
Tajo Functional Specification

Version 6.0

October 1980

This document is for Xerox internal use only

XEROX
OFFICE PRODUCTS DIVISION
SYSTEMS DEVELOPMENT DEPARTMENT
El Segundo / Palo Alto California

Table of Contents

1.0 INTRODUCTION AND SCOPE 1

1.1 Introduction to Tajo 1

1.2 The Tajo User Illusion 1

2.0 REFERENCES 2

3.0 BASIC CONCEPTS AND RELIGION 2

3.1 Windows 3

3.2 User Input 3

3.2.1 Notification 3

3.2.2 TypeIn 4

3.3 Menus 4

3.4 Selections 5

3.5 Forms 5

3.6 Text 5

3.7 Cursors 6

3.8 Scrollbars 6

3.9 Librarian Interface 6

3.9.1 Property Lists 7

3.10 Basic precepts (The Commandments) 7

4.0 SOFTWARE DESIGN OVERVIEW 9

4.0.1 Tajo’s Components 9

4.0.2 Tajo Naming Conventions 10

4.1 Subwindows 10

4.2 System Supplied Subwindow Types 11

4.2.1 Form Subwindows 11

4.2.2 Text Subwindows 11

4.2.2.1 Text Sources 12

4.2.2.2 Text Subwindow Types 12

4.2.3 Message Subwindows 12

4.2.4 TeleType Subwindows 12

4.3 Client Subwindow Types 12

4.3.1 Implementing A Package 13

4.4 Tool Interface 14

4.4.1 Tool Creation 14

4.4.2 Tool States 14

5.0 IMPLEMENTATION COMPONENTS 15

5.1 Caret 17

5.2 CmFile 18

5.3 Compatibility 20

5.4 Context 21

5.5 Cursor 23

5.5.1 The Cursor Object 23

5.5.2 Manipulating the Cursor 23

5.6 Event 25

5.6.1 Items 25

5.6.2 Notification 26

5.7 FileSW 27

5.8 Format 29

5.9 FormSW 30

5.9.1 Conventions 30

5.9.2 The ItemObject 30

5.9.2.1 Command Items 33

5.9.2.2 Boolean Items 33

5.9.2.3 Enumerated Items 34

5.9.2.4 String Items 35

5.9.2.5 Number Items 36

5.9.2.6 Labels and Tag Items 38

5.9.3 Allocation of ItemObjects 39

5.9.3.1 Allocating an ItemObject from the Heap 39

5.9.3.2 Deallocating an ItemObject from the Heap 40

5.9.4 Subwindow Global Operations 41

5.9.5 Operations Affecting One or Two Items 43

5.9.6 Errors and Abnormal Conditions 44

5.10 HeapString 45

5.11 Keys 46

5.12 Librarian 47

5.12.1 Altering the Librarian Data Base 47

5.12.2 Interrogating the Librarian Data Base 48

5.12.3 Accessing the Contents of Libjects 49

5.12.4 Errors and Abnormal Conditions 49

5.12.5 Property Lists 50

5.12.6 Property Lists Operations 51

5.12.7 Property Pair Operations 51

5.13 Menu 53

5.13.1 Simple Creation of Menus 53

5.13.2 The Menu Object 54

5.13.3 Menu Instances 54

5.13.4 Menu Items 54

5.13.5 Procedures For Setting up Menus 55

5.13.6 Utilities 55

5.14 MsgSW 57

5.14.1 Creation/Destruction 57

5.14.2 Output 57

5.14.3 Status Retrieval 58

5.15 Profile 59

5.16 Put 60

5.17 Scrollbar 61

5.18 Selection 62

5.18.1 Selection Sources 63

5.18.2 The Trash Bin 64

5.19 StringSW 65

5.20 TajoMisc 66

5.21 TextSource 67

5.21.1 Basic Operations 67

5.21.2 Useful Operations on Text Sources 69

5.21.3 Disk Sources 70

5.21.4 String Sources 70

5.21.5 Errors 71

5.22 TextSW 72

5.22.1 Basic Operations 72

5.22.2 Positioning and Selection Operations 73

5.22.3 Information/Alteration Operations 73

5.22.4 Activation Operations 74

5.22.5 Menu Operations 75

5.23 Tool 76

5.23.1 Tool Creation 76

5.23.2 Subwindow Creation 76

5.23.3 Unique SWTypes 77

5.23.4 Destruction and Deallocation 78

5.23.5 Utilities 78

5.23.6 Errors 79

5.24 ToolDriver 80

5.25 ToolFont 81

5.26 ToolWindow 82

5.26.1 Tajo’s use of Windows 82

5.26.2 Tool Windows 82

5.26.2.1 Adjust and Limit Procedures 84

5.26.2.2 Transition Procedure 84

5.26.3 Subwindows 85

5.26.3.1 Display Procedure 85

5.26.4 Window Content Manipulation 86

5.26.5 Utilities 86

5.26.6 Errors 86

5.27 TTYSW 87

5.27.1 Create/Destruction 88

5.27.2 Input and Output 88

5.27.3 Utilities 89

5.28 UserInput 90

5.28.1 Notification 90

5.28.2 Character Translation 93

5.28.3 User TypeIn 93

5.28.4 Utilities 95

5.29 UserTerminal 97

5.30 Window 98

5.31 WindowFont 99

6.0 OPERATIONAL CONSIDERATIONS 100

6.1 AltoMesa version 100

6.2 Pilot version 100

GLOSSARY 101

Appendix 1: A simple Tool 103

Appendix 2: A sample Tool 105

Tajo Functional Specification 1

1.0 INTRODUCTION AND SCOPE

This document describes Tajo, a collection of interfaces that provides the framework and runtime

system for the Mesa Development Environment.

Throughout this document the term user describes a person who interacts with Tajo via the mouse,

keyset and keyboard. The term client is used to describe a program or a programmer that uses the

interfaces described herein.

Terms that occur in the glossary of this document are bold the first time they are used, e.g., "Tajo"

above. All Mesa code and names of variables or types that are defined in the definitions modules

appear in this sans serif font (Mesa reserved words appear in SMALL CAPITALS). Names that are

part of the interface are in boldface when used in the text. This small font is used for fine points.

1.1 Introduction to Tajo

Tajo is designed to facilitate the implementation and execution of a wide range of software

development programs. These programs are referred to as Tools. In the strict sense, any Mesa

program that will execute in Tajo is a Tool. However, considerably more semantics are applied to

the term Tool in this document.

This document describes the interfaces provided by Tajo that are utilized in building Tools. It is

intended primarily for writers (programmers) of Tools. Advice and hints about how a Tool can best

use the facilities provided is also given. The documentation (not the definitions modules) is

considered to be the final word on interfaces implemented by Tajo. It is expected that clients of

Tajo will write code from this specification.

This document is a reference manual, not a tutorial. Section 3 contains a motivation of why the

separate facilities of Tajo exist and explains their expected use. Section 4 describes in more detail

the design and philosophy of Tajo and offers some stylized patterns of use that have evolved during

the development of Tajo. The detailed descriptions of the interfaces are contained in Section 5.

Section 6 describes some Alto/Mesa and Pilot operational considerations. Example programs are

listed in the appendices. The recommended way for a client to become proficient with Tajo is to

start with one of these Tools and to modify it into the Tool desired.

1.2 The Tajo User Illusion

The following is a brief description of the Tajo user illusion. A complete description is found in the

Tajo User’s Guide.

From the user’s point of view Tajo provides uniform and consistent interaction modes for both inter-

Tool and intra-Tool actions. This is accomplished by providing a user illusion that consists of

standard mechanisms and procedures for interacting with Tools. Central to Tajo is the notion of

breaking the user’s interactions down into a reasonably small number of atomic actions when

Tajo Functional Specification2

specifying parameters and commands. Long sequences and context dependent interactions are

discouraged. The goal is to make similar actions, in different contexts, have predictable results.

The user interface for Tools provides the unifying framework for Tajo. Tools utilize display windows

to present information to the user. They all receive input and commands from the user using the

same mechanisms. The user is encouraged to have an arbitrary number of Tool windows on the

display screen. The windows may overlap each other, some obscuring portions of others. The user

directs his actions to the Tool whose window contains the cursor. The primary command invocation

mechanisms are via menus and command items contained in forms. In addition, facilities are

provided for running new Tools and manipulating windows on the display screen.

2.0 REFERENCES

Vista Functional Specification October, 1980.

Mesa Language Manual Version 5.0 April, 1979.

Mesa System Documentation Version 6.0 October, 1980.

OIS Software Tools Environment Functional Specification January, 1977.

The above document discusses the whole of the Development Environment and several

individual Tools from the viewpoints of both a human user and a programmer client. Where

the present document parallels the above document, the above document is to be taken as

superceded.

The Pilot Programmer’s Manual Version 5.0 October, 1980

Tajo User’s Guide Version 6.0 October, 1980

SDD Software Development Procedures and Standards April, 1977.

3.0 CONCEPTS AND RELIGION

The following sections describe the fundamental facilities that are the building blocks for Tajo and

implementation of Tools. These facilties implement and make concrete the fundamental ideas and

philosophy of Tajo. These facilities are:

Windows and subwindows

User input

Menus

Selections

Forms

Text

Tajo Functional Specification 3

3.1 Windows

The concept of the window provides the mechanism by which Tajo isolates functions from one

another on the display. A window is operated upon without regard for its position on the physical

display screen.

