
CHAPTER 20

INTERLISP-D DISPLAY-ORIENTED TOOLS

One of the greatest strengths of Interlisp- D is the window display system. Using this system, a number
of the existing Interlisp tools have been extended, and some new ones developed. This chapter describes
some of these tools.

20.1 DEDIT

DEdit is a structure oriented, modeless, display based editor for objects represented as list structures,
such as functions, property lists, data values, etc. DEdit is an integral part of the standard Interlisp- D
environment.

20.1.1 General Comments

DEdit is designed to be the user’s primary editor for programs and data. To that end, it has incorporated
the interfaces of the (older) teletype oriented Interlisp editor so the two can be used interchangeably.
In addition, the full power of the teletype editor, and indeed the full Interlisp system itself, is easily
accessible from within DEdit.

DEdit is structure, rather than character, oriented to facilitate selecting and operating on pieces of structure
as objects in their own right, rather than as collections of characters. However, for the occasional situation
when character oriented editing is appropriate, DEdit provides access to the Interlisp- D text editing
facilities. DEdit is modeless, in that all commands operate on previously selected arguments, rather than
causing the behavior of the interface to change during argument speci�cation.

20.1.2 Operation

DEdit is normally called through of the following functions:

[NLambda NoSpread Function]
Calls DEdit on the de�nition of the function .

[NLambda NoSpread Function]
Calls DEdit on the value of the variable .

[NLambda NoSpread Function]
Calls DEdit on the property of the atom . If is not given, the
whole property list of is edited.

20.1

(DF)

(DV)

(DP)

FN

FN

VAR

VAR

NAME PR OP

PR OP NAME PR OP

NAME

Interactive Operation

[NLambda NoSpread Function]
Calls DEdit on the �le commands for the �le .

DEdit is normally installed as the default editor for all editing operations, including those invoked by
other subsystems, such as the Programmer’s Assistant and Masterscope. DEdit provides functions ,
and (analogous to the corresponding functions) for conveniently accessing the teletype editor from
within a DEdit context, e.g. from under a call to DEdit or if DEdit is installed as the default editor.

The default editor may be set with :

[Function]
If is non- , sets the default editor to be DEdit (if is

), or the teletype editor (if is). Returns the
previous setting.

DEdit operates by providing an alternative, plug compatible de�nition of (). The normal
user entries operate by rede�ning and then calling the corresponding Edit function (i.e., calls

etc). Thus, the normal Edit �le package, spelling correction, etc. behavior is obtained.

If Edit commands are speci�ed in a call to (e.g., in calls to the editor from Masterscope),
will pass those commands to , after having placed a entry on which will cause
DEdit to be invoked if any interaction with the user is called for. In this way, automatic edits can be made
completely under program control, yet DEdit’s interactive interface is available for direct user interaction.

[Function]
Completely reinitializes DEdit. Closes all DEdit windows, so that the user must
specify the window the next time DEdit is envoked. is also used to
make DEdit recognize the new values of variables such as ,
when the user changes them.

20.1.3 Interactive Operation

When DEdit is called for the �rst time, it prompts for an edit window, which is preserved and reused
for later DEdits, and pretty prints the expression to be edited therein. (Note: The pretty printer ignores
user because they do not provide enough structural information during printing
to enable selection.) A standard Interlisp- D scroll bar is set up on the left edge of the window and an
edit command menu, which remains active throughout the edit, on the right edge. DEdit then goes into a
select, command, execute loop, during which it yields control so that background activities, such as mouse
commands in other windows, continue to be performed.

20.1.3.1 Selection

Selection in a DEdit window is as follows: the button selects the object being directly pointed at;
the button selects the containing list; and the button extends the current selection to the
lowest common ancestor of that selection and the current position. The only things that may be pointed
at are atomic objects (literal atoms, numbers, etc) and parentheses, which are considered to represent the
list they delimit. White space is not selectable or editable.

When a selection is made, it is pushed on a selection stack which will be the source of operands for

20.2

(DC)

EF EV
EP D

EDITMODE

(EDITMODE)
NIL

DISPLAY TELETYPE

EDITL DEDITL
EDITL DF

EDITF

DEDITL DEDITL
EDITL TTY: EDITMACROS

(RESETDEDIT)

RESETDEDIT
DEDITTYPEINCOMS

PRETTYPRINTMACROS

LEFT
MIDDLE RIGHT

FILE

FILE

x

NEWMODE

NEWMODE NEWMODE

NEWMODE

INTERLISP-D DISPLAY-ORIENTED TOOLS

DEdit commands. As each new selection pushes down the selections made before it, this stack can
grow arbitrarily deep, so only the top two selections on the stack are highlighted on the screen. This
highlighting is done by underscoring the topmost (most recent) selection with a solid black line and the
second topmost selection with a dashed line. The patterns used were chosen so that their overlappings
would be both visible and distinct, since selecting a sub-part of another selection is quite common.

Because one can invoke DEdit recursively, there may be several DEdit windows active on the screen at
once. This is often useful when transferring material from one object to another (as when reallocating
functionality within a set of programs). Selections may be made in any active DEdit window, in any
order. When there is more than one DEdit window, the edit command menu (and the type- in bu�er, see
below) will attach itself to the most recently opened (or current) DEdit window.

20.1.3.2 Typein

Characters may be typed at the keyboard at any time. This will create a type- in bu�er window which
will position itself under the current DEdit window and do a (which must be terminated
by a right parenthesis or a return) from the keyboard. During the read, any character editing subsystem
(such as) that is loaded can be used to do character level editing on the typein. When the read
is complete, the typein will become the current selection (top of stack) and be available as an operand
for the next command. Once the read is complete, objects displayed in the type- in bu�er can be selected
from, scrolled, or even edited, just like those in the main window.

One can also give some editing commands directly into the typein bu�er. Typing control- Z will interpret
the rest of the line as a teletype editor command which will be interpreted when the line is closed.
Likewise, ‘‘control-S ’’ will substitute for and ‘‘control-F ’’ will �nd the next
occurrence of .

20.1.3.3 Shift-Selection

Often, signi�cant pieces of what one wishes to type can be found in an active DEdit window. To
aid in transferring the keystrokes that these objects represent into the typein bu�er, DEdit supports
shift- selection. Whenever a selection is made in the DEdit window with the left shift key down, the
selection made is not pushed on the selection stack, but is instead into the keyboard input (and
hence shows up in the typein bu�er). A characteristically di�erent highlighting is used to indicate when
shift (as opposed to normal) selection is taking place.

Note that shift- selection remains active even when DEdit is not. Thus one can unread particularly choice
pieces of text from DEdit windows into the typescript window.

20.1.3.4 Commands

A DEdit command is invoked by selecting an item from the edit command menu. This can be done either
directly, using the mouse button in the usual way, or by selecting a subcommand. Subcommands
are less frequently used commands than those on the main edit command menu and are grouped together
in submenus ‘‘under’’ the command on the main menu to which they are most closely related. For
example, the teletype editor de�nes six commands for adding and removing parentheses (de�ned in terms
of transformations on the underlying list structure). Of these six commands, only two (inserting and

20.3

LISPXREAD

TTYIN

unread

LEFT

OLD NEW NEW OLD X

X

Commands

removing parentheses as a pair) are commonly used, so DEdit provides the other four as subcommands
of the common two. The subcommands of a command are accessed by selecting the command from the
commands menu with the button. This will bring up a menu of the subcommand options from
which a choice can be made. Subcommands are �agged in the list below with the name of the top level
command of which they are options.

If one has a large DEdit window, or several DEdit windows active at once, the edit command window
may be far away from the area of the screen in which one is operating. To solve this problem, the DEdit
command window is a ‘‘snuggle up’’ menu. Whenever the key is depressed, the command window
will move over to the current cursor position and stay there as long as either the key remains down
or the cursor is in the command window. Thus, one can ‘‘pull’’ the command window over, slide the
cursor into it and then release the key (or not) while one makes a command selection in the normal
way. This eliminates a great deal of mouse movement.

Whenever a change is made, the prettyprinter reprints until the printing stablizes. As the standard pretty
print algorithm is used and as it leaves no information behind on how it makes its choices, this is a
somewhat heuristic process. The command can be used to tidy the result up if it is not, in fact,
‘‘pretty’’.

All commands take their operands from the selection stack, and may push a result back on. In general,
the rule is to select selections �rst and selections second. Thus, a command is
done by selecting the thing to be replaced, selecting (or typing) the new material, and then buttoning the

command in the command menu. Using to denote the topmost (most recent) element of
the stack and the second element, the DEdit commands are:

[DEdit Command]
Inserts a copy of after .

[DEdit Command]
Inserts a copy of before .

[DEdit Command]
Deletes from the structure being edited. (A copy of) remains on the
stack and will appear, selected, in the edit bu�er.

[DEdit Command]
Replaces with a copy of obtained by substituting a copy of wherever
the value of the atom (initially, the character) appears in

. This provides an facility, see Idioms below.

[DEdit Command]
Exchanges and in the structure being edited.

[DEdit Command]
Puts parentheses around and (which can, of course, be the same element).

[DEdit Command]
Subcommand of . Inserts before (like the Edit command)

[DEdit Command]
Subcommand of . Inserts after (like the Edit command)

20.4

MIDDLE

TAB
TAB

TAB

Reprint

target source Replace

Replace

After

Before

Delete

Replace

EDITEMBEDTOKEN &
MBD

Switch

()

(in
() (LI

) in
()) RI

TOP

NXT

TOP NXT

TOP NXT

TOP TOP

NXT TOP NXT

TOP

TOP NXT

TOP NXT

TOP

TOP

INTERLISP-D DISPLAY-ORIENTED TOOLS

[DEdit Command]
Removes parentheses from .

[DEdit Command]
Subcommand of . Removes from before (like the Edit command)

[DEdit Command]
Subcommand of . Removes from after (like the Edit command)

[DEdit Command]
Undoes last command.

[DEdit Command]
Subcommand of . Undoes all changes since the start of this call on DEdit.

[DEdit Command]
[DEdit Command]

Subcommands of . Allows selective undoing of other than the last command.
Both of these commands bring up a menu of all the commands issued during this
call on DEdit. When the user selects an item from this menu, the corresponding
command (and if , all commands since that point) will be undone.

[DEdit Command]
Selects, in place of , the �rst place after which matches . Uses the
Edit subsystem’s search routine, so supports the full wildcarding conventions of
Edit.

[DEdit Command]
Exchanges and on the stack, i.e. the stack is changed, the structure being
edited isn’t.

The following set of commands are grouped together as subcommands of because they all a�ect
the stack and the selections, rather than the structure being edited.

[DEdit Command]
Subcommand of . Scrolls until is visible in its window.

[DEdit Command]
Subcommand of . Discards all selections (i.e., ‘‘clears’’ the stack).

[DEdit Command]
Subcommand of . Puts a copy of into the edit bu�er and makes it the
new .

[DEdit Command]
Subcommand of . Pops o� the selection stack.

[DEdit Command]
Reprints .

[DEdit Command]
Runs DEdit on the de�nition of the atom (or of list). Uses
to determine what de�nitions exist for and, if there is more than one, asks

20.5

() out

(out
() out (LO

) out
() out) RO

Undo

!Undo
Undo

?Undo
&Undo

Undo

&Undo

Find

Swap

Swap

Center
Swap

Clear
Swap

Copy
Swap

Pop
Swap

Reprint

Edit
CAR TYPESOF

TOP

TOP

TOP

TOP TOP NXT

TOP NXT

TOP

TOP

TOP

TOP

TOP

TOP TOP

TOP

Multiple Commands

the user, via menu, which one to use. (Note: DEdit caches each subordinate edit
window in the window from which it was entered, for as long as the higher window
is active. Thus, multiple DEdit commands do not incur the cost of repeatedly
allocating a new window.) If is de�ned and is a non- list, calls on
that value. also has a variety of subcommands which allow choice of editor
(DEdit, Edit, TEdit, etc.) and whether to invoke that editor on the de�nition of

or the form itself.

[DEdit Command]
Allows one to run arbitrary Edit commands on the structure being DEdited (there
are far too many of these for them all to appear on the main menu). should
be an Edit command, which will be applied to as the current Edit expression.
On return to DEdit, the (possibly changed) current Edit expression will be selected
as the new . Thus, selecting some expression, typing , and
buttoning will cause to be replaced with in the expression
selected.

In addition, a variety of common Edit commands are available as subcommands
of . Currently, these include , , , , , , ,
and .

[DEdit Command]
Does a the current expression . (See page 10.5.)

[DEdit Command]
Evaluates , whose value is pushed onto the stack in place of , and which
will therefore appear, selected, in the edit bu�er.

[DEdit Command]
Exits from DEdit (equivalent to Edit).

[DEdit Command]
[DEdit Command]

Subcommands of . exits without an error; exits with an error.
Equivalent to the Edit commands with the same names.

20.1.3.5 Multiple Commands

It is occasionally useful to be able to give several commands at once - either because one thinks of them
as a unit or because the intervening reprettyprinting is distracting. The stack architecture of DEdit makes
such multiple commands easy to construct - one just pushes whatever arguments are required for the
complete suite of commands one has in mind. Multiple commands are speci�ed by holding down the

key during command selection. As long as the key is down, commands selected will
not be executed, but merely saved on a list. Finally, when a command is selected without the
key down, the command sequence is terminated with that command being the last one in the sequence.

One rarely constructs long sequences of commands in this fashion, because the feedback of being able
to inspect the intermediate results is usually worthwhile. Typically, just two or three step idioms are
composed in this fashion. Some common examples are given in the next section.

20.6

INSPECT
Edit

EditCom

(R FOO BAZ)
EditCom FOO BAZ

EditCom ?= GETD CL DW REPACK CAP RAISE
LOWER

Break
BREAKIN AROUND

Eval

Exit
OK

OK
Stop

Exit OK STOP

CONTROL CONTROL
CONTROL

TOP

TOP

TOP

NXT

TOP

TOP

TOP TOP

INTERLISP-D DISPLAY-ORIENTED TOOLS

20.1.3.6 Idioms

As with any interactive system, there are certain common idioms on which experienced users depend
heavily. Not only is discovering the idioms of a new system tiresome, but in places the designer may have
assumed familiarity with one or more of them, so not knowing them can make life quite unbearable. In
the case of DEdit, many of these idioms concern easy ways to achieve the e�ects of speci�c commands
from the Edit system, with which many users are already familiar. The DEdit idioms described below are
the result of the experience of the early users of the system and are by no means exhaustive. In addition
to those that each user will develop to �t his or her own particular style, there are many more to be
discovered and you are encouraged to share your discoveries.

