CHAPTER 15

DWIM

A surprisingly large percentage of the errors made by Interlisp users are of the type that could be
corrected by another LISP programmer without any information about the purpose of the program or
expression in question, e.g., misspellings, certain kinds of parentheses errors, etc. To correct these types
of errors we have implemented in Interlisp a DWIM facility, short for Do- What- I-Mean. DWIM is called
automatically whenever an error occurs in the evauation of an Interlisp expression. (Currently, DWIM
only operates on unbound atoms and undened function errors) DWIM then proceeds to try to correct
the mistake using the current context of computation plus information about what the user had previously
been doing, (and what mistakes he had been making) as guides to the remedy of the error. If DWIM
is able to make the correction, the computation continues as though no error had occurred. Otherwise,
the procedure isthe same as though DWIM had not intervened: a break occurs, or an unwind to the last
ERRORSET (page 9.15). The following protocol illustrates the operation of DWIM.

For example, suppose the user denes the factorial function (FACT N) as follows:

_DEFI NEQ((FACT (LAVBDA (N) (COND
((ZEROP N9 1) ((T (I TIMS N (FACCT 8SUBL N|
(FACT)

Note that the denition of FACT contains several mistakes: | TI MES and FACT have been misspelled; the
9 in N9 was intended to be aright parenthesis, but the shift key was not depressed; similarly, the 8 in
8SUB1 was intended to be a left parenthesis; and nally, there is an extra left parenthesis in front of the
T that begins the na clause in the conditional.

_PRETTYPRNT((FACCT]
=PRETTYPRI NT
=FACT

(FACT
[LAVBDA (N)
(COND
((ZEROP N9 1)
((T (ITIMS N (FACCT 8SUBL N])
(FACT)

After dening FACT, the user wishes to look at its denition using PRETTYPRI NT, which he unfortunately
misspells. Since there isno function PRETTYPRNT in the system, an undened function error occurs, and
DWIM is cadled. DWIM invokes its spelling corrector, which searches a list of functions frequently used
(by this user) for the best possible match. Finding one that is extremely close, DWIM proceeds on the
assumption that PRETTYPRNT meant PRETTYPRI NT, noti es the user of this, and calls PRETTYPRI NT.

At this point, PRETTYPRI NT would normally print (FACCT NOT PRI NTABLE) and exit, since FACCT
has no denition. Note that this is not an Interlisp error condition, so that DWIM would not be called

151

as described above. However, it is obviousy not what the user meant.

This sort of mistake is corrected by having PRETTYPRI NT itself explicitly invoke the spelling corrector
portion of DWIM whenever given a function with no EXPR denition. Thus, with the aid of DWIM
PRETTYPRI NT is able to determine that the user wants to see the denition of the function FACT, and
proceeds accordingly.

_FACT(3]
N9 [IN FACT] -> N) ? YES
[IN FACT] (COND -- ((T --))) ->
(COND -- (T --))
ITIMS [IN FACT] -> I TIMES
FACCT [IN FACT] -> FACT
8SUBL [IN FACT] -> (SUBL ? YES
6
_PP FACT
(FACT
[LAVBDA (N)
(COND
((ZEROP N)
1)
(T (ITIMES N (FACT (SUBL N])
FACT

The user now calls FACT. During its execution, ve errors occur, and DWIM is caled ve times. At
each point, the error is corrected, a message is printed describing the action taken, and the computation
is allowed to continue as if no error had occurred. Following the last correction, 6 is printed, the value
of (FACT 3). Findly, the user prettyprints the new, now correct, denition of FACT.

In this particular example, the user was shown operating in TRUSTI NG mode, which gives DWIM carte
blanche for most corrections. The user can also operate in CAUTI QUS mode, in which case DWIM will
inform him of intended corrections before they are made, and allow the user to approve or disapprove of
them. If DWIM was operating in CAUTI OQUS mode in the example above, it would proceed as follows:

_FACT(3)

No [IN FACT] -> N) ? YES

UDF. TI[INFACT] FIX? YES

[IN FACT] (COND -- ((T --))) ->
(COND -- (T --))

ITIMS [IN FACT] -> ITIMES ? ...YES
FACCT [IN FACT] -> FACT ? ...YES
8SUBL [IN FACT] -> (SUBL ? NO

U B. A

(8SUBL BROKEN)

For most corrections, if the user does not respond in a speci ed interval of time, DWIM automatically
proceeds with the correction, so that the user need intervene only when he does not approve. Note that
the user responded to the rst, second, and fth questions; DWIM responded for him on the third and

15.2

DWIM

fourth. 1

A great deal of eort has gone into making DWIM ‘‘smart’’, and experience with a large number of users
indicates that DWIM works very well; DWIM seldom fails to correct an error the user feds it should
have, and almost never mistakenly corrects an error. However, it is important to note that even when
DWIM is wrong, no harm is done: 2 since an error had occurred, the user would have had to intervene
anyway if DWIM took no action. Thus, if DWIM mistakenly corrects an error, the user simply interrupts
or aborts the computation, UNDOes the DWIM change using UNDO (page 8.11), and makes the correction
he would have had to make without DWIM. It is this benign quality of DWIM that makes it a valuable
part of Interlisp.

(DW M Xx) [Function]
Used to enable/disable DWIM. If x is the litatom C, DWIM is enabled in
CAUTI QUS mode, so that DWIM will ask the user before making corrections. If x
isT, DWIM isenabled in TRUSTI NG mode, so DWIM will make most corrections
automatically. If x is NIL, DWIM is disabled. Interlisp initidly has DWIM
enabled in CAUTI OQUS mode.

DW Mreturns CAUTI QUS, TRUSTI NG or NI L, depending to what mode it has just
been put into.

For corrections to expressions typed in by the user for immediate execution,® DWIM aways acts as
though it were in TRUSTI NG mode, i.e, no approval necessary. For certain types of corrections, eg.,
run-on spelling corrections, 8-9 errors, etc., DWIM always acts like it was in CAUTI QUS mode, and asks
for approval. In either case, DWIM always informs the user of its action as described below.

151 SPELLING CORRECTION PROTOCOL

One type of error that DWIM can correct is the misspelling of a function or a variable name. When
an unbound litatom or undened function error occurs, DWIM tries to correct the spelling of the bad
litatom. If a litatom is found whose spelling is ‘‘close’’ to the o ender, DWIM proceeds as follows:

If the correction occurs in the typed- in expression, DWIM prints =CORRECT- SPELLING °" and continues
evaluating the expression. For example:

IDWIM uses ASKUSER for its interactions with the user (page 6.57). Whenever an interaction is about
to take place and the user has typed ahead, ASKUSER types several bells to warn the user to stop typing,
then clears and saves the input buers, restoring them after the interaction is complete. Thus if the user
has typed ahead before a DWIM interaction, DWIM will not confuse his type ahead with the answer to
its question, nor will his typeahead be lost. The bells are printed by the function PRI NTBELLS, which
can be advised or redened for specialized applications, e.g. to ash the screen for a display terminal.