A client commonly creates a single tool window. Overlapping between a tool window and other tool

windows is ignored by the client. Usually, a client wishes to consider that the tool window is

divided into a number of rectangular areas, subwindows, that are to be separately acted upon.

Subwindows are used for actually displaying client data: textual information, graphical constructions

or pictures. Tajo provides appropriate primitive procedures to facilitate each of these. Although

"window" is usually a generic term in this document, it occasionally acquires from the surrounding context the restriction

that it be tool window.

A digression is in order here to describe the relationship between Tajo and the software package,

Vista, that it uses to implement windows. Vista implements a general tree of windows. Vista has no

notion of depth-dependent window specialization within the tree (except for the top level). Thus,

Vista allows a window to be moved from any depth in the tree to any other depth.

Tajo does not preclude clients from utilizing all of Vista’s generality, but it does not use all of the

generality itself. Tajo defines five types of windows corresponding to the depth of the windows in

the tree and applies specific semantics to each type. The topmost window in the tree is called the

root window. It is the size of the bitmap, and is used to define the dimensions of what the user can

see. The next level are tool windows. The third level windows are called clipping windows and are

used to define the "inside" or clipping box of tool windows for display purposes. Usually clients

shouldn’t have to deal with clipping windows. The fourth level are subwindows. All windows of

depth greater than four are treated by Tajo as other windows, with no Tajo-supplied specialization.

3.2 User Input

Given that a user may be simultaneously interacting with numerous Tools, Tajo must provide a

mechanism for specifying to which Tool (or window) any particular user action (mouse, keyboard, or

keyset activity) is directed. The requirement to direct user actions to various windows has given rise

to a notification mechanism.

3.2.1 Notification

This mechanism is designed to be flexible and have minimal overhead for the processing of user

input actions. The basic scheme is that a Tool may install a number of procedures, one for each

user action, to be called (notified) when a change in the user input state occurs. A Tool is allowed

to get control immediately when the state change occurs, or at a later time when other user-initiated

processing has completed. The rest of this subsection can be skipped during an initial reading.

The Notification mechanism is basically split into two distinct processes: 1) a high priority process,

called the Interrupt Level, for queuing user actions, and 2) a normal priority process, called the

Notifier (or Processing Level), for the actual processing of user actions.

Tajo Functional Specification4

The Interrupt Level gets control of the CPU every vertical retrace of the display. This is around 50

times per second, depending on the processor type. This level watches for changes in the hardware user state,

i.e., mouse movements or key station (paddle on the keyset, button on the mouse, or key on the

keyboard) depressions or releases. A Tool may have Stimulus Notification Routines (SNR’s) that get

control at this level.

Warning: The Interrupt level of the notification mechanism is a high priority process and as such has potential

preemption difficulties (in particular, it cannot cause code swapping while it is executing on the Alto). This has

serious implications, so if you plan to use this facility please consult with Tajo implementors.

The Notifier’s primary function is to call Tool-supplied Processing Notification Routines (PNR’s).

The Interrupt Level communicates with the Notifier via a queue. Basically, the Notifier dequeues

the head item from the queue and the appropriate PNR is called. The secondary Notifier function

is to process the queue of periodic notifiers. This is a queue of procedures that wish to run on a

periodic basis, but which do not want to execute unless the Notifier would be otherwise unoccupied.

If it is idle the Notifier WAITs on a condition variable so that other processes (e.g communications,

etc.) may run.

[Note: When PNRs or periodic notifiers are executing they are extensions of the Notifier (i.e., on the same call

chain). This means that notification processing is suspended or "backs up" until control is returned from the PNR.

If you intend to do some serious computing you should FORK a process and let the Notifier get back to its task.]

3.2.2 TypeIn

The TypeIn facility lets the client supply a procedure that will be called whenever a character is

typed. It is important to note that the client gets called upon input of a character instead of calling

a GetChar procedure for one. This has a major impact upon the control structure of Tools,

requiring more explicit program state data. The user TypeIn facilities are built using the notification

facilities described above. TypeIn allows the client to be essentially free of any concern for "how it

is done."

3.3 Menus

A menu is a set of options and commands associated with a window. It is possible to have multiple

menus in a single window. When the menus associated with a subwindow are displayed, the menus

associated with its tool window are also displayed.

A menu is implemented as an array of items. Each menu item is a pair: a keyword and a menu
command routine (a procedure to be called when the keyword is chosen by the user). A new menu

instance is created each time a menu object is associated with a window. When the same menu

appears in multiple windows, the menu object itself is shared.

Tajo Functional Specification 5

3.4 Selections

An example of a selection is a text string or a graphic icon that the user has caused to become

highlighted in some way. Many commands operate on the current selection. Tajo provides a

mechanism by which windows pass around "ownership" of the current selection. A Tool may

operate upon the current selection even though it is not in its own window.

Some commands may require more than one parameter. These commands usually gather their

parameters through the use of forms instead of using the selection mechanism.

3.5 Forms

A Tool often needs to collect more than one parameter from the user, but the collection of multiple

parameters using only menus and the current selection is difficult to program, and tends to create a

clumsy (and often inconsistent) user interface. In addition, such a Tool often wishes to display both

the current parameter settings and internal program state data. It also wants to allow modification of

the parameters.

A mode problem arises whenever commands require multiple arguments. In most systems, each such

command enters a special mode in which the user can only perform actions that are pertinent to the

collection of the current command’s parameters; the parameters themselves are often collected in a

specific order that does not allow modification of any parameter except the one currently being

collected. This is discouraged in Tajo because the system should not preempt the user. Thus, a

form allows the user to enter or modify any or all parameters in any order prior to command

execution. This can cause the display of parameters in which the user is momentarily not interested. A middle ground

is achieved between a single modeless form and sequential parameter collection through the use of multiple forms, each of

which makes available a subset of the commands and their parameters.

The Tajo Forms package frees the Tool writer from the concerns of parameter collection, display

and modification. The package shields the Tool writer from the display management tasks of

making selections, displaying characters, wrapping long lines and scrolling. A form also provides a

uniform and consistent way for the user to interact with many different Tools.

The Forms package is implemented so that the Tool writer has access to various levels at which he

can be involved in the display and alteration of the fields in the form. However, the interface is

primarily aimed at two distinct clients: the Tool writer who only wants minimal control, and the

Tool writer who wishes absolute control over parameter display and alteration. Some facilities are

provided for clients that wish to be somewhere in the middle of these two positions.

3.6 Text

All text displayed by Tajo is managed by a common set of display and user input facilities. This

allows the user to have one consistent way of selecting and modifying text. This management is

provided by two packages, a low-level one that does not know about the display but which provides

the primitive operations on the concrete representation of the text (i.e., disk operations for text that

is coming from files, string operations for text that is stored only in primary memory, etc), and a

Tajo Functional Specification6

high-level package that handles the displaying of the text and interactions with the user trying to

manipulate the text.

3.7 Cursors

The cursor management routines are a small set of definitions and procedures which provide, in

essence, a virtual interface to the hardware cursor.

These routines provide for the setting of the 256-bit pattern which is displayed by the hardware as

the human-visible cursor. They also provide for the specification of the hot spot, the position within

the 16x16-bit cursor that is meant to indicate the screen position pointed to by the mouse. Since

hardware implements the 16x16-bit cursor shape, but does not implement a hot spot, the

implementing routines themselves contain what might be considered the hardware hot spot

coordinates.

3.8 Scrollbars

In general, Tajo has no knowledge of the contents of a window or subwindow so the actual scrolling

operations (i.e. moving the bits) are the responsibility of the client. Tajo does provide a standard

user illusion and mechanism for the user to invoke and cause the client to perform scrolling

operations.

3.9 Librarian Interface

The Librarian Interface is the component in Tajo whose primary task is to provide a procedural

interface to a physically remote function. The Librarian Interface is the Tool writer’s access

mechanism to the contents of objects, Libjects, stored in the Librarian Data Base and under the

control of the Librarian Service Tool. It is intended to be the only method of access to these data.

The primary purpose of the Librarian Interface is to provide a uniform procedural interface to the

Librarian Service. The interface serves to define and enforce both the syntax and semantics of the

basic request/response activity. It further insulates its users from the how’s and where’s of Librarian

functions as well as insulating the Librarian Service from malformed requests.

Most Libjects are used as access locks for Mesa source files to prevent simultaneous editing. If these

files are managed by Tools that use the Librarian Interface, then the classical simultaneous-

conflicting-edits problem is avoided. Each time the Libject lock is acquired (checkout) and released

(checkin) a new version of the Libject is created. All versions of a Libject are kept forever, allowing

the history of a project to be traced from its conception. The type of historical data maintained

includes the who, why, what, where and when of lock operations.