Because of the novel argument speci�cation technique (post�x; target �rst) many of the DEdit idioms
are very simple, but opaque until one has absorbed the ‘‘target-source- command’’ way of looking at the
world. Thus, one selects where typein is to go before touching the keyboard. After typing, the target will
be selected second and the typein selected on top, so that an , or will have the
desired e�ect. If the order is switched, the command will try to change the typein (which may or may
not succeed), or will require tiresome ping or reselection. Although this discipline seems strange at
�rst, it comes easily with practice.

Segment selection and manipulation are handled in DEdit by �rst making them into a sublist, so they
can be handled in the usual way. Thus, if one wants to remove the three elements between and
in the list , one selects , then (either order), then makes them into a sublist with the
‘‘ ’’ command (pronounced ‘‘both in’’). This will leave the sublist selected, so a subsequent

will remove it. This can be issued as a single ‘‘ ; ’’ command using multiple command
selection, as described above, in which case the intermediate state of will not show on
the screen.

Inserting a segment proceeds in a similar fashion. Once the location of the insertion is selected, the
segment to be inserted is typed as a list (if it is a list of atoms, they can be typed without parentheses
and the will make them into a list, as one would expect). Then, the command sequence ‘‘
(or or); ’’ (given either as a multiple command or as two separate commands)
will insert the typein and splice it in by removing its parentheses.

Moving an expression to another place in the structure being edited is easily accomplished by a delete
followed by an insert. Select the location where the moved expression is to go to; select the expression
to be moved; then give the command sequence ‘‘ ; (or or)’’. The
expression will �rst be deleted into the edit bu�er where it will remain selected. The subsequent insertion
will insert it back into the structure at the selected location.

Embedding and extracting are done with the command. Extraction is simply a special case of
replacing something with a subpiece of itself: select the thing to be replaced; select the subpart that is to
replace it; . Embedding also uses , in conjunction with the ‘‘embed token’’ (the value
of , initially the single character atom). Thus, to embed some expression in a ,
select the expression; type ‘‘ ’’; .

can also be used to generate a whole variety of complex moves and embeds. For example,
switching an expression with typein not only replaces that expression with the typein, but provides a copy
of the expression in the bu�er, from where it can be edited or moved to somewhere else.

Finally, one can exploit the stack structure on selections to queue multiple arguments for a sequence
of commands. Thus, to replace several expressions by one common replacement, select each of the

20.7

After Before Replace

Swap

A E
(A B C D E) B D

() (B C D)
Delete () Delete

(A (B C D) E)

READ After
Before Replace () out

Delete After Before Replace

Replace

Replace Replace
EDITEMBEDTOKEN & PROG

(PROG &) Replace

Switch

VARSLST

DEdit Parameters

expressions to be replaced (any number), then the replacing expression. Now hit the command
as many times as there are replacements to be done. Each will pop one selection o� the stack,
leaving the most recently replaced expression selected. As the latter is now a copy of the original source,
the next Replace will have the desired e�ect, and so on.

20.1.4 DEdit Parameters

There are several global variables that can be used to a�ect various aspects of DEdit’s operation. Although
most have been alluded to above, they are summarized here for reference.

[Variable]
Initially . Used in both DEdit and the teletype editor to indicate the special atom
used as the ‘‘embed token’’.

[Variable]
Initially . The default behavior of the topmost DEdit window is to remain active
on the screen when exited. This is occasionally inconvenient for programs that call
DEdit directly, so it can be made to close automatically when exited by setting this
variable to .

[Variable]
De�nes the control characters recognized as commands during DEdit typein.
Only accessed when DEdit is initialized, so DEdit should be reinitialized with

if this is changed.

20.2 INTERACTIVE BITMAP EDITING

One important concept of the Interlisp- D display system is the idea of a bitmap, a rectangular array of
bits. While working with the display system, it is extremely useful to be able to manipulate bitmaps,
textures, and character bitmaps. The following functions provide an easy-to-use interactive editing facility
for various types of bitmaps.

[Function]
If is a bitmap, it is edited. If is an atom whose value is a bitmap,
its value is edited. If is , asks for dimensions and creates
a bitmap. If is a region, that portion of is used. If

is a window, it is brought to the top and its contents edited.

sets up the bitmap being edited in an editing window. The editing window has two major areas:
a gridded edit area in the lower part of the window and a display area in the upper left part. In the edit
area, the left button will add points, the middle button will erase points. The right button provides access
to the normal window commands to reposition and reshape the window. The actual size bitmap is shown
in the display area.

If the bitmap is too large to �t in the edit area, only a portion will be editable. This portion can be
changed by scrolling both up and down in the left margin and left and right in the bottom margin.
Pressing the middle button while in the display area will bring up a menu that allows global placement of

20.8

Replace
Replace

EDITEMBEDTOKEN
&

DEditLinger
T

NIL

DEDITTYPEINCOMS

(RESETDEDIT)

(EDITBM)

NIL EDITBM
(SCREENBITMAP)

EDITBM

BITMAP

BITMAP BITMAP

BITMAP

BITMAP

BITMAP

INTERLISP-D DISPLAY-ORIENTED TOOLS

the portion of the bitmap being edited. To allow more of the bitmap to be editing at once, the window
can be reshaped to make it larger or the command described below can be used to reduce
the size of a bit in the edit area.

Pressing the middle button while not in either the edit area or the display area (i.e. while in the grey area
in the upper right or in the title) will bring up a command menu. There are commands to stop editing,
to restore the bitmap to its initial state and to clear the bitmap. Holding the middle button down over a
command will result in an explanatory message being printed in the prompt window. The commands are
described below:

Copies the changed image into the original bitmap, stops the bitmap editor and
closes the edit windows. The changes the bitmap editor makes during the interaction
occur on a copy of the original bitmap. Unless the bitmap editor is exited via OK,
no changes are made in the original.

Stops the bitmap editor without making any changes to the original bitmap.

Sets all or part of the bitmap to 0. Another menu will appear giving a choice between
clearing the entire bitmap or just the portion that is in the edit area. The second
menu also acts as a con�rmation, since not selecting one of the choices on this menu
results in no action being taken.

Sets all or part of the bitmap to the contents it had when was called. As
with the command, another menu gives a choice between resetting the entire
bitmap or just the portion that is in the edit area.

Allows speci�cation of the size of the editing grid. Another menu will appear giving
a choice of several sizes. If one is selected, the editing portion of the bitmap editor
will be redrawn using the selected grid size, allowing more or less of the bitmap to
be edited without scrolling. The original size is chosen hueristically and is typically
about 8. It is particularly useful when editing large bitmaps to set the edit grid size
smaller than the original.

Tesselates the current bitmap in the upper part of the window. This is useful for
determining how a bitmap will look if it were made the background (using the
function). Note: The tiled display will not automatically
change as the bitmap changes; to update it, use the command again.

Puts the current bitmap into a window and call the window command on
it. The command implements drawing with various brush sizes and shapes
but only on an actual sized bitmap. The mode is left by pressing the
button and selecting the command from the menu. At this point, you will
be given a choice of whether or not the changes you made while in mode
should be made to the current bitmap.

Makes the lower left part of the bitmap become the cursor and will prompt you for
the ‘‘hot spot’’.

The bitmap editing window can be reshaped to provide more or less room for editing. When this happens,
the space allocated to the editing area will be changed to �t in the new region.

Whenever the left or middle button is down and the cursor is not in the edit area, the section of the

20.9

GridSize_

OK

Stop

Clear

Reset EDITBM
Clear

GridSize_

ShowAsTile

CHANGEBACKGROUND
ShowAsTile

Paint PAINT
PAINT

PAINT RIGHT
QUIT

PAINT

CURSOR_

Display Break Package

display of the bitmap that is currently in the edit area is complemented. Pressing the left button while
not in the edit region will put the lower left 16 x 16 section of the bitmap into the cursor for as long as
the left button is held down.

[Function]
Opens a window that allows the user to edit small textures (4 by 4) patterns. In the
edit area, the left button adds bits to the shade and the middle button erases bits
from the shade. The top part of the window is painted with the current texture
whenever all mouse keys are released. Thus it is possible to directly compare two
textures that di�er by more than one pixel by holding a mouse key down until all
changes are made.

If is a texture object, starts with it, otherwise, it starts with
white.

[Function]
Calls the bitmap editor () on the bitmap image of the character
in the font . can be a character code (as returned by) or
an atom or string, in which case the �rst character of is used.

20.3 DISPLAY BREAK PACKAGE

The display break package allows easier access to the information available during a break, by modifying
the function to use the window system. It is turned on in the standard system but can be turned
o� with the following function:

[Function]
If is non- , installs the display break package. If is , it
uninstalls the display break package, which makes behave as in Interlisp-
10. returns if the display break package was previously installed;
otherwise.

The display break package maintains a trace window and as many break windows as necessary. When
a break occurs, a break window is brought up near the tty window of the process that broke and the
terminal stream switched to it. The title of the break window is changed to give the name of the broken
function, the reason for the break, and the depth of the break recursions. If a break occurs under a
previous break, a new break window is created.

While in a break window, the middle button brings up a menu of break commands (, , ,
, , , , , and). The commands and bring up a backtrace menu beside the

break window showing the frames on the stack. shows frames for which is ;
shows all frames. When one of the frames is selected from this menu, it is greyed and the function name
and the variables bound in that frame (including local variables and variables) are printed in the
‘‘backtrace frame’’ window. If the left button is used for the selection, only named variables are printed.
If the middle button is used, all variables are printed (variables without names will appear as).
The ‘‘backtrace frame’’ window is an inspect window (see page 20.12). In this window, the left button
can be used to select the name of the function, the names of the variables or the values of the variables.

After selecting an item, the middle button brings up a command menu of commands that apply to the

20.10

(EDITSHADE)

EDITSHADE

(EDITCHAR)
EDITBM

CHCON1

BREAK1

(WBREAK)
NIL NIL

BREAK1
WBREAK T NIL

EVAL EVAL! EDIT
revert ^ OK BT BT! ?= BT BT!

BT REALFRAMEP T BT!

PROG

var

SHADE

SHADE

CHAR CODE FONT

CHAR CODE

FONT CHAR CODE

CHAR CODE

ONFL G

ONFL G ONFL G

N

INTERLISP-D DISPLAY-ORIENTED TOOLS

selected item. If the function name is selected, a choice of editing the function or seeing the compiled
code with will be given. If a variable name is selected, the command will be o�ered.
Selecting will a value and set the selected to the value read. (Note: The inspector will only
allow the setting of named variables. Even with this restriction it is still possible to crash the system by
setting variables inside system frames. It is recommended that you exercise caution in setting variables in
other than your own code.) If the item selected is a value, the inspector will be called on the selected
value.

The internal break variable is set to the selected frame of the backtrace menu so that the
normal break commands , , and work on the currently selected frame. The commands

, , , , and in the break menu cause the corresponding commands to be ‘‘typed in.’’
This means that these break commands will not have the intended e�ect if characters have already been
typed in.

The operation of the display break package is controlled by the following variables:

[Variable]
[Variable]

The variables (default 125) and (default
300) control the maximum size of the backtrace menu. If this menu is too small
to contain all of the frames in the backtrace, it is made scrollable in both vertical
and horizontal directions.

[Variable]
If the variable is non- (default is), then on error
breaks the command is executed automatically.

[Variable]
The backtrace menu is printed in the font , which is initially
Gacha 8.

[Variable]
The system normally closes break windows after the break is exited. If

is , break windows will not be closed on exit. Note:
In this case, the user must close all break windows.

[Variable]
Break windows are positioned near the tty window of the broken process, as
determined by the variable . The value of this variable is a
region whose and are an o�set from the and of the
tty window. The and of determine the size
of the break window.

[Variable]
The trace window, , is used for tracing functions. It is brought up
when the �rst tracing occurs and stays up until the user closes it.
can be set to a particular window to cause the tracing formation to print out there.

[Variable]
The trace window is �rst created in the region .

20.11

INSPECTCODE SET
SET READ

LASTPOS
EDIT revert ?=

EVAL revert ^ OK ?=

MaxBkMenuWidth
MaxBkMenuHeight

MaxBkMenuWidth MaxBkMenuHeight

AUTOBACKTRACEFLG
AUTOBACKTRACEFLG NIL NIL

BT

BACKTRACEFONT
BACKTRACEFONT

CLOSEBREAKWINDOWFLG

CLOSEBREAKWINDOWFLG NIL

BREAKREGIONSPEC

BREAKREGIONSPEC
LEFT BOTTOM LEFT BOTTOM

WIDTH HEIGHT BREAKREGIONSPEC

TRACEWINDOW
TRACEWINDOW

TRACEWINDOW

TRACEREGION
TRACEREGION

The Inspector

20.4 THE INSPECTOR

The Inspector provides a display- oriented facility for looking at and changing arbitrary Interlisp- D data
structures. The inspector can be used to inspect all user datatypes and many system datatypes (although
some objects such as numbers have no inspectable structure). The inspector displays the �eld names and
values of an arbitrary object in a window that allows setting of the properties and further inspection of the
values. This latter feature makes it possible to ‘‘walk’’ around all of the data structures in the system at
the touch of a button. In addition, the inspector is integrated with the break package to allow inspection
of any object on the stack and with the display and teletype structural editors to allow the editors to be
used to ‘‘inspect’’ list structures and the inspector to ‘‘edit’’ datatypes.

The underlying mechanisms of the data inspector have been factored to allow their use as specialized
editors in user applications. This functionality is described at the end of this section.

Note: Currently, the inspector does have ing. Also, variables whose values are changed will not
be marked as such.

20.4.1 Inspect Windows

An inspect window displays two columns of values. The lefthand column lists the property names of the
structure being inspected. The righthand column contains the values of the properties named on the left.
For variable length data such as lists and arrays, the ‘‘property names’’ are numbers from 1 to the length
of the inspected item and the values are the corresponding elements. For arrays, the property names are
the array element numbers and the values are the corresponding elements of the array.

For large lists or arrays, or datatypes with many �elds, the initial window may be too small to contain all
of them. In these cases, the unseen elements can be scrolled into view (from the bottom) or the window
can be reshaped to increase its size.

