NIL

FASTYPEFLG NIL

(ADDSPELL)

ADDSPELL

NIL USERWORDS SPELLINGS2 DEFINEQ

USERWORDS LOAD EXPR

SPELLINGS1
LISPX

SPELLINGS2
LISPX

USERWORDS SPELLINGS3

ADDSPELL LASTWORD NIL 0 3

XW ORD TW ORD

TW ORD XW ORD

TW ORD TW ORD XW ORD

TW ORD XW ORD

XW ORD

XW ORD XW ORD

XW ORD XW ORD

TW ORD

XW ORD TW ORD

XW ORD TW ORD

X SPLST N

X

X

X

SPLST X

SPLST X

SPLST X

SPLST X

SPLST X

SPLST N

X SPLST

11

11

Spelling Corrector Functions and Variables

If is not a literal atom, takes no action.

Note that the various systems calls to , e.g. from , , , etc., can all be
suppressed by setting or binding to (page 15.12).

[Function]
If = or (<esc>), prints followed by the value
of , and returns this as the respelling, without asking for approval.
Otherwise, checks to see if is really misspelled, i.e., if
applied to is true, or is already contained on . In this case,

simply returns . Otherwise computes and
returns .

[Function]
The value of is either the respelling of or . If for some
reason itself is on , then aborts and calls . If
there is a possibility that is spelled correctly, should be
used instead of . performs all of the interactions described
earlier, including requesting user approval if necessary.

If = or (<esc>), the respelling is the value of , and no
approval is requested.

If contains lowercase characters, and the corresponding uppercase word
is correct, i.e. on or satis�es , the uppercase word is returned and no
interaction is performed.

If = , defaults to the value of (initially 70).

If = , the correction is handled in type- in mode, i.e., approval is never
requested, and is not typed. If = , is typed (before the) and
approval is requested if = . If = , the correction
is returned with no further processing. In this case, a run- on correction will be
returned as a dotted pair of the two parts of the word, and a synonym correction
as a list of the form , where is (the corrected version of)

, and is the synonym. Note that the e�ect of the function
can be obtained by calling with = .

If is not , and the correction is successful, of is replaced by
the respelling (using). In addition, will correct misspellings
caused by running two words together. In this case, of is replaced
by the two words, and the value of is the �rst one. For example,
if is called to correct the edit command

with = , would be changed to

In this case, user approval is always requested. In addition, if the �rst word contains either fewer than
3 characters, or fewer characters than the second word, the default will be . ’Run- on’ spelling corrections
can be suppressed by setting the variable to (initially).

15.18

ADDSPELL

ADDSPELL DEFINE EDITF LOAD
ADDSPELLFLG NIL

(MISSPELLED?)
NIL $ MISSPELLED? =

LASTWORD
MISSPELLED?

MISSPELLED? MISSPELLED?
(FIXSPELL)

(FIXSPELL)
FIXSPELL NIL

FIXSPELL ERROR!
MISSPELLED?

FIXSPELL FIXSPELL

NIL $ LASTWORD

NIL FIXSPELLREL

NIL
T =

APPROVEFLG T NO-MESSAGE

()
CHOOZ

FIXSPELL NO-MESSAGE

NIL CAR
/RPLACA FIXSPELL

CAR
FIXSPELL

FIXSPELL (MOVE TO AFTERCOND 3
2) (AFTERCOND 3 2) (AFTER COND

N
RUNONFLG NIL T

X

XW ORD REL SPLST FL G TAIL FN

XW ORD

XW ORD FN

XW ORD XW ORD SPLST

XW ORD

XW ORD REL SPLST FL G TAIL FN

XW ORD REL SPLST FL G TAIL FN TIEFL G DONTMO VETOPFL G _ _

XW ORD

XW ORD SPLST

XW ORD

XW ORD

XW ORD

SPLST FN

REL

FL G

XW ORD FL G XW ORD

FL G

W ORD1 W ORD2 W ORD1

XW ORD W ORD2

FL G

TAIL TAIL

TAIL

TAIL TAIL

12

12

DWIM

, and would return (subject to user approval where
necessary).

If = and a tie occurs, i.e., more than one word on is found
with the same degree of ‘‘closeness’’, returns , i.e., no correction.
If = and a tie occurs, the �rst word is taken as the correct
spelling. If = , the value of is a list of the respellings
(even if there is only one), and will not perform any interaction with
the user, nor modify , the idea being that the calling program will handle those
tasks. Similarly, if = , a list of all candidates whose degree
of closeness is above will be returned, regardless of whether some are better
than others. No interaction will be performed.

If = and a correction occurs, it will be moved to the
front of the spelling list.

The time required for a call to with a spelling list of length 60 when the entire list must be
searched is .5 seconds. If determines that the �rst word on the spelling list is the respelling
and does not need to search any further, the time required is .02 seconds. In other words, the time
required is proportional to the number of words with which is compared, with the time for one
comparison, i.e., one call to takes roughly .01 seconds (varies slightly with the number of characters
in the words being compared).