Tajo Functional Specification 7

3.9.1 Property Lists

The Librarian Interface needs a standard way of discussing the various elements that make up a

Libject version. This is made difficult by the fact that neither the Librarian Interface nor Librarian

Service know anything about the items that it stores, and therefore cannot, in general, know their

TYPEs or (in particular) their SIZEs. The resolution of this difficulty lies in the creation of a

PropertyList.

o A PropertyList is an array of PropertyPairs. Each PropertyPair defines an item within

a Libject-version.

o A PropertyPair consists of a PropertyNumber and a PropertyValue, the former serving

to name the particular item-type, and the latter serving to contain the information.

To allow the Librarian Interface to manipulate PropertyPairs without knowing about each type of

property, we assign PropertyNumbers in a manner which supplies some information about the

PropertyValue from an examination of the PropertyNumber. In particular, the scheme allows

a determination of both the SIZE of the PropertyValue and whether the PropertyValue is a

LibjectID (a Librarian-Interface-assigned identifier) from examination of the PropertyNumber.

3.10 Basic precepts (The Commandments)

The above facilities were designed with some specific goals in mind. These goals are a result of a

philosophy that can be summed up in the following "religious commandments".

Clients shall not preempt the user. (Swinehart’s Law)

This is Tajo’s basic tenet. The user should never be forced by the clients into a situation where

the only thing that he can do is interact with only one Tool. Even stronger, the client should try

to avoid falling into a particular "mode" when interacting with the user, i.e. the Tool should try

to avoid imposing unnecessary restrictions on the permitted sequencing of user actions.

Don’t call us, we’ll call you. (Hollywood’s Law)

A client should never seize control of the processor while getting user input, which is exactly

what tends to happen when the client wants to use the "get a command from the user and

execute it" model of operation. Instead, the Tool should arrange for Tajo to notify it when the

user wishes to communicate some event to the Tool.

The user owns the window layout.

Although it is possible for the client to re-arrange the window tree and the positions and sizes of

the windows on the display, this is discouraged. Each user has particular and differing tastes in

the way that he wishes to lay out windows on the display, and it is not the client’s role to

overide the user’s decisions. In particular, clients should avoid having windows jump up and

down trying to capture the user’s attention. If the user has put a window off to the side, then

he does not want to be bothered by it.

Tajo Functional Specification8

The display belongs to the Notifier.

Although an attempt has been made to accommodate clients that want to use multiple processes,

the display interactions are sufficiently fragile (especially in the presence of the destruction of

windows) that the display is considered to belong to the Notifier. If some background process

(here all non-Notifier processes are referred to as background processes) wants to do something

that could affect the display, it must make sure that the routines it calls are explicitly declared to

be callable from a background process.

9

4.0 SOFTWARE DESIGN OVERVIEW

This section provides an overview of the interactions between Tajo’s major software components.

Pieces of Tajo are delineated and some of the interdependencies are described. Hints are offered on

how the client programmer might best use Tajo facilities.

Clients who are interested in writing only a simple Tool and who have some idea about how Tajo is

structured might consider skimming the following sections up to the section entitled Tool Interface.

This section gives an overview of the top layer of software that a client deals with when writing a

simple tool.

4.0.1 Tajo’s Components

The most basic portion of Tajo deals with user input devices, specifically the keyboard, keyset and

mouse, and the display output devices, specifically the cursor and bitmap. This portion can be

changed by the client without badly affecting the rest of Tajo provided that the changes are made by

replacing the SNRs and PNRs. The interfaces of interest are Keys, UserInput and UserTerminal
for input, Cursor and Vista’s Window for output. Further routines that Tajo uses to augment the

Window and UserInput interfaces are provided by the Context and ToolWindow interfaces.

The next level of output complexity is the simple display of text. The interfaces of interest are

ToolFont, Window and WindowFont.

Continuing along the axis involving text on the display, the next level is involved with more

complicated display of text. The interfaces of interest are TextDisplay and TextSource. TextDisplay

is a private interface but some clients, particularly those contemplating creating their own subwindow types, might need to

use it. If you find this is necessary you should consult a Tajo implementor. The interfaces Caret, Scrollbar and
Selection are concerned with text marking and user input.

These lower-level functions are used to implement Tajo-supplied subwindow types described by the

interfaces: FileSW, FormSW, MsgSW, StringSW, TextSW and TTYSW. The Menu interface

provides simple command invocation and is required by several of the subwindow types.

The combining of subwindows within a window to make a Tool is facilitated by the Tool interface.

The FileWindow and TTY interfaces enable the creation of Tools that each contain one subwindow

of a predefined type. The same caveat applies to FileWindow that applies to TextDisplay.

To one side are STRING and formatting utilities. These cannot be discarded without affecting some

of the higher levels of Tajo such as the subwindow types. The interfaces of interest are Format,
HeapString and Put.

There are several interfaces dedicated to interacting with the surrounding runtime environment, and

to informing clients of changes in that environment. The interfaces of interest are CmFile, Event,
Profile and TajoMisc.

Tajo: Functional Specification10

Implemented as a strict add-on to the other levels are the routines used to converse with the remote

Librarian Service; they are provided by Librarian.

4.0.2 Tajo Naming Conventions

Although there are many exceptions to these rules, the following are the general naming conventions

practiced in Tajo.

Procedure types have the suffix ProcType. These types always use keyword notation to name their

arguments, and when there is more than one return value they are also named. The same

convention for naming arguments in the procedure types is used for naming arguments in the

interface procedures. In general, the argument is called: window if it is a general window, sw if it

is a Tajo subwindow, ss if it is a String.SubString, and index if it is a CARDINAL identifying a

position in some descriptor. There is extensive use of defaults.

The primary object supported by an interface is a TYPE named Object. Secondary objects have

suffix Object. A POINTER TO Object has suffix Handle.

Most of the interfaces have one signal called Error used to note exceptional conditions (usually

client errors or failures of the runtime environment). This signal has an argument called code
which is an ErrorCode defined in the same interface as the signal. The signal cannot be RESUMEd

except when this is explicitly permitted.

Interfaces that implement subwindow types have procedures named Adjust, Create, Destroy,

IsIt, Sleep and Wakeup. However, note that Create and Destroy do not actually create and

destroy subwindows; rather, they add or remove specialization to existing Tajo subwindows.

Private definitions modules usually have the substring Ops appended to the name of the associated

Public definitions module. For implementing modules the suffixes are Impl or sA, sB, sC, etc.

Bound groups of implementing modules have suffix s.

An enumerated type is often referred to as being "open-ended." This means that it is declared to be

a MACHINE DEPENDENT enumerated type, and that room has been left in the enumeration for future

expansion or to allow Tajo to generate unique, un-named elements of the type at runtime.

4.1 Subwindows

The subwindow is the fundamental object from both the user’s and the client’s points of view. This

should not be surprising since user actions are directed at specific subwindows; as a consequence

subwindow handles are constantly passed back and forth between clients and Tajo. This leads to the

practice by both Tajo and clients of associating data about the user’s current context with

subwindows.

Subwindows come in various degrees of complexity. A raw subwindow is created by calling

ToolWindow.CreateSubwindow, which results in a Window.Handle and additional associated

data used by Tajo. These data include, but are not limited to, the subwindow’s PNRs. Such a subwindow is

not very interesting for it does nothing but display white bits, and either ignores or gives away all

Software Design Overview 11

user actions directed to it. Tajo supplies several interfaces that support particular styles of

subwindow enhancement.

The next level of complexity is realized by replacing the subwindow’s display procedure by one that

shows the state of some associated client data structure.

The higher levels of complexity affect the user input and display output facilities of the subwindow

(such as the PNRs and StringIn and StringOut routines defined in the UserInput interface),

usually by replacing them with more powerful ones. It is not uncommon for different subwindow

types to share common input routines (a good example of this is the Menu.PNR which is often the

PNR for the yellow mouse button), or to share the marking and resolution routines (such as those

involved in the selection of text) provided by lower levels of Tajo.

4.2 System-Supplied Subwindow Types

Tajo provides subwindow types which display in a particular stylized layout data structures defined

by Tajo and supplied by the client. Some of these types are built upon the others; however, it is not

possible to arbitrarily mix these types in a single subwindow (e.g., a subwindow cannot have the

attributes of both Form and File subwindow types).

The process of calling a system-supplied subwindow type Create routine is usually termed

"creation" of a system-supplied subwindow type. This is a misnomer, because it is actually a

differentiation process; the client must have already created the subwindow to be operated upon by

a call to ToolWindow.Create.

4.2.1 Form Subwindows

Clients of the FormSW interface need to supply a procedure that completely defines the form that is

to be presented to the user. Much of the detail of the form layout and individual item options can

be defaulted, thus permitting the direct specification of only those things that are important to the

client. Much of the work of defining the form is accomplished by calls to FormSW.*Item

procedures where * can be one of {Boolean, Command, Enumerated, Label, LongNumber,

Number, String, TagOnly}. In addition, the client may supply notification routines that get

called when the user alters the form items.

4.2.2 Text Subwindows

The TextSW interface presents a set of procedures that define a top level of uniform text displaying

and editing capabilities that are used by higher-level subwindow-types. A subwindow of this type

allows the client to present a menu to the user that allows him to search for text strings, normalize

the insertion point to the top of the display region, normalize the selection to the top of the display

region, jump to the any character in the text, split the subwindow into separately scrollable display

regions and change the line-break mode (which determines whether a long line is clipped at the

subwindow boundary or is wrapped down to the next line).