2Except perhaps if DWIM's correction mistakenly caused a destructive computation to be initiated, and
information was lost before the user could interrupt. We have not yet had such an incident occur.

STyped into LI SPX (see page 8.28).

153

Spelling Correction Protocol

_(SETQ FOO (1PLUSS 1 2))
=I PLUS
3

If the correction does not occur in type-in, DWIM prints#
BAD- SPELLING [N FUNCTION- NAME | -> CORRECT- SPELLI NG

Then, if DWIM isin TRUSTI NG mode, it prints a carriage return, makes the correction, and continues the
computation. If DWIM isin CAUTI QUS mode, it prints a few spaces and ? and then wait for approval.
The user then has six options:

(1) Type Y. DWIM types es, and proceeds with the correction.
(2) Type N. DWIM types o0, and does not make the correction.

(3) Type ~. DWIM does not make the correction, and furthermore guarantees that the error will not
cause a break.

(4) Type control- E. For error correction, this has the same eect as typing N.

(5) Do nothing. In this case DWIM waits for DW MMI T seconds, and if the user has not responded,
DWIM will type ... followed by the default answer.

The default on spelling corrections is determined by the value of the variable FI XSPELLDEFAULT , whose
top level value isinitialy Y.

(6) Type space or carriage-return. In this case DWIM will wait indenitely. This option is intended for
those cases where the user wants to think about his answer, and wants to insure that DWIM does not get
“impatient’”” and answer for him.

The procedure for spelling correction on other than Interlisp errors is analogous. If the correction is
being handled as type-in, DWIM prints = followed by the correct spelling, and returns it to the function
that called DWIM. Otherwise, DWIM prints the incorrect spelling, followed by the correct spelling.
Then, if DWIM if in TRUSTI NG mode, DWIM prints a carriage-return and returns the correct spelling.
Otherwise, DWIM prints a few spaces and a ? and waits for approval. The user can then respond with
Y, N, control- E, space, carriage return, or do nothing as described above.

Note that the spelling corrector itself is not ERRORSET protected like the DWIM error correction routines.
Therefore, typing N and typing control- E may have di erent eects when the spelling corrector is called
directly. The former simply instructs the spelling corrector to return NI L, and lets the calling function

4The appearance of - > isto call attention to the fact that the user’'s function will be or has been changed.

154

DWIM

decide what to do next; the latter causes an error which unwinds to the last ERRORSET, however far back
that may be.

152 PARENTHESES ERRORS PROTOCOL

When an unbound litatom or undened error occurs, and the oending litatom contains 8 or 9, DWIM
tries to correct errors caused by typing 8 for left parenthesis and 9 for right parenthesis. 5 In these cases,
the interaction with the user is similar to that for spelling correction. If the error occurs in type-in, DWIM
types =CORRECTION ©", and continues evaluating the expression. For example:

_(SETQ FOO 81 PLUS 1 2]
= (IPLUS
3

If the correction does not occur in type-in, DWIM prints
BAD- ATOM [N FUNCTION NAME] - > CORRECTI ON ?

and then waits for approval. The user then has the same six options as for spelling correction, except
the waiting time is 3*DW MAAI T seconds. If the user types Y, DWIM then operates as if it were in
TRUSTI NG mode, i.e., it makes the correction and prints its message.

153 U.D.F. T ERRORS PROTOCOL

When an undened function error occurs, and the oending function is T, DWIM tries to correct certain
types of parentheses errors involving a T clause in a conditional. DWIM recognizes errors of the following
forms:

(COND --) (T --) The T clause appears outside and immediately
following the COND.

(COND -- (-- & (T --))) The T clause appears inside a previous clause.

(COND -- ((T --))) The T clause has an extra par of parentheses
around it.

For U.D. F. T errors that are not one of these three types, DWIM takes no corrective action at all, and
the error will occur.

5Actually, DWIM uses the value of the variables LPARKEY and RPARKEY to determine the corresponding
lower case character for left and right parentheses. LPARKEY and RPARKEY are initially 8 and 9
respectively, but they can be reset for other keyboard layouts., e.g., on some terminas left parenthesis is
over 9, and right parenthesis is over 0.

155

DWIM Operation

If the error occurs in type-in, DWIM simply types T FI XED and makes the correction. Otherwise if
DWIM isin TRUSTI NG mode, DWIM makes the correction and prints the message:

[N FuncTion NaVve | { BAD- COND} - >
{ CORRECTED- COND}

If DWIM isin CAUTI QUS mode, DWIM prints

UDF T
[N FUNCTION- NAME] Fl X?

and waits for approval. The user then has the same options as for spelling corrections and parenthesis
errors. If the user types Y or defaults, DWIM makes the correction and prints its message.

Having made the correction, DWIM must then decide how to proceed with the computation. In the
rs¢ case, (COND --) (T --), DWIM cannot know whether the T clause would have been executed
if it had been inside of the COND. Therefore DWIM asks the user CONTI NUE W TH T CLAUSE (with a
default of YES). If the user types N, DWIM continues with the form after the COND, i.e., the form that
originally followed the T clause.

In the second case, (COND -- (-- & (T --))), DWIM has a di erent problem. After moving the
T clause to its proper place, DWIM must return as the value of & as the value of the COND. Since this
value is no longer around, DWIM asks the user, OK TO REEVALUATE and then prints the expression
corresponding to &. If the user types Y, or defaults, DWIM continues by reevaluating &, otherwise DWIM
aborts, and a U. D. F. T error will then occur (even though the COND has in fact been xed). ©

In the third case, (COND -- ((T --))),there isno problem with continuation, so no further interaction
iS necessary.

154 DWIM OPERATION

Whenever the interpreter encounters an atomic form with no binding, or a non-atomic form CAR of which
isnot a function or function object, it calls the function FAULTEVAL. Similarly, when APPLY is given an
undened function, FAULTAPPLY iscaled. When DWIM isenabled, FAULTEVAL and FAULTAPPLY are
redened to rst cal the DWIM package, which tries to correct the error. If DWIM cannot decide how
to x the error, or the user disapproves of DWIM'’s correction (by typing N), or the user types control- E,
then FAULTEVAL and FAULTAPPLY cause an error or break.”’

If DWIM can (and is alowed to) correct the error, it exits by performing RETEVAL of the corrected form,
as of the position of the call to FAULTEVAL or FAULTAPPLY. Thus in the example at the beginning
of the chapter, when DWIM determined that | TI M5 was | TI MES misspelled, DWIM called RETEVAL

6If DWIM can determine for itself that the form can safely be reevaluated, it does not consult the user
before reevaluating. DWIM can do this if the form is atomic, or CAR of the form is a member of the
liss OKREEVALST, and each of the arguments can safely be reevaluated. For example, (SETQ X (CONS
(IPLUS Y Z) W) issdfe to reevaluate because SETQ, CONS, and | PLUS are al on OKREEVALST.