In an inspect window, the button is used to select things, the button to invoke commands
that apply to the selected item. Any property or value can be selected by pointing the cursor directly at
the text representing it, and clicking the button. There is one selected item per window and it is
marked by having its surrounding box inverted.

The commands o�ered by the button depend on whether the selection is a property or a value.
If the selected item is a value, the commands provide di�erent ways of inspecting the selected structure.
The exact commands that are given depend on the type of the value. If the value is a litatom, the
commands are the types for which the atom has de�nitions as determined by . Some typical
commands are:

Edit the de�nition of the selected litatom.

Inspect the value.

Inspect the property list.

If the value is a list, there will be choice of how to inspect the list:

20.12

not UNDO

LEFT MIDDLE

LEFT

MIDDLE

HASDEF

FNS

VARS

PROPS

INTERLISP-D DISPLAY-ORIENTED TOOLS

Opens an inspect window in which the properties are numbers and the values
are the elements of the list.

Calls the teletype structural editor on the list.

Calls the display editor on the list.

(If the list is in P-list form) Inspects the list as a property list.

(If the list is in list form) Inspects the list as an association- list.

Brings up a submenu with all of the s in the system and inspect the list
with the one chosen.

(If the is the name of a) Inspects the list as the record of the
type named in its .

If the value is neither a litatom or a list, the only command is , which opens an inspector
window onto the selected value.

If the selected item is a property, the user will be asked for a new value and the selected property will be
set to the result of evaluating the read form. The evaluation of the read form and the replacement of the
selected item property will appear as their own history events and are individually undoable. Properties
of system datatypes cannot be set. (There are often consistency requirements which can be inadvertently
violated in ways that crash the system. This may be true of some user datatypes as well.)

20.4.2 Calling the Inspector

The inspector can be called directly, by using the function :

[Function]
Creates an inspect window onto . If is given, it will be taken as
the record type of . This allows records to be inspected with their property
names. If is , the data type of will be used to determine its
property names in the inspect window.

speci�es the location of the inspect window. If is , the user
will be prompted for a location. If is a window, it will be used as the
inspect window. If is a region, the inspect window will be created in that
region of the screen. If is a position, the inspect window will have its
lower left corner at that position on the screen.

returns the inspect window onto , or if no inspection took
place.

There are several ways to open an inspect window onto an object. In addition to calling
directly, the inspector can also be called by buttoning an command inside an existing inspector
window. Finally, if a non- list is edited with , the inspector is called. This also causes the inspector
to be called by the command from the display editor or the command from the standard
editor if the selected piece of structure is a non- list.

20.13

Inspect

TtyEdit

DisplayEdit

AsPList

AsAList ASSOC

AsRecord RECORD

"a record type" CAR TYPERECORD
CAR

Inspect

INSPECT

(INSPECT)

NIL

NIL

INSPECT NIL

INSPECT
Inspect

EDITV
Dedit EV

OBJECT ASTYPE WHERE

OBJECT ASTYPE

OBJECT

ASTYPE OBJECT

WHERE WHERE

WHERE

WHERE

WHERE

OBJECT

Choices Before Inspection

[Function]
Opens a window and displays the compiled code of the function using

. The window is scrollable.

20.4.3 Choices Before Inspection

For some datatypes there is more than one aspect that is of interest or more than one method of inspecting
the object. In these cases, the inspector will bring up a menu of the possibilities and wait for the user to
select one.

For litatoms, the choice includes inspecting its value, its de�nition, its property list, its or any other
aspect returned from . For s, the choice is between inspecting the bitmap’s contents
with the bitmap editor () or inspecting the bitmap’s �elds. For s, the choice is how to
inspect it and is between a one level inspector, the teletype editor () or the display editor ().

20.4.4 Redisplaying an Inspect Window

An inspect window is automatically updated when the structure it is inspecting is changed. The
inspect window can be updated by selecting the ‘‘ ’’ command from the menu brought up
by pressing the button in the title of the window. The ‘‘ ’’ command will cause the
values of the properties to be re-fetched from the structure and redisplayed.

20.4.5 Interaction With the Display Break Package

The display break package knows about the inspector in the sense that the backtrace frame window is an
inspect window onto the frame selected from the back trace menu during a break. Thus you can call the
inspector on an object that is bound on the stack by selecting its frame in the back trace menu, selecting
its value with the button in the back trace frame window, and selecting the inspect command
with the button in the back trace frame window. The values of variables in frames can be set
by selecting the variable name with the button and then the ‘‘ ’’ command with the
button.

Note: The inspector will only allow the setting of named variables. Even with this restriction it is still
possible to crash the system by setting variables inside system frames. Exercise caution in setting variables
in other than your own code.

20.4.6 Controlling the Amount Displayed During Inspection

The amount of information displayed during inspection can be controlled using the following variables:

[Variable]
The inspector prints only the �rst elements of a long list,
and will make the tail containing the unprinted elements the last item. The last
item can be inspected to see further elements. Initially 50.

20.14

(INSPECTCODE)

PRINTCODE

MACRO
TYPESOF BITMAP

EDITBM LISTP
EDITE DEDIT

not
redisplay

MIDDLE redisplay

LEFT
MIDDLE

LEFT Set MIDDLE

MAXINSPECTCDRLEVEL
MAXINSPECTCDRLEVEL

FN

FN

INTERLISP-D DISPLAY-ORIENTED TOOLS

[Variable]
The inspector prints only the �rst elements of an
array. The remaining elements can be inspected by calling the function

which inspects the
through the + elements of .
Initially 300.

[Variable]
If is , the inspector will show computed �elds
() as well as regular �elds for structures that have a record de�nition.
Initially .

20.4.7 Inspect Macros

The Inspector can be extended to inspect new structures and datatypes by adding entries to the list
. An entry should be of the form . is

used to determine the types of objects that are inspected with this macro. If is a litatom,
the will be used to inspect items whose type name is . If is a

of the form , will be ed to the item
and if it returns non- , the will be used to inspect the item.

can be one of two forms. If is a litatom, it should be a function that
will be applied to three arguments (the item being inspected, , and the value of
passed to) that should do the inspection. If is not a litatom, it should be a
list of

where the elements of this list are the arguments for
, described below. From this list, the argument will be evaluated; the others

will not. If is , the value of that was passed to will be used.

Examples:

The entry on would
cause all objects satisfying the predicate to have their properties inspected with and

. In this example, should make sure the object is a litatom.

The entry on would cause all datatypes of type
to be passed to the function .

20.4.8 INSPECTWs

The inspector is built on the abstraction of an . An is a window with certain
window properties that display an object and respond to selections of the object’s parts. It is characterized
by an object and its list of properties. An displays the object in two columns with the property
names on the left and the values of those properties on the right. An supports the protocol
that the mouse button can be used to select any property name or property value and the
button calls a user provided function on the selected value or property. For the Inspector application, this
function puts up a menu of the alternative ways of inspecting values or of the ways of setting properties.

s are created with the following function:

20.15

MAXINSPECTARRAYLEVEL
MAXINSPECTARRAYLEVEL

(INSPECT/ARRAY)
MAXINSPECTARRAYLEVEL

INSPECTALLFIELDSFLG
INSPECTALLFIELDSFLG T

ACCESSFNS
T

INSPECTMACROS (.)

LIST (FUNCTION) APPLY
NIL

INSPECT
(

)
INSPECTW.CREATE

NIL INSPECT

((FUNCTION MYATOMP) PROPNAMES GETPROP PUTPROP) INSPECTMACROS
MYATOMP GETPROP

PUTPROP MYATOMP

(MYDATATYPE . MYINSPECTFN) INSPECTMACROS
MYDATATYPE MYINSPECTFN

INSPECTW INSPECTW

INSPECTW
INSPECTW

LEFT MIDDLE

INSPECTW

ARRA Y BEGINOFFSET BEGINOFFSET

BEGINOFFSET ARRA Y

OBJECTTYPE INSPECTINF O OBJECTTYPE

OBJECTTYPE

INSPECTINF O OBJECTTYPE OBJECTTYPE

D ATUM- PREDICA TE D ATUM- PREDICA TE

INSPECTINF O

INSPECTINF O INSPECTINF O

OBJECTTYPE WHERE

INSPECTINF O

PR OPER TIES FETCHFN STOREFN PR OPCOMMANDFN VAL UECOMMANDFN TITLECOMMANDFN

TITLE SELECTIONFN WHERE PR OPPRINTFN

WHERE

WHERE WHERE

INSPECTWs

[Function]
Creates an that views the object . If is a , it
is taken as the list of properties of to display. If is an ,
it is ed to and the result is used as the list of properties to display.

is a function of two arguments that should return the value of the
property of . The result of this function will be printed (with) in the

as the value.

is a function of three arguments that changes the
property of to . It is used by the default and
to change the value of a property and also by the function (described below).
This can be if the user provides command functions which do not call . Each
replace action will be a separate event on the history list. Users are encouraged to provide able

s.

is a function of three arguments) which gets called
when the user presses the button and the selected item in the is a property name.

will be the name of the selected property, will be the datum being viewed, and
will be the window. If is a string, it will get printed in the

when the button is pressed. This provides a convenient way to notify the user about disabled
commands on the properties. , the default ,
will present a menu with the single command on it. If selected, the command will read a value
from the user and set the selected property to the result of uating this read value.

is a function of four arguments that gets
called when the user presses the button and the selected item in the is a property
value. will be the selected value (as returned by), will be the name of the
property is the value of, will be the datum being viewed, and will be the

window. , the default , will
present a menu of possible ways of inspecting the value and create a new Inspect window if one of the
menu items is selected.

is a function of two arguments which gets called when the
user presses the button and the cursor is in the title or border of the inspect window .
This command function is provided so that users can implement commands that apply to the entire object.
The default () presents a menu with the
single command and, if it is selected, redisplays (using ,
described below).

speci�es the title of the window. If is , the title of the window will be the printed form
of followed by the string ‘‘ Inspector’’. If is the litatom , the inspect window will
not have a title. If is any other litatom, it will be applyed to the and the potential inspect
window (if it is known). If this result is the litatom , the inspect window will not have a title;
otherwise the result will be used as a title. If is not a litatom, it will be used as the title.

is a function of three arguments which gets called
when the user releases the left button and the cursor is on one of the items. The allows a
program to take action on the user’s selection of an item in the inspect window. At the time this function
is called, the selected item has been ‘‘selected’’. The function (described below)
can be used to turn o� this selection. will be the name of the property of the selected item.

20.16

(INSPECTW.CREATE
)

INSPECTW LISTP
ATOM

APPLY

()
PRIN2 INSPECTW

()

INSPECTW.REPLACE
NIL INSPECTW.REPLACE

UNDO

(
MIDDLE INSPECTW

INSPECTW PROMPTWINDOW
MIDDLE

DEFAULT.INSPECTW.PROPCOMMANDFN
Set Set

EVAL

()
MIDDLE INSPECTW

INSPECTW DEFAULT.INSPECTW.VALUECOMMANDFN

()
MIDDLE

DEFAULT.INSPECTW.TITLECOMMANDFN
Redisplay INSPECTW.REDISPLAY

NIL
DON’T

DON’T

()

INSPECTW.SELECTITEM

D ATUM PR OPER TIES FETCHFN STOREFN PR OPCOMMANDFN VAL UECOMMANDFN

TITLECOMMANDFN TITLE SELECTIONFN WHERE PR OPPRINTFN

D ATUM PR OPER TIES

DATUM PR OPER TIES

DATUM

FETCHFN OBJECT PR OPER TY

PR OPER TY OBJECT

STOREFN OBJECT PR OPER TY NEWV AL UE PR OPER TY

OBJECT NEWV AL UE PR OPCOMMANDFN VAL UECOMMANDFN

STOREFN

PR OPCOMMANDFN PR OPER TY OBJECT INSPECTW

PR OPER TY OBJECT

PR OPCOMMANDFN

PR OPCOMMANDFN

VAL UECOMMANDFN VAL UE PR OPER TY OBJECT INSPECTW

VAL UE FETCHFN PR OPER TY

VAL UE OBJECT INSPECTW

VAL UECOMMANDFN

TITLECOMMANDFN INSPECTW OBJECT

INSPECTW

TITLECOMMANDFN

INSPECTW

TITLE TITLE

DATUM TITLE

TITLE DATUM

TITLE

SELECTIONFN PR OPER TY VAL UEFL G INSPECTW

SELECTIONFN

PR OPER TY

INTERLISP-D DISPLAY-ORIENTED TOOLS

will be if the selected item is the property name; if the selected item is the property
value.

indicates where the inspect window should go. Its interpretation is described in (page
20.13).

If non- , is a function of two arguments which gets called to
determine what to print in the property place for the property . If returns ,
no property name will be printed and the value will be printed to the left of the other values.

An inspect window uses the following window property names to hold information: , ,
, , , , , ,

, and .

[Function]
Updates the display of the objects being inspected in . If is
a property name or a list of property names, only those properties are updated. If

is , all properties are redisplayed. This function is provided because
inspect windows do not automatically update their display when the object they
are showing changes.

This function is called by the command in the title command menu
of an .

[Function]
Uses the of the inspect window to change the property named

to the value and updates the display of ’s value
in the display. This provides a functional interface for user s.

[Function]
Sets the selected item in an inspect window. The item is inverted on the display
and put on the window property of . If has
a , it is deselected. is the name of the property of the
selected item. is if the selected item is the property name; if the
selected item is the property value. If is NIL, no item will be selected.
(This provides a way of deselecting items.)

20.5 CHAT

is a ‘‘remote terminal’’ facility, that allows one to communicate with other machines while inside
Interlisp- D. The function sets up a ‘‘Chat connection’’ to a remote machine, so that everything you
type is sent to the a remote machine, and everything the remote machine prints is displayed in a ‘‘Chat
window’’. The remote machine must support the Pup Telnet protocol.

Multiple simultaneous Chat connections are possible. To switch between typing to di�erent Chat
connections, simply button within the Chat window you want to use. prompts for a new window
for each new connection, except that it saves the �rst window to reuse once the connection in that window
is closed (other windows just go away when their connections are closed).