Tajo: Functional Specification12

4.2.2.1 Text Sources

When a Text subwindow is created, it is passed a TextSource.Handle. This handle contains a set

of procedures that are used to manipulate the backing data structure, the "source", that holds the

characters displayed by the Text subwindow. Thus, a client could create a Text subwindow with a

backing data representation of his own design.

4.2.2.2 Text Subwindow Types

Two system-supplied subwindow types are built directly on top of the Text subwindow mechanism.

One of these is defined by the FileSW interface and uses a file as the source of its characters. This

interface has procedures that do file-specific operations; other operations may be found in the

TextSW interface. The StringSW interface supports a subwindow type that uses a STRING as the

source.

4.2.3 Message Subwindows

The MsgSW interface defines a set of procedures for posting messages to the user. The client may

direct that in addition to writing to a Message subwindow he wishes the output to go to another

subwindow as well. This is useful for logging error messages. Message subwindows are built on top

of String subwindows. So, if the procedure that you need isn’t in the MsgSW interface then it might

be in the StringSW or TextSW interface.

4.2.4 TeleType Subwindows

In Tajo, client programs are notified of user keystrokes; this is in contrast to teletype environments

in which the client polls some keyboard handler for type-in. Many programmers are used to code

that is structured to use a teletype-like interface. To accommodate this style of user interaction there

is a system supplied subwindow type defined by the TTYSW interface. TeleType subwindows are

built on top of File subwindows.

4.3 Client Subwindow Types

There is considerable flexibility built into the system-supplied subwindows. However, radical

changes in the style of the layout of the subwindow, changes in the definition of the client data

structures or the alteration of the details of the user-input interactions can only be achieved by the

writing of new code. This results in client-implemented subwindow types. The implementors of

Tajo encourage clients that find it necessary to implement their own subwindow types to do so in

the same manner in which the system-supplied types are constructed; namely to have a stand-alone

package, complete with a definitions module and documentation, that can be loaded as a single,

possibly bound, .bcd file into Tajo.

There are two possible approaches to implementing a new subwindow type. The first is to build

upon an existing subwindow type without changing the implementation code for that type. This can

be done only by strict augmentation or by the process of interposition. By augmentation we mean

Software Design Overview 13

adding totally new facilities to a subwindow type without conflicting or modifying existing facilities.

This is difficult to do with the Tajo-supplied types because each one of them has a full complement

of user input and output features. The more common approach is interposition: replacing one or

more of the procedures provided or used by an existing subwindow type with client procedures,

either by changing the binding path or by replacing procedure variables. This allows the client to

detect the occurrence of the event that the replaced procedure is associated with and to do pre- or

post-processing.

An example of interposition that occurs in Tajo is an empty String subwindow’s recognition of the

escape character as a command to act upon the text in the subwindow. This is implemented by

replacing the keyboard PNR of the String subwindow with another PNR which watches all keyboard

input. When an escape is typed by the user and sent to the PNR, instead of sending it on to the

regular PNR the interposed PNR makes the contents of the String subwindow the current selection

and then operates on the current selection.

[Fine point: An attempt has been made to allow interposition of any system PNR. This is accomplished by Tajo

setting the PNR only when the subwindow is created. If it was done at any other time it might overwrite an

interposing PNR. In other words, if the subwindow type wants a PNR to behave differently in a time-dependent

manner, it should set flags rather than changing the PNR. No such claim is made for the interposition of a

subwindow display procedure.]

4.3.1 Implementing A Package

A subwindow type that would be useful to others should implement the Adjust, Sleep and

Wakeup procedures (although they need not have those names, see Tool.RegisterSWType).

Good citizenship encourages the implementation of the Destroy and IsIt procedures, while

common sense dictates that there be a Create procedure.

A common problem that arises when implementing a subwindow type is where to keep a

subwindow’s state data. Tajo associates the data directly with the Window.Handle using contexts,

defined by the interface Context. The next two paragraphes can be skipped on the first reading.

Typically a client using contexts to store his state data passes through a start-up transient and three

phases: initialization, steady-state, and finalization. The transient occurs when the subwindow-type

implementor is first STARTed. At that time the implementor gets a unique context type from Tajo.

Then, when a subwindow is differentiated by a client calling the implementor’s Create procedure

(the initialization phase), the implementor creates a context with the previously obtained unique type

on that subwindow. The data argument of the context creation call is a pointer to the subwindow’s

state data.

Whenever Tajo calls the implementor to operate upon the subwindow (the steady-state phase), a

subwindow handle with which the implementor can get the state data is provided. Eventually, the

finalization phase is reached when either the client calls the implementor’s Destroy procedure or

Tajo decides to destroy the subwindow. When Tajo destroys the subwindow, it causes all the

contexts associated with the subwindow to be destroyed. The implementor’s

Context.DestroyProcType, which should free the state data, is called. The implementor’s

Destroy procedure should call Context.Destroy.

Tajo: Functional Specification14

4.4 Tool Interface

The Tool interface is designed to make the writing of Tools with a standard user interface as easy as

possible. It allows the client to avoid having to deal with many of Tajo’s low-level facilities in

exchange for some loss in flexibility.

In windows created using the Tool interface the user has the ability to dynamically move the

horizontal boundaries between subwindows. The interface supports automatic window layout of

subwindows vertically on the screen but not horizontally across the screen.

4.4.1 Tool Creation

The client controls the number and type of subwindows available in the Tool’s window. By using

the Tool.Make*SW routines the client can have Tajo create a vanilla subwindow, differentiate it to

be of type * and add it to the Tool. Note that this is in contrast to the Create procedures for the

system-supplied subwindow types which never create a vanilla subwindow but only differentiate it.

Additional routines in the Tool interface make it possible to include client-defined subwindows in a

Tool.

4.4.2 Tool States

The state of a Tool is a result of the following user illusion projected by Tajo. A Tool can be in one

of three states: normal, in which the user has access to the full functionality and user interface

provided by the Tool; tiny, in which the Tool’s window is displayed as a small, labelled icon, but in

which the algorithmic functions of the Tool are still available (but potentially not user invokable

because of the display change); and inactive, in which the Tool’s window does not appear on the

display and it is not functional. The user can cause transitions between these states by interacting

with Tajo. The Tool interface helps to shield the client from the changes in the Tool’s state caused

by the user.

It is the responsibility of the client to support the above model and to consume only those resources

necessary for a particular state. Thus, if a Tool is tiny, it should not hang on to resources needed

only for updating of the display since it is not being displayed (Tajo manages displaying the icon).

If a Tool is inactive, it should additionally free all resources tied up in internal state (i.e. free all

streams, turn off all communications packages, deallocate all storage from the system heap, etc).

Since many of the resources belonging to a Tool are allocated by Tajo on the Tool’s behalf, the

client must understand what those resources are so that Tajo and the client don’t both deallocate the

same resource.

The Tool interface provides a degree of automation for these transition tasks. For instance, when a

Tool is made tiny the Tool interface will get each of the subwindows to free up resources that they

use only to paint on the display. When a Tool is made inactive Tajo deallocates the subwindows

and their associated data structures, destroys any menus associated with the Tool and closes streams.

The client cannot be totally oblivious to the state transitions, or else it might try to use a subwindow,

or other Tajo object, that had been deallocated. The client is asked to clean up its own private data

structures.

Implementation Components 15

5.0 IMPLEMENTATION COMPONENTS

This section deals with the actual procedures and data structures that are to be used in building

Tools that run in Tajo. There are, of course, considerably more definitions inside the interface files

than appear in this document. However, as discussed in Section 1, this document is the specification

for writers of Tools. It is the supported external interface for Tool writers (i.e., the defs files are

not!). For completeness, some interfaces are included below that are not specific to Tajo, but which

are necessary for writing Tools. They are flagged in the list below by a preceding *.

This section is organized with each major subsection representing a definitions module. The

following is a table of contents for the Tajo Definitions modules:

Caret � Blinking caret management.

CmFile � Processing ".cm" files such as User.cm.

Compatibility � Provides some compatibility between Alto/Mesa and Pilot types.

Context � State saving/retrieving associated with windows.

Cursor � Altering/Setting the cursor.

Event � Notification/Veto of significant Tajo events.

FileSW � Display and editing of Files.

*Format � Data to string formatting.

FormSW � Form creation and manipulation.

HeapString � System Heap String operations.

Keys � The keyboard, keyset and mouse bit assignments and synonyms.

Librarian � Librarian Interface.

Menu � Menu creation and manipulation.

MsgSW � Manages message posting to the user.

Profile � User and system attributes.

Put � Formatted text output to subwindows.

Scrollbar � Creation and destruction of scrollbars.

Selection � Management of the current selection/trashbin.

StringSW � Display and editing of strings.

TajoMisc � Miscellaneous utilities.

TextSource � Creation and manipulation of text sources.

TextSW � Shared Text subwindow operations.

Tool � Simple Tool creation.

ToolDriver � Allows Tool to be manipulated by ToolDriver package.

ToolFont � Font loading/initialization.

ToolWindow � Tajo window creation and manipulation.

Tajo Functional Specification16

TTYSW � Teletype-like operation.

UserInput � User input/notification.

