
CHAPTER 16

CLISP

The syntax of LISP is very simple, in the sense that it can be described concisely, but not in the sense that
LISP programs are easy to read or write! This simplicity of syntax is achieved by, and at the expense of,
extensive use of explicit structuring, namely grouping through parenthesization. Unlike many languages,
there are no reserved words in LISP such as , , , , etc., nor reserved characters like , , ,

, etc. The only special characters are left and right parentheses and period, which are used for indicating
structure, and space and end- of-line, which are used for delimiting identi�ers. This eliminates entirely the
need for parsers and precedence rules in the LISP interpreter and compiler, and thereby makes program
manipulation of LISP programs straightforward. In other words, a program that ‘‘looks at’’ other LISP
programs does not need to incorporate a lot of syntactic information. For example, a LISP interpreter can
be written in one or two pages of LISP code. It is for this reason that LISP is by far the most suitable,
and frequently used, programming language for writing programs that deal with other programs as data,
e.g., programs that analyze, modify, or construct other programs.

However, it is precisely this same simplicity of syntax that makes LISP programs di�cult to read and write
(especially for beginners). ’Pushing down’ is something programs do very well, and people do poorly. As
an example, consider the following two ‘‘equivalent’’ sentences:

‘‘The rat that the cat that the dog that I owned chased caught ate the cheese.’’

versus

‘‘I own the dog that chased the cat that caught the rat that ate the cheese.’’

Natural language contains many linguistic devices such as that illustrated in the second sentence above
for minimizing embedding, because embedded sentences are more di�cult to grasp and understand than
equivalent non- embedded ones (even if the latter sentences are somewhat longer). Similarly, most high
level programming languages o�er syntactic devices for reducing apparent depth and complexity of a
program: the reserved words and in�x operators used in ALGOL- like languages simultaneously delimit
operands and operations, and also convey meaning to the programmer. They are far more intuitive
than parentheses. In fact, since LISP uses parentheses (i.e., lists) for almost all syntactic forms, there is
very little information contained in the parentheses for the person reading a LISP program, and so the
parentheses tend mostly to be ignored: the meaning of a particular LISP expression for people is found
almost entirely in the , not in the structure. For example, the expression

is recognizable as factorial even though there are �ve misplaced or missing parentheses. Grouping words
together in parentheses is done more for LISP’s bene�t, than for the programmer’s.

CLISP is designed to make Interlisp programs easier to read and write by permitting the user to
employ various in�x operators, statements (page 4.4), and iterative statements (page 4.5), which are
automatically converted to equivalent Interlisp expressions when they are �rst interpreted. For example,
factorial could be written in CLISP:

16.1

IF THEN FOR DO + - =
_

words

(COND (EQ N 0) 1) (T TIMES N FACTORIAL ((SUB1 N)))

IF

Note that this expression would become an equivalent after it had been interpreted once, so that
programs that might have to analyze or otherwise process this expression could take advantage of the
simple syntax.

There have been similar e�orts in other LISP systems. CLISP di�ers from these in that it does not
attempt to the LISP syntax so much as to it. In fact, one of the principal criteria in the
design of CLISP was that users be able to freely intermix LISP and CLISP without having to identify
which is which. Users can write programs, or type in expressions for evaluation, in LISP, CLISP, or a
mixture of both. In this way, users do not have to learn a whole new language and syntax in order to be
able to use selected facilities of CLISP when and where they �nd them useful.

CLISP is implemented via the error correction machinery in Interlisp (see page 15.1). Thus, any expression
that is well-formed from Interlisp’s standpoint will never be seen by CLISP (i.e., if the user de�ned a
function IF, he would e�ectively turn o� that part of CLISP). This means that interpreted programs
that do not use CLISP constructs do not pay for its availability by slower execution time. In fact, the
Interlisp interpreter does not ‘‘know’’ about CLISP at all. It operates as before, and when an erroneous
form is encountered, the interpreter calls an error routine which in turn invokes the Do-What- I-Mean
(DWIM) analyzer which contains CLISP. If the expression in question turns out to be a CLISP construct,
the equivalent Interlisp form is returned to the interpreter. In addition, the original CLISP expression, is
modi�ed so that it the correctly translated Interlisp form. In this way, the analysis and translation
are done only once.

Integrating CLISP into the Interlisp system (instead of, for example, implementing it as a separate
preprocessor) makes possible Do-What- I-Mean features for CLISP constructs as well as for pure LISP
expressions. For example, if the user has de�ned a function named , CLISP would know not
to attempt to interpret the form as an arithmetic in�x operation. (Actually, CLISP would
never get to see this form, since it does not contain any errors.) If the user mistakenly writes

, CLISP would know he meant , and not , by
using the information that is not the name of a variable, and that is the name of
a user function whose spelling is ‘‘very close’’ to that of . Similarly, by using information
about the program’s environment not readily available to a preprocessor, CLISP can successfully resolve
the following sorts of ambiguities:

(1) , where is the name of a variable, means .

(2) , where is the name of a variable but instead is the name of a function,
means , i.e., is ’s argument.

(3) , the name of a function (and not the name of a variable), means
.

(4) cases (1), (2) and (3) with misspelled!

The �rst expression is correct both from the standpoint of CLISP syntax and semantics and the change
would be made without the user being noti�ed. In the other cases, the user would be informed or
consulted about what was taking place. For example, to take an extreme case, suppose the expression

were encountered, where there was both a function named and a variable
named . The user would �rst be asked if were a misspelling of . If he said YES, the
expression would be interpreted as . If he said NO, the user would be asked if

were a misspelling of , i.e., if he intended to mean . If he said YES

16.2

(IF N=0 THEN 1 ELSE N*(FACTORIAL N-1))

COND

replace augment

becomes

GET-PARENT
(GET-PARENT)

(GET-
PRAENT) (GET-PARENT) (DIFFERENCE GET PRAENT)

PRAENT GET-PARENT
GET-PRAENT

(LIST X*FACT N) FACT (LIST (X*FACT) N)

(LIST X*FACT N) FACT not
(LIST X*(FACT N)) N FACT

(LIST X*FACT(N)) FACT (LIST
X*(FACT N))

FACT

(LIST X*FCCT N) FACT
FCT FCCT FCT

(LIST (X*FCT) N)
FCCT FACT X*FCCT N X*(FACT N)

1

2

1

2

CLISP

to this question, the indicated transformation would be performed. If he said NO, the system would then
ask if should be treated as CLISP, since is not the name of a (bound) variable. If he said
YES, the expression would be transformed, if NO, it would be left alone, i.e., as .
Note that we have not even considered the case where is itself a misspelling of a variable name,
e.g., a variable named (as with . This sort of transformation would be considered
after the user said NO to .

Note: Through the discussion above, we speak of CLISP or DWIM asking the user. Actually, if the
expression in question was typed in by the user for immediate execution, the user is simply informed of
the transformation, on the grounds that the user would prefer an occasional misinterpretation rather than
being continuously bothered, especially since he can always retype what he intended if a mistake occurs,
and ask the programmer’s assistant to the e�ects of the mistaken operations if necessary. For
transformations on expressions in user programs, the user can inform CLISP whether he wishes to operate
in or mode. In the former case (most typical) the user will be asked to approve
transformations, in the latter, CLISP will operate as it does on type- in, i.e., perform the transformation
after informing the user.

CLISP can also handle parentheses errors caused by typing or for ‘‘ ’’ or ‘‘ ’’. (On most terminals,
and are the lower case characters for ‘‘ ’’ and ‘‘ ’’, i.e., ‘‘ ’’ and appear on the same key, as do ‘‘ ’’
and .) For example, if the user writes , the parentheses error can be detected and
�xed before the in�x operator is converted to the Interlisp function . CLISP is able to distinguish
this situation from cases like meaning , or , where is the name of a
variable, again by using information about the programming environment. In fact, by integrating CLISP
with DWIM, CLISP has been made su�ciently tolerant of errors that almost everything can be misspelled!
For example, CLISP can successfully translate the de�nition of :

to the corresponding , while making 5 spelling corrections and �xing the parenthesis error.

This sort of robustness prevails throughout CLISP. For example, the iterative statement permits the user
to say things like:

However, the user can also write , , , permute the order of the
operators, e.g., , omit either or both sets of
parentheses, misspell any or all of the operators , , , , , or , or leave out the
word entirely! And, of course, he can also misspell , , or ! In this example, the
only thing the user could not misspell is the �rst , since it speci�es the of the variable of iteration.
The other two instances of could be misspelled.