20.17

NIL T

INSPECT

NIL ()
NIL

DATUM FETCHFN
STOREFN PROPCOMMANDFN VALUECOMMANDFN SELECTIONFN PROPPRINTFN INSPECTWTITLE
PROPERTIES CURRENTITEM SELECTABLEITEMS

(INSPECTW.REDISPLAY)

NIL

Redisplay
INSPECTW

(INSPECTW.REPLACE)

(INSPECTW.SELECTITEM)

CURRENTITEM
CURRENTITEM

NIL T

CHAT
CHAT

CHAT

VAL UEFL G

WHERE

PR OPPRINTFN PR OPER TY D ATUM

PR OPER TY PR OPPRINTFN

INSPECTW PR OPER TY _

INSPECTW PR OPER TY

PR OPER TY

INSPECTW PR OPER TY NEWV AL UE

STOREFN INSPECTW

PR OPER TY NEWV AL UE PR OPER TY

PR OPCOMMANDFN

INSPECTW PR OPER TY VAL UEFL G

INSPECTW INSPECTW

PR OPER TY

VAL UEFL G

PR OPER TY

CHAT

behaves as if its Chat window is a Datamedia- 2500 terminal of the dimensions determined by the
size of the window. Hence, you can talk to hosts that supply Datamedia service and expect something
reasonable to happen. If the host does not pay attention to the terminal speci�cation protocol, or
you go through that host to another host, you may need to inform the host of the dimensions of your
‘‘screen’’; these are given in the title bar of the chat window. The font should be Gacha10 or other
�xed- width font for proper Datamedia emulation.

[Function]
Opens a Chat connection to , or to the value of . If

requires login, as determined by whether it responds to the ‘‘where is user’’
protocol, supplies a login sequence, or if it determines that you have a single
detached job, an attach sequence. If you have more than one detached job, it
simply performs a command for you and allows you to select the job.
You may alternatively specify one of the following values for :

Always perform a login.

Always perform an attach. This will fail if you do not have
exactly one detached job.

Login as user GUEST, password GUEST.

Do not attempt to login or attach.

If is supplied, it is either a string or the name of a �le whose contents
will be read as typein. When the string/�le is exhausted, input is taken from .

If is supplied, it is a window to use for the connection; otherwise, the
user is prompted for a window.

While is in control, all Lisp interrupts are turned o�, so that control characters can be transmitted
to the remote host.

Commands can be given to an active Chat connection by bugging the button in the Chat window
to get a command menu. Current commands are:

Close this connection. Once the connection is closed, control is handed over to the
main tty window. Closes the window unless this is the primary Chat window.

Same as Close, but always leaves the window open.

Closes the current connection and prompts for a new host to which to open a
connection in the same window.

Hold typeout from this Chat window. Bugging the window in any way releases the
hold. This is most useful if you want to switch to another, overlapping window
and there is typeout in this window that would compete for screen space.

Open a typescript �le for this Chat connection (closing any previous dribble �le
for the window). The user is prompted for a �le name; a name of just closes
the old dribble �le.

Prompts for a �le to take input from. When the end of the �le is reached, input

20.18

CHAT

CHAT

(CHAT)
DEFAULTCHATHOST

CHAT

WHEREIS

LOGIN

ATTACH

GUEST

NONE

T

CHAT

MIDDLE

Close

Suspend

New

Freeze

Dribble
NIL

Input

HOST LOGOPTION INITSTREAM WINDO W _

HOST

HOST

LOGOPTION

INITSTREAM

WINDO W

INTERLISP-D DISPLAY-ORIENTED TOOLS

reverts to .

Clears the window and resets the simulated terminal to its default state. This is
useful if undesired terminal commands have been received from the remote host
that place the simulated terminal into a funny state.

In an inactive Chat window, the button brings up a menu of one item, , whose
selection reopens a connection to the same host as was last in the window. This is the primary motivation
for the Suspend menu command. A new Chat connection can also be opened from the Background
menu.

The mouse button , when inside , holds output as long as the button is down. Holding down
coincidentally does this, too, but not on purpose: since the menu handler does not yield control

to other processes, it is possible to kill the connection by keeping the menu up too long.

Chat windows are a little bit knowledgable about window operations. If you reshape a Chat window,
Chat informs your partner of the new dimensions. And if you close the window, the connection is also
closed.

The following variables control aspects of Chat’s behavior:

[Variable]
The type of display (a number) that Chat should tell the remote host the user is
on. If Datamedia emulation is desired, this variable should be set to the number
corresponding to the terminal type Datamedia for the remote host. If the remote
host does not respond to the terminal type protocol in Pup Telnet, this variable is
irrelevant.

[Variable]
A list of host names, as uppercase litatoms, that the user desires to Chat to.
Chatting to a host not on the list adds it to the list. These names are placed in the
menu that the background Chat command prompts with.

[Variable]
If true, every Chat window is closed on exit. If , the initial setting, then the
primary Chat window is not closed.

[Variable]
The host to which connects when it is called with no argument.

[Variable]
If non- , the font that Chat windows are created with. If is ,
Chat windows are created with .

20.6 THE TEDIT TEXT EDITOR

TEdit is a window- based, modeless text editor, capable of handling fonts and some rudimentary formatting.
Text is selected with the mouse, and all editor operations act on the current selection.

20.19

T

Clear

MIDDLE ReConnect

LEFT CHAT
MIDDLE

CHAT.DISPLAYTYPE

CHAT.ALLHOSTS

CLOSECHATWINDOWFLG
NIL

DEFAULTCHATHOST
CHAT

CHAT.FONT
NIL CHAT.FONT NIL

(DEFAULTFONT ’DISPLAY)

HOST

The TEdit Text Editor

The top- level entry to TEdit is:

[Function]
may be a (litatom) �le name, an open , a string, or an arbitrary

[-able] Lisp object. The text is displayed in an editing window, and may
be edited there. If is other than a �le name, a , or a string,
will call on it, and let you edit the result.

If is , you will be prompted to create a window. If is
non- , will use it as the window to edit in. If has a title,

will preserve it; otherwise, will provide a descriptive title for the
window.

will normally spawn a new process to run the edit, so you can edit in
parallel with other work; indeed, it is possible to have several editing windows
active on the screen. To prevent a new process from being created, call
with set to .

is a prop- list-like collection of properties which control the editing session.
The following options are possible:

The default font to be used in the edit window.

A function to call when the user s.

A function to be called each time thru the character- read
loop.

A function to be called for each character typed in.

A function to be called each time a mouse selection is made
in this edit window.

If you want characters displayed other than TEdit’s default
way, set this to a character table.

If this atom is present in the list of , then the
edit window will be read- only, i.e., you can only shift- select
in it.

Tells what text should be selected initially. This can be a
(see below) describing the selected text, or a

character number, or a two-element list of �rst character
number and number of characters to select.

Describes the menu to be displayed when the
mouse button is pressed in the edit window’s title region. If
it is a , that menu will appear. If it is a list of menu
items, a new menu will be constructed.

A function to be called TEdit has quit. This can be
used for cleanup of side-e�ects by TEdit client programs.

20.20

(TEDIT)
STREAM

MKSTRING
STREAM TEDIT

MKSTRING

NIL
NIL TEDIT

TEDIT TEDIT

TEDIT

TEDIT
T

FONT

QUITFN Quit

LOOPFN

CHARFN

SELFN

TERMSA

READONLY anywhere

SEL
SELECTION

MENU MIDDLE

MENU

AFTERQUITFN after

TEXT WINDO W DONTSP AWN PR OPS

TEXT

TEXT

WINDO W WINDO W

WINDO W

DONTSP AWN

PR OPS

PR OPS

INTERLISP-D DISPLAY-ORIENTED TOOLS

A window- relative region; TEdit will use only that portion
of the window to display text &c. This is for people who
want TEdit for �lling in forms, etc.

A function to get called instead of bringing up the usual
TEdit command menu when the user - or -
buttons in the edit window’s title region.

20.6.1 Selecting Text

TEdit works by operating on ‘‘selected’’ pieces of text. Selected text is highlighted in some way, and
may have a caret �ashing at one end. Insertions go where the caret is; deletion and other operations are
applied to the currently selected text.

Text is selected using the mouse. There are two regions within an edit window: The area containing text,
and a ‘‘line bar’’ just inside the left edge of the window. While the mouse is inside the text region, the
cursor is the normal up- and- left pointing arrow. When the cursor moves into the line bar, it changes to
an up- and- right pointing arrow. Which region the mouse is in determines what kind of selection happens:

The mouse button always selects the smallest things. In the text region, it selects the character
you’re pointing at; in the line bar, it selects the single line you’re pointing at.

The mouse button selects larger things. In the text region, it selects the word the cursor is over,
and in the line bar it selects the paragraph the cursor is next to.

The button always extends a selection. The current selection is extended to include the
character/word/line/paragraph you are now pointing at. For example, if the existing selection was
a whole-word selection, the extended selection will also consist of whole words.

There are special ways of selecting text which carry an implicit command with them:

If you hold the key down while selecting text, the text will be shown white- on-black. When you
release the key, the selected text will be deleted. You can abort a -selection: Hold down a
mouse button, and release the key. Then release the mouse button.

Holding the key down while making a selection causes it to be a ‘‘copy-source’’ selection. A copy
source is marked with a dashed underline. Whatever is selected as a copy source when the key
is released will be copied to where the caret is. This even works to copy text from one edit window to
another. You can abort a copy: Hold down a mouse button, and release the key. Then release
the mouse button.

Holding the and keys down while making a selection causes it to be a ‘‘move’’ selection,
which is marked by making it veverse video. Whatever is selected as a ‘‘move’’ source when the
and keys are released will be moved to where the caret is. This even works to move text from
one edit window to another. You can abort a move: Hold down a mouse button, and release the
and keys. Then release the mouse button. If the variable is
non- , extending a selection will display the selection as white- on-black. The next time something is
typed, the selected text will be deleted �rst.

20.21

REGION

TITLEMENUFN
LEFT MIDDLE

LEFT

MIDDLE

RIGHT

CTRL
CTRL CTRL

CTRL

SHIFT
SHIFT

SHIFT

CTRL SHIFT
CTRL

SHIFT
CTRL

SHIFT TEDIT.BLUE.PENDING.DELETE
NIL

Editing Operations

20.6.2 Editing Operations

Inserting text: Except for command characters, whatever is typed on the keyboard gets inserted where the
caret is. The key and control- A both act as a backspace, deleting the character just before the caret.
Control- W is the backspace- word command.

Deleting Text: Hitting the key causes the currently- selected text to be deleted. Alternatively, you
can use the -selection method described above.

Copying Text: Use -selection, as described above.

Moving Text: Use - -selection.

Undoing an edit operation: The top blank key is the key. It will undo the most recent edit
command. is itself undo- able, so you can never back up more than a single command.

Redoing an edit operation: The key is the key. It will redo the most recent edit command
on the current selection. For example, if you insert some text, then select elsewhere, hitting will
insert a copy of the text in the new place also. If the last command was a delete, will delete the
currently- selected text; if it was a font change, the same change will be applied to the current selection.

The command menu: You can get command menus by moving into the edit window’s title region
and hitting the or mouse buttons. gets the usual menu of window commands.

gets a menu of editor commands:

Causes an updated version of the �le to be written. Tedit will ask you for a �le
name, o�ering the existing name (if any) as the default.

Lets you read in a new �le to edit,
You’ll be asked for a �le name in the prompt window.

Lets you copy the contents of a �le into the edit window, inserting it where the
caret is.

Causes the editor to stop without updating the �le you’re editing. If you haven’t
saved your changes, you’ll be asked to con�rm this.

Asks for a search string, then hunts from the caret toward the end of document
for a match. Selects the �rst match found; if there is none, nothing happens.

Asks for a search string and a replacement string. Within the current selection, all
instances of the search string ware replaced by the replacement string. If you wish,
TEdit will ask you to con�rm each replacement before actually doing it.

Changes the character looks of the selected characters: The font, character size,
and face (bold, italic, etc.). Three menus will pop up in sequence: One to select
the font name, one to select the face, and one to select the size. You may select an
option in each menu. If, for example, you want to leave the character size alone,
just click the mouse outside the size menu. In general, any aspect of the character
looks that you don’t change will remain the same.

Prints the document to your default press or InterPress printer, with 1 inch margins

20.22

BS

DEL
CTRL

SHIFT

CTRL SHIFT

Undo
Undo

ESC Redo
ESC

Redo

RIGHT MIDDLE RIGHT
MIDDLE

Put

Get without saving the one you were working on.

Include

Quit

Find

Substitute

Looks

Hardcopy

INTERLISP-D DISPLAY-ORIENTED TOOLS

all around. The function controls which kind of printer TEdit will
send to.

Creates a Press or InterPress �le of the document, with 1 inch margins all around.
The �le format is also controlled by .

20.6.3 TEdit Functional Interface

The Text Stream

TEdit keeps a which describes the current state of the text you’re editing. You can use most of
the usual stream operations on that stream: , , , , ,
and do the usual things. inserts a character in the stream just in front of the next character
you’d read if you ned. You can get the stream by .

If you need to save the state of an edit, you can save this stream. Calling with the stream as the
argument will let you continue from where you left o�.

The ‘‘Text Object’’

TEdit keeps a variety of other information about each edit window, in a data structure called a .
Field of a text points to the associated , which contains these �elds of interest:

The edit window which contains the text. If this is , there is no edit window
for this text.

The most recent selection made in this text.

A scratch , used by the mouse handler for the edit window, but
otherwise available for scratch use.

The current length of the edited text.

Points to the text which describes the text.

If this is non- , TEdit will halt after the next time through the keyboard polling
loop. No check will be made for unsaved changes. Unless it it , the value of

will be returned as the result of TEdit.

Selections

The selected text is described by an object of type , whose �elds are as follows:

The character number of the �rst character in the selection. The �rst character in
the text being edited is numbered 1.

The character number of the last character in the selection. Must be � .

The number of characters in the selection. If is zero, then no characters are
selected, and the Selection can be used only to describe a place to insert text.

20.23

PRINTERMODE

Press File
PRINTERMODE

STREAM
BIN SETFILEPTR GETFILEPTR GETEOFPTR BACKBIN

PEEKBIN BOUT
BIN (WINDOWPROP ’TEXTSTREAM)

TEDIT

TEXTOBJ
F3 STREAM TEXTOBJ

\WINDOW NIL

SEL

SCRATCHSEL SELECTION

TEXTLEN

STREAMHINT STREAM

EDITFINISHEDFLG
NIL

T
EDITFINISHEDFLG

SELECTION

CH#

CHLIM CH#

DCH DCH

Edit-WINDO W

TEXT

TEdit Interface Functions

Tells whether the Selection is indicated in the edit window. If , it is; if , it’s
not.