*UserTerminal � Display terminal primitives.

*Window � Window contents manipulation.

*WindowFont � Font information primitives.

Implementation Components 17

5.1 Caret

Tajo provides a simple mechanism for clients to implement and manage a blinking caret, i.e.,

insertion point. Actual positioning and marking via the window package is the client’s responsibility.

First, some definitions:

Action: TYPE = {clear, mark, invert, stop, reset, ...};

MarkProcType: TYPE = PROCEDURE [data: POINTER, action: Action];

To become the manager of the caret, call

Set: PROCEDURE [data: POINTER, marker: MarkProcType];

data is passed back to marker whenever it is called by Tajo. If a client does not want to

actually mark the display when it is the manager of the caret it can use NopMarkerProc as its

marker.

NopMarkerProc: MarkProcType;

ActOn: PROCEDURE [Action];

This procedure allows clients to act upon the current caret without regard to who is the current

owner.

ResetOnMatch: PROCEDURE [data: POINTER];

This procedure allows clients to relinquish control of the blinking caret if they are currently the

owner. Note that simply doing a Set with a marker that is the NopMarkerProc does not work because of race

conditions in an arbitrary pre-emption environment.

UniqueAction: PROCEDURE RETURNS [Action];

This procedure allows clients to define private actions. This implies that implementors of caret-

marking procedures should ignore actions they do not implement or understand.

Tajo Functional Specification18

5.2 CmFile

Tajo provides a simple set of procedures for processing "User.cm" format files. This format is

defined by the CmFile implementation as follows. A "cm" file is a sequence of sections. A section

is a title line followed by zero or more name-value pairs. A section may not have embedded blank lines

because a blank line is considered to terminate a section. The title line begins with a "[" and the section title

is defined to terminate with the first succeeding "]". Each name-value pair is on a separate line; the

name must be followed by a ": ". Both the name and the value can be preceded by white space.

This leading white space is removed from the name and value before they are returned to the client.

Trailing white space is not stripped. Tajo does not support the simultaneous processing of cm files

by multiple processes. If the client wishes to do such processing, the client must create a layer

above CmFile with appropriate monitoring.

If you simply want the value for name from section title the following procedure will suffice. It

returns NIL if the file, section or the named entry cannot be found.

Line: PROCEDURE [fileName, title, name: STRING] RETURNS [STRING];

If you are planning to process multiple entries in only one section you should open the section,

process the entries and then close the file. If you are planning to process more than one section,

you should first call Open, then process all of the sections and finally call Close.

Open: PROCEDURE [fileName: STRING];

Can raise any of the environment-specific SIGNALs associated with opening a file.

OpenSection: PROCEDURE [fileName, title: STRING] RETURNS [BOOLEAN];

The returned BOOLEAN signifies success in finding the file and section title.

Close: PROCEDURE [fileName: STRING];

Close should be called after a successful call to either Open or OpenSection.

The following procedure allows efficient sequential processing of all the entries in a User.cm section.

It returns the next name-value pair in the section each time it is called.

NextItem: PROCEDURE RETURNS [name, args: STRING];

When name is NIL the end of the section has been encountered.

The STRINGs returned by NextItem and Line are allocated from the system storage heap. The

responsibility for de-allocating them is the caller’s.

All the procedures mentioned thus far have equivalent procedures that have the same names

prefixed with "UserDotCm" that deal with the file User.cm without requiring the client to specify a

fileName.

The following procedures are provided to aid clients in parsing lines. Note that Lop returns

Ascii.NUL when the String.SubString is exhausted.

Lop: PROCEDURE [ss: String.SubString] RETURNS [c: CHARACTER];

Implementation Components 19

Returns the first character of ss and removes it from the substring by incrementing ss.offset
and decrementing ss.length by one.

GetNextToken: PROCEDURE [source: String.SubString, token: STRING] RETURNS [valid: BOOLEAN];

GetNextTokenAsABoolean: PROCEDURE [source: String.SubString] RETURNS [b: BOOLEAN];

GetNextTokenAsANumber: PROCEDURE [source: String.SubString] RETURNS [i: INTEGER];

ReadLineOrToken reads from the stream sh until terminator is found, unless either end-of-line

or end-of-stream is encountered. The resulting line or token is returned via buffer and the

resulting CHARACTER is the break character. If buffer is too short, ReadLineOrToken quits and

the resulting CHARACTER is the character being processed when the buffer overflows.

ReadLineOrToken: PROCEDURE [sh: Compatibility.SHandle, buffer: STRING, terminator: CHARACTER]
 RETURNS [CHARACTER];

TitleMatch returns TRUE if and only if the contents of buffer is in the right format to be the start

of the section specified by title.

TitleMatch: PROCEDURE [buffer, title: STRING] RETURNS [BOOLEAN];

The following SIGNAL is defined for this interface. It can be RESUMEd only if the code is
multipleOpens.

Error: SIGNAL [code: ErrorCode];

ErrorCode: TYPE = {multipleOpens, noneOpen, notOpen};

multipleOpens can be raised on calls to open a file. noneOpen can be raised on calls that
read data. notOpen can be raised on calls to close a file.

Tajo Functional Specification20

5.3 Compatibility

The type definitions in this interface provide some source-level compatibility between corresponding

Alto/Mesa and Pilot types. A Tool writer must be cognizant of this interface’s existence because

other Tajo interfaces use these types.

In the Alto world:

FHandle: TYPE = SegmentDefs.FileHandle;

SHandle: TYPE = StreamDefs.StreamHandle;

In the Pilot world:

FHandle: TYPE = File.Capability;

Warning: this FHandle corresponds more to a SegmentDefs.FP in the Alto world than a SegmentDefs.FileHandle.

This is an interface bug that will almost surely have to be rectified in a future release.

SHandle: TYPE = Stream.Handle;

Implementation Components 21

5.4 Context

In performing various functions a Tool may wish to save and retrieve state from one notification to

the next. This is an immediate consequence of the notification scheme, for a Tool cannot keep its

state in the program counter after responding to an event without stealing the processor. Thus, it

becomes necessary for a Tool to explicitly store its state. Since most notification calls to a Tool

provide a window or subwindow handle, it is natural to associate these contexts with windows. As

an alternative to the Tool having to build its own associative memory to retrieve its context given a

window handle, the context mechanism is provided. The actual context implementation mechanism

is hidden from clients.

First, some definitions:

Data: TYPE = POINTER TO UNSPECIFIED;

DestroyProcType: TYPE = PROCEDURE [Data, Window.Handle]

Type: TYPE = {first, last};

Type is an open enumeration.

Now the definitions of the procedures that deal with contexts:

UniqueType: PROCEDURE RETURNS [Type];

This procedure is called if a client needs a unique Type not already in use by either Tajo or

another client.

Create: PROCEDURE [type: Type, data: Data, proc: DestroyProcType, window: Window.Handle];

Creates a new context of type type that contains data. The context is associated with the

indicated window; it is said to "hang" on the window. If the window already possesses a

context of the specified type, the ERROR Error[duplicateType] will be raised. The proc is

supplied so that when the window is destroyed all of the context data can be destroyed

(deallocated) in a straightforward and orderly manner.

To destroy a context of specific type on window call Destroy. If the context exists on the

window, this will first call the DestroyProcType for the context being destroyed and then

deallocate the context itself. To destroy all of the contexts on window call DestroyAll. DestroyAll

can be very dangerous because Tajo keeps its window-specific data in contexts on the window. DestroyAll should not be

used except in special circumstances. It is called by the routines that destroy window.

Destroy: PROCEDURE [type: Type, window: Window.Handle]

DestroyAll: PROCEDURE [window: Window.Handle];

Find: PROCEDURE [type: Type, window: Window.Handle] RETURNS [Data];

Retrieves the data field from the specified context for the window. NIL is returned if no such

context exists on the window.

Tajo Functional Specification22

The client can change the data pointed to by the data field of a context at any time. Note that this

could lead to race conditions if multiple processes are doing Find’s for the same context and

modifying the data. It is the client’s responsibility to MONITOR the data in such cases. Call Set to
change the data pointer itself. Subsequent Find’s will return the new data.

Set: PROCEDURE [type: Type, data: Data, window: Window.Handle];

This is a no-op if no such context exists on the window.

SimpleDestroyProc: DestroyProcType;

This procedure merely calls the system heap deallocator on the data field. It is provided for

clients whose context data is a simple heap node.

The only error condition detected by contexts is an attempt to create a context of a specific type

when one of that type already exists.

Error: ERROR [code: ErrorCode];

ErrorCode: TYPE = {duplicateType};

Implementation Components 23

5.5 Cursor

The Cursor interface provides a procedural interface to the hardware mechanism that implements

the cursor on the screen. To prevent chaos, all Tools must manipulate the cursor through this

interface.