This question is important because Interlisp users may have programs that employ identi�ers containing
CLISP operators. Thus, if CLISP encounters the expression in a context where either or are not
the names of variables, it will ask the user if is intended to be CLISP, in case the user really does
have a free variable named .

CLISP also contains a facility for converting from Interlisp back to CLISP, so that after running the
above incorrect de�nition of , the user could ‘‘clispify’’the now correct version to obtain

.

16.3

X*FCCT FCCT
(LIST X*FCCT N)

X*FCCT
XFCT GET-PRAENT)

X*FCCT N -> X*(FACT N)

UNDO

CAUTIOUS TRUSTING

8 9 () 8
9 () (8)
9 N*8FACTORIAL N-1

* TIMES
N*8*X (TIMES N 8 X) N*8X 8X

FACTORIAL

(IFF N=0 THENN1 ESLE N*8FACTTORIALNN- 1)

COND

(FOR OLD X FROM M TO N DO (PRINT X) WHILE (PRIMEP X))

OLD (X_M) (OLD X_M) (OLD (X_M))
(DO PRINT X TO N FOR OLD X_M WHILE PRIMEP X)

FOR OLD FROM TO DO WHILE
DO PRINT PRIMEP M N

X name
X

A/B A B
A/B

A/B

FACTORIAL (IF
N=0 THEN 1 ELSE N*(FACTORIAL N-1))

3

3

CLISP Interaction with User

CLISP is well integrated into the Interlisp system. For example, the above iterative statement translates
into an following equivalent Interlisp form using , , , etc. When the interpreter subsequently
encounters this CLISP expression, it automatically obtains and evaluates the translation. Similarly, the
compiler ‘‘knows’’ to compile the translated form. However, if the user s his program,

‘‘knows’’ to print the original CLISP at the corresponding point in his function. Similarly,
when the user edits his program, the editor keeps the translation invisible to the user. If the user modi�es
the CLISP, the translation is automatically discarded and recomputed the next time the expression is
evaluated.

In short, CLISP is not a language at all, but rather a system. It plays a role analagous to that of the
programmer’s assistant (page 8.1). Whereas the programmer’s assistant is an invisible intermediary agent
between the user’s console requests and the Interlisp executive, CLISP sits between the user’s programs
and the Interlisp interpreter.

Only a small e�ort has been devoted to de�ning the core syntax of CLISP. Instead, most of the e�ort has
been concentrated on providing a facility which ‘‘makes sense’’ out of the input expressions using context
information as well as built- in and acquired information about user and system programs. It has been
said that communication is based on the intention of the speaker to produce an e�ect in the recipient.
CLISP operates under the assumption that what the user said was to represent a meaningful
operation, and therefore tries very hard to make sense out of it. The motivation behind CLISP is not
to provide the user with many di�erent ways of saying the same thing, but to enable him to worry less
about the aspects of his communication with the system. In other words, it gives the user a
new degree of freedom by permitting him to concentrate more on the problem at hand, rather than on
translation into a formal and unambiguous language.

DWIM and CLISP are invoked on iterative statements because of the iterative statement is not the
name of a function, and hence generates an error. If the user de�nes a function by the same name as
an i.s. operator, e.g., , , etc., the operator will no longer have the CLISP interpretation when it
appears as of a form, although it will continue to be treated as an i.s. operator if it appears in the
interior of an i.s. To alert the user, a warning message is printed, e.g.,

.

16.1 CLISP INTERACTION WITH USER

Syntactically and semantically well formed CLISP transformations are always performed without informing
the user. Other CLISP transformations described in the previous section, e.g., misspellings of operands,
in�x operators, parentheses errors, unary minus - binary minus errors, all follow the same protocol as
other DWIM transformations (page 15.1). That is, if DWIM has been enabled in mode, or
the transformation is in an expression typed in by the user for immediate execution, user approval is not
requested, but the user is informed. However, if the transformation involves a user program, and DWIM
was enabled in mode, the user will be asked to approve. If he says NO, the transformation is
not performed. Thus, in the previous section, phrases such as ‘‘one of these (transformations) succeeds’’
and ‘‘the transformation would be found’’ etc., all mean if the user is in

However, in certain situations, DWIM will ask for approval even if DWIM is enabled in
mode. For example, the user will always be asked to approve a spelling correction that might also be
interpreted as a CLISP transformation, as in .

16.4

PROG COND GO

PRETTYPRINT
PRETTYPRINT

intended

syntactic

CAR

WHILE TO
CAR

(WHILE DEFINED, THEREFORE
DISABLED IN CLISP)

TRUSTING

CAUTIOUS

LAST-ELL -> LAST-EL

TRUSTING

LAST-ELL -> LAST-EL

4

5

6

4

5

6

CLISP

mode and the error is in a program, the corresponding transformation will be performed only
if the user approves (or defaults by not responding). If the user says NO, the procedure followed is the
same as though the transformation had not been found. For example, if appears in the function

, and is not bound (and no other transformations are found) the user would be asked

If the user approved, would be transformed to , which would then cause a
error in the event that the program was being run (remember the entire discussion also applies to

ing). If the user said , would be left alone.

16.2 CLISP CHARACTER OPERATORS

CLISP recognizes a number of special characters operators, both pre�x and in�x, which are translated
into common expressions. For example, the character is recognized to represent addition, so CLISP
translates the litatom to the form . Note that CLISP is envoked, and this translation
is made, only if an error occurs, such as an unbound atom error or an unde�ned function error for the
perfectly legitamate litatom . Therefore the user may choose not to use these facilities with no penalty,
similar to other CLISP facilities.

The user has a lot of �exability in using CLISP character operators. A list, can always be substituted for
a litatom, and vice versa, without changing the interpretation of a phrase. For example, if the value of

is , and the value of is , then has the same value as
. Note that the �rst expression is a list of elements: the atom ‘‘ ’’, the list ‘‘

’’, the atom ‘‘+’’, and the list ‘‘ ’’, whereas the second expression, , is a list
of only elements: the litatom ‘‘ ’’ and the litatom ‘‘ ’’. Since
is indistinguishable from t t because spaces before or after parentheses
have no e�ect on the Interlisp READ program, to be consistent, extra spaces have no e�ect on atomic
operands either. In other words, CLISP will treat t , t , and t t
the same as .

[CLISP Operator]
[CLISP Operator]
[CLISP Operator]
[CLISP Operator]
[CLISP Operator]

CLISP recognizes , , , , and as the normal arithmetic in�x operators. is
also recognized as the pre�x operator, unary minus. These are converted to ,

(or in the case of unary minus,), , ,
and .

The waiting time on such interactions is three times as long as for simple corrections, i.e., 3* .

If the value of = (initally), the user will not be asked to approve any clisp
transformation. Instead, in those situations where approval would be required, the e�ect is the same as
though the user had been asked and said .

CLISP does not use its own special READ program because this would require the user to explicitly
identify CLISP expressions, instead of being able to intermix Interlisp and CLISP.

16.5

CAUTIOUS

A*B
FOO B A*B [IN
FOO] TREAT AS CLISP ?

A*B (ITIMES A B) U.B.A.
B
DWIMIFY NO A*B

+
A+B (IPLUS A B)

A+B

(FOO X) A (FIE Y) B (LIST (FOO X)+(FIE Y))
(LIST A+B) four LIST (FOO
X) (FIE X) (LIST A+B)

two LIST A+B (LIST (FOO X)+(FIE Y))
(LIST (FOO X) + (FIE Y))

(LIST A+ B) (LIST A +B) (LIST A + B)
(LIST A+B)

+
-
*
/
^

+ - * / ^ -
IPLUS

IDIFFERENCE IMINUS ITIMES IQUOTIENT
EXPT

DWIMWAIT

CLISPHELPFLG NIL T

NO

7

7

CLISP Character Operators

The in denotes integer arithmetic, i.e., converts its arguments
to integers, and returns an integer value. Interlisp also contains �oating point
arithmetic functions as well as mixed arithmetic functions. Floating point arithmetic
functions are used in the translation if one or both of the operands are themselves
�oating point numbers, e.g., translates as . In addition,
CLISP contains a facility for declaring which type of arithmetic is to be used,
either by making a global declaration, or by separate declarations about individual
functions or variables (see page 16.9).

