
CHAPTER 10

BREAKING, TRACING, AND ADVISING

It is frequently useful to be able to modify the behavior of a function without actually editing its de�nition.
Interlisp provides several di�erent facilities for doing this. By ‘‘breaking’’ a function, the user can cause
breaks to occur at various times in the running of an incomplete program, so that the program state can
be inspected. ‘‘Tracing’’ a function causes information to be printed every time the function is entered or
exited. These are very useful debugging tools.

‘‘Advising’’ is a facility for specifying longer- term function modi�cations. Even system functions can be
changed through advising.

10.1 BREAKING FUNCTIONS AND DEBUGGING

Debugging a collection of LISP functions involves isolating problems within particular functions and/or
determining when and where incorrect data are being generated and transmitted. In the Interlisp system,
there are three facilities which allow the user to (temporarily) modify selected function de�nitions so that
he can follow the �ow of control in his programs, and obtain this debugging information. All three
rede�ne functions in terms of a system function, (see page 9.11).

modi�es the de�nition of a function , so that whenever is called and a break condition
(de�ned by the user) is satis�ed, a function break occurs. The user can then interrogate the state of the
machine, perform any computation, and continue or return from the call.

modi�es a de�nition of a function so that whenever is called, its arguments (or some other
values speci�ed by the user) are printed. When the value of is computed it is printed also. (
is a special case of).

allows the user to insert a breakpoint an expression de�ning a function. When the
breakpoint is reached and if a break condition (de�ned by the user) is satis�ed, a temporary halt occurs
and the user can again investigate the state of the computation.

The following two examples illustrate these facilities. In the �rst example, the user traces the function
. rede�nes so that it print its arguments and value, and then goes on

with the computation. When an error occurs on the �fth recursion, a full interactive break occurs. The
situation is then the same as though the user had originally performed instead of

, and the user can evaluate various Interlisp forms and direct the course of the
computation. In this case, the user examines the variable , and instructs to return as the
value of this cell to . The rest of the tracing proceeds without incident. The user would then
presumably edit to change to .

10.1

BREAK1

BREAK

TRACE
TRACE

BREAK

BREAKIN inside

FACTORIAL TRACE FACTORIAL

BREAK(FACTORIAL)
TRACE(FACTORIAL)

N BREAK1 1
FACTORIAL

FACTORIAL L 1

_PP FACTORIAL

(FACTORIAL

FN FN

FN FN

FN

Breaking Functions and Debugging

In the second example, the user has constructed a non- recursive de�nition of . He uses
to insert a call to just after the label . This break is to occur only on the

last two iterations, when is less than . When the break occurs, the user tries to look at the value of
, but mistakenly types . The break is maintained, however, and no damage is done. After examining
and the user allows the computation to continue by typing . A second break occurs after the next

iteration, this time with = . When this break is released, the function returns its value of
.

10.2

[LAMBDA (N)
(COND

((ZEROP N
L)

(T (ITIMES N (FACTORIAL (SUB1 N])
FACTORIAL
_TRACE(FACTORIAL)
(FACTORIAL)
_FACTORIAL(4)

FACTORIAL:
N = 4

FACTORIAL:
N = 3

FACTORIAL:
N = 2

FACTORIAL:
N = 1

FACTORIAL:
N = 0

U.B.A.
L
(FACTORIAL BROKEN)
:N
0
:RETURN 1

FACTORIAL = 1
FACTORIAL = 1

FACTORIAL = 2
FACTORIAL = 6

FACTORIAL = 24
24
_

FACTORIAL
BREAKIN BREAK1 PROG LOOP

N 2
N NN
N M OK

N 0 FACTORIAL
120

_PP FACTORIAL
(FACTORIAL

[LAMBDA (N)

BREAKING, TRACING, AND ADVISING

Note: and can also be used on CLISP words which appear as of form, e.g. ,
, , , , etc., even though these are not implemented as functions. For conditional

breaking, the user can refer to the entire expression via the variable , e.g.
.