5.5.1 The Cursor Object

The cursor facilities define an Object which contains a type, a specification of which bit in the

cursor is to be considered "hot", and a 16 by 16 array of bits that are the bitmap for the cursor (i.e.,

the array of bits that are or’ed into the display):

Object: TYPE = RECORD [info: Info, array: UserTerminal.CursorArray];

Handle: TYPE = POINTER TO Object;

Info: TYPE = RECORD [type: Type, hotX: [0..16), hotY: [0..16)];

Type: TYPE = {
 activate, blank, bullseye, confirm, crossHairsCircle, ftp, ftpBoxes, hourGlass, lib,
 menu, mouseRed, mouseYellow, mouseBlue, mtp, pointDown, pointLeft, pointRight,
 pointUp, questionMark, retry, scrollDown, scrollLeft, scrollLeftRight, scrollRight, scrollUp,
 scrollUpDown, textPointer, typeKey, last};

There is a distinction made between user and system-manufactured cursors. To keep things straight

clients may access system cursors only by their type.

5.5.2 Manipulating the Cursor

Cursor objects are normally created and managed by Tajo using the following routines.

Defined: TYPE = Type[activate..typeKey];

Set: PROCEDURE [Defined];

The above procedure allows you to set the displayed cursor to be one of the system-defined

cursors.

Store: PROCEDURE [Handle];

Swap: PROCEDURE [old, new: Handle];

The above two procedures allow a client to store a cursor of his own design.

Fetch: PROCEDURE [Handle];

Copies the current cursor object into the cursor object pointed to by Handle.

FetchFromType: PROCEDURE [cursor: Handle, type: Defined];

Tajo Functional Specification24

Copies the cursor object that constitutes type into the cursor object pointed to by Handle.

GetInfo: PROCEDURE RETURNS [Info];

This procedure lets you find out about the current cursor.

UniqueType: PROCEDURE RETURNS [Type];

This procedure lets clients assign a unique type to their defined cursors.

The cursors in the subrange Type[activate..typeKey] are built-in (system-supplied). Some

special notes on what the built-in cursors look like follows. In general, the Type names are

sufficient description.

activate - used by the Librarian interface to indicate that a libject is being activated, it says

LIB in the upper half, ACT in the lower.

ftp - used to indicate a file transfer in progress, it says FTP along the diagonal from the

upper left to the lower right, with triangles in the lower left and upper right corners.

ftpBoxes - also used to indicate a file transfer in progress, it has black quadrants in the

upper left and lower right, white quadrants elsewhere.

lib - used to indicate a Librarian transaction in progress, it says LIB along the diagonal from

the upper left to the lower right, with triangles in the lower left and upper right corners.

mouseRed, mouseYellow, mouseBlue - a picture of a mouse, with the appropriate

button highlighted.

textPointer - just like the one in Bravo.

The following procedures are useful for user feedback functions. Invert makes each white bit in

the current cursor black, and vice versa. It returns TRUE if the new state of the cursor is positive.

MakePositive restores the current cursor’s polarity to be as if a Set or Store had just been done,

and MakeNegative is equivalent to MakePositive followed by Invert.

Invert: PROCEDURE RETURNS [BOOLEAN];

MakeNegative: PROCEDURE;

MakePositive: PROCEDURE;

Implementation Components 25

5.6 Event

Client programs sometimes need to be notified when certain system global events occur so that they

can perform some operation. The Event mechanism provides that facility. The implementation of

this mechanism parallels the ImageDefs Cleanup mechanism in the Mesa System with these main

differences:

Additions have been made to the list of Reasons.

The event list is run with interrupts and timeouts turned on.

For events that mean the current environment is being left, a client can veto, i.e., cancel, the

execution of the event. The client might do this if a Tool can’t properly handle the event or

there is some operation that the user should have an opportunity to perform before the

event actually takes place (e.g., saving an edited file). Vetoing is not supported in the debugger.

5.6.1 Items

The types and data structures involved with client Event procedures are as follows:

Item: TYPE = RECORD [link: ItemHandle _ NIL, eventMask: WORD, eventProc: Notifier,
 vetoMask: WORD _ NullMask, vetoProc: VetoProc _ NIL];

ItemHandle: TYPE = POINTER TO Item;

Notifier: TYPE = PROCEDURE [why: Reason];

VetoProc: TYPE = PROCEDURE [why: EndReasons] RETURNS [BOOLEAN];

Returns TRUE when the client wants to cancel the event.

Reason: TYPE = {
newFiles, -- A file has just been retrieved to or deleted from the disk.

flushSymbols, -- Any symbols cached in the debugger may no longer be valid.

newSession, -- A new debugging session is starting.

resumeSession, -- Just swapped from the client to the debugger & not newSession.

resumeDebuggee, -- About to swap into the client world from the debugger.

abortSession, -- User has just Killed from the debugger.

stopMesa, -- Some client is about to call ImageDefs.StopMesa.

abort, -- User has keyed Shift-Swat.

makeImage, -- About to make an image file.

makeCheck, -- About to make a checkpoint file.

startImage, -- Have just started an image file.

restartCheck, -- Have just started a checkpoint file.

continueCheck, -- Continuing to run after just having made a checkpoint file.

setDefaults -- Some system global default has changed, e.g., Profile value. -- };

EndReasons: TYPE = Reason [resumeDebuggee..makeImage];

Tajo Functional Specification26

Masks: ARRAY Reason OF WORD = [...];

NullMask: WORD = 0B;

When the Event notification mechanism is invoked, each item is examined. If the bit corresponding

to the reason is set in item.eventMask, item.eventProc is called. To avoid unnecessary code-

swapping, clients should set the mask field so that their procedure is invoked only for those events

about which they wish to be notified. This also applies to item.vetoMask and item.vetoProc.

For example, if a client needed to be notified when an image file was being made or started, the

mask would be set to:

Masks[makeImage] +Masks[startImage]

The following procedures are used to add or remove an Item. The storage for the Item is the

responsibility of the client.

AddNotifier: PROCEDURE [item: ItemHandle];

DropNotifier: PROCEDURE [item: ItemHandle];

Warning: These procedures should not be invoked from inside an Event.Notifier procedure.

5.6.2 Notification

A client runs the list of Items by calling Notify, which cannot be invoked from inside an

Event.Notifier procedure. The list of Items is reversed by Notify as it executes, unless the why
is newFiles, flushSymbols or setDefaults. A caller of Notify in which why is in

EndReason should be prepared to catch Vetoed.

Notify: PROCEDURE [why: Reason];

Vetoed: SIGNAL;

Warning: a client that doesn’t call Notify when it instigates an event may cause other Tools to

fail. However, do not call Notify with a why other than newFiles or setDefaults without

talking to a Tajo implementor.

Implementation Components 27

5.7 FileSW

The interface FileSW provides the definitions and procedures to create text subwindows whose

backing storage is a disk file, plus procedures that are specific to file-type subwindows. All non-file

subwindow-specific manipulations are contained in the interface TextSW.

First, some definitions:

Access: TYPE = TextSource.Access; -- i.e. {read, append, edit};

Options: TYPE = TextSW.Options;

Stream: TYPE = TextSource.Stream;

defaultOptions: Options = [access: read, menu: TRUE, split: TRUE, wrap: TRUE, scrollbar: TRUE,
 flushTop: FALSE, flushBottom: FALSE];

The following procedure creates a disk source and a text subwindow using that disk source. If s is

NIL then a stream is automatically attached to the file name. If s is not NIL then name must be

the name of the file to which s is attached. The text is positioned so that the character specified by

position is displayed on the first line of sw. If options.access is read and the file can’t be

found TextSource.Error[fileNameError] is raised.

Create: PROCEDURE [sw: Window.Handle, name: STRING, options: Options _ defaultOptions,
 s: Stream _ NIL, position: TextSource.Position _ 0];

Clients may destroy a file subwindow by calling

Destroy: PROCEDURE [sw: Window.Handle];

The following procedure will enumerate all of the current file subwindows. This includes file

subwindows which are not in the window tree and file subwindows which are part of inactive Tools.

Enumerate: PROCEDURE [proc: EnumerateProcType];

EnumerateProcType: TYPE = PROCEDURE [sw: Window.Handle, name: STRING, access: Access]
 RETURNS [done: BOOLEAN];

The file name and stream that are currently attached to a file subwindow are returned by

GetFile: PROCEDURE [sw: Window.Handle] RETURNS [name: STRING, s: Stream];

IsIt returns TRUE if and only if a window is a file subwindow.

IsIt: PROCEDURE [sw: Window.Handle] RETURNS [yes: BOOLEAN];

A new file is loaded into a file subwindow by calling

SetFile: PROCEDURE [sw: Window.Handle, name: STRING, s: Stream _ NIL,
 position: TextSource.Position _ 0];

Tajo Functional Specification28

Clients that construct their own menus may include the following menu command routine. It does

the standard load operation using the current selection as the file-name argument.

LoadMCR: Menu.MCRType;

Tajo provides simple file editing facilities. Clients may determine if a file subwindow is currently

editable by calling

IsEditable: PROCEDURE [sw: Window.Handle] RETURNS [yes: BOOLEAN];

A file subwindow is made editable by calling

MakeEditable: PROCEDURE [sw: Window.Handle] RETURNS [ok: BOOLEAN];

PutEditableFile stores the edited file on the new file name. If name = NIL then the old version

of the file is saved as "currentName$" and the edited file is output to currentName.

PutEditableFile: PROCEDURE [sw: Window.Handle, name: STRING];

To reset the edited file to its original state call ResetEditableFile. The file subwindow is not

editable after the call.