The usual precedence rules apply (although these can be easily changed by the
user), i.e., has higher precedence than so that is the same as ,
and both and are lower than so that is the same as .
Operators of the same precedence group from left to right, e.g., is equivalent
to . Minus is binary whenever possible, i.e., except when it is the �rst
operator in a list, as in or , or when it immediately follows another
operator, as in . Note that grouping with parentheses can always be used
to override the normal precedence grouping, or when the user is not sure how
a particular expression will parse. The complete order of precedence for CLISP
operators is given below.

Note that in front of a number will disappear when the number is read, e.g.,
is indistinguishable from . This means that

will not be interpreted as CLISP, or be converted to .
Similarly, will not be interpreted the same as . To
circumvent this, always type a space between the or and a number if an in�x
operator is intended, e.g., write .

[CLISP Operator]
[CLISP Operator]
[CLISP Operator]
[CLISP Operator]
[CLISP Operator]

These are in�x operators for ‘‘Equal’’, ‘‘Greater Than’’, ‘‘Less Than’’, ‘‘Greater
Than or Equal’’, and ‘‘Less Than or Equal’’.

, , , and are all a�ected by the same declarations as and , with the
initial default to use and .

Note that only single character operators, e.g., , , , etc., can appear in the
of an atom. All other operators must be set o� from identi�ers with spaces.

For example, will not be recognized as CLISP. In some cases, DWIM will
be able to diagnose this situation as a run- on spelling error, in which case after the
atom is split apart, CLISP will be able to perform the indicated transformation.

A number of lisp functions, such as , , , , etc., can also be treated as CLISP in�x
operators. is higher than , and both and are lower than the other in�x operators, so

Currently the complete list is , , , , , , , ,
, , , , , and . New in�x operators can be easily added, as described in page 16.21.

Spelling correction on misspelled in�x operators is peformed using as a spelling
list.

16.6

I IPLUS IPLUS

X+1.5 (FPLUS X 1.5)

* + A+B*C A+(B*C)
* / ^ 2*X^2 2*(X^2)

A/B/C
(A/B)/C

(-A) (-A)
A*-B

+
(FOO X +2) (FOO X 2) (FOO X
+2) (FOO (IPLUS X 2))

(FOO X -2) (FOO X-2)
+ -

(FOO X + 2)

=
GT
LT
GE
LE

GT LT GE LE + *
IGREATERP ILESSP

+ _ =
interior

XLTY

EQUAL MEMBER AND OR
AND OR AND OR

MEMBER MEMB FMEMB ILESSP IGREATERP LESSP GREATERP FGTP
EQ NEQ EQP EQUAL OR AND

CLISPINFIXSPLST

CLISP

is the same as , and is the same as
. All of the in�x predicates have lower precedence than Interlisp forms, since it is

far more common to apply a predicate to two forms, than to use a Boolean as an argument to a function.
Therefore, is translated as , rather than as

. However, the user can easily change this.

[CLISP Operator]
extracts the th element of the list . speci�es the third element of

, or . If is less than zero, this indicates elements counting
from the end of the list; i.e. is the last element of . operators can
be nested, so means the second element of the �rst element of , or

.

The operator can also be used for extracting substructures of records (see page
3.1). Record operations are implemented by replacing expressions of the form

by . Both lower and upper case are acceptable.

is also used to indicate operations in the pattern match facility (page 23.1).

[CLISP Operator]
, returns the th of the list . For example, is ,

and is .

[CLISP Operator]
is used to indicate assignment. For example, translates to . If
does not have a value, and is not the name of one of the bound variables of the

function in which it appears, spelling correction is attempted. However, since this
may simply be a case of assigning an initial value to a new free variable, DWIM
will always ask for approval before making the correction.

In conjunction with and , can also be used to perform a more general
type of assignment, involving structure modi�cation. For example, means
‘‘make the second element of ’’, in Interlisp terms .
Note that the of this operation is the value of , which is ,
rather than . Negative numbers can also be used, e.g., , which translates
to .

The user can indicate he wants and used (undoable version
of and , see page 8.22), or and (fast versions
of and , see page 2.15), by means of CLISP declarations (page
16.9). The initial default is to use and .

is also used to indicate assignment in record operations (translates to
.), and pattern match operations (page 23.1).

has di�erent precedence on the left from on the right. On the left, is a ‘‘tight’’
operator, i.e., high precedence, so that is the same as . On the
right, has broader scope so that is the same as .

On typein, () is equiv alent to set the ‘‘last thing men-

16.7

(X OR Y AND Z) (X OR (Y AND Z)) (X AND Y EQUAL Z) (X
AND (Y EQUAL Z))

(FOO X GT FIE Y) ((FOO X) GT (FIE Y)) (FOO (X
GT (FIE Y)))

:
: FOO:3

FOO (CADDR FOO)
FOO:-1 FOO :

FOO:1:2 FOO
(CADAR FOO)

:

X:FOO (fetch FOO of X)

:

::
: tail FOO::3 (CDDDR FOO)

FOO::-1 (LAST FOO)

_
_ X_Y (SETQ X Y)
X

: :: _
X:2_Y

X be Y (RPLACA (CDR X) Y)
value RPLACA (CDR X)

Y X:-2_Y
(RPLACA (NLEFT X 2) Y)

/RPLACA /RPLACD
RPLACA RPLACD FRPLACA FRPLACD
RPLACA RPLACD

RPLACA RPLACD

_ X:FOO_Y
(replace FOO of X with Y)

_ _
A+B_C A+(B_C)

_ A_B+C A_(B+C)

$_ <esc>_

X N N X

N

X N N X

FORM FORM

8

8

CLISP Character Operators

tioned’’. For example, immediately after examin ing the value of ,
the user could set it by typing followed by a form.

Note that an atom of the form , appearing at the top level of a , will be recognized as
an assignment statement because it will be interpreted as a label by the Interlisp interpreter, and
therefore will not cause an error, so DWIM and CLISP will never get to see it. Instead, one must write

.

[CLISP Operator]
[CLISP Operator]

Angle brackets are used in CLISP to indicate list construction. The appearance of
a ‘‘ ’’ corresponds to a ‘‘ ’’ and indicates that a list is to be constructed containing
all the elements up to the corresponding ‘‘ ’’. For example, translates
to . can be used to indicate that the next expression
is to be inserted in the list as a , e.g., translates to

and to . is used
to indicate that the next expression is to be inserted as a segment, and furthermore,
all list structure to its right in the angle brackets is to be physically attached to
it, e.g., translates to , and to

. Not , which would have the
same value, but would attach to , and not attach either to . Note that ,

, , and need not be separate atoms, for example, may be
written equally well as . Also, arbitrary Interlisp or CLISP forms
may be used within angle brackets. For example, one can write

which translates to . converts
expressions in , , , , , , and
into equivalent CLISP expressions using , , , and .

Note: brackets di�er from other CLISP operators. For example,
translates to even though following , all are
ignored for the rest of the identi�er. (This is true only if a previous unmatched
has been seen, e.g., will print the atom .) Note however that

t is equivalent to .

[CLISP Operator]
CLISP recognizes as a pre�x operator. means when it is the �rst
character in an identi�er, and is ignored when it is used in the interior of an
identi�er. Thus, means , but means

, followed by . This enables users to
have variable and function names with in them (so long as the is not the �rst
character).

Following , all operators are ignored for the rest of the identi�er, e.g., means
, and means , not . To

write , one writes , or . This is one place where
an extra space does make a di�erence.

i.e., is equivalent to . See page 15.15.

16.8

LONGVARIABLENAME
$_

X_Y PROG not
PROG

(X_Y)

<
>

< (
> <A B <C>>

(LIST A B (LIST C)) !
segment <A B ! C> (CONS A

(CONS B C)) <! A ! B C> (APPEND A B (LIST C)) !!

<!! A B> (NCONC1 A B) <!!A !B !C> (NCONC
A (APPEND B C)) (NCONC (APPEND A B) C)

C B A <
! !! > <A B ! C>

< A B !C >
<FOO_(FIE X) !

Y> (CONS (SETQ FOO (FIE X)) Y) CLISPIFY
CONS LIST APPEND NCONC NCONC1 /NCONC /NCONC1

< > ! !!