[Function]
Sets up a break on the function ; returns . If is not de�ned, returns

.

rede�nes as a call to (page 9.11), with an equivalent de�nition
of as , and , , as , , . Puts a

de�ned with the original de�nition of on the property list of under
the property . Puts on the property list of
under the property (for use in conjunction with). Adds to
the front of the list .

If is non- atomic and of the form , breaks every call

10.3

(PROG ((M 1))
LOOP (COND

((ZEROP N)
(RETURN M)))

(SETQ M (ITIMES M N))
(SETQ N (SUB1 N))
(GO LOOP])

FACTORIAL
_BREAKIN(FACTORIAL (AFTER LOOP) (ILESSP N 2]
SEARCHING...
FACTORIAL
_FACTORIAL(5)

((FACTORIAL) BROKEN)
:NN
U.B.A.
NN
(FACTORIAL BROKEN AFTER LOOP)
:N
1
:M
120
:OK
(FACTORIAL)

((FACTORIAL) BROKEN)
:N
0
:OK
(FACTORIAL)
120
_

BREAK TRACE CAR FETCH
REPLACE IF FOR DO

EXP BREAK ((FOR (MEMB
’UNTIL EXP)))

(BREAK0)
(

NOT DEFINED)

BREAK0 BREAK1
BRKEXP

GENSYM
BROKEN (BREAK0)

BRKINFO REBREAK
BROKENFNS

(IN) BREAK0

FN WHEN COMS _ _

FN FN FN FN

FN

FN WHEN FN COMS BRKWHEN BRKFN BRK COMS

FN FN

WHEN COMS FN

FN

FN FN1 FN2

1

1

Breaking Functions and Debugging

to from within . This is useful for breaking on a function that is called
from many places, but where one is only interested in the call from a speci�c
function, e.g., , , etc. It is similar to

described below, but can be performed even when is compiled or
blockcompiled, whereas only works on interpreted functions. If is
not found in , returns the value .

breaks one function another by �rst calling a function which changes
the name of wherever it appears inside of to that of a new function,

, which is initially given the same function de�nition as . Then
proceeds to break on exactly as described above. In addition to
breaking and adding to the list ,
adds to the property value for the property on the property
list of and puts on the property list of under the
property . This will enable to recognize what changes have been
made and restore the function to its original state.

If is nonatomic and not of the above form, is called for each member
of using the same values for , , and . This distributivity permits
the user to specify complicated break conditions on several functions. For example,

will break on , , , and
.

If is non- atomic, the value of is a list of the functions broken.

[NLambda NoSpread Function]
Nlambda nospread func tion. For each atomic argument, it per forms

. For each list, it per forms . For ex-
ample, is equiv alent to

and .

[NLambda NoSpread Function]
Nlambda nospread function. For each atomic argument, it performs

For each list argument, is the function to be traced, and the forms the
user wishes to see, i.e., performs:

For example, will cause both and to be
traced. All the arguments of will be printed; only the value of will be
printed for . In the special case that the user wants to see the value,

The �ag is checked for in and causes the message ‘‘ ’’ to be printed instead
of .

10.4

(RPLACA IN FOO) (PRINT IN FIE)
BREAKIN

BREAKIN
BREAK0 (NOT FOUND IN)

BREAK0 inside
-

IN- BREAK0
-IN-

-IN- -IN- BROKENFNS BREAK0
NAMESCHANGED

(.) -IN-
ALIAS UNBREAK

BREAK0

(BREAK0 ’(FOO1 ((PRINT PRIN1) IN (FOO2 FOO3)))
’(NEQ X T)
’(EVAL ?= (Y Z) OK))

FOO1 PRINT-IN-FOO2 PRINT-IN-FOO3 PRIN1-IN-FOO2
PRIN1-IN-FOO3

BREAK0

(BREAK)
(BREAK0

T) (APPLY ’BREAK0)
(BREAK FOO1 (FOO2 (GREATERP N 5) (EVAL)))