The that describes the selected text. You can use this to get to the
Stream itself.

The X position (edit- window- relative) of the left edge of the �rst selected character.

The Y position of the bottom of the �rst selected character (not the character’s
base line, the bottom of its descent).

The X position of the right edge of the last character selected. If is zero (a
‘‘point’’ selection), = .

The bottom of the last character in the selection.

The width of the selection. If is zero, this will be also.

This is for a future object- oriented editing interface.

Tells which side of the selection the caret should appear on. It will be one of the
atoms and .

if this selection is currently valid, if it is obsolete or has never been set.

What kind of selection this is. One of the atoms , , , or .

A , which will be used to highlight the selecton.

How high the highlighting is to extend. A selection’s highlight starts at the bottom
of the lowest descender, and extends upward for pixels. To always
get highlighting a full line tall, set this to 16384.

if this selection should have a caret �ashing next to it, otherwise.

20.6.3.1 TEdit Interface Functions

TEdit exports the following functions for use in custom interfaces:

[Function]
Creates a text describing , and returns it. If is speci�ed,
the text will be displayed there, and any changes to the text will be re�ected there
as they happen. You will also be able to scroll the window and select things there
as usual. may be an existing or text . If and
are given, then only the section of delimited is edited. is the same as
for .

Given the , you can use a number of functions to change the text in an
edit window, under program control. The edit window gets updated as the text is
changed.

20.24

ONFLG T NIL

\TEXTOBJ TEXTOBJ

X0

Y0

XLIM DCH
XLIM X0

YLIM

DX DCH

SELOBJ

POINT
LEFT RIGHT

SET T NIL

SELKIND CHAR WORD LINE PARA

HOW TEXTURE

HOWHEIGHT
HOWHEIGHT

HASCARET T NIL

(OPENTEXTSTREAM)
STREAM

TEXTOBJ STREAM

TEDIT

STREAM

TEXT WINDO W STAR T END PR OPS

TEXT WINDO W

TEXT STAR T END

TEXT PR OPS

INTERLISP-D DISPLAY-ORIENTED TOOLS

q [Function]
Sets the selection in . If q is a , it is used as-is.
Otherwise, q is the �rst character in the selection, and is the number
of characters to select (zero is allowed, and gives just an insertion point).
tells which side of the selection the caret should come on. It must be one of the
atoms or .

[Function]
Returns the which describes the current selection in the edit window
described by .

[Function]
Lets you turn the highlighting of the selection on and o�. If is ,
the selection in will be highlit in the edit window; if , any
highlighting will be turned o�. If is , it defaults to the current selection
in .

q [Function]
Inserts the string into , as though it had been typed in. q
tells where to insert the text: If it’s , the text goes in where the caret is. If
it’s a , the text is inserted in front of the corresponding character (The �rst
character in the stream is numbered 1). If it’s a , the text is inserted
accordingly.

q [Function]
Deletes text from . If q is a , the text it describes will
be deleted; if q is a , it is the character number of the �rst character
to delete. In that case, must also be present; it is the number of characters to
be deleted.

q [Function]
Searches for the next occurence of inside . If q is present, the
search starts there; otherwise, the search starts from the caret. If it �nds a match,

returns the character number of the �rst character in the matching
text. If no match is found, it returns .

[Function]
Sends the text contained in to the printer. If a �le name is given in ,
the press �le will be left there for you to use. If is non- , the �le
will not be sent to the printer; use this if you only want to create a press �le for
later use.

If is non- , it is used as the title on the ‘‘break page’’ printed
before the text.

q [Function]
Changes the character looks of selected characters, e.g., the font, character size,
etc. q can be a , an integer, or NIL. If q is
a , the text it describes will be changed; if it is a , it is the
character number of the �rst character to changed. In that case, must also be
present; it is the number of characters to be changed.

20.25

(TEDIT.SETSEL)
SELECTION

LEFT RIGHT

(TEDIT.GETSEL)
SELECTION

(TEDIT.SHOWSEL)
T

NIL
NIL

(TEDIT.INSERT)

NIL
FIXP

SELECTION

(TEDIT.DELETE)
SELECTION

FIXP

(TEDIT.FIND)

TEDIT.FIND
NIL

(TEDIT.HARDCOPY)

NIL

NIL

(TEDIT.LOOKS)

SELECTION
SELECTION FIXP

STREAM CH orSEL LEN POINT

STREAM CH orSEL

CH orSEL LEN

POINT

STREAM

STREAM

STREAM ONFL G SEL

SEL ONFL G

SEL STREAM

SEL

STREAM

STREAM TEXT CH orSEL

TEXT STREAM CH orSEL

STREAM CH orSEL LEN

STREAM CH orSEL

CH orSEL

LEN

STREAM TEXT CH

TEXT STREAM CH

STREAM FILE DONTSEND BREAKP A GETITLE

STREAM FILE

DONTSEND

BREAKP AGETITLE

STREAM NEWL OOKS SEL OR CH LEN

SEL OR CH SEL OR CH

LEN

TEdit Interface Functions

is a property- list-like description of the changes to be made. The
property names tell what to change, and the property values describe the change.
Any property which isn’t changed explicitly retains its old value. Thus, it is possible
to make a piece of text all bold without changing the fonts the text is in. The
possible list entries are as follows:

The name of the font family. All the selected text is changed
to be in that font.

The face for the new font. This may be in either of the
two forms acceptable to : a list such as

, or an atom such as .

The new point size.

The value for this property must be one of the atoms or
. The text will be underscored or not, accordingly.

The value for this property must be one of the atoms or
. The text will be overscored or not, accordingly.

The value for this property must be one of the atoms or
. The text will be struck through with a single line or

not, accordingly.

A distance, in points. The text will be raised above the
normal baseline by that amount. This is mutually exclusive
with .

A distance, in points. The text will be raised above the
normal baseline by that amount. This is mutually exclusive
with .

The value for this property must be one of the atoms
or . If it is , the text will be protected from mouse
selection and from deletion.

The value for this property must be one of the atoms
or . If a character has this property, the user can make
a point selection just after it, even if the character is also

.

[Function]
must be the text stream associated with a running TEdit.

causes the editing session to end. If is given, it is returned as TEdit’s result;
otherwise, TEdit will return the usual result. The user is not asked to con�rm his
desire to stop editing.

[Function]
Adds a menu to . This will update the menu’s image so that the
newly-added item will appear the next time the menu pops up. This is only
guaranteed to work right with pop- up menus which aren’t visible.

20.26

FAMILY

FACE
FONTCREATE (BOLD

ITALIC REGULAR) MRR

SIZE

UNDERLINE ON
OFF

OVERLINE ON
OFF

STRIKEOUT ON
OFF

SUPERSCRIPT

SUBSCRIPT

SUBSCRIPT

SUPERSCRIPT

PROTECTED ON
OFF ON

SELECTPOINT ON
OFF

PROTECTED

(TEDIT.QUIT)
TEDIT.QUIT

(TEDIT.ADD.MENUITEM)

NEWL OOKS

STREAM VAL UE

STREAM

VAL UE

MENU ITEM

ITEM MENU

INTERLISP-D DISPLAY-ORIENTED TOOLS

[Function]
Removes a menu from . This will update the menu’s image so that
the newly-added item will appear the next time the menu pops up. This is only
guaranteed to work right with pop- up menus which aren’t visible. may be
either the whole menu item, or just the indicator which appears in the menu’s
image.

20.6.3.2 User-function ‘‘Hooks’’ in TEdit

TEdit provides a number of hooks where a user- supplied function can be called. To supply a function,
attach it to the edit window under the appropriate indicator, using . Every user- supplied
function is ed to the text which describes the text. Some of these functions can also be
supplied using the argument to or ; the descriptions below contain the
details.

[Window Property]
A function to be called whenever the user ends an editing session. This may do
anything; if it returns the atom , TEdit will not terminate. Any other result
permits TEdit to do its normal cleanup and termination. This can also be supplied
using the argument to or .

[Window Property]
A function to be called after the user ends an editing session. This may perform
any cleanup of side e�ects that you desire. This can also be supplied using the

argument to or .

[Window Property]
A function that gets called, for e�ect only, each time through TEdit’s main
command loop. This can also be supplied using the argument to
or .

[Window Property]
A function that gets called, for e�ect only, once for each character typed into
TEdit. The character code is passed to the function as its second argument. This
can also be supplied using the argument to or .

[Window Property]
A function that gets called, for e�ect only, each time the user selects something
with the mouse. The new is passed as the function’s second argument,
and an atom describing the kind of selection (one of , , , or

) as the third. This can also be supplied using the argument to
or .

[Window Property]
Called just before TEdit scrolls the edit window.

[Window Property]
Called just after TEdit scrolls the edit window.

[Window Property]
Called when TEdit is about to move some text o�- screen. This function may

20.27

(TEDIT.REMOVE.MENUITEM)

WINDOWPROP
APPLY STREAM

TEDIT OPENTEXTSTREAM

TEDIT.QUITFN

DON’T

PROPS TEDIT OPENTEXTSTREAM

TEDIT.AFTERQUITFN

PROPS TEDIT OPENTEXTSTREAM

TEDIT.CMD.LOOPFN

PROPS TEDIT
OPENTEXTSTREAM

TEDIT.CMD.CHARFN

PROPS TEDIT OPENTEXTSTREAM

TEDIT.CMD.SELFN

SELECTION
NORMAL COPY MOVE

DELETE PROPS
TEDIT OPENTEXTSTREAM

TEDIT.PRESCROLLFN

TEDIT.POSTSCROLLFN

TEDIT.OVERFLOWFN

MENU ITEM

ITEM MENU

ITEM

PR OPS

Changing the TEdit Command Menu

handle the text over�ow itself (say by reshaping the window), or it may let TEdit
take its normal course. If the function handles the problem, it must return a
non- result. If TEdit is to handle the over�ow, the value returned must be

.

[Window Property]
Called whenever the user presses the or mouse button in the edit
window’s title region. Can also be supplied using the argument to
or . Normally, this is the function ,
which brings up the usual TEdit command menu.

TEdit also saves pointers to its data structures on each edit window. They are available for any user
function’s use.

[Window Property]
The which describes the current editing session.

[Window Property]
The text which describes the text of the document.

20.6.3.3 Changing the TEdit Command Menu

You may replace the -button command menu with one of your own. When you press the
button inside an edit window’s title region, TEDIT calls the value of the window
property with the window as its argument. Normally, what gets called is , but
you may change it to anything you like.

brings up a menu of commands. If the edit window has a property
, that menu is used. If not, TEdit looks for the window property (a

list of menu items) and constructs a menu from that. Failing that, it uses .

This means that you can control the command menu by setting the appropriate window properties.
Alternatively, you may add your own menu buttons to the default menu, .

will add to the TEdit menu. Menu items should be in the form , where
is what appears in the menu, and will be applied to the text stream, and can perform any
operation you desire.

Finally, you may menu items from the default menu, by doing

can be either a complete menu item, or just the text that appears in the menu; either will do the
job.

20.6.3.4 Variables Which Control TEdit

There are a number of global variables which control TEdit, or which contain state information for editing

20.28

NIL
NIL

TEDIT.TITLEMENUFN
LEFT MIDDLE

PROPS TEDIT
OPENTEXTSTREAM TEDIT.DEFAULT.MENUFN

TEXTOBJ
TEXTOBJ

TEXTSTREAM
STREAM

MIDDLE MIDDLE
TEDIT.TITLMENUFN

TEDIT.DEFAULT.MENUFN

TEDIT.DEFAULT.MENUFN
TEDIT.MENU TEDIT.MENU.COMMANDS

TEDIT.DEFAULT.MENU

TEDIT.DEFAULT.MENU

(TEDIT.ADD.MENUITEM TEDIT.DEFAULT.MENU)

()

remove

(TEDIT.REMOVE.MENUITEM TEDIT.DEFAULT.MENU)

ITEM

ITEM NAME FUNCTION NAME

FUNCTION

ITEM

ITEM

INTERLISP-D DISPLAY-ORIENTED TOOLS

sessions in progress:

[Variable]
If this is non- , extending a selection makes it into a pending- delete selection.
See the selection section.

[Variable]
A . This is the font for displaying TEdit documents which don’t
specify their own font information.

[Variable]
A paragraph- looks description. This contains the default looks for a paragraph.

[Variable]
A . This is the most recent regular selection made in TEdit window.

[Variable]
A . This is the most recent -selection made in TEdit window.

[Variable]
A . This is the most recent - -selection made in TEdit
window.

[Variable]
A read table, this is used to translate typed- in characters into TEdit commands.
See the section on TEdit readtables.

[Variable]
The read table which controls TEdit’s concept of word boundaries. The syntax
classes in this table aslo determine which characters TEdit thinks are white space
(which gets deleted by control- W along with the preceding word).

20.6.4 TEdit’s Terminal Table and Readtables

TEdit now pays attention to the system terminal table. Characters with terminal sytax-classes ,
, or act as follows:

acts as a character- backspace.

acts like control- W (in fact, this is how control- W is implemented.)

acts like DEL.

Since the system terminal table is used to implement these functions, you can assign them to other keys
at will.

TEdit also has a Readtable, which it uses to dispatch to commands. The table is named , and
it is global. You can use the func tions and to read it and
make changes:

[Function]
Sets the readtable syntax of the character whose charcode is to be

20.29

TEDIT.BLUE.PENDING.DELETE
NIL

TEDIT.DEFAULT.FONT
FONTDESCRIPTOR

TEDIT.DEFAULT.FMTSPEC

TEDIT.SELECTION
SELECTION any

TEDIT.SHIFTEDSELECTION
SELECTION SHIFT any

TEDIT.MOVESELECTION
SELECTION CTRL SHIFT any

TEDIT.READTABLE

TEDIT.WORDBOUND.READTABLE

CHARDELETE
WORDDELETE LINEDELETE

CHARDELETE

WORDDELETE

LINEDELETE

TEDIT.READTABLE
TEDIT.SETSYNTAX TEDIT.GETSYNTAX

(TEDIT.SETSYNTAX)CHAR CODE CLASS TABLE

CHAR CODE

TEdit’s Terminal Table and Readtables

in the read- table . The possible syntax classes are listed below.