<A B ’C>
(LIST A B (QUOTE C)) ’ operators

<
(PRINT ’A>B) A>B

<A B ’ C> D> (LIST A B (QUOTE C>) D)

’
’ ’ QUOTE

X=’Y (EQ X (QUOTE Y)) X=CAN’T (EQ
X CAN’T) not (EQ X CAN) (QUOTE T)

’ ’

’ ’*A
(QUOTE *A) ’X=Y (QUOTE X=Y) (EQ (QUOTE X) Y)

(EQ (QUOTE X) Y) Y=’X ’X =Y

(SET LASTWORD)FORM

9

9

CLISP

On typein, (i.e.,) is equivalent to (see
page 15.15). For example, after calling on , the
user could move its de�nition to by typing .

[CLISP Operator]
CLISP recognizes as a pre�x operator meaning . can negate a form, as in

, or ~ , or negate an in�x operator, e.g., is the same
as . Note that means .

When negates an operator, e.g., , , the two operators are treated as a
single operator whose precedence is that of the second operator. When negates
a function, e.g., , it negates the whole form, i.e., .

Order of Prededence of CLISP Operators:

(left precedence)
(unary),

,
, (binary)
(right precedence)

Interlisp forms
, , , , etc.

, , ,
iterative statement operators

16.3 DECLARATIONS

CLISP declarations are used to a�ect the choice of Interlisp function used as the translation of a particular
operator. For example, can be translated as either , , or

, depending on the declaration in e�ect. Similarly can mean ,
, or , and either or . Note that the

choice of function on all CLISP transformations are a�ected by the CLISP declaration in e�ect, i.e.,
iterative statements, pattern matches, record operations, as well as in�x and pre�x operators.

[Function]
Puts into e�ect the declarations in . performs spelling corrections
on words not recognized as declarations. is undoable.

, which would be equivalent to , and would
(probably) cause a error, nor , which would actually move the
de�nition of to , since DWIM and the spelling corrector would never be invoked.

16.9

’$ ’<esc> (QUOTE)
PRETTYPRINT LONGFUNCTION

FOO (MOVD ’$ ’FOO)

~
~ NOT ~

~(ASSOC X Y) X (A ~GT B)
(A LEQ B) ~A=B (EQ (NOT A) B)

~ ~= ~LT
~

(~FOO X Y) (~(FOO X Y))

’
:
_
- ~

^
* /
+ -
_

=

LT GT EQUAL MEMBER

AND
OR
IF THEN ELSEIF ELSE

A+B (IPLUS A B) (FPLUS A B) (PLUS A
B) X:1_Y (RPLACA X Y) (FRPLACA X
Y) (/RPLACA X Y) <!!A B> (NCONC1 A B) (/NCONC1 A B)

(CLISPDEC)
CLISPDEC

CLISPDEC

Not (MOVD $ ’FOO) (MOVD LONGFUNCTION ’FOO)
U.B.A. LONGFUNCTION MOVD($ FOO)

$ FOO

VAL UE-OF-LASTW ORD

DECLST

DECLST

Local Declarations

The user can makes (changes) a global declaration by calling with a list of declarations,
e.g., . Changing a global declaration does not a�ect the speed
of subsequent CLISP transformations, since all CLISP transformation are table driven (i.e., property list),
and global declarations are accomplished by making the appropriate internal changes to CLISP at the time
of the declaration. If a function employs declarations (described below), there will be a slight loss
in e�ciency owing to the fact that for each CLISP transformation, the declaration list must be searched
for possibly relevant declarations.

Declarations are implemented in the order that they are given, so that later declarations override earlier
ones. For example, the declaration speci�es that , , , and be used
in place of , , , and ; the declaration speci�es that be used.
Therefore, the declarations will cause , , , and
to be used.

The initial global declaration is and .

The table below gives the declarations available in CLISP, and the Interlisp functions they indicate:

Declaration Interlisp Functions to be used

or , , , , , ,

, , , , , ,

, , , , , ,

, , , ,

, , , , ,

, , , , , , , ,

, , ,
etc.

corresponding function

16.3.1 Local Declarations

The user can also make local declarations a�ecting a selected function or functions by inserting an
expression of the form immediately following the argument list, i.e., as

of the de�nition. Such local declarations take precedence over global declarations. Declarations
a�ecting selected variables can be indicated by lists, where the �rst element is the name of a variable,
and the rest of the list the declarations for that variable. For example,

speci�es that in this function integer arithmetic be used for computations involving , and

16.10

CLISPDEC
(CLISPDEC ’(FLOATING UNDOABLE))

local

FAST FRPLACA FRPLACD FMEMB FLAST
RPLACA RPLACD MEMB LAST RPLACA RPLACA

(FAST RPLACA RPLACD) FMEMB FLAST RPLACA RPLACD

INTEGER STANDARD

INTEGER FIXED IPLUS IMINUS IDIFFERENCE ITIMES IQUOTIENT ILESSP
IGREATERP

FLOATING FPLUS FMINUS FDIFFERENCE FTIMES FQUOTIENT LESSP
FGREATERP

MIXED PLUS MINUS DIFFERENCE TIMES QUOTIENT LESSP GREATERP

FAST FRPLACA FRPLACD FMEMB FLAST FASSOC

UNDOABLE /RPLACA /RPLACD /NCONC /NCONC1 /MAPCONC /MAPCON

STANDARD RPLACA RPLACD MEMB LAST ASSOC NCONC NCONC1 MAPCONC
MAPCON

RPLACA RPLACD /RPLACA

(CLISP: .)
CADDR

(CLISP: FLOATING (X
INTEGER)) X

DECLST

DECLARA TIONS

10

11

10

11

CLISP

�oating arithmetic for all other computations. The user can also make local record declarations by
inserting a record declaration, e.g., , , etc., in the local declaration
list. In addition, a local declaration of the form is equivalent to having copies of
the global declarations , , and in the local declaration. Local record declarations override global
record declarations for the function in which they appear. Local declarations can also be used to override
the global setting of certain DWIM/CLISP parameters e�ective only for transformations within that
function, by including in the local declaration an expression of the form , e.g.,

.

The expression is converted to a comment of a special form recognized by CLISP. Whenever a
CLISP transformation that is a�ected by declarations is about to be performed in a function, this comment
will be searched for a relevant declaration, and if one is found, the corresponding function will be used.
Otherwise, if none are found, the global declaration(s) currently in e�ect will be used.

Local declarations are e�ective in the order that they are given, so that later declarations can be used to
override earlier ones, e.g., speci�es that , , ,
and be used. An exception to this is that declarations for speci�c variables take precedence of
general, function- wide declarations, regardless of the order of appearance, as in

.

also checks the declarations in e�ect before selecting an in�x operator to ensure that the
corresponding CLISP construct would in fact translate back to this form. For example, if a
declaration is in e�ect, will convert to , but leave as is.
Note that if is ed while a declaration is under e�ect, and then the
declaration is changed to , when is translated back to Interlisp, it will become

.

16.4 CLISP OPERATION

CLISP is a part of the basic Interlisp system. Without any special preparations, the user can include CLISP
constructs in programs, or type them in directly for evaluation (in or format), then, when the
‘‘error’’ occurrs, and DWIM is called, it will destructively transform the CLISP to the equivalent Interlisp
expression and evaluate the Interlisp expression. CLISP transformations, like all DWIM corrections, are
undoable. User approval is not requested, and no message is printed.

However, if a CLISP construct contains an error, an appropriate diagnostic is generated, and the form
is left unchanged. For example, if the user writes , the error diagnostic

would be generated. Similarly, if the user writes
, CLISP knows that is not a valid Interlisp expression, so the error diagnostic

is generated. (For example, the user might have meant to

‘‘involving’’means where the variable itself is an operand. For example, with the declaration
in e�ect, would translate to , i.e., use �oating arithmetic,

even though appears somewhere inside of the operands, whereas would translate to .
If there are declarations involving operands, e.g., , with ,
whichever appears �rst in the declaration list will be used.

This entire discussion also applies to CLISP transformation initiated by calls to DWIM from .