(BREAK0 ’FOO1 T) (BREAK0 ’FOO2 ’(GREATERP N 5) ’(EVAL))

(TRACE)
(BREAK0

T ’(TRACE ?= NIL GO))

CAR CDR
TRACE

(BREAK0 (CAR) T (LIST ’TRACE ’?= (CDR) ’GO))

(TRACE FOO1 (FOO2 Y)) FOO1 FOO2
FOO1 Y

FOO2 only

TRACE BREAK1 :
(BROKEN)

FN1 FN2

FN2

FN1

FN2 FN1 FN2

FN1 FN2 FN1

FN2 FN1

FN1 FN2

FN1 FN2 FN1 FN2

FN1

FN2 FN2 FN1 FN1 FN2

FN2

FN

FN WHEN COMS FILE

FN

X

ATOM LIST

X

ATOM

LIST LIST

FUNCTION

FUNCTION

2

2

BREAKING, TRACING, AND ADVISING

he can perform . This sets up a break with commands
.

Note: the user can always call himself to obtain combination of options of not directly
available with and . These two functions merely provide convenient ways of calling ,
and will serve for most uses.

[NLambda Function]
is an nlambda function. and are similar to and

for , except that if is , is used. speci�es where
in the de�nition of the call to is to be inserted (see below).

If is a compiled function, returns as its value.

If is interpreted, types while it calls the editor.
If the location speci�ed by is not found, types
and exits. If it is found, puts under the property and

under the the property on the property list of
, and adds to the front of the list .

Multiple break points, can be inserted with a single call to by using a list
of the form ��� ��� ��� for . It is also possible
to call or on a function which has been modi�ed by , and
conversely to a function which has been rede�ned by a call to
or .

enables the user to insert a break, i.e., a call to , at a speci�ed location in an interpreted
function. For example, if calls , inserting a break in before the call to is similar to
breaking . However, can be used to insert breaks before or after labels, particular

expressions, or even the evaluation of a variable. This is because operates by calling the
editor and actually inserting a call to at a speci�ed point of the function.

The user speci�es where the break is to be inserted by a sequence of editor commands. These commands
are preceded by , , or , which uses to determine what to do once the
editor has found the speci�ed point, i.e., put the call to that point, that point,
or that point. For example, will insert a break before the �rst occurrence
of , will insert a break after the predicate in the �rst clause,

after the place is set. Note that or permit
the user to type in commands to the editor, locate the correct point, and verify it for himself using the

command if he desires, and exit from the editor with . then inserts the break ,
, or that point.

For or , the break expression is , since the value of the break is irrelevant.
For breakin , the break expression will be the indicated form. In this case, the user can use the

command to evaluate that form, and examine its value, before allowing the computation to proceed.
For example, if the user inserted a break after a predicate, e.g., , he
would be powerless to alter the �ow of computation if the predicate were not true, since the break would

A command typed to produces the same e�ect as an unsuccessful edit command in the
original speci�cation, e.g., . In both cases, the editor aborts, and types

.

10.5

(TRACE ())
(TRACE ?= (NIL) GO)

BREAK0 BREAK1
BREAK TRACE BREAK0

(BREAKIN)
BREAKIN

BREAK0 NIL T
BREAK1

BREAKIN (UNBREAKABLE)

BREAKIN SEARCHING...
BREAKIN (NOT FOUND)

BREAKIN T BROKEN-IN
() BRKINFO

BROKENFNS

BREAKIN
((BEFORE) (AROUND))

BREAK TRACE BREAKIN
BREAKIN BREAK

TRACE

BREAKIN BREAK1
FOO FIE FOO FIE

FIE BREAKIN PROG
SETQ BREAKIN

BREAK1 inside

BEFORE AFTER AROUND BREAKIN
BREAK1 BEFORE AFTER

AROUND (BEFORE COND)
COND (AFTER COND 2 1) COND (AFTER

BF (SETQ X &)) last X (BEFORE TTY:) (AFTER TTY:)