[Function]
Returns the TEdit syntax class of the character whose charcode is ,
according to the read- table . The possible syntax classes are listed below. An
illegal syntax will be returned as .

The allowable syntax classes are:

Typing this character acts like backspace

Typing this character acts like controlW

Typing this character acts like

Typing this character causes

Typing this character acts like

Typing this character calls a speci�ed function (see below)

Typing this character simply inserts it in the document. also has this e�ect.

You can also cause a keystroke to invoke a function for you. To do so, use the function

[Function]
Sets up the TEdit readtable so that typing the character with charcode

will to the text and the for the document
being edited. The function may have arbitrary side-e�ects.

The abbreviation feature described below is implemented using this function- call facility.

Finally, TEdit uses the read table to decide where word boundaries
are. Whenever two adjacent characters have di�erent syntax classes, there is a word boundary between
them. The state of this table can be controlled by the functions

[Function]
Returns the syntax class (a small integer) for a given character. may be either
a character or a charcode; defaults to .

[Function]
Sets the syntax class for a character. Again, is either a character or a
charcode; defaults to ; may be
either a small integer as returned by , or one of the atoms

, , or . Those represent the syntax classes in the
default .

The initial assigns every character to one of the above classes, along
pretty obvious lines. For purposes of control- W, whitespace between the caret and the word being deleted
is also removed.

20.30

(TEDIT.GETSYNTAX)

NIL

CHARDELETE

WORDDELETE

DELETE DEL

UNDO Undo

REDO ESC

FN

NONE NIL

(TEDIT.SETFUNCTION)

APPLY STREAM TEXTOBJ

TEDIT.WORDBOUND.READTABLE

(TEDIT.WORDGET)

TEDIT.WORDBOUND.READTABLE

(TEDIT.WORDSET)

TEDIT.WORDBOUND.READTABLE
TEDIT.WORDGET

WHITESPACE TEXT PUNCTUATION
TEDIT.WORDBOUND.READTABLE

TEDIT.WORDBOUND.READTABLE

CLASS TABLE

CHAR CODE TABLE

CHAR CODE

TABLE

CHAR CODE FN TABLE

TABLE

CHAR CODE FN

CHAR TABLE

CHAR

TABLE

CHAR CLASS TABLE

CHAR

TABLE CLASS

INTERLISP-D DISPLAY-ORIENTED TOOLS

20.6.5 The TEdit Abbreviation Facility

The list is a list of ‘‘abbreviations known to TEdit.’’ Each element of the list is a
dotted pair of two strings. The �rst is the abbreviation (case does matter), and the second is what the
abbreviation expands to. To expand an abbreviation, select it and type control- X. It will be replaced by
its expansion.

You can also expand single-character abbreviations while typing. Hitting control- X when no characters
are underlined (i.e., after you have typed something) will expand the abbreviation to the
left of the caret.

Here is a list of the default abbreviations and their expansions:

The bullet (�)

The M-dash (�)

The �gure dash (�)

Open double- quotes (‘‘) which can be matched by two normal quotes (’’)

20.7 THE TTYIN DISPLAY TYPEIN EDITOR

TTYIN is an Interlisp function for reading input from the terminal. It features altmode completion,
spelling correction, help facility, and fancy editing, and can also serve as a glori�ed free text input
function. This document is divided into two major sections: how to use TTYIN from the user’s point of
view, and from the programmer’s.

TTYIN exists in implementations for Interlisp- 10 and Interlisp- D. The two are substantially compatible,
but the capabilities of the two systems di�er (Interlisp- D has a more powerful display and allows greater
access to the system primitives needed to control it e�ectively; it also has a mouse, greatly reducing the
need for keyboard- oriented editing commands). Descriptions of both are included in this document for
completeness, but Interlisp- D users may �nd large sections irrelevant.

20.7.1 Entering Input With TTYIN

There are two major ways of using TTYIN: (1) set to , so the LISPX executive
uses it to obtain input, and (2) call from within a program to gather text input. Mostly the same
rules apply to both; places where it makes a di�erence are mentioned below.

The following characters may be used to edit your input, independent of what kind of terminal you are
on. The more TTYIN knows about your terminal, of course, the nicer some of these will behave. Some
functions are performed by one of several characters; any character that you happen to have assigned
as an interrupt character will, of couse, not be read by TTYIN. There is a (somewhat inelegant) way of
changing which characters perform which functions, described under later on.

control- A, ,

20.31

TEDIT.ABBREVS

single-character

b

m

n

"

LISPXREADFN TTYIN
TTYIN

TTYINREADMACROS

BS DEL

Entering Input With TTYIN

Deletes a character. At the start of the second or subsequent lines of your input, deletes the
last character of the previous line.

control- W
Deletes a ‘‘word’’. Generally this means back to the last space or parenthesis.

control- Q (control- U for Tops20 users)
Deletes the current line, or if the current line is blank, deletes the previous line.

control- R
Refreshes the current line. Two in a row refreshes the whole bu�er (when doing multi- line
input).

Tries to complete the current word from the spelling list provided to , if any. In the case
of ambiguity, completes as far as is uniquely determined, or rings the bell. For input,
the spelling list may be (see discussion of , page 20.44).

Interlisp- 10 only: If no spelling list was provided, but the word begins with a ‘‘<’’,tries directory
name completion (or �lename completion if there is already a matching ‘‘>’’in the current
word).

If typed in the middle of a word will supply alternative completions from the argument
to (if any). (page 20.43) must be true to enable this feature.

control- F Sumex, Tops20 only: Invokes for �lename completion on the current ‘‘word’’.

control- Y
Escapes to a Lisp userexec, from which you may return by the command . However, when
in READ mode and the bu�er is non- empty, control- Y is treated as Lisp’s unquote macro
instead, so you have to use edit- control- Y (below) to invoke the userexec.

<middle- blank> in Interlisp- D, LF in Interlisp- 10
Retrieves characters from the previous non- empty bu�er when it is able to; e.g., when typed at
the beginning of the line this command restores the previous line you typed at TTYIN; when
typed in the middle of a line �lls in the remaining text from the old line; when typed following
^Q or ^W restores what those commands erased.

; If typed as the �rst character of the line means the line is a comment; it is ignored, and TTYIN
loops back for more input.

control- X
Goes to the end of your input (or end of expression if there is an excess right parenthesis) and
returns if parentheses are balanced, beeps if not. Currently implemented in Interlisp- D only.

During most kinds of input, TTYIN is in ‘‘auto�ll’’ mode: if a space is typed near the right margin, a
carriage return is simulated to start a new line. In fact, on cursor- addressable displays, lines are always
broken, if possible, so that no word straddles the end of the line. The ‘‘pseudo-carriage return’’ ending
the line is still read as a space, however; i.e., the program keeps track of whether a line ends in a carriage
return or is merely broken at some convenient point. You won’t get carriage returns in your strings unless
you explicitly type them.

20.32

ESC TTYIN
LISPX

USERWORDS TTYINCOMPLETEFLG

?
TTYIN ?ACTIVATEFLG

GTJFN

OK

SPLST

INTERLISP-D DISPLAY-ORIENTED TOOLS

20.7.2 Mouse Commands [Interlisp-D Only]

The mouse buttons are interpreted as follows during TTYIN input:

Moves the caret to where the cursor is pointing. As you hold down , the caret moves
around with the cursor; after you let up, any typein will be inserted at the new position.

Like , but moves only to word boundaries.

Deletes text from the caret to the cursor, either forward or backward. While you hold down
, the text to be deleted is complemented; when you let up, the text actually goes away.

If you let up outside the scope of the text, nothing is killed (this is how to ‘‘cancel’’ the
command). This is roughly the same as - with no initial selection (below).

If you hold down and/or while pressing the mouse buttons, you instead get secondary
selection, move selection or delete selection. You make a selection by bugging (to select a character)
or (to select a word), and optionally extend the selection either left or right using . While
you are doing this, the caret does not move, but your selected text is highlighted in a manner indicating
what is about to happen. When you have made your selection (all mouse buttons up now), lift up on

and/or and the action you have selected will occur, which is:

The selected text as typein at the caret. The text is highlighted with a broken underline during
selection.

Delete the selected text. The text is complemented during selection.

-
Combines the above: delete the selected text and insert it at the caret. This is how you move
text about.

You can cancel a selection in progress by pressing or as if to select, and moving outside
the range of the text.

The most recent text deleted by mouse command can be inserted at the caret by typing <middle- blank>
(the same key that retrieves the previous bu�er when issued at the end of a line).

20.7.3 Display Editing Commands

On edit- key terminals (Datamedia): In Interlisp- 10, TTYIN reads from the terminal in binary mode,
allowing many more editing commands via the edit key, in the style of TVEDIT commands. Note that
due to Tenex’s unfortunate way of handling typeahead, it is not possible to type ahead edit commands
before TTYIN has started (i.e., before its prompt appears), because the edit bit will be thrown away. Also,
since ESCAPE has numerous other meanings in Lisp and even in TTYIN (for completion), ESCAPE is
not used as a substitute for the edit key.

In Interlisp- D: Users will probably have little use for most of these commands, as cursor positioning can
often be done more conveniently, and certainly more obviously, with the mouse. Nevertheless, some
commands, such as the case changing commands, can be useful. The <bottom- blank> key can be used
as an edit (meta) key in Chorus and subsequent releases if you perform . This calls

to enable the meta key, rede�nes the middle and top blank keys, and informs TTYIN

20.33

LEFT LEFT

MIDDLE LEFT

RIGHT
RIGHT

CTRL RIGHT

CTRL SHIFT
LEFT

MIDDLE RIGHT

CTRL SHIFT

SHIFT

CTRL

CTRL SHIFT

LEFT MIDDLE

(TTYINMETA T)
(METASHIFT T)

Display Editing Commands

that you want to use them. Alternatively, you can use the (by default on <top-blank>)
as described in the next paragraph.

On edit- keyless display terminals (Heath): If you want to type any of these commands, you need to pre�x
them with the ‘‘edit pre�x’’ character. Set the variable to the character code of the
desired pre�x char. Type the edit pre�x twice to give an ‘‘edit-ESCAPE’’ command. Some users of the
TENEX TVEDIT program like to make ESCAPE (33Q) be the edit pre�x, but this makes it somewhat
awkward to ever use escape completion.

On edit- keyless hardcopy terminals: You probably want to ignore this section, since you won’t be able
to see what’s going on when you issure edit commands; there is no attempt made to echo anything
reasonable.

In the descriptions below, ‘‘current word’’ means the word the cursor is under, or if under a space, the
previous word. Currently parentheses are treated as spaces, which is usually what you want, but can
occasionally cause confusion in the word deletion commands. The notation [] means edit- ,
if you have an edit key, or <editpre�xchar> if you don’t; $ = escape. Most commands can be
preceded by numbers or escape (means in�nity), only the �rst of which requires the edit key (or the edit
pre�x). Some commands also accept negative arguments, but some only look at the magnitude of the
arg. Most of these commands are taken from the display editors TVEDIT and/or E, and are con�ned to
work within one line of text unless otherwise noted.

Cursor Movement Commands:

[delete], [bs], [<]
Back up one (or n) characters.

[space], [>]
Move forward one (or n) characters.

[^] Moves up one (or n) lines.

[lf] Moves down one (or n) lines.

[(] Move back one (or n) words.

[)] Move ahead one (or n) words.

[tab] Moves to end of line; with an argument moves to nth end of line; [$tab] goes to end of bu�er.

[control- L]
Moves to start of line (or nth previous, or start of bu�er).

[{] and [}]
Go to start and end of bu�er, respectively (like [$control- L] and [$tab]).

[[] (edit- left-bracket)
Moves to beginning of the current list, where cursor is currently under an element of that list
or its closing paren. (See also the auto- parenthesis- matching feature below under ‘‘Flags’’.)

[]] (edit- right- bracket)
Moves to end of current list.

20.34

EDITPREFIXCHAR

EDITPREFIXCHAR

CHAR CHAR

CHAR

INTERLISP-D DISPLAY-ORIENTED TOOLS

[Sx] Skips ahead to next (or nth) occurrence of character x, or rings the bell.

[Bx] Backward search, i.e., short for [-S] or [-nS].

Bu�er Modi�cation Commands:

[Zx] Zaps characters from cursor to next (or nth) occurrence of x. There is no unzap command yet.

[A] or [R]
Repeat the last S, B or Z command, regardless of any intervening input (note this di�ers from
Tvedit’s A command).

[K] Kills the character under the cursor, or n chars starting at the cursor.

[I] Begin inserting. Exit insert with any edit command. Characters you type will be inserted, rather
than overwriting the existing text. If (page 20.43) is true (default in Interlisp- D),
you are always in insert mode, and this command is a noop.

Inserting <cr> behaves slightly di�erent from in tvedit. The sequence [I<cr>] behaves as in
TVEDIT; it inserts a blank line ahead of the cursor. <cr> typed any other time while in insert
mode actually inserts a <cr>, behaving somewhat like TVEDIT’s [B]. [$I] is the same as [I<cr>].

[cr] When the bu�er is empty is the same as <lf>, i.e. restores bu�er’s previous contents. Otherwise
is just like a <cr> (except that it also terminates an insert). Thus, [<cr><cr>] will repeat the
previous input (as will <lf><cr> without the edit key).

[O] Does ‘‘Open line’’, inserting a crlf after the cursor, i.e., it breaks the line but leaves the cursor
where it is.

[T] Transposes the characters before and after the cursor. When typed at the end of a line,
transposes the previous two characters. Refuses to handle funny cases, such as tabs.

[G] Grabs the contents of the previous line from the cursor position onward. [nG] grabs the nth
previous line.

[L] Lowercases current word, or n words on line. [$L] lowercases the rest of the line, or if given
at the end of line lowercases the entire line.

[U] Uppercases analogously.

[C] Capitalize. If you give it an argument, only the �rst word is capitalized; the rest are just
lowercased.

[control- Q]
Deletes the current line. [$control- Q] deletes from the current cursor position to the end of the
bu�er. No other arguments are handled.

[control- W]
Deletes the current word, or the previous word if sitting on a space.

[D] and [D<cr>]
Are the same as [control- W] and [control- Q], for approximate compatibility with TVEDIT.

[J] ‘‘Justify’’ this line. This will break it if it is too long, or move words up from the next line

20.35

EMACSFLG

Display Editing Commands

if too short. Will not join to an empty line, or one starting with a tab (both of which are
interpreted as paragraph breaks). Any new line breaks it introduces are considered spaces, not
carriage returns. [nJ] justi�es n lines.