“If the user types ~ to DWIM, DWIM exits by performing (RETEVAL ' FAULTEVAL ' (ERROR!)), so
that an error will be generated at the position of the call to FAULTEVAL.

15.6

DWIM

with (1 TIMES N (FACCT 8SUB1 N)). Since the interpreter uses the value returned by FAULTEVAL
exactly as though it were the value of the erroneous form, the computation will thus proceed exactly as
though no error had occurred.

In addition to continuing the computation, DWIM aso repairs the cause of the error whenever possible;
in the above example, DWIM aso changed (with RPLACA) the expression (1 TIMS N (FACCT 8SUB1
N)) that caused the error. Note that if the user's program had computed the form and caled EVAL, it
would not be possible to repair the cause of the error, although DWIM could correct the misspelling each
time it occurred.

Error correction in DWIM is divided into three categories: unbound atoms, undened CAR of form, and
undened function in APPLY. Assuming that the user approves DWIM's corrections, the action taken by
DWIM for the various types of errors in each of these categories is summarized below.

1541 DWIM Correction: Unbound Atoms

If DWIM s called as the result of an unbound atom error, it proceeds as follows:

(1) If the rst character of the unbound atom is’, DWIM assumes that the user (intentionaly) typed
"AToM for (QUOTE ATOm) and makes the appropriate change. No message is typed, and no approval
is requested.

If the unbound atom is just ' itself, DWIM assumes the user wants the next expression quoted, e.g.,
(CONS X " (A B C)) will be changed to (CONS X (QUOTE (A B ©))). Again no message will be
printed or approval asked. If no expression follows the ' , DWIM gives up.®8

(2) If CLISP (page 16.1) is enabled, and the atom is part of a CLISP construct, the CLISP transformation
is performed and the result returned. For example, N- 1 is transformed to (SUB1 N), and (FOO 3
) istransformed into ((SETQ FOO 3)).

(3) If the atom contains an 8 (actually LPARKEY, see page 15.12), DWIM assumes the 8 was intended
to be a left parenthesis, and cals the editor to make appropriate repairs on the expression containing
the atom. DWIM assumes that the user did not notice the mistake, i.e, that the entire expression was
aected by the missing left parenthesis. For example, if the user types (SETQ X (LI ST (CONS 8CAR
Y) (CDR Z2)) Y), the expression will be changed to (SETQ X (LI ST (CONS (CAR Y) (CDR 2))
Y)). Note that the 8 does not have to be the rst character of the atom: DWIM will handle (CONS
X8CAR Y) correctly.

(4) If the atom contains a 9 (actualy RPARKEY, see page 15.12), DWIM assumes the 9 was intended to
be a right parenthesis and operates as in the case above.

(5) If the atom begins with a 7, the 7 istreated as a’. For example, 7FOO becomes ' FOO, and then
(QUOTE FOO) .

(6) If the atom is an edit command (a member of EDI TCOVSA), and the error occurred in type-in, the
eect isthe same as though the user typed EDI TF() , followed by the atom, i.e, DWIM assumes the
user wants to be in the editor editing the last thing he referred to. Thus, if the user denes the function

8 isnormaly dened as a read-macro character which converts ' FOO to (QUOTE FOO) on input, so
DWIM will not see the ’ in the case of expressions that are typed-in.

15.7

Undened CAR of Form

FOO and then types P, he will see =FQOQ, followed by EDI T, followed by the printout associated with the
execution of the P command, followed by *, a which point he can continue editing FOO.

(7) The expressions on DW MUSERFORMS (see page 15.10) are evaluated in the order that they appear. If
any of these expressions returns a non- NI L value, this value is treated as the form to be used to continue
the computation, it is evaluated and its value is returned by DW M

(8) If the unbound atom occurs in a function, DWIM attempts spelling correction using the LAVBDA and
PROG variables of the function as the spelling list.

(9) If the unbound atom occurred in atype-in to a break, DWIM attempts spelling correction using the
LAMBDA and PROG variables of the broken function as the spelling list.

(10) Otherwise, DWIM attempts spelling correction using SPELLI NGS3 (see page 15.14).

(12) If al of the above fail, DWIM gives up.

15.4.2 Undened CAR of Form

If DWIM s caled as the result of an undened CAR of form error, it proceeds as follows:
(1) If CAR of the form is T, DWIM assumes a misplaced T clause and operates as described on page 15.5.

(2) If CAR of the form is F/ L, DWIM changes the “F/ L' to ““FUNCTI ON(LAMBDA’’. For example,
(F/L (YY) (PRINT (CAR Y))) is changed to (FUNCTI ON (LAMBDA (Y) (PRINT (CAR Y))).
No message is printed and no approval requested. If the user omits the variable list, DWIM supplies (X) ,
eg., (F/L (PRINT (CAR X))) is changed to (FUNCTI ON (LAMBDA (X) (PRINT (CAR X)))).
DWIM determines that the user has supplied the variable list when more than one expression follows
F/ L, CAR of the rst expression is not the name of a function, and every element in the rst expression
is atomic. For example, DWIM will supply (X) when correcting (F/L (PRINT (CDR X)) (PRI NT
(CAR X))) .

(3) If CAR of the form isa CLISP word (I F, FOR, DO, FETCH, etc.), the indicated CLISP transformation
is performed, and the result is returned as the corrected form. See page 16.1.

(4) If CAR of the form has a function denition, DWIM attempts spelling correction on CAR of the
denition using as spelling list the value of LAMBDASPLST, initialy (LAMBDA NLAMBDA) .

(5) If CAR of the form has an EXPR or CODE property, DWIM prints caAR- oF- FORM UNSAVED, performs
an UNSAVEDEF, and continues. No approval is requested.

(6) If CAR of the form has a FI LEDEF property, the denition is loaded from a le. ? If the value of
the property is atomic, the entire le isto be loaded. If the value is a list, CAR is the name of the le
and CDR the relevant functions, and LOADFNS will be used. For both cases, LDFL G will be SYSLOAD
(see page 11.4). DWIM uses FI NDFI LE (page 15.20), so that the le can be on any of the directories
on DI RECTORI ES, initially (NI L NEWLI SP LI SP LI SPUSERS) . If the le is found, DWIM types
SHALL | LQAD followed by the le name or list of functions. If the user approves, DWIM loads the
function(s) or le, and continues the computation.

9except when DW M FYing.

158

DWIM

(7) If CLISP is enabled, and CAR of the form is part of a CLISP construct, the indicated transformation
is performed, e.g., (N_N- 1) becomes (SETQ N (SUB1 N)).

(8) If CAR of the form contains an 8, DWIM assumes a left parenthesis was intended e.g., (CONS8CAR
X) .

(9) If CAR of the form contains a 9, DWIM assumes a right parenthesis was intended.