P OK BREAKIN BEFORE
AFTER AROUND

BREAKIN BEFORE AFTER NIL
AROUND

EVAL
COND (AFTER (EQUAL X Y))

STOP TTY:
(BEFORE CONDD) BREAKIN (NOT

FOUND)

FUNCTION

FN WHERE WHEN COMS

WHEN COMS WHEN

COMS WHEN WHERE

FN

FN FN

FN

WHERE

WHERE WHEN COMS

FN FN

WHERE

Breaking Functions and Debugging

not be reached. However, by breaking , he can evaluate the break expression,
i.e., , look at its value, and return something else if he wished.

The message typed for a break, is), where is the name of the function
inside of which the break was inserted. Any error, or typing control- E, will cause the full identifying
message to be printed, e.g., .

A special check is made to avoid inserting a break inside of an expression headed by any member of the
list , initialized to , since this break would never be activated. For example,
if appears before the label , will not insert the break inside of the
expression, but skip this occurrence of and go on to the next , in this case the label . Similarly, for

or breaks, checks to make sure that the break is being inserted at a ‘‘safe’’
place. For example, if the user requests a break in ��� ��� , the
break will actually be inserted , and a message printed to this e�ect, e.g.,

.

[NLambda NoSpread Function]
Nlambda nospread function. It takes an inde�nite number of functions modi�ed
by , , or and restores them to their original state by calling

. Returns list of values of .

will unbreak all functions on , in reverse order. It �rst
sets to .

unbreaks just the �rst function on , i.e., the most
recently broken function.

[Function]
Restores to its original state. If was not broken, value is
and no changes are made. If was modi�ed by , is called
to edit it back to its original state. If was created from , (i.e.,
if it has a property), the function in which appears is restored to its
original state. All dummy functions that were created by the break are eliminated.
Adds property value of to (front of) .

Note: is allowed: will operate on
instead.

[Function]
Performs the appropriate editing operations to eliminate all changes made by

. may be either the name or de�nition of a function. Value is .
is automatically called by if has property

with value on its property list.

[NLambda NoSpread Function]
Nlambda nospread function for rebreaking functions that were previously broken
without having to respecify the break information. For each function on ,

searches for break(s) and performs the corresponding
operation. Value is a list of values corresponding to calls to or .
If no information is found for a particular function, returns

10.6

(AROUND (EQUAL X Y))
(EQUAL X Y)

BREAKIN (() BROKEN

(FOO BROKEN AFTER COND 2 1)

NOBREAKS (GO QUOTE *)
(GO L) L BREAKIN (AFTER L) GO

L L L
BEFORE AFTER BREAKIN

(AFTER X) (PROG (SETQ X &))
AFTER (SETQ X &) BREAK

INSERTED AFTER (SETQ X &)

(UNBREAK)

BREAK TRACE BREAKIN
UNBREAK0 UNBREAK0

(UNBREAK) BROKENFNS
BRKINFOLST NIL

(UNBREAK T) BROKENFNS

(UNBREAK0)
(NOT BROKEN)

BREAKIN UNBREAKIN
(IN)

ALIAS

BRKINFO BRKINFOLST

(UNBREAK0 ’(IN)) UNBREAK0
(-IN-)

(UNBREAKIN)

BREAKIN
UNBREAKIN UNBREAK BROKEN-IN

T

(REBREAK)

REBREAK BRKINFOLST
BREAK0 BREAKIN

(- NO BREAK

FN FN

X

FN _

FN FN

FN

FN FN1 FN2

FN

FN1 FN2

FN1 FN2

FN

FN FN

FN

X

X

FN

BREAKING, TRACING, AND ADVISING

.

rebreaks everything on , so is the inverse
of .

rebreaks just the �rst break on , i.e., the function
most recently unbroken.

[Function]
Changes all occurrences of to in . may be compiled or
blockcompiled. Value is if was found, otherwise . Does not perform
any modi�cations of property lists. Note that and do not have to be
functions, e.g., they can be names of variables, or any other literals.