The linelength is de�ned as , ignoring any prompt characters at the margin. If
is negative, it is interpreted as relative to the right margin.

is initially �8 in Interlisp- D, 72 in Interlisp- 10.

[$F] ‘‘Finishes’’ the input, regardless of where the cursor is. Speci�cally, it goes to the end of the
input and enters a <cr>, control- Z or ‘‘]’’,depending on whether normal, or
input is happening. Note that a ‘‘]’’won’t necessarily end a , but it seems likely to in
most cases where you would be inclined to use this command, and makes for more predictable
behavior.

Miscellaneous Commands:

[P] Interlisp- D: Prettyprint bu�er. Clears the bu�er and reprints it using prettyprint. If there are
not enough right parentheses, it will supply more; if there are too many, any excess remains
unprettyprinted at the end of the bu�er. May refuse to do anything if there is an unclosed
string or other error trying to read the bu�er.

[N] Refresh line. Same as control- R. [$N] refreshes the whole bu�er; [nN] refreshes n lines. Cursor
movement in TTYIN depends on TTYIN being the only source of output to the screen; if you
do a control- T, or a system message appears, or line noise occurs, you may need to refresh
the line for best results. In Interlisp- 10, if for some reason your terminal falls out of binary
mode (e.g. can happen when returning to a Lisp running in a lower fork), Edit- <anything> is
unreadable, so you’d have to type control- R instead.

[control- Y]
Gets userexec. Thus, this is like regular control- Y, except when doing a READ (when control- Y
is a read macro and hence does not invoke this function).

[$control- Y]
Gets a userexec, but �rst unreads the contents of the bu�er from the cursor onward. Thus if you
typed at TTYIN something destined for the Lisp executive, you can do [control- L$control- Y]
and give it to Lisp.

[_] Adds the current word to the spelling list . With zero arg, removes word. See
(page 20.44).

Note to Datamedia, Heath users: In addition to simple cursor movement commands and insert/delete,
TTYIN uses the display’s cursor- addressing capability to optimize cursor movements longer than a few
characters, e.g. [tab] to go to the end of the line. In order to be able to address the cursor, TTYIN
has to know where it is to begin with. Lisp keeps track of the current print position within the line,
but does not keep track of the line on the screen (in fact, it knows precious little about displays, much
like Tenex). Thus, TTYIN establishes where it is by forcing the cursor to appear on the last line of the
screen. Ordinarily this is the case anyway (except possibly on startup), but if the cursor happens to be
only halfway down the screen at the time, there is a possibly unsettling leap of the cursor when TTYIN
starts.

20.36

TTYJUSTLENGTH
TTYJUSTLENGTH TTYJUSTLENGTH

REPEAT READ
READ

USERWORDS
TTYINCOMPLETEFLG

INTERLISP-D DISPLAY-ORIENTED TOOLS

20.7.4 Using TTYIN for Lisp Input

When TTYIN is loaded, or a sysout containing TTYIN is started up, the function is called.
If the terminal is a display, it sets to be ; if the terminal is non- display,

will set the variable back to . will also set it back to .

There are two principal di�erences between and : (1) parenthesis balancing. The input
does not activate on an exactly balancing right paren/bracket unless the input started with a paren/bracket,
e.g., ‘‘ ’’ will all be on one line, terminated by <cr>; and (2) read macros.

In Interlisp- 10, TTYIN does not use a read table (TTYIN behaves as though using the default initial
Lisp terminal input readtable), so read macros and rede�nition of syntax characters are not supported;
however, ‘‘ ’ ’’ () and ‘‘control-Y’’ () are built in, and a simple implementation of ? and ?=
is supplied. Also, the facility described below can supply some of the functionality
of immediate read macros in the editor.

In Interlisp- D, read macros are (mostly) supported. Immediate read macros take e�ect only if typed at
the end of the input (it’s not clear what their semantics should be elsewhere).

20.7.5 Useful Macros

There are two useful edit macros that allow you to use TTYIN as a character editor: (1) loads the
current expression into the ttyin bu�er to be edited (this is good for editing comments and strings). Input
is terminated in the usual way (by typing a balancing right parenthesis at the end of the input, typing
<cr> at the end of an already balanced expression, or control- X anywhere inside the balanced expression).
Typing control- E or clearing the bu�er aborts . (2) is like but prettyprints the expression into
the bu�er, and uses its own window. The variable controls what prompt, if any,

uses; see prompt argument description in next section (the initial setting is no prompt). is not yet
implemented in Interlisp- 10.

The macro loads the current expression into the bu�er, preceded by , to be used as input however
desired; as a trivial example, to evaluate the current expression, followed by a <cr> to activate the
bu�er will perform roughly what the edit macro does. Of course, you can edit the to something
else to make it an edit command.

is also de�ned at the executive level as a programmer’s assistant command that loads the bu�er with
the the indicated event, to be edited as desired.

is a programmer’s assistant command like EV [EDITV] that performs an on the value of the
variable.

And �nally, if the event is considered ‘‘short’’ enough, the programmer’s assistant command will load
the bu�er with the event’s input, rather than calling the editor. If you really wanted the Interlisp editor
for your �x, you could either say , or type control- U (or whatever on tops20) once
you got TTYIN’s version to force you into the editor.

20.37

SETREADFN
LISPXREADFN TTYINREAD

SETREADFN READ (SETREADFN ’READ) READ

TTYINREAD READ

USE (FOO) FOR (FIE)

QUOTE EVAL
TTYINREADMACROS

ED

ED EE ED
TTYINEDITPROMPT

EE EE

BUF E
BUF

EVAL E

BUF
VALUEOF

TV ED

FIX

FIX - TTY:EVENT

Programming With TTYIN

20.7.6 Programming With TTYIN

[Function]
TTYIN prints , then waits for input. The value returned in the normal
case is a list of all atoms on the line, with comma and parens returned as individual
atoms; may be used to get a di�erent kind of value back.

is an atom or string (anything else is converted to a string). If , the value of
, initially , will be used. If is , no prompt will be given.

may also be a dotted pair , giving the prompt for the �rst and subsequent
(or over�ow) lines, each prompt being a string/atom or to denote absence of prompt. Note that
rebinding gives a convenient way to a�ect all the ‘‘ordinary’’ prompts in some program
module.

is a spelling list, i.e., a list of atoms or dotted pairs . If supplied, it is used
to check and correct user responses, and to provide completion if the user types ESCAPE. If is one
of the Lisp system spelling lists (e.g., or), words that are escape- completed get
moved to the front, just as if a had found them. Autocompletion is also performed when user
types a break character (cr, space, paren, etc), unless one of the ‘‘no�xspell’’ options below is selected;
i.e., if the word just typed would uniquely complete by ESCAPE, TTYIN behaves as though ESCAPE
had been typed.

, if non- , determines what happens when the user types ? or HELP. If = , program
prints back in suitable form. If is any other atom, or a string containing no spaces, it
performs . Anything else is printed as is. If is , ? and HELP are
treated as any other atoms the user types. [is a user- supplied function, initially a noop;
systems with a suitable HASH package, for example, have de�ned it to display a piece of text from a
hash�le associated with the key .]

is an atom or list of atoms chosen from among the following:

Uses for HELP and Escape completion, but does not attempt any
ing. Mainly useful if is incomplete and the caller wants to

handle corrections in a more �exible way than a straight .

Does spelling correction, but requires con�rmation.

Requires con�rmation on spelling correction, but also does autocompletion on <cr>
(i.e. if what user has typed so far uniquely identi�es a member of , completes
it). This allows you to have the bene�ts of autocompletion and still allow new
words to be typed.

(only if =) Interprets Escape to mean directory name completion
[Interlisp- 10 only].

Like , but does username completion. This is identical to
under Tenex [Interlisp- 10 only].

(only if =) Interprets Escape to mean �lename completion, i.e. does a
[Sumex and Tops20 only].

If response is not on, or does not correct to, , interacts with user until an

20.38

(TTYIN)

NIL
DEFAULTPROMPT "** " T

(.)
NIL

DEFAULTPROMPT

(.)

USERWORDS SPELLINGS3
FIXSPELL

NIL T

(DISPLAYHELP) NIL
DISPLAYHELP

HELP

NOFIXSPELL
FIXSPELL

FIXSPELL

MUSTAPPROVE

CRCOMPLETE

DIRECTORY NIL

USER DIRECTORY DIRECTORY

FILE NIL
GTJFN

FIX

PR OMPT SPLST HELP OPTIONS ECHOTOFILE TABS UNREADBUF RDTBL

PR OMPT

OPTIONS

PR OMPT

PR OMPT PR OMPT

PR OMPT 1 PR OMPT 2

SPLST SYNONYM R OOT

SPLST

HELP HELP

SPLST HELP

HELP HELP

OPTIONS

SPLST

SPLST

SPLST

SPLST

SPLST

SPLST

INTERLISP-D DISPLAY-ORIENTED TOOLS

acceptable response is entered. A blank line (returning) is always accepted.
Note that if you are willing to accept responses that are not on , you probably
should specify one of the options , or ,
lest the user’s new response get ed away without their approval.

Line is read as a string, rather than list of atoms. Good for free text.

Does not convert lower case letters to upper case.

For use principally with the arg (below). Does not compute a value,
but returns if user typed anything, if just a blank line.

For multi- line input. Repeatedly prompts until user types control- Z (as in Tenex
sndmsg). Returns one long list; with option returns a single string of
everything typed, with carriage returns (EOL) included in the string.

Implies , , and . Additionally, input may be terminated
with control- V, in which case the global �ag will be set true (it is set
to on any other termination). This �ag may be utilized in any way the caller
desires.

Only the �rst word on the line is treated as belonging to , the remainder of
the line being arbitrary text; i.e., ‘‘command format’’. If other options are supplied,

still applies to the �rst word typed. Basically, it always returns
, where is whatever the other options dictate

for the remainder. E.g. returns or ,
depending on whether there was further input; returns

. When used with , is only in e�ect for
the �rst line typed; furthermore, if the �rst line consists solely of a command, the

is ignored, i.e., the entire input is taken to be just the command.

Parens, brackets, and quotes are treated a la , rather than being returned as
individual atoms. Control characters may be input via the control- Vx notation.
Input is terminated roughly along the lines of conventions: a balancing
or over-balancing right paren/bracket will activate the input, or <cr> when
no parenthesis remains unbalanced. overrides all other options (except

).

Like , but implies that TTYIN should behave even more like , i.e., do
, not be errorset- protected, etc.

Interlisp- D only: The prompt argument is treated as usual, except that TTYIN
assumes that the prompt for the �rst line has already been printed by the caller;
the prompt for the �rst line is thus used only when redisplaying the line.

if speci�ed, user’s input is copied to this �le, i.e., TTYIN can be used as a simple text- to-�le
routine if is used. If is a list, copies to all �les in the list. is not included
on the �le.

is a special addition for tabular input. It is a list of tabstops (numbers). When user types a tab,
TTYIN automatically spaces over to the next tabstop (thus the �rst tabstop is actually the second ‘‘column’’
of input). Also treats specially the characters * and ‘‘; they echo normally, and then automatically tab

20.39

NIL

NOXFISPELL MUSTAPPROVE CRCOMPLETE
FIXSPELL

STRING

NORAISE

NOVALUE
T NIL

REPEAT
STRING

TEXT REPEAT NORAISE NOVALUE
CTRLVFLG

NIL

COMMAND

COMMAND (
.)

COMMAND NOVALUE () (. T)
COMMAND STRING (

. " ") REPEAT COMMAND

REPEAT

READ READ

READ

READ
NORAISE

LISPXREAD READ READ
NORAISE

NOPROMPT

NOVALUE

SPLST

ECHOTOFILE

SPLST

CMD

REST- OF-INPUT REST- OF-INPUT

CMD CMD

CMD

REST- OF-INPUT

ECHOTOFILE

ECHOTOFILE PR OMPT

TABS

EE Interface

over.

allows the caller to ’’preload‘‘ the TTYIN bu�er with a line of input. is a
list, the elements of which are unread into the bu�er (i.e., ’’the outer parentheses are stripped o�‘‘) to
be edited further as desired; a simple <cr> (or control- Z for input) will thus cause the bu�er’s
contents to be returned unchanged. If doing input, the ’’ names‘‘ of the input list are used,
i.e., quotes and %’s will appear as needed; otherwise the bu�er will look as though had been

’ed. is treated somewhat like , so that if it contains a pseudo- carriage return
(the value of), the input line terminates there.

Input can also be unread from a �le, using the format: =
, where and are �le byte pointers. This makes TTYIN

a miniature text �le editor.

[Interlisp- D only] is the read table to use for ing the input when one of the options is
given. A lot of character interpretations are hardwired into TTYIN, so currently the only e�ect this has
is in the actual , and in deciding whether a character typed at the end of the input is an immediate
read macro, for purposes of termination.

If the global variable is , or option is given, TTYIN permits type- ahead;
otherwise it clears the bu�er before prompting the user.

20.7.7 EE Interface

The following may be useful as a way of outsiders to call TTYIN as an editor. These functions are
currently only in Interlisp- D.

[Function]
This is the body of . Switches the tty to , clears it, prettyprints ,
a list of expressions, into it, and leaves you in TTYIN to edit it as Lisp input.
Returns a new list of expressions.

If is non- , it is a function of two arguments, and , which
is called instead of to print the expressions to the window (actually
a scratch �le). Note that is a list, so normally the outer parentheses should
not be printed. =T is shorthand for ‘‘unpretty’’; use instead of

.

[Variable]
If is true, closes the window on exit.

[Variable]
If the arg to is , it uses the value of ,
creating it if it does not yet exist.

[Variable]
The default value for in ’s call to .

[Function]
Called under a . Switches the tty to (defaulted as in

) and clears it. The window’s position is left so that TTYIN will be

20.40

REPEAT
READ PRIN2

PRIN1 READBUF
HISTSTR0

HISTSTR1 (
HISTSTR1 (.))