(10) If CAR of the form is a list, DWIM attempts spelling correction on CAAR of the form using
LAMBDASPLST as spelling list. If successful, DWIM returns the corrected expression itself.

(12) If CAR of the form is a small number, and the error occurred in type-in, DWIM assumes the form
isreally an edit command and operates as described for unbound atom errors above.

(12) If CAR of the form is an edit command (a member of EDI TCOVSL), DWIM operates as in the
previous case.

(13) The expressions on DW MUSERFORMS are evaluated in the order they appear. If any returns a
non- NI L value, this value is treated as the corrected form, it is evaluated, and DW M returns its value.

(14) Otherwise, DWIM attempts spelling correction using SPELLI NGS2 as the spelling list (see page
15.14). When DW M FYing, DW M also attemps spelling correction on function names not dened but
previously encountered, using NOFI XFNSLST as a spelling list (see page 16.16).

(15) If dl of the above fail, DWIM gives up.

15.4.3 Undened Function in APPLY

If DWIM s called as the result of an undened function in APPLY error, it proceeds as follows:

(1) If the function has a denition, DWIM attempts spelling correction on CAR of the denition using
LAMBDASPLST as spelling list.

(2) If the function has an EXPR or CODE property, DWIM prints FN UNSAVED, performs an UNSAVEDEF
and continues. No approval is requested.

(3) If the function has a property FI LEDEF, DWIM proceeds as in case 6 of undened CAR of form.

(4) If the error resulted from type-in, and CLISP is enabled, and the function name contains a CLISP
operator, DWIM performs the indicated transformation, e.g., the user types FOO _(APPEND FI E FUM .

(5) If the function name contains an 8, DWIM assumes a left parenthesis was intended, e.g., EDI TSFOQ .

(6) If the ““function’” isalist, DWIM attempts spelling correction on CAR of the list using LAMBDASPLST as
spelling list.

(7) If the function is a number and the error occurred in type-in, DWIM assumes the function is an edit
command, and operates as described in case 6 of unbound atoms, e.g., the user types (on one line) 3 -1
P.

(8) If the function is the name of an edit command (on either EDI TCOVSA or EDI TCOVSL), DWIM
operates as in the previous case, e.g., user types F COND.

159

DWIMUSERFORMS

(9) The expressions on DW MUSERFORMS are evaluated in the order they appear, and if any returns a
non-Nl L value, this value is treated as the function used to continue the computation, i.e., it will be
applied to its arguments.

(10) DWIM attempts spelling correction using SPELLI NGS1 as the spelling list.
(11) DWIM attempts spelling correction using SPELLI NGS2 as the spelling list.

(12) If dl fail, DWIM gives up.

155 DWIMUSERFORMS

The variable DW MUSERFORMS provides a convenient way of adding to the transformations that DWIM
performs. For example, the user might want to change atoms of the form $X to (QMLOOKUP X) .
Before attempting spelling correction, but after performing other transformations (F/ L, 8, 9, CLISP, etc.),
DWIM evauates the expressions on DW MUSERFORMS in the order they appear. If any expression returns
a non-NI L value, this value is treated as the transformed form to be used. If DWIM was caled from
FAULTEVAL, this form is evaluated and the resulting value is returned as the value of FAULTEVAL. If
DWIM iscdled from FAULTAPPLY, this form istreated as a function to be applied to FAULTARGS, and
the resulting value isreturned asthe value of FAULTAPPLY. If al of the expressions on DW MUSERFORMS
return NI L, DWIM proceeds as though DW MUSERFORMS= NI L, and attempts spelling correction. Note
that DWIM simply takes the value and returns it; the expressions on DW MUSERFORMS are responsible
for making any modi cations to the origina expression. 10

In order for an expression on DW MJUSERFORMS to be able to be eective, it needs to know various
things about the context of the error. Therefore, severa of DWIM’s internal variables have been made
SPECVARS (see page 12.4) and are therefore ‘‘visible’ to DW MUSERFORMS. Below are a list of those
variables that may be useful.

FAULTX [Variable]
For unbound atom and undened car of form errors, FAULTX isthe atom or form.
For undened function in APPLY errors, FAULTX is the name of the function.

FAULTARGS [Variable]
For undened function in APPLY errors, FAULTARGS is the list of arguments.
FAULTARGS may be modi ed or reset by expressions on DW MUSERFORNVS.

FAULTAPPLYFLG [Variable]
Vaue is T for undened function in APPLY errors; NI L otherwise. The value
of FAULTAPPLYFLG after an expression on DW MUSERFORMS returns a hon-
NI L value determines how the latter value is to be treated. Following an
undened function in APPLY error, if an expression on DW MUSERFORMS sets
FAULTAPPLYFLG to NI L, the value returned is treated as a form to be evaluated,
rather than a function to be applied.

10The expressions on DW MUSERFORMS should make the transformation permanent, either by associating
it with FAULTX via CLI SPTRAN, or by physically smashing FAULTX.

15.10

DWIM

FAULTAPPLYFLG is necessary to distinguish between unbound atom and unde ned
function in APPLY errors, since FAULTARGS may be NI L and FAULTX atomic in
both cases.

TAI L [Variable]
For unbound atom errors, TAI L is the tail of the expression CAR of which is the
unbound atom. DW MJUSERFORMS expression can replace the atom by another
expression by performing (/ RPLACA TAI L EXPR)

PARENT [Variable]
For unbound atom errors, PARENT isthe form in which the unbound atom appears.
TAIL isatal of PARENT.

TYPE- | N? [Variable]
True if the error occurred in type-in.

FAULTFN [Variable]
Name of the function in which error occurred. FAULTFN is TYPE- | N when the
error occurred in type-in, and EVAL or APPLY when the error occurred under an
explicit call to EVAL or APPLY.

DW M FYFLG [Variable]
True if the error was encountered while DW M FYing (as opposed to happening
while running a program).

EXPR [Variable]
Denition of FAULTFN, or argument to EVAL, i.e., the superform in which the
error occurs.

The initial value of DW MUSERFORMS is ((MACROTRAN) (DW MLQOADFNS?)) . MACROTRAN is a package
for running interpreted programs containing ASSEMBLE statements or calls to ‘‘functions’ dened only
by MACRO properties (see page 5.19). DW MLOADFNS? is a function for automatically loading functions
from les. If DW M_.OADFNSFLG is T (its initial value), and CAR of the form is the name of a function,
and the function is contained on a le that has been noticed by the le package, the function is loaded,
and the computation continues.

15.6 DWIM FUNCTIONS AND VARIABLES

DW MM T [Variable]
Vaue is the number of seconds that DWIM will wait before it assumes that
the user is not going to respond to a question and uses the default response
FI XSPELLDEFAULT .

DWIM operates by dismissing for 250 milliseconds, then checking to see if anything
has been typed. |If not, it dismisses again, etc. untii DW MAAI T seconds have
elapsed. Thus, there will be a delay of a most 1/4 second before DWIM responds
to the user’s answer.