ResetEditableFile: PROCEDURE [sw: Window.Handle];

All of the file-subwindow procedures can generate one or more of the following error conditions.

ErrorCode: TYPE = {notAFileSW, isAFileSW, notEditable, accessDenied};

Error: SIGNAL [code: ErrorCode];

Implementation Components 29

5.8 Format

All the procedures in the Format interface take as arguments a procedure whose argument is a

STRING, a piece of data to be formatted and where appropriate, a format specification.

DateFormat: TYPE = {dateOnly, noSeconds, dateTime, full};

NumberFormat: TYPE = RECORD [base: [2..36], zerofill, unsigned: BOOLEAN, columns: [0..255]];

The string produced using this record as a format specification for number formatting is

columns wide. If columns is 0 only the needed number of columns are used. Extra columns

are filled with zeros if zerofill is true, otherwise spaces are used. The number is treated as

unsigned if unsigned is true.

LongSubStringDescriptor: TYPE = RECORD [base: LONG STRING, offset, length: CARDINAL];

LongSubString: TYPE = POINTER TO LongSubStringDescriptor;

StringProc: TYPE = PROCEDURE [s: STRING];

The data is formatted into a string which is passed in the call to the StringProc. The types of data

that can be formatted are reflected in the following procedures:

Char: PROCEDURE [char: CHARACTER, proc: StringProc];

Date: PROCEDURE [pt: Time.Packed, format: DateFormat, proc: StringProc];

The date format used is the Mesa system’s. A full date is formatted into something that looks

like " 1-Jun-78 14:56:01 PDT". dateTime omits the time zone, noSeconds additionally

omits the seconds from the time of day and dateOnly omits all of the time of day.

Decimal: PROCEDURE [n: INTEGER, proc: StringProc];

LongDecimal: PROCEDURE [n: LONG INTEGER, proc: StringProc];

LongNumber: PROCEDURE [n: LONG UNSPECIFIED, format: NumberFormat, proc: StringProc];

LongOctal: PROCEDURE [n: LONG UNSPECIFIED, proc: StringProc];

Appends a B to the string if the value is greater than 7.

LongString: PROCEDURE [s: STRING, proc: StringProc];

LongSubStringItem: PROCEDURE [ss: LongSubString, proc: StringProc];

If ss.base is large, proc is called multiple times with pieces of the substring.

Number: PROCEDURE [n: UNSPECIFIED, format: NumberFormat, proc: StringProc];

Octal: PROCEDURE [n: UNSPECIFIED, proc: StringProc];

Appends a B to the string if the value is greater than 7.

SubString: PROCEDURE [ss: String.SubString, proc: StringProc];

If ss.base is large, proc is called multiple times with pieces of the substring.

Tajo: Functional Specification30

5.9 FormSW

The client constructs a Form subwindow by specifying an array of form-item handles. Each handle

points to an item; each item is a variant record which contains a pointer to the specific data to be

displayed and altered. The item contains information about how and, optionally, where it should be

displayed. When appropriate, the item also contains notification procedures that are called by the

Form subwindow to inform the client of events affecting the item.

The client’s items are displayed in a subwindow, and are alterable by the user at any time unless

explicitly prohibited by the client. The Form subwindow supplies procedures (via the PNR

mechanism) to display, select or alter any of these items.

Clients of this interface should keep in mind that forms can’t be arbitrarily large due to sizable storage requirements. The

fixed overhead in heap usage per form item is 23 words (broken down as follows: 4 words for the item record, 1 word

for the handle, 8 words for the item’s TextSource plus 1 word for heap overhead, and 9 words for the item’s TextDisplay

Object). The variable overhead is due to the STRINGs associated with an item (the tag, for example), line tables

associated with multi-line items, and the variant part of the item record.

5.9.1 Some conventions

It is important to distinguish between the user actions of choice and selection: the user is said to

select an item (or part of an item) if that action changes the current selection; otherwise the user is

said to make a choice of (or in) the item. Note that it is often not possible to distinguish between

the two cases by simply looking at the display-marking actions.

Some parts of the FormSW interface describe character positions within an item. These positions

are usually relative to a zero origin, which is to the left of the first character of the tag (or main

body of the item, if there is no tag). The exception is that the string filterProc and

ModifyEditable use positions with the zero position defined to be the left of the first character of

the main body of the item (because the client cannot determine the length of the tag and trailer).

When an interval is being specified (i.e. as arguments to SetSelection) the interval is half-open,

(i.e. first = last = 0 is an empty selection; first = 0, last = 1 is a selection containing a single

character, namely the first one in the item).

5.9.2 The ItemObject

The Tool may specify any of the following generic types of item:

Commands

Labels

Numbers

Sets

Strings

The ItemObject is the fundamental data structure of the Form subwindow. Unfortunately, the

ItemObject is complex in order to provide sufficient flexibility to the Tool writer who wants fine

control over displaying and altering the item. Most clients should not explicitly construct an

Implementation Components 31

ItemObject, but should instead use the procedures that allocate an ItemObject and take

advantage of the defaulting mechanism; see the sample Tools in the appendices for examples. In

FormSW procedure types the argument is called item if it is an ItemHandle and items if it is an

ItemDescriptor. Note that DESCRIPTOR FOR ARRAY is implicitly a DESCRIPTOR FOR ARRAY [0..0). In

particular, this means that trying to index an ItemDescriptor by an enumerated type results in a compilation error.

ItemObject: TYPE = RECORD [
 tag: STRING,
 place: Window.Place,
 flags: ItemFlags,

 body: SELECT type: ItemType FROM

 boolean => [...],
 command => [...],
 enumerated => [...],
 longNumber => [...],

 number => [...],
 string => [...],
 tagOnly => [...],
 ENDCASE];

ItemFlags: TYPE = RECORD [readOnly: BOOLEAN _ FALSE, invisible: BOOLEAN _ FALSE,

 drawBox: BOOLEAN _ FALSE, hasContext: BOOLEAN _ FALSE, clientOwnsItem: BOOLEAN _ FALSE];

ItemType: TYPE = {boolean, command, enumerated, longNumber, number, string, tagOnly};

ItemHandle: TYPE = POINTER TO ItemObject;
ItemDescriptor: TYPE = DESCRIPTOR FOR ARRAY OF ItemHandle;

BooleanHandle: TYPE = POINTER TO boolean ItemObject;
CommandHandle: TYPE = POINTER TO command ItemObject;
EnumeratedHandle: TYPE = POINTER TO enumerated ItemObject;
LabelHandle: TYPE = TagOnlyHandle;
LongNumberHandle: TYPE = POINTER TO longNumber ItemObject;
NumberHandle: TYPE = POINTER TO number ItemObject;
StringHandle: TYPE = POINTER TO string ItemObject;
TagOnlyHandle: TYPE = POINTER TO tagOnly ItemObject;

nullItems: ItemDescriptor = DESCRIPTOR[NIL, 0];

nullIndex: CARDINAL = LAST[CARDINAL];

tag is a client-supplied string that is displayed immediately preceding the data associated with the

parameter (e.g., "tag: string"). It may be NIL, in which case any trailer characters that are usually

displayed after the tag will be suppressed (e.g., ": ").

place is the x,y position (subwindow relative) where the tag and data are to be displayed if the

subwindow is of type fixed, otherwise place is ignored (see procedural interface). The array of item

pointers is required to have the places in ascending (English reading) order, i.e. left to right, top to

bottom. If the x position is negative, it is treated as a relative offset, where the magnitude of x

specifies the number of bits to leave between the end of the preceeding item and the start of the tag

Tajo: Functional Specification32

for this item. Note that the use of a negative x following a string item with defaultBoxWidth
results in the ERROR ItemError[illegalCoordinate, i], where i is the index of the offending item.

Similarly, negative y positions are interpreted specially. They are line positions, i.e. they specify

position as a multiple of the line height for the subwindow. The constants line0 through line9 can

be used as y values to specify that the item should be on the zeroth through ninth lines in the

subwindow. The procedure LineN takes a line number and returns the appropriate negative y.

LineN: PROCEDURE [n: CARDINAL] RETURNS [INTEGER];

In addition, there are several special constants. sameLine specifies that the y position for this item

should be the same as the y position for the preceding item. If this is the first item, the ERROR

ItemError[illegalCoordinate, ----] results. nextLine specifies that the y position for this item

should be the next line after the y position of the preceding item.

Two special places are provided. nextPlace specifies that this item should be on the same line as

the preceding one, and should start a little past where the previous one left off. This is subject to all of

the caveats mentioned for negative x’s above. newLine specifies that this item should start on the next line

down from the preceding item, and works even if there is no preceding item.

nextPlace: Window.Place = [-10, sameLine];
newLine: Window.Place = [0, nextLine];

It is often desirable to have the items on different lines have the same horizontal positions. To

simplify this task the SetTagPlaces procedure is provided. The tabStops are in raster points if

bitTabs is TRUE, otherwise they are multiplied by the width of the digit 0. A positive x is used as

a zero-origin index into the tabStops array. If the place is nextPlace it means move to the

next tab stop. Negative x’s are left alone. This routine is a pre-processor that changes the items’

places; it should be called before giving the items to the FormSW package.