[Function]
The function that knows how to restore functions to their original state regardless
of any amount of breaks, breakins, advising, compiling and saving exprs, etc.
It is used by , , and the compiler. If = , as for

, it does not modify the de�nition of in the process of producing
a ‘‘clean’’ version of the de�nition; it works on a copy. If = , as for the
compiler and , it physically restores the function to its original state, and
prints the changes it is making, e.g., , ,

, etc. Returns the virgin function de�nition.

10.2 ADVISING

The operation of advising gives the user a way of modifying a function without necessarily knowing how
the function works or even what it does. Advising consists of modifying the between functions as
opposed to modifying the function de�nition itself, as in editing. , , and , are
examples of the use of this technique: they each modify user functions by placing relevant computations

the function and the rest of the programming environment.

The principal advantage of advising, aside from its convenience, is that it allows the user to treat functions,
his or someone else’s, as ‘‘black boxes,’’ and to modify them without concern for their contents or details
of operations. For example, the user could modify to set to the time and date of
creation by .

As with , advising works equally well on compiled and interpreted functions. Similarly, it is
possible to e�ect a modi�cation which only operates when a function is called from some other speci�ed
function, i.e., to modify the interface between two particular functions, instead of the interface between
one function and the rest of the world. This latter feature is especially useful for changing the
workings of a system function.

For example, suppose the user wanted (page 14.14) to print the results of his measurements to the
�le instead of the teletype. He could accomplish this by

Note that advising , , or directly would have a�ected all calls to these very
frequently used function, whereas advising a�ects just those

10.7

INFORMATION SAVED)

(REBREAK) BRKINFOLST (REBREAK)
(UNBREAK)

(REBREAK T) BRKINFOLST

(CHANGENAME)

NIL

(VIRGINFN)

PRETTYPRINT DEFINE NIL
PRETTYPRINT

T
DEFINE

FOO UNBROKEN FOO UNADVISED FOO
NAMES RESTORED

interface
BREAK TRACE BREAKDOWN

between

SYSOUT SYSDATE
(ADVISE ’SYSOUT ’(SETQ SYSDATE (DATE)))

BREAK

internal

TIME
FOO (ADVISE ’((PRIN1 PRINT SPACES)

IN TIME) ’BEFORE ’(SETQQ U FOO))

PRIN1 PRINT SPACES
((PRIN1 PRINT SPACES) IN TIME)

FN FR OM TO

FR OM TO FN FN

FN FR OM

FR OM TO

FN FL G

FL G

FN

FL G

3

4

3

4

Implementation of Advising

calls to , , and from .

Advice can also be speci�ed to operate after a function has been evaluated. The value of the body of the
original function can be obtained from the variable , as with . For example, suppose the
user wanted to perform some computation following each , e.g., check whether his �les were up
to date. He could then : .

10.2.1 Implementation of Advising

After a function has been modi�ed several times by , it will look like:

where is equivalent to the original de�nition. Note that the structure of a function modi�ed by
allows a piece of advice to bypass the original de�nition by using the function . For

example, if were one of the pieces of advice a function,
and this function was entered with atomic, would be returned as the value of the inner ,

would be set to , and control passed to the advice, if any, to be executed the function.
If this same piece of advice appeared the function, would be returned as the value of the entire
advised function.

The advice the function would have a similar e�ect,
but the rest of the advice the function would still be executed.

Note: Actually, uses its own versions of , , and , (called ,
, and) in order to enable advising these functions.

After the , the system will be as it was when the was performed, hence the advice must
be to , not . See page 14.3 for complete discussion of .

If was originally an , is the body of the de�nition, otherwise a form using a
which is de�ned with the original de�nition.