16.11

(RECORD --) (ARRAYRECORD --)
(RECORDS A B C)

A B C

(=)
(PATVARDEFAULT = QUOTE)

CLISP:

(CLISP: FAST RPLACA RPLACD) FMEMB FLAST RPLACA
RPLACD

(CLISP: (X INTEGER)
FLOATING)

CLISPIFY
FLOATING

CLISPIFY (FPLUS X Y) X+Y (IPLUS X Y)
(FPLUS X Y) CLISPIFY FLOATING

INTEGER X+Y (IPLUS X
Y)

EVAL APPLY

(LIST X+Y*) MISSING
OPERAND AT X+Y* IN (LIST X+Y*) (LAST+EL
X) ((IPLUS LAST EL) X)
MISSING OPERATOR IN (LAST+EL X)

(FLOATING
(X INTEGER)) (FOO X)+(FIE X) FPLUS

X X+(FIE X) IPLUS
both X+Y (X FLOATING) (Y INTEGER)

DWIMIFY

VARIABLE VAL UE

12

13

14

15

12

13

14

15

CLISP Operation

say .) Note that if were the name of a de�ned function, CLISP would never see
this form.

Since the bad CLISP transformation might not be CLISP at all, for example, it might be a misspelling
of a user function or variable, DWIM holds all CLISP error messages until after trying other corrections.
If one of these succeeds, the CLISP message is discarded. Otherwise, if all fail, the message is printed
(but no change is made). For example, suppose the user types . CLISP generates
a diagnostic, since is obviously not right. However, since
spelling corrects to , this diagnostic is never printed.

If a CLISP in�x construct is well formed from a syntactic standpoint, but one or both of its operands are
atomic and not bound, it is possible that either the operand is misspelled, e.g., the user wrote for

, or that a CLISP transformation operation was not intended at all, but that the entire expression is
a misspelling. For example, if the user has a variable named , and writes .
Therefore, CLISP computes, but does not actually perform, the indicated in�x transformation. DWIM
then continues, and if it is able to make another correction, does so, and ignores the CLISP interpretation.
For example, with , the transformation would be found.

If no other transformation is found, and DWIM is about to interpret a construct as CLISP for which
one of the operands is not bound, DWIM will ask the user whether CLISP was intended, in this case by
printing

The same sort of procedure is followed with 8 and 9 errors. For example, suppose the user writes
where is not bound. The CLISP transformation is noted, and DWIM proceeds. It next asks the
user to approve . (For example, this would make sense if the user has (or plans
to de�ne) a function named .) If he refuses, the user is asked whether is to be treated as
CLISP. Similarly, if were the name of a variable, and the user writes , he will �rst be
asked to approve , and if he refuses, then be o�ered the
correction.

CLISP also contains provision for correcting misspellings of in�x operators (other than single characters),
words, and i.s. operators. This is implemented in such a way that the user who does not misspell them

is not penalized. For example, if the user writes CLISP does
operate by checking each word to see if it is a misspelling of , , , or , since

this would seriously degrade CLISP’s performance on statements. Instead, CLISP assumes that all
of the words are spelled correctly, and transforms the expression to

. Later, after DWIM cannot �nd any other interpretation for , and using the

Except that CLISP error messages are not printed on type- in. For example, typing will just
produce a message.

For the purpose of ing, ‘‘not bound’’ means no top level value, not on list of bound variables
built up by during its analysis of the expression, and not on , i.e., not previously
seen.

If more than one in�x operator was involved in the CLISP construct, e.g., , or the operation
was an assignment to a variable already noticed, or is (initially), the user will
simply be informed of the correction, e.g., . Otherwise, even if DWIM was
enabled in mode, the user will be asked to approve the correction.

The 8-9 transformation is tried before spelling correction since it is empirically more likely that an
unbound atom or unde�ned function containing an 8 or a 9 is a parenthesis error, rather than a spelling
error.

16.12

(LAST+EL*X) LAST+EL

(R/PLACA X Y)
((IQUOTIENT R PLACA) X Y) R/PLACA
/RPLACA

X+YY
X+Y

LAST-EL (LIST LAST-ELL)

LAST-ELL LAST-ELL -> LAST-EL

LAST-ELL TREAT AS CLISP ?

FOO8*X
FOO8

FOO8*X -> FOO (*X
*X FOO8*X

FOO8 FOOO8*X
FOOO8*X -> FOOO (XX FOOO8 -> FOO8

IF
IF N=0 THEN 1 ELSSE N*(FACT N-1)

not IF THEN ELSE ELSEIF
all IF

IF (COND ((ZEROP N) 1 ELSSE
N*(FACT N-1))) ELSSE

X+*Y
U.B.A. X+*Y

DWIMIFY
DWIMIFY NOFIXVARSLST

X+Y+Z
TREATASCLISPFLG T NIL

X+Y+Z TREATED AS CLISP
TRUSTING

16

17

18

16

17

18

CLISP

fact that this atom originally appeared in an IF statement, DWIM attempts spelling correction, using
for a spelling list. When this is successful, DWIM ‘‘fails’’all the way back to the

original statement, changes to , and starts over. Misspellings of , , , , etc.
are handled similarly.

CLISP also contains many Do-What- I-Mean features besides spelling corrections. For example, the form
would generate a error. However, makes sense, if

the minus is unary, so DWIM o�ers this interpretation to the user. Another common error, especially for
new users, is to write or , where FOO is the name of a function,
instead of . Therefore, whenever an operand that is not bound is also the name of
a function (or corrects to one), the above interpretations are o�ered.

16.5 CLISP TRANSLATIONS

The translation of CLISP character operators and the CLISP word are handled by the CLISP
expression with the corresponding Interlisp expression, and discarding the original CLISP. This is done
because (1) the CLISP expression is easily recomputable (by) and (2) the Interlisp expressions
are simple and straightforward. Another reason for discarding the original CLISP is that it may contain
errors that were corrected in the course of translation (e.g., , , etc.). If the
original CLISP were retained, either the user would have to go back and �x these errors by hand, thereby
negating the advantage of having DWIM perform these corrections, or else DWIM would have to keep
correcting these errors over and over.

Note that is su�ciently fast that it is practical for the user to con�gure his Interlisp system so
that all expressions are automatically ed immediately before they are presented to him. For
example, he can de�ne an edit macro to use in place of which calls on the current expression
before printing it. Similarly, he can inform to call on each expression before
printing it, etc.

Where (1) or (2) are not the case, e.g., with iterative statements, pattern matches, record expressions, etc.
the original CLISP retained (or a slightly modi�ed version thereof), and the translation is stored
elsewhere, usually in the hash array . The interpreter automatically checks this array when

If is , the original CLISP for statements (modi�ed to correct errors) is retained.
See page 16.20.

by the function (page 16.19).

The user can also indicate that he wants the original CLISP retained by embedding it in an expression
of the form , e.g., or . In
such cases, the translation will be stored remotely as described in the text. Furthermore, such expressions
will be treated as CLISP even if in�x and pre�x transformations have been disabled by setting
to (page 16.19). In other words, the user can instruct the system to interpret as CLISP in�x or pre�x
constructs only those expressions that are speci�cally �agged as such. The user can also include CLISP
declarations by writing , e.g.,

. These declarations will be used in place of any CLISP declarations in the function de�nition. Note
this feature provides a way of including CLISP declarations in macro de�nitions.

16.13

(IF
THEN ELSE ELSEIF)

IF ELSSE ELSE AND OR LT GT

(LIST +X Y) MISSING OPERATOR (LIST -X Y)

(LIST X*FOO(Y)) (LIST X*FOO Y)
(LIST X*(FOO Y))

IF replacing

CLISPIFY

FOO_FOOO:1 N*8FOO X)

CLISPIFY
CLISPIFY

P CLISPIFY
PRETTYPRINT CLISPIFY

is
CLISPARRAY

CLISPIFTRANFLG T IF

CLISPTRAN

(CLISP .) (CLISP X:5:3) (CLISP <A B C ! D>)

CLISPFLG
NIL

(CLISP .) (CLISP (CLISP: FLOATING) ...
)

CLISP-EXPRESSION

DECLARA TIONS FORM

19

20

21

22

23

19

20

21

22

23

DWIMIFY

given a form of which is not a function. Similarly, the compiler performs a when given
a form it does not recognize to see if it has a translation, which is then compiled instead of the form.
Whenever the user a CLISP expresson by editing it, the editor automatically deletes its translation
(if one exists), so that the next time it is evaluated or dwimi�ed, the expression will be retranslated. The
function and the edit commands and are available for examining translations (page
16.20). If is , will print the translations instead of the corresponding
CLISP expression (see page 16.20). This can be used for exporting programs to systems that do not
provide CLISP, and to examine translations for debugging purposes.