1511

FI XSPELLDEFAULT

ADDSPELLFLG

NOSPELLFLG

RUNONFLG

DW M_OADFNSFLG

LPARKEY
RPARKEY

OKREEVALST

DW MFLG

APPROVEFLG

LAVBDASPLST

DWIM Functions and Variables

[Variable]
If approval isrequested for aspelling correction, and user does not respond, defaults
to value of FI XSPELLDEFAULT , initially Y. FI XSPELLDEFAULT is rebound to N
when DW M FYing.

[Variable]
If NI L, suppresses cals to ADDSPELL. Initially T.

[Variable]
If T, suppresses all spelling correction. If some other non-NI L value, suppresses
spelling correction in programs but not type-in. NOSPELLFLG is initially NI L. It
is rebound to T when compiling from a le.

[Variable]
If NI L, suppresses run-on spelling corrections. Initialy T.

[Variable]
If T, tells DWIM that when it encounters a call to an undened function contained
on a le that has been noticed by the le package, to simply load the function.
DW MLOADFNSFLG is initialy T. See page 15.11.

[Variable]

[Variable]
DWIM uses the value of the variables LPARKEY and RPARKEY (initialy 8 and 9
respectively) to determine the corresponding lower case character for left and right
parentheses. LPARKEY and RPARKEY can be reset for other keyboard layouts.,
For example, on some terminals left parenthesis is over 9, and right parenthesis is
over O.

[Variable]
The value of OKREEVALST is alist of functions that DWIM can safely reevaluate.
If aform isatomic, or CAR of the form isa member of OKREEVALST, and each of
the arguments can safely be reevaluated, then the form can be safely reevaluated.
For example, (SETQ X (CONS (I PLUS Y Z) W) issdfe to reevaluate because
SETQ, CONS, and | PLUS are al on OKREEVALST.

[Variable]
DW MFLG= NI L, all DWIM operations are disabled. (DWM ' C) and (DW M T)
st DWMFLG to T; (DWM NI L) sets DWMFLG to NI L.

[Variable]
APPROVEFLG= T if DWIM should ask the user for approval before making a
correction that will modify the denition of one of his functions; NI L otherwise.

When DWIM is put into CAUTI OQUS mode with (DW M ' C) , APPROVEFLG is set
to T; for TRUSTI NG mode, APPROVEFLG is set to NI L.

[Variable]
DWIM uses the value of LAMBDASPLST as the spelling list when correcting ‘‘bad’’
function denitions. Initially (LAMBDA NLAMBDA) . The user may wish to add
to LAMBDASPLST if he elects to dene new ‘‘function types’ via an appropriate
DW MUSERFORMS entry. For example, the QLAVBDAS of SRI's QLISP are handled

15.12

DWIM

in this way.

15.7 SPELLING CORRECTION

The spelling corrector is given as arguments a misspelled word (word means literal atom), a spelling list (a
list of words), and a number: xw ORD , SPLST, and REL respectively. Itstask isto nd that word on SPLST
which is closest to xw ORD , in the sense described below. This word is called a respelling of xw ORD . REL
speci es the minimum ‘‘closeness’’ between xw OrRD and a respelling. If the spelling corrector cannot nd
aword on SPLST closer to XworD than REL , or if it nds two or more words equaly close, its value is
NI L, otherwise its value is the respelling. The spelling corrector can also be given an optional functional
argument, FN, to be used for selecting out a subset of spLST, i.e, only those members of spLST that
satisfy FN will be considered as possible respellings.

The exact agorithm for computing the spelling metric is described later, but briey ‘‘closeness’isinversely
proportional to the number of disagreements between the two words, and directly proportional to the
length of the longer word. For example, PRTTYPRNT is ‘‘closer’’ to PRETTYPRI NT than CS isto CONS
even though both pairs of words have the same number of disagreements. The spelling corrector operates
by proceeding down sPLST, and computing the closeness between each word and xw ORD , and keeping
a list of those that are closest. Certain di erences between words are not counted as disagreements, for
example a single transposition, e.g., CONS to CNOS, or a doubled letter, e.g., CONS to CONSS, etc. In the
event that the spelling corrector nds aword on sPLST with no disagreements, it will stop searching and
return this word as the respelling. Otherwise, the spelling corrector continues through the entire spelling
list. Then if it has found one and only one ‘‘closest’’ word, it returns this word as the respelling. For
example, if xworD is VONS, the spelling corrector will probably return CONS as the respelling. However,
if xworD is CONZ, the spelling corrector will not be able to return a respelling, since CONZ is equaly
close to both CONS and COND. If the spelling corrector nds an acceptable respelling, it interacts with the
user as described earlier.

In the specia case that the misspelled word contains one or more $s (<esc>s, at-mode on some
terminals), the spelling corrector searches for those words on spLST that match Xxw ORD , where a $ can
match any number of characters (including 0), e.g., FOO® matches FOOL and FOO, but not NEWFQO.
FOO matches al three. Both completion and correction may be involved, e.g. RPETTY$ will match
PRETTYPRI NT, with one mistake. The entire spelling list is always searched, and if more than one
respelling is found, the spelling corrector prints AMBI GUOUS, and returns NI L. For example, CON$ would
be ambiguous if both CONS and COND were on the spelling list. If the spelling corrector nds one and
only one respelling, it interacts with the user as described earlier.

For both spelling correction and spelling completion, regardless of whether or not the user approves of
the spelling corrector’'s choice, the respelling is moved to the front of spPLST . Since many respellings are of
the type with no disagreements, this procedure has the eect of considerably reducing the time required
to correct the spelling of frequently misspelled words.

1571 Synonyms

Spelling lists also provide a way of dening synonyms for a particular context. If a dotted pair appears
on a spelling list (instead of just an atom), CAR is interpreted as the correct spelling of the misspelled
word, and CDR as the antecedent for that word. If CAR is identical with the misspelled word, the

1513

Spelling Lists

antecedent is returned without any interaction or approval being necessary. If the misspelled word
corrects to CAR of the dotted pair, the usua interaction and approval will take place, and then the
antecedent, i.e., CDR of the dotted pair, isreturned. For example, the user could make | FLG synonymous
with CLI SPI FTRANFLG by adding (I FLG . CLI SPI FTRANFLG) to SPELLI NGS3, the spelling list
for unbound aoms. Similarly, the user could make OTHERW SE mean the same as ELSEI F by adding
(OTHERW SE . ELSEIF) to CLI SPI FWORDSPLST , or make L be synonymous with LAMBDA by adding
(L . LAMBDA) to LAMBDASPLST. Note that L could aso be used as a variable without confusion, since
the association of L with LAMBDA occurs only in the appropriate context.