10.8

PRIN1 PRINT SPACES TIME

!VALUE BREAK1
SYSIN

(ADVISE ’SYSOUT ’AFTER ’(COND ((LISTP !VALUE) --)))

ADVISE

(LAMBDA arguments
(PROG (!VALUE)

(SETQ !VALUE
(PROG NIL

advice1
.
. advice before
.

advicen
(RETURN)))

advice1
.
. advice after
.

advicem
(RETURN !VALUE)))

ADVISE RETURN
(COND ((ATOM X) (RETURN Y))) BEFORE

X Y PROG
!VALUE Y AFTER

AFTER Y

(COND ((ATOM X) (SETQ !VALUE Y))) AFTER
AFTER

ADVISE PROG SETQ RETURN ADV-PROG ADV-
SETQ ADV-RETURN

SYSIN SYSOUT
SYSOUT SYSIN SYSOUT

EXPR GENSYM

BOD Y

BOD Y

FN BOD Y

5

5

BREAKING, TRACING, AND ADVISING

10.2.2 Advise Functions

is a function of four arguments: , , , and . is the function to be modi�ed
by advising, is the modi�cation, or piece of advice. is either , , or ,
and indicates whether the advice is to operate , , or the body of the function
de�nition. speci�es exactly where in the list of advice the new advice is to be placed, e.g., ,
or meaning before the advice containing , or meaning after the
third piece of advice, or even . If is speci�ed, �rst checks to see if it is one of

, , , , or , and operates accordingly. Otherwise, it constructs an appropriate
edit command and calls the editor to insert the advice at the corresponding location.

Both and are optional arguments, in the sense that they can be omitted in the call
to . In other words, can be thought of as a function of two arguments

, or a function of three arguments: , or a function of four arguments:
. Note that the advice is always the argument. If = ,

is used. If = , is used.

[Function]
is the function to be advised, = , , or ,

speci�es where in the advice list the advice is to be inserted, and is the piece
of advice.

If is of the form , is changed to throughout
, as with break, and then is used in place of . If and/or
are lists, they are distributed as with , page 10.3.

If is broken, it is unbroken before advising.

If is not de�ned, an error is generated, .

If is being advised for the �rst time, i.e., if = ,
a is generated and stored on the property list of under the property

, and the is de�ned with the original de�nition of . An
appropriate S-expression de�nition is then created for . Finally, is added
to the (front of) , so that always unadvises the last
function advised (see page 10.10).

If has been advised before, it is moved to the front of .

If = or , the advice is inserted in ’s de�nition either
or the original body of the function. Within that context, its

position is determined by . If = , , , or , the
advice is added following all other advice, if any. If = or ,
the advice is inserted as the �rst piece of advice. Otherwise, is treated
as a command for the editor, similar to , e.g., ,

.

Using private versions of , , and , so that these functions can also be advised.

10.9

ADVISE
BEFORE AFTER AROUND

BEFORE AFTER AROUND
FIRST

(BEFORE PRINT) PRINT (AFTER 3)
(: TTY:) ADVISE

LAST BOTTOM END FIRST TOP

ADVISE ADVISE (ADVISE
) (ADVISE)

(ADVISE) last NIL
BEFORE NIL LAST

(ADVISE)
BEFORE AFTER AROUND

(IN) -IN-
-IN-

BREAK0

NOT A FUNCTION

(GETP ’ADVISED) NIL
GENSYM

ADVISED GENSYM

ADVISEDFNS (UNADVISE T)

ADVISEDFNS

BEFORE AFTER
BEFORE AFTER

LAST BOTTOM END NIL
FIRST TOP

BREAKIN (BEFORE 3) (AFTER
PRINT)

PROG SETQ RETURN

FN WHEN WHERE WHA T FN

WHA T WHEN

WHERE

WHERE

WHEN WHERE

FN

WHA T FN WHEN WHA T

FN WHEN WHERE WHA T WHEN

WHERE

FN WHEN WHERE WHA T

FN WHEN WHERE

WHA T

FN FN1 FN2 FN1 FN1 FN2

FN2 FN1 FN2 FN FN1

FN2

FN

FN

FN FN

FN

FN

FN FN

FN

WHEN FN

WHERE WHERE

WHERE

WHERE

Advise Functions

If = , the body is substituted for in the advice, and the
result becomes the new body, e.g.,

. Note that if several pieces of advice are speci�ed,
earlier ones will be embedded inside later ones. The value of is ignored.