16.6 DWIMIFY

is e�ectively a preprocessor for CLISP. operates by scanning an expression as though
it were being interpreted, and for each form that would generate an error, calling DWIM to ‘‘�x’’
it. performs DWIM transformations, not just CLISP transformations, so it does spelling
correction, �xes 8-9 errors, handles , etc. Thus the user will see the same messages, and be asked for
approval in the same situations, as he would if the expression were actually run. If DWIM is unable to
make a correction, no message is printed, the form is left as it was, and the analysis proceeds.

knows exactly how the interpreter works. It knows the syntax of s, s,
expressions, s, et al. It knows that the argument of s are not evaluated. It also knows
how variables are bound. In the course of its analysis of a particular expression, builds a list
of the bound variables from the expressions and s that it encounters. It uses this list for
spelling corrections. also knows not to try to ‘‘correct’’ variables that are on this list since they
would be bound if the expression were actually being run. However, note that cannot, a priori,
know about variables that are used freely but would be bound in a higher function if the expression were
evaluated in its normal context. Therefore, will try to ‘‘correct’’ these variables. Similarly,

will attempt to correct forms for which is unde�ned, even when the form is not in error
from the user’s standpoint, but the corresponding function has simply not yet been de�ned.

CLISP translations can also be used to supply an interpretation for function objects, as well as forms,
either for function objects that are used openly, i.e., appearing as of form, function objects that are
explicitly ed, as with arguments to mapping functions, or function objects contained in function
de�nition cells. In all cases, if of the object is not or , the interpreter and compiler
will check .

If the value of is , will also (re)translate any expressions which have
translations stored remotely. See page 16.16.

The user can inform that an function evaluate its arguments (presumably by
direct calls to), by including on its property list the property with value or a list which
contains the atom .

The user can inform that a particular function or construct binds variables by including the
atom on the property for of the form. In this case, assumes that of
the form is the variable list, i.e. a list of atoms, or lists of the form . , ,

, and are handled in this fashion.

rebinds to , so that if the user is not at the terminal when dwimifying
(or compiling), spelling corrections will not be performed.

16.14

CAR GETHASH

changes

PPT PPT CLISP:
PRETTYTRANFLG T PRETTYPRINT

DWIMIFY DWIMIFY

DWIMIFY all
F/L

DWIMIFY PROG SELECTQ LAMBDA
SETQ NLAMBDA

DWIMIFY
LAMBDA PROG

DWIMIFY
DWIMIFY

DWIMIFY
DWIMIFY CAR

CAR
APPLY

CAR LAMBDA NLAMBDA
CLISPARRAY

CLISPRETRANFLG T DWIMIFY

DWIMIFY NLAMBDA does
EVAL INFO EVAL

EVAL

DWIMIFY
BINDS INFO CAR DWIMIFY CADR

() LAMBDA NLAMBDA
PROG RESETVARS

DWIMIFY FIXSPELLDEFAULT N

VAL VAL UE

24

25

24

25

CLISP

will also inform the user when it encounters an expression with too arguments, because
such an occurrence, although does not cause an error in the Interlisp interpreter, nevertheless is frequently
symptomatic of a parenthesis error. For example, if the user wrote instead
of , will print:

will also check to see if a label contains a clisp character, and if so, will alert the user
by printing the message , followed by the label. The label will be
treated as CLISP.

Note that in most cases, an attempt to transform a form that is already as the user intended will have
no e�ect (because there will be nothing to which that form could reasonably be transformed). However,
in order to avoid needless calls to DWIM or to avoid possible confusion, the user can inform

to attempt corrections or transformations on certain functions or variables by adding them to the list
or respectively. Note that the user could achieve the same e�ect by

simply setting the corresponding variables, and giving the functions dummy de�nitions.

will never attempt corrections on global variables , i.e., variables that are a member of the
list , or have the property with value , on their property list. Similarly,

will not attempt to correct variables declared to be in block declarations or via
expressions in the function body. The user can also declare variables that are simply used

freely in a function by using the declaration.

and (used to several functions) maintain two internal lists of those
functions and variables for which corrections were unsuccessfully attempted. These lists are initialized to
the values of and . Once an attempt is made to �x a particular function
or variable, and the attempt fails, the function or variable is added to the corresponding list, so that
on subsequent occurrences (within this call to or), no attempt at correction is
made. For example, if calls several times, and is unde�ned at the time is dwimi�ed,

will not bother with after the �rst occurrence. In other words, once ‘‘notices’’
a function or variable, it no longer attempts to correct it. and also ‘‘notice’’
free variables that are set in the expression being processed. Moreover, once ‘‘notices’’ such
functions or variables, it subsequently treats them the same as though they were actually de�ned or set.

Note that these internal lists are local to each call to and , so that if a function
containing , a misspelled call to , is ed before is de�ned or mentioned, if the
function is ed again after has been de�ned, the correction will be made.

The user can undo selected transformations performed by , as described on page 8.11.

[Function]
Performs all DWIM and CLISP corrections and transformations on that would
be performed if were run, and prints the result unless = .

unless = (initially).

unless = (initially), or the label is a member of .

16.15

DWIMIFY many

(CONS (QUOTE FOO X))
(CONS (QUOTE FOO) X) DWIMIFY

POSSIBLE PARENTHESIS ERROR IN
(QUOTE FOO X)
TOO MANY ARGUMENTS (MORE THAN 1)

DWIMIFY PROG
SUSPICIOUS PROG LABEL PROG not

DWIMIFY
not
NOFIXFNSLST NOFIXVARSLST

DWIMIFY
GLOBALVARS GLOBALVAR T

DWIMIFY SPECVARS
DECLARE

USEDFREE

DWIMIFY DWIMIFYFNS DWIMIFY

NOFIXFNSLST NOFIXVARSLST

DWIMIFY DWIMIFYFNS
FOO FIE FIE FOO

DWIMIFY FIE DWIMIFY
DWIMIFY DWIMIFYFNS

DWIMIFY

DWIMIFY DWIMIFYFNS
FOOO FOO DWIMIFY FOO
DWIMIFY FOO

DWIMIFY

(DWIMIFY)

T

DWIMCHECK#ARGSFLG NIL T

DWIMCHECKPROGLABELSFLG NIL T NOFIXVARSLST

X QUIETFL G L

X

X QUIETFL G

DWIMIFY

If is an atom and is , is treated as the name of a function, and its entire
de�nition is dwimi�ed. If is a list or is not , is the expression to be
dwimi�ed. If is not , it is the edit push- down list leading to , and is used
for determining context, i.e., what bound variables would be in e�ect when was
evaluated, whether is a form or sequence of forms, e.g., a clause, etc.

If is an iterative statement and is , will also print the translation,
i.e., what is stored in the hash array.

��� [NLambda NoSpread Function]
Dwimi�es each of the functions given. If only one argument is given, it is evalued.
If its value is a list, the functions on this list are dwimi�ed. If only one argument
is given, it is atomic, its value is not a list, and it is the name of a known
�le, will operate on , e.g.

will dwimify every function in the �le .

Every 30 seconds, prints the name of the function it is processing,
a la .

Value is a list of the functions dwimi�ed.

[Variable]
List of functions that will not try to correct.

[Variable]
List of variables that will not try to correct.

[Variable]
If , will not per form any spelling corrections. Initially .
is reset to when compiling func tions whose de�nitions are obtained from a �le,
as opposed to being in core.

[Variable]
If , will not ask the user for approval of any CLISP transformations.
Instead, in those situations where approval would be required, the e�ect is the
same as though the user had been asked and said . Initially .

[Variable]
If , is called before compiling an expression. Initially .

[Variable]
If , causes to check for too many arguments in a form. Initially .

[Variable]
If , causes to check whether a label contains a CLISP character.
Initially .

[Variable]
If , suppresses all error messages. Initially .