15.7.2 Spelling Lists

Any list of atoms can be used as a spelling list, e.g., BROKENFNS, FI LELST, etc. Various system packages
have their own spellings lists, e.g., LI SPXCOVS, CLI SPFORWORDSPLST , EDI TCOVBA, etc. These are
documented under their corresponding sections, and are aso indexed under ‘‘spelling lists.”” In addition
to these spelling lists, the system maintains, i.e.,, automatically adds to, and occasionaly prunes, four lists
used solely for spelling correction: SPELLI NGS1, SPELLI NGS2, SPELLI NGS3, and USERWORDS. These
spelling lists are maintained only when ADDSPELLFLG is non-NI L. ADDSPELLFLG isinitially T.

SPELLI NGS1 [Variable]
SPELLI NGS1 is a list of functions used for spelling correction when an input
is typed in apply format, and the function is undened, e.g., EDTI F(FOO .
SPELLI NGS1 is initidlized to contain DEFI NEQ, BREAK, MAKEFI LE, EDI TF,
TCOWPL, LOAD, etc. Whenever LI SPX is given an input in apply format, i.e, a
function and arguments, the name of the function is added to SPELLI NGS1 if the
function has a de nition.

For example, typing CALLS(EDI TF) will cause CALLS to be added to SPELLI NGS1.
Thus if the user typed CALLS(EDI TF) and later typed CALLLS(EDI TV) , since
SPELLI NGS1 would then contain CALLS, DWIM would be successful in correcting
CALLLS to CALLS.

SPELLI NGS2 [Variable]
SPELLI NGS2 is a list of functions used for spelling correction for all other
undened functions. It isinitialized to contain functions such as ADD1, APPEND,
COND, CONS, GO, LI ST, NCONC, PRI NT, PROG, RETURN, SETQ, etc. Whenever
LI SPX is given a non-atomic form, the name of the function is added to
SPELLI NGS2. For example, typing (RETFROM (STKPCS (QUOTE FOO) 2))
to a break would add RETFROM to SPELLI NGS2. Function names are aso added
to SPELLI NGS2 by DEFI NE, DEFI NEQ, LOAD (when loading compiled code),
UNSAVEDEF, EDI TF, and PRETTYPRI NT.

SPELLI NGS3 [Variable]
SPELLI NGS3 isalist of words used for spelling correction on all unbound atoms.
SPELLI NGS3 is initidlized to EDI TMACROS, BREAKMACROS, BROKENFNS, and
ADVI SEDFNS. Whenever LI SPX is given an atom to evauate, the name of the
atom is added to SPELLI NGS3 if the atom has a value. Atoms are aso added
to SPELLI NGS3 whenever they are edited by EDI TV, and whenever they are set
via RPAQ or RPAQQ. For example, when a le isloaded, al of the variables set in
the le are added to SPELLI NGS3. Atoms are also added to SPELLI NGS3 when
they are set by a LI SPX input, eg., typing (SETQ FOO (REVERSE (SETQ FI E

15.14

DWIM

))) will add both FOO and FI E to SPELLI NGS3.

USERWORDS [Variable]
USERWORDS is a list containing both functions and variables that the user has
referred to, eg., by breaking or editingg USERWORDS is used for spelling
correction by ARGLI ST, UNSAVEDEF, PRETTYPRI NT, BREAK, EDI TF, ADVI SE,
etc. USERWORDS is initially NI L. Function names are added to it by DEFI NE,
DEFI NEQ, LOAD, (when loading compiled code, or loading exprs to property
lists) UNSAVEDEF, EDI TF, EDI TV, EDI TP, PRETTYPRI NT, etc. Variable names
are added to USERWORDS at the same time as they are added to SPELLI NGS3.
In addition, the variable LASTWORD is always set to the last word added to
USERWORDS, i.e., the last function or variable referred to by the user, and the
respelling of NIL is dened to be the value of LASTWORD. Thus, if the user
has just dened a function, he can then edit it by simply typing EDI TF() , or
prettyprint it by typing PP() .

Each of the above four spelling lists are divided into two sections separated by a special marker. The rst
section contains the *‘permanent’’ words; the second section contains the temporary words. New words are
added to the corresponding spelling list a the front of its temporary section (except that functions added
to SPELLI NGS1 or SPELLI NGS2 by LI SPX are adways added to the end of the permanent section. If
the word is aready in the temporary section, it is moved to the front of that section; if the word isin
the permanent section, no action istaken. If the length of the temporary section then exceeds a speci ed
number, the last (oldest) word in the temporary section is forgotten, i.e., deleted. This procedure prevents
the spelling lists from becoming cluttered with unimportant words that are no longer being used, and
thereby slowing down spelling correction time. Since the spelling corrector usually moves each word
selected as a respelling to the front of its spelling list, the word is thereby moved into the permanent
section. Thus once a word is misspelled and corrected, it is considered important and will never be
forgotten.

#SPELLI NGS1 [Variable]
#SPELL| NGS2 [Variable]
#SPELLI NGS3 [Variable]
#USERWORDS [Variable]

The maximum length of the temporary section for SPELLI NGS1, SPELLI NGS2,
SPELLI NGS3 and USERWORDS isgiven by the value of #SPELLI NGS1 , #SPELLI NGS2,
#SPELLI NGS3, and #USERWORDS, initialized to 30, 30, 30, and 60 respectively.

Users can dter these values to modify the performance behavior of spelling
correction.

15.7.3 Generators for Spelling Correction

For some applications, it is more convenient to generate candidates for a respelling one by one, rather
than construct a complete list of all possible candidates, e.g., spelling correction involving a large directory
of les, or a natural language data base. For these purposes, SPLST can be an array (of any size). The
rst element of this array is the generator function, which is caled with the array itself as its argument.
Thus the function can use the remainder of the array to store ‘‘state’’ information, e.g., the last position
on a le, a pointer into a data structure, etc. The value returned by the function is the next candidate
for respelling. If NI L isreturned, the spelling ‘‘list’’is considered to be exhausted, and the closest match
isreturned. If a candidate isfound with no disagreements, it is returned immediately without waiting for

15.15

Spelling Corrector Algorithm

the ‘‘list’’ to exhaust.

SPLST can aso be a generator, i.e. the value of the function GENERATOR (page 7.13). The generator
sPLsT will be started up whenever the spelling corrector needs the next candidate, and it should return
candidates via the function PRODUCE. For example, the following could be used as a *‘spelling list’”” which
eectively contains al functions in the system:

[GENERATOR
(MAPATOMB (FUNCTI ON (LAMBDA (X) (if (GETD X) then (PRODUCE X

15.7.4 Spelling Corrector Algorithm

The basic philosophy of DWIM spelling correction isto count the number of disagreements between two
words, and use this number divided by the length of the longer of the two words as a measure of their
relative disagreement. One minus this number is then the relative agreement or closeness. For example,
CONS and CONX dier only in their last character. Such substitution errors count as one disagreement,
so that the two words are in 75% agreement. Most calls to the spelling corrector specify a relative
agreement of 70, so that a single substitution error is permitted in words of four characters or longer.
However, spelling correction on shorter words is possible since certain types of di erences such as single
transpositions are not counted as disagreements. For example, AND and NAD have a relative agreement
of 100. Cadlls to the spelling corrector from DW M use the value of FI XSPELLREL, which is initialy
70. Note that by setting FI XSPELLREL to 100, only spelling corrections with ‘‘zero’” mistakes, will be
considered, e.g., transpositions, double characters, etc.