READ READ

READ

TYPEAHEADFLG T LISPXREAD

(TTYINEDIT)
EE

NIL
PRETTYPRINT

PRIN2
PRETTYPRINT

TTYINAUTOCLOSEFLG
TTYINAUTOCLOSEFLG TTYINEDIT

TTYINEDITWINDOW
TTYINEDIT NIL TTYINEDITWINDOW

TTYINPRINTFN
EE TTYINEDIT

(SET.TTYINEDIT.WINDOW)
RESETLST

TTYINEDIT

UNREADBUF UNREADBUF

UNREADBUF

UNREADBUF

UNREADBUF <v alue of

> FILE STAR T END STAR T END

RDTBL

EXPRS WINDO W PRINTFN

WINDO W EXPRS

PRINTFN EXPRS FILE

EXPRS

PRINTFN

WINDO W

PRINTFN

WINDO W

WINDO W

INTERLISP-D DISPLAY-ORIENTED TOOLS

happy with it if you now call TTYIN yourself. Speci�cally, this means positioning
an integral number of lines from the bottom of the window, the way the top- level
tty window normally is.

[Function]
Returns, possibly creating, the scratch�le that TTYIN uses for prettyprinting its
input. The �le pointer is set to zero. Since TTYIN does use this �le, beware of
multiple simultaneous use of the �le.

20.7.8 ?= Handler

In Interlisp, the ?= read macro displays the arguments to the function currently ‘‘in progress’’ in the
typein. Since TTYIN wants you to be able to continue editing the bu�er after a ?=, it processes this
macro specially on its own, printing the arguments below your typein and then putting the cursor back
where it was when ?= was typed. For users who want special treatment of ?=, the following hook exists:

[Variable]
The value of this variable, if non- , is a user function of one argument that is
called when ?= is typed. The argument is the function that ?= thinks it is inside
of. The user function should return one of the following:

Normal ?= processing is performed.

Nothing is done. Presumably the user func tion has done something
privately, per haps diddled some other window, or called
(below).

a list
Treats as the argument list of the function in question, and performs
the normal ?= processing using it.

anything else
The value is printed in lieu of what ?= normally prints.

At the time that ?= is typed, nothing has been ‘‘read’’yet, so you don’t have the normal context you might
expect inside a conventional readmacro. If the user function wants to examine the typed- in arguments
being passed to the fn, however, it can perform , which bundles up everything
between the function and the typing of ?= into a list, which it returns (thus it parallels an arglist;
if ?= was typed immediately after the function name).

[Function]
Does the function/argument printing for ?=. is an argument list,
is a list of actual parameters (from the typein) to match up with args. is
a value of the function ; it defaults to .

20.7.9 Read Macros

When doing input in Interlisp- 10, no Lisp-style read macros are available (but the ’ and control-
Y macros are built in). Principally because of the usefulness of the editor read macros (set by

20.41

(TTYIN.SCRATCHFILE)

TTYIN?=FN
NIL

NIL

T
TTYIN.PRINTARGS

(ARGS .)

(TTYIN.READ?=ARGS)
NIL

(TTYIN.PRINTARGS)

ARGTYPE (ARGTYPE)

READ

STUFF

STUFF

FN AR GS ACTUALS AR GTYPE

AR GS A CTUALS

AR GTYPE

FN

Read Macros

), and the desire for a way of changing the meanings of the display editing commands,
the following exists as a hack:

[Variable]
Value is a set of shorthand inputs useable during input. It is an alist of
entries . If the user types the indicated character (edit
bit is denoted by the 200Q bit in charcode), TTYIN behaves as though the synonym
character had been typed.

Special cases: 0 - the character is ignored; 200Q - pure Edit bit; means to read
another char and turn on its edit bit; 400Q - macro quote: read another char and
use its original meaning. For example, if you have macros ((33Q . 200Q) (30Q
. 33Q)), then Escape (33Q) will behave as an edit pre�x, and control- X (30Q)
will behave like Escape. Note: currently, synonyms for edit commands are not
well-supported, working only when the command is typed with no argument.

Slightly more powerful macros also can be supplied; they are recognized when
a character is typed on an empty line, i.e., as the �rst thing after the prompt.
In this case, the entry is of the form

or , where is a
list that evaluates true. If is a list, it is ed; otherwise it is left
unevaluated. The result of this evaluation (or itself) is treated as follows:

The macro is ignored and the character reads normally, i.e., as though
had never existed.

An integer
A character code, treated as above. Special case: -1 is treated like 0, but
says that the display may have been altered in the evaluation of the macro,
so TTYIN should reset itself appropriately.

Anything else
This TTYIN input is terminated (with a crlf) and returns the value of
‘‘response’’ (turned into a list if necessary). This is the principal use of
this facility. The macro character thus stands for the (possibly computed)
reponse, terminated if necessary with a crlf. The original character is not
echoed.

Interrupt characters, of course, cannot be read macros, as TTYIN never sees them, but any other
characters, even non- control chars, are allowed. The ability to return allows you to have conditional
macros that only apply in speci�ed situations (e.g., the macro might check the prompt or
other contextual variables). To use this speci�cally to do immediate editor read macros, do the following
for each edit command and character you want to invoke it with:

For example, will make linefeed do the
command. Note that this will only activate linefeed at the beginning of a line, not anywhere in the

line. There will probably be a user function to do this in the next release.

Note that putting on would also have the e�ect of returning
from the call so that the editor would do an . However, TTYIN would also return

20.42

SETTERMCHARS

TTYINREADMACROS
READ

(.)

TTYINREADMACROS (T .
) (.)

EVAL

NIL
TTYINREADMACROS

NIL
(LISPXID)

(ADDTOVAR TTYINREADMACROS (’CHARMACRO?)))

(ADDTOVAR TTYINREADMACROS (12Q CHARMACRO? !NX))
!NX

(12Q T . !NX) TTYINREADMACROS
"!NX" READ !NX !NX

CHAR CODE SYNONYM

CHAR CODE

RESPONSE CHAR CODE CONDITION RESPONSE CONDITION

RESPONSE

RESPONSE

CHAR CODE EDITCOM

INTERLISP-D DISPLAY-ORIENTED TOOLS

outside the editor (probably resulting in a u.b.a. error, or convincing DWIM to enter the editor), and
also the clearing of the output bu�er (performed by ?) would not happen.

20.7.10 Assorted Flags

These �ags control aspects of TTYIN’s behavior. Some have already been mentioned. Their initial values
are all . In Interlisp- D, the �ags are all initially .

[Variable]
If true, TTYIN always permits typeahead; otherwise it clears the bu�er for any
but input.

[Variable]
If true, enables the feature whereby ? lists alternative completions from the current
spelling list.

[Variable]
A�ects display editing. When true, TTYIN tries to behave a little more like
EMACS (in very simple ways) than TVEDIT. Speci�cally, it has the following
e�ects currently: (1) all non- edit characters self-insert (i.e. behave as if you’re
always in Insert mode); (2) [D] is the EMACS delete to end of word command.

[Variable]
If true, then when ever you are typing Lisp input and type a right parenthesis/bracket,
TTYIN will brie�y move the cursor to the match ing parenthesis/bracket, assuming
it is still on the screen. The cursor stays there for about 1 second, or un til you
type another charac ter (i.e., if you type fast you’ll never notice it). This feature
was inspired by a similar EMACS feature, and turned out to be pretty easy to
imple ment.

[Variable]
Causes TTYIN to always physically backspace, even if you’re running on a non-
display (not a DM or Heath), rather than print \deletedtext\ (this assumes your
hardcopy terminal or glass tty is capable of backspacing). If TTYINBSFLG is LF,
then in addition to backspacing, TTYIN x’s out the deleted characters as it backs
up, and when you stop deleting, it outputs a linefeed to drop to a new, clean line
before resuming. To save paper, this linefeed operation is not done when only a
single character is deleted, on the grounds that you can probably �gure out what
you typed anyway.

[Variable]
An alist of special responses that will be handled by routines designated by the
programmer. See ‘‘Special Responses’’, below.

[Variable]
[Interlisp- D only] If true, non- inputs are errorset- protected (control- E
traps back to the prompt), otherwise errors propagate upwards. Initially .

[Variable]
[Tenex only] When true, performs mail checking, etc. before most inputs (except
EVALQT inputs, where it is assumed this has already been done, or inputs indented

20.43

CHARMACRO

NIL T

TYPEAHEADFLG

LISPXREAD

?ACTIVATEFLG

EMACSFLG

SHOWPARENFLG

TTYINBSFLG

TTYINRESPONSES

TTYINERRORSETFLG
LISPXREAD

NIL

TTYINMAILFLG

Special Responses

by more than a few spaces). The package must be loaded for this.

[Variable]
If true, enables Escape completion from during READ inputs. Details
below.

(page 15.15) contains words you mentioned recently: functions you have de�ned or edited,
variables you have set or evaluated at the executive level, etc. This happens to be a very convenient list
for context- free escape completion; if you have recently edited a function, chances are good you may
want to edit it again (typing ‘‘EF xx$’’) or type a call to it. If there is no completion for the current
word from , the escape echoes as ‘‘$’’, i.e. nothing special happens; if there is more than
one possible completion, you get beeped. If typed when not inside a word, Escape completes to the
value of , i.e., the last thing you typed that the p.a. ‘‘noticed’’ (setting
to 0 disables this latter feature), except that Escape at the beginning of the line is left alone (it is a p.a.
command).

If you really wanted to enter an escape, you can, of course, just quote it with a control- V, like you can
other control chars.

You may explicitly add words to yourself that wouldn’t get there otherwise. To make this
convenient online the edit command [_] means ‘‘add the current atom to ’’ (you might think
of the command as ‘‘pointing out this atom’’). For example, you might be entering a function de�nition
and want to ‘‘point to’’ one or more of its arguments or prog variables. Giving an argument of zero to
this command will instead remove the indicated atom from .

Note that this feature loses some of its value if the spelling list is too long, for then the completion takes
too long computationally and, more important, there are too many alternative completions for you to get
by with typing a few characters followed by escape. Lisp’s maintenance of the spelling list
keeps the ‘‘temporary’’ section (which is where everything goes initially unless you say otherwise) limited
to atoms, initially 100. Words fall o� the end if they haven’t been used (they are ‘‘used’’
if corrects to one, or you use <escape> to complete one).

20.7.11 Special Responses

There is a facility for handling ‘‘special responses’’ during any non- TTYIN input. This action is
independent of the particular call to TTYIN, and exists to allow you to e�ectively ‘‘advise’’ TTYIN to
intercept certain commands. After the command is processed, control returns to the original TTYIN call.
The facility is implemented via the list .

[Variable]
is a list of elements, each of the form:

is a single atom or list of commands to be recognized;
is ed (if a list), or ed (if an atom) to the command and the rest

of the line. Within this form one can reference the free variables (the
command the user typed) and (the rest of the line). If is the atom

, this means to pass the rest of line as a list; if it is , this means to
pass it as a string; otherwise, the command is only valid if there is nothing else
on the line. If returns the atom , it is not treated as a

20.44

MAILWATCH

TTYINCOMPLETEFLG
USERWORDS

USERWORDS

USERWORDS

LASTWORD TTYINCOMPLETEFLG

USERWORDS
USERWORDS

USERWORDS

USERWORDS

#USERWORDS
FIXSPELL

READ

TTYINRESPONSES

TTYINRESPONSES
TTYINRESPONSES

()

EVAL APPLY
COMMAND

LINE
LINE STRING

IGNORE

COMMANDS RESPONSE- FORM OPTION

COMMANDS RESPONSE-

FORM

OPTION

RESPONSE- FORM

INTERLISP-D DISPLAY-ORIENTED TOOLS

special response (i.e. the input is returned normally as the result of TTYIN).

In MYCIN, the command is handled this way; any time the user types as the �rst
word of input, TTYIN passes the rest of the line to a mycin- de�ned function which prompts for the
text of the comment (recursively using TTYIN with the option). When control returns, TTYIN
goes back and prompts for the original input again. The entry for this is

; is a MYCIN function of one argument (the one- line comment, or
for extended comments).

Suggested use: global commands or options can be added to the toplevel value of . For
more specialized commands, rebind to
inside any module where you want to do this sort of special processing.

Special responses are not checked for during -style input.

20.7.12 Display Types

[This is not relevant in Interlisp- D]

TTYIN determines the type of display by calling , which is initially de�ned to test the
value of the jsys. It returns either (for printing terminals) or a small number giving TTYIN’s
internal code for the terminal type. The types TTYIN currently knows about:

0 = glass tty (capable of deleting chars by backspacing, but little else);

1 = Datamedia;

2 = Heath.

Only the Datamedia has full editing power. has built into it the correct terminal types
for Sumex and Stanford campus 20’s: Datamedia = 11 on tenex, 5 on tops20; Heath = 18 on Tenex,
25 on tops20. You can override those values by setting the variable to be an alist
associating the value with one of these internal codes. For example, Sumex displays correspond to

= [although this is actually compiled into
for speed]. Any display terminal other than Datamedia and Heath can probably safely be assigned to ‘‘0’’
for glass tty.

To add new terminal types, you have to choose a number for it, add new code to TTYIN for it and
recompile. The TTYIN code speci�es what the capabilities of the terminal are, and how to do the primitive
operations: up, down, left, right, address cursor, erase screen, erase to end of line, insert character, etc.

For terminals lacking an Edit key (currently only Datamedias have it), set the variable
to the ascii code of an Edit ‘‘pre�x’’ (i.e. anything typed preceded by the pre�x is considered to have the
edit bit on). If your is 33Q (Escape), you can type a real Escape by typing 3 of them
(2 won’t do, since that means ‘‘Edit-Escape’’, a legitimate argument to another command). You could
also de�ne an Escape synonym with if you wanted (but currently it doesn’t work in
�lename completion). Setting for a terminal that is not equipped to handle the full
range of editing functions (only the Heath and Datamedia are currently so equipped) is not guaranteed
to work, i.e. the display will not always be up to date; but if you can keep track of what you’re doing,
together with an occasional control- R to help out, go right ahead.

20.45

COMMENT COMMENT

TEXT
TTYINRESPONSES (COMMENT

(GRIPE LINE) LIST) GRIPE NIL

TTYINRESPONSES
TTYINRESPONSES (APPEND TTYINRESPONSES)

READ

DISPLAYTERMP
GTTYP NIL

DISPLAYTERMP

DISPLAYTYPES
GTTYP

DISPLAYTYPES ((11 . 1) (18 . 2)) DISPLAYTERMP

EDITPREFIXCHAR

EDITPREFIXCHAR

TTYINREADMACROS
EDITPREFIXCHAR

NEWENTRIES

Display Types

20.46