[Variable]
If , informs to (re)translate all expressions which have remote

16.16

NIL
NIL

NIL

COND

NIL DWIMIFY

(DWIMIFYFNS)

DWIMIFYFNS (FILEFNSLST) (DWIMIFYFNS
FOO.LSP) FOO.LSP

DWIMIFYFNS
PRETTYPRINT

NOFIXFNSLST
DWIMIFY

NOFIXVARSLST
DWIMIFY

NOSPELLFLG
T DWIMIFY NIL NOSPELLFLG

T

CLISPHELPFLG
NIL DWIMIFY

NO T

DWIMIFYCOMPFLG
T DWIMIFY NIL

DWIMCHECK#ARGSFLG
T DWIMIFY T

DWIMCHECKPROGLABELSFLG
T DWIMIFY PROG

T

DWIMESSGAG
T DWIMIFY NIL

CLISPRETRANFLG
T DWIMIFY

X L X

X L X

L X

X

X

X L

FN 1 FN N

FN 1

26

27

26

27

CLISP

translations in the CLISP hash array. Initially .

16.7 CLISPIFY

converts Interlisp expressions to CLISP. Note that the expression given to need
have originally been input as CLISP, i.e., can be used on functions that were written before
CLISP was even implemented. is cognizant of declaration rules as well as all of the precedence
rules. For example, will convert into , but

into . handles such cases by �rst ing the expression.
also knows how to handle expressions consisting of a mixture of Interlisp and CLISP, e.g.,

is converted to , but to . converts
calls to the six basic mapping functions, , , , , , and , into
equivalent iterative statements. It also converts certain easily recognizable internal loops to the
corresponding iterative statements. can convert all iterative statements input in CLISP back
to CLISP, regardless of how complicated the translation was, because the original CLISP is saved.

is not destructive to the original Interlisp expression, i.e., produces a new expression
without changing the original. will not convert expressions appearing as arguments to

functions.

Note: Disabling a CLISP operator with (page 16.19) will also disable the corresponding
transformation. Thus, if is ‘‘turned o�’’, will not transform to , nor vice

versa.

[Function]
Clispi�es . If is an atom and is , is treated as the name of a function,
and its de�nition (or property) is clispi�ed. After has �nished,
is rede�ned (using) with its new CLISP de�nition. The value of
is . If is atomic and not the name of a function, spelling correction is attempted.
If this fails, an error is generated.

If is a list, or is not , itself is the expression to be clispi�ed. If is not
, it is the edit push- down list leading to and is used to determine context

as with , as well as to obtain the local declarations, if any. The value of
is the clispi�ed version of .

��� [NLambda NoSpread Function]
Like (page 16.16) except calls instead of .

The new expression may however contain some ‘‘pieces’’ of the original, since attempts to
minimize the number of es by not copying structure whenever possible.

Except for those functions whose property is or contains the atom . also contains
built in information enabling it to process special forms such as , , etc. If the
property is or contains the atom , will never create an atom (by packing) at the top
level of the expression. is handled in this fashion.

16.17

NIL

CLISPIFY CLISPIFY not
CLISPIFY

CLISPIFY
CLISPIFY (IPLUS A (ITIMES B C)) A+B*C (ITIMES

A (IPLUS B C)) A*(B+C) CLISPIFY DWIMIFY
CLISPIFY
(IPLUS A B*C) A+B*C (ITIMES A B+C) (A*(B+C)) CLISPIFY

MAP MAPC MAPCAR MAPLIST MAPCONC MAPCON
PROG

CLISPIFY

CLISPIFY CLISPIFY
CLISPIFY

NLAMBDA

CLDISABLE
CLISPIFY _ A_B (SETQ A B)

(CLISPIFY)
NIL

EXPR CLISPIFY
/PUTD CLISPIFY

NIL
NIL

DWIMIFY
CLISPIFY

(CLISPIFYFNS)
DWIMIFYFNS CLISPIFY DWIMIFY

CLISPIFY
CONS

INFO EVAL CLISPIFY
PROG SELECTQ INFO

LABELS CLISPIFY
PROG

X L

X X L X

X

X X

X L X L

X

X

FN 1 FN N

CLISPIFY

[Variable]
A�ects ’s handling of forms beginning with , , ��� , as
well as pattern match and record expressions. If is , these are not
transformed into the equivalent expressions. This will prevent from
constructing any expression employing a in�x operator, e.g., will not
be transformed to . If is , will convert to notation
only when the argument is atomic or a simple list (a function name and one atomic
argument). If is , will convert to expressions whenever
possible.

is initially .

[Variable]
If , will remove parentheses in certain cases from simple forms,
where ‘‘simple’’ means a function name and one or two atomic arguments. For
example, will to

. However, if is set to , will produce
. Note that regardless of the setting of this �ag, the expression can

be input in either form.

is initially .

[Variable]
a�ects the treatment of in�x operators with atomic operands.

If is , will pack these into single atoms, e.g.,
becomes . If is ,

no packing is done, e.g., the above becomes t t t t .

is initially .

[Variable]
If , causes the function , which should be a function of one
argument, to be called on each form (list) not otherwise recognized by .
If a non- value is returned, it is treated as the clispi�ed form. Initially

Note that must be both set and de�ned to use this feature.

[Variable]
Suppose the user has variables named , , and . If were to convert

to , would not translate back correctly to
, since it would be the name of a variable, and therefore would not cause

an error. The user can prevent this from happening by adding to the list
. Then, would to t t .

Note that ’s appearance on would enable DWIM and
CLISP to decode as ; is used only by

. Thus, if an identi�er contains a CLISP character, it should always be
separated (with spaces) from other operators. For example, if is a variable, the
user should write in CLISP as t , not . In
general, it is best to avoid use of identi�ers containing CLISP character operators

16.18

CL:FLG
CLISPIFY CAR CDR CDDDDR

CL:FLG NIL
: CLISPIFY

: (CADR X)
X:2 CL:FLG T CLISPIFY :

CL:FLG ALL CLISPIFY :

CL:FLG T

CLREMPARSFLG
T CLISPIFY

(COND ((ATOM X) --)) CLISPIFY (IF ATOM X THEN --
) CLREMPARSFLG NIL CLISPIFY (IF (ATOM
X) THEN --)

CLREMPARSFLG NIL

CLISPIFYPACKFLG
CLISPIFYPACKFLG

CLISPIFYPACKFLG T CLISPIFY
(IPLUS A (ITIMES B C)) A+B*C CLISPIFYPACKFLG NIL

A + B * C

CLISPIFYPACKFLG T

CLISPIFYUSERFN
T CLISPIFYUSERFN

CLISPIFY
NIL NIL

CLISPIFYUSERFN

FUNNYATOMLST
A B A*B CLISPIFY

(ITIMES A B) A*B A*B (ITIMES A
B)

A*B
FUNNYATOMLST (ITIMES A B) CLISPIFY A * B

A*B FUNNYATOMLST not
A*B+C (IPLUS A*B C) FUNNYATOMLST

CLISPIFY
X*

(SETQ X*) X* _ X*_FORM FORM FORM

CLISP

as much as possible.

16.8 MISCELLANEOUS FUNCTIONS AND VARIABLES

[Variable]
If set to , disables all CLISP in�x or pre�x transformations (but does not a�ect

/ / statements, or iterative statements).

If = , CLISP trans formations are per formed only on expres-
sions that are typed in for evalua tion, i.e., not on user programs.

If = , CLISP transformations are performed on all expressions.

The initial value for is . ing anything will cause
to be set to .

[Variable]
A list of the operators that can appear in the interior of an atom. Currently

.

[Variable]
A bit table of the characters on used for calls to (page
2.31). is initialized by performing

.

[Variable]
A list of in�x operators used for spelling correction.

[Variable]
Hash array used for storing CLISP translations. is checked by

and on erroneous forms before calling DWIM, and by
the compiler.

[Function]
Gives the translation by storing (key , value) in the hash array

. is called for all CLISP translations, via a non- linked,
external function call, so it can be advised.

[Function]
Puts into e�ect the declarations in (see page 16.9). performs
spelling corrections on words not recognized as declarations. is
undoable.

[Function]
Disables the CLISP operator . For example, makes be
just another character. can be used on all CLISP operators, e.g.,
in�x operators, pre�x operators, iterative statement operators, etc. is

16.19

CLISPFLG
NIL

IF THEN ELSE

CLISPFLG TYPE-IN

CLISPFLG T

CLISPFLG T CLISPIFY CLISPFLG
T

CLISPCHARS
(+ -

* / ^ ~ ’ = _ : < > +- ~= @ !)