The central function of the spelling corrector is CHOOZ. CHOQZ takes as arguments. a word, a minimum
relative agreement, a spelling list, and an optional functiona argument, Xw ORD , REL , SPLST, and FN
respectively.

CHOQZ proceeds down sPLST examining each word. Words not satisfying FN (if FN isnon-NI L), or those
obviously too long or too short to be suciently close to xworD are immediately rejected. For example,
if REL =70, and xw ORD is 5 characters long, words longer than 7 characters will be rejected.

Specia treatment is necessary for words shorter than xw ORD , since doubled letters are not counted as
disagreements. For example, CONNSSS and CONS have a relative agreement of 100. (keyboard bounce
on many dierent kinds of keyboards actually produce this sort of stuttering.) CHOOZ handles this by
counting the number of doubled characters in xw orRD before it begins scanning spLST, and taking this
into account when deciding whether to reject shorter words.

If TwoRrRD , the current word on SPLST, is not rejected, CHOOZ computes the number of disagreements
between it and xw orRD by calling a subfunction, SKOR.

SKOR operates by scanning both words from left to right one character at a time. SKOR operates on the
list of character codes for each word. This list is computed by CHOOZ before calling SKOR. Characters
are considered to agree if they are the same characters;, or appear on the same key (i.e., a shift mistake),
for example, * agrees with :, 1 with !, etc.; or if the character in xw OrRD is alower case version of the
character in TworRD . Characters that agree are discarded, and the SKORing continues on the rest of the
characters in X\worRD and TW ORD .

If the rst character in xworD and TwORD do not agree, SKOR checks to see if either character is the
same as one previousy encountered, and not accounted- for at that time. (In other words, transpositions

15.16

DWIM

are not handled by lookahead, but by lookback.) A displacement of two or fewer positions is counted
as a tranposition; a displacement by more than two positions is counted as a disagreement.In either case,
both characters are now considered as accounted for and are discarded, and SKORing continues.

If the rst character in xworRD and TwWORD do not agree, and neither agree with previously unaccounted-
for characters, and Tw ORD has more characters remaining than xw orD , SKOR removes and saves the rst
character of TwORD , and continues by comparing the rest of Tw ORD with xw ORD as described above. |If
TWORD has the same or fewer characters remaining than Xxw OrRD , the procedure is the same except that
the character is removed from xw ORD . In this case, a special check is rst made to see if that character
is equal to the previous character in xw ORD , or to the next character in Xw orD , i.e, a double character
typo, and if so, the character is considered accounted- for, and not counted as a disagreement. In this
case, the “‘length’’ of xw ORD is also decremented. Otherwise making xw OrRD suciently long by adding
double characters would make it be arbitrarily close to Tw orD , e.g., XXXXXX would correct to PP.

When SKOR has nished processing both xworbD and TworD in this fashion, the value of SKOR is the
number of unaccounted- for characters, plus the number of disagreements, plus the number of tranpositions,
with two quali cations: (1) if both xworD and TwWORD have a character unaccounted- for in the same
position, the two characters are counted only once, i.e., substitution errors count as only one disagreement,
not two; and (2) if there are no unaccounted- for characters and no disagreements, transpositions are not
counted. This permits spelling correction on very short words, such as edit commands, e.g., XRT- >XTR.
Transpositions are also not counted when FASTYPEFLG= T, for example, | PULX and | PLUS will be in
80% agreement with FASTYPEFLG= T, only 60% with FASTYPEFLG= NI L. The rationale behind this is
that transpositions are much more common for fast typists, and should not be counted as disagreements,
whereas more deliberate typists are not as likely to combine tranpositions and other mistakes in a single
word, and therefore can use more conservative metric. FASTYPEFLG is initially NI L.

1575 Spelling Corrector Functions and Variables
(ADDSPELL X SPLST N) [Function]

Adds x to one of the four spelling lists as follows:

If X isaready on the spelling list, and in its temporary section, ADDSPELL moves
X to the front of that section.

If sPLST = NI L, adds x to USERWORDS and to SPELLI NGS2. Used by DEFI NEQ.

If spLST =0, adds x to USERWORDS. Used by LOAD when loading EXPRs to
property lists.

If sPLsT =1, adds x to SPELLI NGS1 (at end of permanent section). Used by
LI SPX.

If sPLST=2, adds X to SPELLI NGS2 (at end of permanent section). Used by
LI SPX.

If sPLST =3, adds x to USERWORDS and SPELLI NGS3.

SPLST can aso be a spelling list, in which case N is the (optional) length of the
temporary section.

ADDSPELL sets LASTWORD to x when spLsT= NI L, O or 3.

15.17

Spelling Corrector Functions and Variables

If X isnot aliteral atom, ADDSPELL takes no action.

Note that the various systems calls to ADDSPELL, eg. from DEFI NE, EDI TF, LOAD, etc.,, can al be
suppressed by setting or binding ADDSPELLFLG to NI L (page 15.12).

(M SSPELLED? XwWORD REL SPLST FLG TAIL FN) [Function]

(FI XSPELL xw orRD

If xworD = NIL or $ (<esc>), M SSPELLED? prints = followed by the vaue
of LASTWORD, and returns this as the respelling, without asking for approval.
Otherwise, M SSPELLED? checks to see if xwOrRD is redly misspelled, i.e., if FN
applied to xw ORD istrue, or Xw ORD is dready contained on SPLST . In this case,
M SSPELLED? simply returns xw orD . Otherwise M SSPELLED? computes and
returns (FI XSPELL XwORD REL SPLST FLG TAIL FN).

REL SPLST FLG TAIL FN TIEFLG DONTMO VETOPFL G _ _) [Function]
The value of FI XSPELL is either the respelling of xword or NI L. If for some
reason Xw ORD itself is on sPLST, then FI XSPELL aborts and calls ERROR! . If
there is a possibility that xw orD is spelled correctly, M SSPELLED? should be
used instead of FI XSPELL. FI XSPELL performs all of the interactions described
earlier, including requesting user approval if necessary.

If xworD = NIL or $ (<esc>), the respelling is the value of LASTWORD, and no
approval is requested.

If xworRD contains lowercase characters, and the corresponding uppercase word
is correct, i.e. on SPLST or satises FN, the uppercase word is returned and no
interaction is performed.

If REL = NI L, defaults to the value of FI XSPELLREL (initially 70).