Finally is added (by) to the value of
property on the property list of , so that a record of all the changes is
available for subsequent use in readvising. Note that this property value is a list
of the advice in order of calls to , not necessarily in order of appearance
of the advice in the de�nition of .

The value of is .

If is non- atomic, every function in is advised with the same values (but
copies) for , , and . In this case, returns a list of
individual functions.

Note: advised functions can be broken. However if a function is broken at the time it is advised, it is �rst
unbroken. Similarly, advised functions can be edited, including their advice. will still restore
the function to its unadvised state, but any changes to the body of the de�nition will survive. Since the
advice stored on the property list is the same structure as the advice inserted in the function, editing of
advice can be performed on either the function’s de�nition or its property list.

[NLambda NoSpread Function]
An nlambda nospread like . It takes an inde�nite number of functions and
restores them to their original unadvised state, including removing the properties
added by . saves on the list enough information
to allow restoring a function to its advised state using .
and thus correspond to and . If a function
contains the property , moves the current value of the
property to .

unadvises all functions on in reverse order, so that
the most recently advised function is unadvised last. It �rst sets to

.

unadvises the �rst function of , i.e., the most recently
advised function.

[NLambda NoSpread Function]
An nlambda nospread like for restoring a function to its advised state
without having to specify all the advise information. For each function on ,

retrieves the advise information either from the property
for that function, or from , and performs the corresponding advise
operation(s). In addition it stores this information on the property if
not already there. If no information is found for a particular function, value is

.

readvises everything on .

readvises the �rst function on , i.e., the function
most recently unadvised.

10.10

AROUND *
(ADVISE ’FOO ’AROUND ’(RESETFORM

(OUTPUT T) *)) AROUND

(LIST) ADDPROP
ADVICE

ADVISE

ADVISE

ADVISE

UNADVISE

(UNADVISE)
UNBREAK

ADVISE UNADVISE ADVINFOLST
READVISE ADVINFOLST

READVISE BRKINFOLST REBREAK
READVICE UNADVISE

ADVICE READVICE

(UNADVISE) ADVISEDFNS
ADVINFOLST

NIL

(UNADVISE T) ADVISEDFNS

(READVISE)
REBREAK

READVISE READVICE
ADVINFOLST

READVICE

(- NO ADVICE SAVED)

(READVISE) ADVINFOLST

(READVISE T) ADVINFOLST

WHEN

WHERE

WHEN WHERE WHA T

FN

FN

FN

FN FN

WHEN WHERE WHA T

X

X

X

FN

BREAKING, TRACING, AND ADVISING

A di�erence between , , and versus , , and , is
that if a function is not rebroken between successive ’s, its break information is forgotten.
However, once is called on a function, that function’s advice is permanently saved on its
property list (under); subsequent calls to will not remove it. In fact, calls to

update the property with the current value of the property , so that the
sequence , , causes the augmented advice to become permanent. Note
that the sequence , , removes the ‘‘intermediate advice’’ by restoring the
function to its earlier state.

[Function]
Used by when given a command of the form ��� or

��� . If = , writes both a and a
(this corresponds to ���). If = , only the

is written (this corresponds to ���). In either case, copies
the advise information to the property , thereby making it ‘‘permanent’’
as described above.

10.11

ADVISE UNADVISE READVISE BREAK UNBREAK REBREAK
(UNBREAK)

READVISE
READVICE UNADVISE

UNADVISE READVICE ADVICE
READVISE ADVISE UNADVISE

READVISE ADVISE READVISE

(ADVISEDUMP)
PRETTYDEF (ADVISE)

(ADVICE) T ADVISEDUMP DEFLIST
READVISE (ADVISE) NIL DEFLIST

(ADVICE) ADVISEDUMP
READVICE

X FL G

FL G

FL G

Advise Functions

10.12