CLISPCHARRAY
CLISPCHARS STRPOSL

CLISPCHARRAY (SETQ CLISPCHARRAY
(MAKEBITTABLE CLISPCHARS))

CLISPINFIXSPLST

CLISPARRAY
CLISPARRAY

FAULTEVAL FAULTAPPLY

(CLISPTRAN)

CLISPARRAY CLISPTRAN

(CLISPDEC)
CLISPDEC

CLISPDEC

(CLDISABLE)
(CLDISABLE ’-) -

CLDISABLE
CLDISABLE

X TRAN

X TRAN X TRAN

DECLST

DECLST

OP

OP

Miscellaneous Functions and Variables

undoable.

Note: Simply removing a character operator from will prevent it
from being treated as a CLISP operator when it appears as part of an atom, but it
will continue to be an operator when it appears as a separate atom, e.g. (

) vs .

[Variable]
A�ects handling of translations of | | statements (see page 4.4). If ,
the translations are stored elsewhere, and the (modi�ed) CLISP retained. If ,
the corresponding expression replaces the CLISP. Initially .

[Variable]
If non- , causes (and there fore and) to
selected func tion de�nitions before print ing them accord ing to the following inter-
preta tions of :

Clispify all functions.

or Clispify all functions currently de�ned as s.

Clispify all functions marked as having been changed.

a list Clispify all functions in that list.

is (temporarily) reset to when is called with
the option , and reset to when the �le being dumped has the
property value . is initially .

Note: If is non- , and the only trans formation per-
formed by are well formed trans formations, i.e., no spelling correc-
tions, the func tion will be marked as changed, since it would only have to be
re-clispi�ed and re-prettyprinted when the �le was written out.

[Variable]
If , causes to print translations instead of CLISP expressions.
This is useful for exporting to a LISP system that does not have CLISP.

is (temporarily) reset to when is called with the
option . is initially .

[NLambda NoSpread Function]
Both a function and an edit macro for prettyprinting translations. It performs a

after �rst resetting to , thereby causing any translations to
be printed instead of the corresponding CLISP.

[Editor Command]
Edit macro that obtains the translation of the correct expression, if any, from

, and calls on it.

[Editor Command]
Edit macro. Replaces current expression with ed current expression.
Current expression can be an element or tail.

16.20

CLISPCHARS

FOO +
X FOO+X

CLISPIFTRANFLG
IF THEN ELSE T

NIL
COND T

CLISPIFYPRETTYFLG
NIL PRETTYPRINT PP MAKEFILE CLISPIFY

CLISPIFYPRETTYFLG

ALL

T EXPRS EXPR

CHANGES

CLISPIFYPRETTYFLG T MAKEFILE
CLISPIFY CHANGES

FILETYPE CLISP CLISPIFYPRETTYFLG NIL

CLISPIFYPRETTYFLG NIL
DWIM CLISP

not

PRETTYTRANFLG
T PRETTYPRINT

PRETTYTRANFLG T MAKEFILE
NOCLISP PRETTYTRANFLG NIL

(PPT)

PP PRETTYTRANFLG T

CLISP:

CLISPARRAY EDITE

CL
CLISPIFY

X

CLISP

[Editor Command]
Edit macro. s current expression, which can be an element (atom or list)
or tail.

Both and can be called when the current expression is either an element or a tail and will work
properly. Both consult the declarations in the function being edited, if any, and both are undoable.

[Function]
If = , makes the necessary internal modi�cations so that

will use lower case versions of , , , , , , and
all i.s. operators. This produces more readable output. Note that the user can
always type in upper or lower case (or a combination), regardless of the
action of . If = , will use uppercase versions of

, , et al. The value of is its previous ‘‘setting’’. is
undoable. The initial setting for is .

16.9 CLISP INTERNAL CONVENTIONS

CLISP is almost entirely table driven by the property lists of the corresponding in�x or pre�x operators.
For example, much of the information used for translating the in�x operator is stored on the property
list of the litatom ‘‘ ’’. Thus it is relatively easy to add new in�x or pre�x operators or change old ones,
simply by adding or changing selected property values. (There some built in information for handling
minus, , , and , i.e., the user could not himself add such ‘‘special’’ operators, although he can disable
or rede�ne them.)

Global declarations operate by changing the and properties of the appropriate
operators.

[Property Name]
The property value of the property is the precedence number of the
operator: higher values have higher precedence, i.e., are tighter. Note that the
actual value is unimportant, only the value relative to other operators. For example,

for , , and are 14, 6, and 4 respectively. Operators with the
same precedence group left to right, e.g., also has precedence 4, so is

.

An operator can have a di�erent left and right precedence by making the value
of be a dotted pair of two numbers, e.g., of is

. In this case, is the left precedence, and the right, i.e., is used
when comparing with operators on the , and with operators on the .
For example, is parsed as because the left precedence
of is 8, which is higher than that of , which is 4. The right precedence of is
-12, which is lower than that of , which is 2.

If the property for any operator is removed, the corresponding CLISP
transformation is disabled, as well as the inverse transformation.

[Property Name]
The value of property must be for unary operators or brackets. The

16.21

DW
DWIMIFY

CL DW

(LOWERCASE)
T LOWERCASE

CLISPIFY AND OR IF THEN ELSE ELSEIF

either
LOWERCASE NIL CLISPIFY

AND OR LOWERCASE LOWERCASE
LOWERCASE T

+
+

is
: ’ ~

LISPFN CLISPINFIX

CLISPTYPE
CLISPTYPE

CLISPTYPE : ^ *
/ A/B*C

(A/B)*C

CLISPTYPE CLISPTYPE _ (8 .
-12) CAR CDR CAR

left CDR right
A*B_C+D A*(B_(C+D))

_ * _
+

CLISPTYPE
CLISPIFY

UNARYOP
UNARYOP T

FL G

FL G

FL G

CLISP Internal Conventions

operand is always on the right, i.e., unary operators or brackets are always pre�x
operators.

[Property Name]
The value of property is if the operator has lower precedence
than Interlisp forms, e.g., , , , etc. For example,
parses as . If the property were removed from
the property list of , would parse as .

[Property Name]
The value of the property is the name of the function to which the in�x
operator translates. For example, the value of for is , for ,
etc. If the value of the property is , the in�x operator itself is also
the function, e.g., , , .

[Property Name]
If has a property , then translates to

. For example, if the user makes be an in�x operator, e.g. , by putting
appropriate and properties on the property list of then he
can also make followed by translate to , e.g., to ,
by putting on the property list of under the property . Putting
the list on the property list of under property will enable

forms to back to ’s.

[Property Name]
The value of this property is the CLISP in�x to be used in ing. This
property is stored on the property list of the corresponding Interlisp function, e.g.,
the value of property for is , for is etc.

[Property Name]
Appears on the property list of clisp operators which can appear as of a form,
such as , , , iterative statement operators, etc. Value of property
is of the form , where is the lowercase version of the
operator, and is its type, e.g. , , , etc.

can also be the name of a function. When the atom appears as
of a form, the function is applied to the form and the result taken as the correct
form. In this case, the function should either physically change the form, or call

(page 16.19) to store the translation.

As an example, to make be an in�x character operator meaning , the user could do the following:

16.22

BROADSCOPE
BROADSCOPE T

LT EQUAL AND (FOO X AND Y)
((FOO X) AND Y) BROADSCOPE

AND (FOO X AND Y) (FOO (X AND Y))

LISPFN
LISPFN

LISPFN ^ EXPT ’ QUOTE
LISPFN NIL

AND OR EQUAL

SETFN
FOO SETFN FIE (FOO --)_X (FIE --

X) ELT #
CLISPTYPE LISPFN #

_ SETA X#N_Y (SETA X N Y)
SETA ELT SETFN

(ELT) SETA SETFN
SETA CLISPIFY ELT

CLISPINFIX
CLISPIFY

CLISPINFIX EXPT ^ QUOTE ’

CLISPWORD
CAR

FETCH REPLACE IF
(.)

FORWORD IFWORD RECORDWORD

CAR

CLISPTRAN

& OR

_(PUTPROP ’& ’CLISPTYPE (GETPROP ’OR ’CLISPTYPE))
_(PUTPROP ’& ’LISPFN ’OR)
_(PUTPROP ’& ’BROADSCOPE T)
_(PUTPROP ’OR ’CLISPINFIX ’&)
_(SETQ CLISPCHARS (CONS ’& CLISPCHARS))
_(SETQ CLISPCHARRAY (MAKEBITTABLE CLISPCHARS))

KEYW ORD NAME NAME

KEYW ORD

KEYW ORD