If FLG= NI L, the correction is handled in type-in mode, i.e., approva is never
requested, and xw orRD isnot typed. If FLG= T, xw orD istyped (before the =) and
approval is requested if APPROVEFLG= T. If FLG= NO MESSAGE, the correction
is returned with no further processing. In this case, a run-on correction will be
returned as a dotted pair of the two parts of the word, and a synonym correction
as alist of the form (worDL WORD2), where WORDL is (the corrected version of)
XWORD , and wWORD2 is the synonym. Note that the eect of the function CHOOZ
can be obtained by calling FI XSPELL with FL G= NO- MESSAGE.

If TAlL isnot NI L, and the correction is successful, CAR of TAIL is replaced by
the respelling (using / RPLACA). In addition, FI XSPELL will correct misspellings
caused by running two words together. 11 In this case, CAR of TAIL is replaced
by the two words, and the value of FI XSPELL is the rst one. For example,
if FI XSPELL is called to correct the edit command (MOVE TO AFTERCOND 3
2) with TaiL= (AFTERCOND 3 2), TAIL would be changed to (AFTER COND

11In this case, user approval is always requested. In addition, if the rst word contains either fewer than
3 characters, or fewer characters than the second word, the default will be N. "Run-on’ spelling corrections
can be suppressed by setting the variable RUNONFLG to NI L (initially T).

15.18

DWIM

2 3), and FI XSPELL would return AFTER (subject to user approva where
necessary). 12

If TTEFLG= NIL and a tie occurs, i.e, more than one word on SPLST is found
with the same degree of ‘‘closeness’, FI XSPELL returns NI L, i.e., no correction.
If TTEFLG= PI CKONE and a tie occurs, the rst word is taken as the correct
spelling. If TIEFLG= LI ST, the value of FI XSPELL is a list of the respellings
(even if there is only one), and FI XSPELL will not perform any interaction with
the user, nor modify TAIL, the idea being that the calling program will handle those
tasks. Similarly, if TIerLG= EVERYTHI NG, a list of all candidates whose degree
of closeness is above REL will be returned, regardiess of whether some are better
than others. No interaction will be performed.

If boNTMO VETOPFL G= T and a correction occurs, it will not be moved to the
front of the spelling list.

The time required for a call to FI XSPELL with a spelling list of length 60 when the entire list must be
searched is .5 seconds. If FI XSPELL determines that the rst word on the spelling list is the respelling
and does not need to search any further, the time required is .02 seconds. In other words, the time
required is proportional to the number of words with which xw orRD is compared, with the time for one
comparison, i.e., one call to SKOR takes roughly .01 seconds (varies slightly with the number of characters
in the words being compared).

(FNCHECK FN NOERR ORFL G SPELLFL G PROPFL G TAIL) [Function]

The task of FNCHECK is to check whether FN is the name of a function and if
not, to correct its spelling. If FN is the name of a function or spelling correction
is successful, FNCHECK adds the (corrected) name of the function to USERWORDS
using ADDSPELL, and returns it as its vaue.

Since FNCHECK is cadled by many low level functions such as ARGLI ST,
UNSAVEDEF, etc., spelling correction only takes place when DW MFLG= T, so that
these functions can operate in a small Interlisp system which does not contain
DWIM.

NOERR ORFL G informs FNCHECK whether or not the calling function wants to
handle the unsuccessful case: if NOERR ORFL G is T, FNCHECK simply returns NI L,
otherwise it prints fn NOT A FUNCTI ON and generates a non- breaking error.

If FN does not have a denition, but does have an EXPR property, then spelling
correction is not attempted. Instead, if PROPFL G= T, FN is considered to be the
name of a function, and is returned. If PROPFL G= NI L, FN is not considered to
be the name of a function, and NI L is returned or an error generated, depending
on the value of NOERR ORFL G.

FNCHECK calls M SSPELLED? to perform spelling correction, so that if FN= NI L,
the value of LASTWORD will be returned. SPELLFL G corresponds to M SSPELLED?’s

L2If TAlL= T, FI XSPELL will also perform run-on corrections, returning a dotted pair of the two words
in the event the correction is of this type.

15.19

Spelling Corrector Functions and Variables

fourth argument, FLG. If SPELLFL G= T, approva will be asked if DWIM was en-
abled in CAUTI QUS mode, i.e., if APPROVEFLG= T. TAIL corresponds to the fth
argument to M SSPELLED? .

FNCHECK is currently used by ARGLI ST, UNSAVEDEF, PRETTYPRI NT, BREAKO, BREAKI N, ADVI SE,
CALLS, and EDI TA. For example, BREAKO calls FNCHECK with NOERR ORFL G= T since if FNCHECK
cannot produce a function, BREAKO wants to dene a dummy one. CALLS however calls FNCHECK with
NCERR ORFL G= NI L, since it cannot operate without a function.

Many other system functions call M SSPELLED? or FI XSPELL directly. For example, BREAK1 cals
FI XSPELL on unrecognized atomic inputs before attempting to evaluate them, using as a spelling list a
list of al break commands. Similarly, LI SPX calls FI XSPELL on atomic inputs using a list of al LI SPX
commands. When UNBREAK is given the name of a function that is not broken, it calls FI XSPELL with
two di erent spelling lists, rst with BROKENFNS, and if that fails, with USERWORDS. MAKEFI LE calls
M SSPELLED? using FI LELST as a spelling list. Finally, LOAD, BCOWPL, BRECOWPI LE, TCOWPL, and
RECOWPI LE al call M SSPELLED? if their input le(s) won't open.

(SPELLFI LE FILE NOPRINTFL G NSFL G DIRLST) [Function]
If FILE does not have a directory eld, SPELLFI LE looks on the directories given
by the value of DI RECTORI ES, initially (NI L LI SP). (NI L corresponds to login
directory.) This correction will not require user approval, (but SPELLFI LE will
indicate the correction in the usual way, by printing = followed by the new le
name). Otherwise, SPELLFI LE attempts spelling correction against the les in the
directory. In this case, user approval will be requested (except if NOPRINTFL G= T,
see below). Returns corrected le, if any, otherwise NI L.

If NoPRINTFL G= T, SPELLFI LE does not do any printing, nor ask for approval.

If NSFL G= T (or NOSPELLFLG= T), no spelling correction is attempted, though
searching through DI RECTORI ES will still be performed.

If DDRLST isnon-NI L, it isused instead of the value of DI RECTORI ES.
ERRORTYPELST (page 9.16) is initially
((23 (SPELLFILE (CADR ERRORMESS) NI L NOFI LESPELLFLG)))

This causes SPELLFILE to be caled in case of a FILE NOT FOUND eror. If the variable
NOFI LESPELLFLG is T (its initial value), then spelling correction is not done on the le name, but
DI RECTORI ES is still searched. If SPELLFI LE is successful, the operation will be reexecuted with the
new (corrected) le name.

(FI NDFI LE FILE NSFL G DIRLST) [Function]
If FILE is not the name of a le, cals SPELLFI LE specifying no interaction or
printing. FI NDFI LE could be dened as:

(if (INFILEP FILE)
el se (SPELLFILE FILE T NSFL G DIRLST))

15.20