[Function]
The task of is to check whether is the name of a function and if
not, to correct its spelling. If is the name of a function or spelling correction
is successful, adds the (corrected) name of the function to
using , and returns it as its value.

Since is called by many low level functions such as ,
, etc., spelling correction only takes place when = , so that

these functions can operate in a small Interlisp system which does not contain
DWIM.

informs whether or not the calling function wants to
handle the unsuccessful case: if is , simply returns ,
otherwise it prints and generates a non- breaking error.

If does not have a de�nition, but does have an property, then spelling
correction is not attempted. Instead, if = , is considered to be the
name of a function, and is returned. If = , is considered to
be the name of a function, and is returned or an error generated, depending
on the value of .

calls to per form spelling correction, so that if = ,
the value of will be returned. corresponds to ’s

If = , will also perform run- on corrections, returning a dotted pair of the two words
in the event the correction is of this type.

15.19

2 3) FIXSPELL AFTER

NIL
FIXSPELL NIL

PICKONE
LIST FIXSPELL

FIXSPELL

EVERYTHING

T not

FIXSPELL
FIXSPELL

SKOR

(FNCHECK)
FNCHECK

FNCHECK USERWORDS
ADDSPELL

FNCHECK ARGLIST
UNSAVEDEF DWIMFLG T

FNCHECK
T FNCHECK NIL

fn NOT A FUNCTION

EXPR
T
NIL not

NIL

FNCHECK MISSPELLED? NIL
LASTWORD MISSPELLED?

T FIXSPELL

TIEFL G SPLST

TIEFL G

TIEFL G

TAIL

TIEFL G

REL

DONTMO VETOPFL G

XW ORD

FN NOERR ORFL G SPELLFL G PR OPFL G TAIL

FN

FN

NOERR ORFL G

NOERR ORFL G

FN

PR OPFL G FN

PR OPFL G FN

NOERR ORFL G

FN

SPELLFL G

TAIL

Spelling Corrector Functions and Variables

fourth argument, . If = , approval will be asked if DWIM was en-
abled in mode, i.e., if = . corresponds to the �fth
argument to .

is currently used by , , , , , ,
, and . For example, calls with = since if

cannot produce a function, wants to de�ne a dummy one. however calls with
= , since it cannot operate without a function.

Many other system functions call or directly. For example, calls
on unrecognized atomic inputs before attempting to evaluate them, using as a spelling list a

list of all break commands. Similarly, calls on atomic inputs using a list of all
commands. When is given the name of a function that is not broken, it calls with
two di�erent spelling lists, �rst with , and if that fails, with . calls

using as a spelling list. Finally, , , , , and
all call if their input �le(s) won’t open.

[Function]
If does not have a directory �eld, looks on the directories given
by the value of , initially . (corresponds to login
directory.) This correction will not require user approval, (but will
indicate the correction in the usual way, by printing followed by the new �le
name). Otherwise, attempts spelling correction against the �les in the
directory. In this case, user approval will be requested (except if = ,
see below). Returns corrected �le, if any, otherwise .

If = , does not do any printing, nor ask for approval.

If = (or =), no spelling correction is attempted, though
searching through will still be performed.

If is non- , it is used instead of the value of .

(page 9.16) is initially

This causes to be called in case of a error. If the variable
is (its initial value), then spelling correction is not done on the �le name, but

is still searched. If is successful, the operation will be reexecuted with the
new (corrected) �le name.

[Function]
If is not the name of a �le, calls specifying no interaction or
printing. could be de�ned as:

15.20

T
CAUTIOUS APPROVEFLG T

MISSPELLED?

FNCHECK ARGLIST UNSAVEDEF PRETTYPRINT BREAK0 BREAKIN ADVISE
CALLS EDITA BREAK0 FNCHECK T FNCHECK

BREAK0 CALLS FNCHECK
NIL

MISSPELLED? FIXSPELL BREAK1
FIXSPELL

LISPX FIXSPELL LISPX
UNBREAK FIXSPELL

BROKENFNS USERWORDS MAKEFILE
MISSPELLED? FILELST LOAD BCOMPL BRECOMPILE TCOMPL
RECOMPILE MISSPELLED?

(SPELLFILE)
SPELLFILE

DIRECTORIES (NIL LISP) NIL
SPELLFILE

=
SPELLFILE

T
NIL

T SPELLFILE

T NOSPELLFLG T
DIRECTORIES

NIL DIRECTORIES

ERRORTYPELST

((23 (SPELLFILE (CADR ERRORMESS) NIL NOFILESPELLFLG)))

SPELLFILE FILE NOT FOUND
NOFILESPELLFLG T
DIRECTORIES SPELLFILE

(FINDFILE)
SPELLFILE

FINDFILE

(if (INFILEP)
else (SPELLFILE T))

FL G SPELLFL G

TAIL

NOERR ORFL G

NOERR ORFL G

FILE NOPRINTFL G NSFL G DIRLST

FILE

NOPRINTFL G

NOPRINTFL G

NSFL G

DIRLST

FILE NSFL G DIRLST

FILE

FILE

FILE NSFL G DIRLST