SetTagPlaces: PROCEDURE [

 items: ItemDescriptor, tabStops: DESCRIPTOR FOR ARRAY OF CARDINAL, bitTabs: BOOLEAN];

The height of a line can be determined by calling LineHeight, which accounts for all fudge factors

added to the fontHeight.

LineHeight: PROCEDURE RETURNS [CARDINAL];

flags is a RECORD of state bits for the item. The meaning of the flags is as follows.

If readOnly is TRUE, the user cannot modify this parameter. If any modification is

attempted, the readOnlyNotifyProc for this subwindow is called.

If invisible is TRUE, the item is not displayed in the subwindow, and it is treated by Form

subwindows exactly as if it were not present, except that it is occupying an index slot.

If drawBox is TRUE, the item is displayed enclosed within a box that is one bit thick.

If hasContext is TRUE, a client context one word long is associated with the item. This

context serves the same function as a client context associated with a subwindow. However,

unlike Context, FormSW returns a pointer to the client data word, not the value of the data

word. To get to the context given the item call

Implementation Components 33

ContextFromItem: PROCEDURE [ItemHandle] RETURNS [POINTER];

If clientOwnsItem is TRUE, the Form subwindow will not try to de-allocate the item if the

subwindow is destroyed.

The following sections describe the feedback and actions that are associated with each generic

parameter type.

5.9.2.1 Command Items

For command parameter items the character "!" is appended to the tag as an indication to the

user that this is a command item. User choice of this type of parameter item causes invocation of

the supplied client proc in a manner analogous to menu-command choice. FormSW supplies

NopNotifyProc that does nothing when called.

ItemObject: TYPE = RECORD [...
 body: SELECT type: ItemType FROM

 command => [proc: ProcType],
 ...];

ProcType: TYPE = PROCEDURE [

 sw: Window.Handle _ NIL, item: ItemHandle _ NIL, index: CARDINAL _ nullIndex];

NotifyProcType: TYPE = ProcType;
NopNotifyProc: NotifyProcType;

5.9.2.2 Boolean Items

For boolean parameter items there is no special trailer appended to the tag. User choice of this

type of parameter item causes this sequence of actions: the tag is inverted on the display; the sense

of the BOOLEAN pointed to by switch is inverted; and then the supplied client proc is invoked.

FormSW supplies NopNotifyProc that does nothing when called.

ItemObject: TYPE = RECORD [...
 body: SELECT type: ItemType FROM

 boolean => [switch: POINTER TO BOOLEAN, proc: NotifyProcType],
 ...];

switch is a POINTER TO BOOLEAN so that the client need not have access to the ItemObject in
order to have access to the BOOLEAN. Note that this requires that the BOOLEAN occupy its own word

in memory. This can be achieved by allocating the BOOLEAN in the client’s global frame (but not in

a RECORD in the global frame unless it is a MACHINE DEPENDENT RECORD and the BOOLEAN is

specified to occupy a word) or by using the overlaid variant

WordBoolean: TYPE = RECORD [

 SELECT OVERLAID * FROM

 f1 => [b: BOOLEAN],

 f2 => [w: WORD],

Tajo: Functional Specification34

 ENDCASE];

Of these solutions, the overlaid variant tends to be the most clumsy and should be avoided.

5.9.2.3 Enumerated Items

For enumerated parameter items the special trailer ": {" is appended to the tag. In addition, a

"}" is appended at the end of the item’s display representation. User modification of this type of

parameter item causes this sequence of actions: the display is updated, in a manner that depends

upon the feedback; the UNSPECIFIED pointed to by value is updated to match the display; and

then the supplied client proc is invoked. FormSW supplies NopEnumeratedNotifyProc that

does nothing when called.

ItemObject: TYPE = RECORD [...
 body: SELECT type: ItemType FROM

 enumerated => [
 feedback: EnumeratedFeedback,
 copyChoices: BOOLEAN,
 value: POINTER TO UNSPECIFIED,
 proc: EnumeratedNotifyProcType,
 choices: EnumeratedDescriptor],
 ...];

feedback - Examples of the two forms of feedback are:

all - The item displays as "tag: {a, b, c}". Choosing any item within the curly brackets

video reverses that item and sets the value in the associated record.

one - The item displays as "tag: {a}". Only the currently chosen value is displayed.

[Note: An enumerated can never have an unknown value (unless the client is not playing by the rules). It may

have nullEnumeratedValue, in which case the display of the item has nothing between the braces (for one

feedback) or nothing selected (for all feedback).]

 EnumeratedFeedback: TYPE = {all, one};

choices - For both forms, the items available for choice are those STRINGs supplied by the

client in the choices. When the string from one of the choices is chosen, the

corresponding value from the Enumerated is stored into ItemObject.value^.

Depressing the menu mouse button displays the set of strings available for choice.

 EnumeratedDescriptor: TYPE = DESCRIPTOR FOR ARRAY OF Enumerated;

 Enumerated: TYPE = RECORD [string: STRING, value: UNSPECIFIED];

value - This field is a POINTER TO UNSPECIFIED so that the client need not have access to the

ItemObject in order to have access to the UNSPECIFIED. This introduces the same

problems that occur with the boolean ItemObject’s switch, and the same solutions and

caveats apply here. value points to an UNSPECIFIED so that its possible values can be from

any type (usually an enumeration).

Implementation Components 35

 nullEnumeratedValue: UNSPECIFIED = LAST[CARDINAL];

proc - This field is a PROCEDURE that is called whenever the user changes value.

 EnumeratedNotifyProcType: TYPE = PROCEDURE [

 sw: Window.Handle _ NIL, item: ItemHandle _ NIL,

 index: CARDINAL _ nullIndex, oldValue: UNSPECIFIED _ nullEnumeratedValue];

 NopEnumeratedNotifyProc: EnumeratedNotifyProcType;

The copyChoices BOOLEAN is TRUE iff Form subwindow believes that the client’s choices
were copied into The Heap. See 5.9.3 for further details.

Occasionally a Tool wants to display a BOOLEAN choice without using the boolean ItemObject’s
display conventions. The procedure BooleanChoices and an enumerated ItemObject can be

used in this case.

BooleanChoices: PROCEDURE RETURNS [EnumeratedDescriptor];

5.9.2.4 String Items

For string parameter items the characters ": " are appended to the tag as an indication to the user

that this is a string item. String items give the Tool writer explicit control over the alteration of the

supplied string and over how it is to be displayed. The Tool-supplied procedures are called

whenever characters are to be added to the string.

ItemObject: TYPE = RECORD [...
 body: SELECT type: ItemType FROM

 string => [
 feedback: StringFeedback,
 inHeap: BOOLEAN,
 string: POINTER TO STRING,
 boxWidth: CARDINAL,
 filterProc: FilterProcType,
 menuProc: MenuProcType],
 ...];

inHeap - If this BOOLEAN is TRUE, the Tajo StringEditProc will dynamically allocate and de-

allocate the backing string from The Heap.

string - This is a POINTER TO STRING that contains the characters entered by the user. The

level of indirection is provided so that the original string may be replaced.

feedback - The characters of string are displayed on the screen as text unless feedback is

password, in which case a "*" is printed in place of each character of string.

 StringFeedback: TYPE = {normal, password};

Tajo: Functional Specification36

boxWidth - This is added to the tag’s width (including the supplied trailer) in order to

determine the width of the box in which the STRING is displayed. If the special value

defaultBoxWidth is used, then the box will extend to the right edge of the subwindow or

to the next item, whichever is closer.

filterProc - The client’s filterProc is called whenever characters are input for a selected string

item. It is the responsibility of this procedure to actually edit the string.

 FilterProcType: TYPE = PROCEDURE [

 sw: Window.Handle, item: ItemHandle, insert: CARDINAL, string: STRING];
 StringEditProc: FilterProcType;

string, which may be NIL, contains the characters to edit into the existing string at position

insert. The actual edit must be performed by calling StringEditProc. This allows

FormSW to optimize the display updating and to maintain the consistency of the selection

and insert. In other words, the filterProc can look at the string (and possibly modify it)

but must then call StringEditProc and pass through the arguments.

menuProc - The client’s menuProc is called whenever the user selects the string item with

the menu button. This gives the client the opportunity to supply a list of strings to be

displayed in a menu.

 Hints: TYPE = DESCRIPTOR FOR ARRAY OF STRING;

 FreeHintsProcType: TYPE = PROCEDURE [hints: Hints];

 MenuProcType: TYPE = PROCEDURE [sw: Window.Handle, index: CARDINAL]

 RETURNS [hints: Hints, freeHintsProc: FreeHintsProcType, replace: BOOLEAN];

If replace is TRUE, then when the user chooses an appropriate menu item (i.e., hint) it will

replace the item’s string’s contents. If replace is FALSE, then when the user chooses the

menu item it will be inserted into the item’s string just as if the user had typed the menu

string. If BASE[hints] = NIL, no prompt menu will be available to the user. This condition

holds if the menuProc is

 VanillaMenuProc: MenuProcType;

freeHintsProc is called to free the hints, allowing the hints to be somewhere other than

in the client’s global frame. Two standard hints de-allocators are FormSW-supplied.

InHeapFreeHintsProc assumes that the hints are from The Heap, while

NopFreeHintsProc does nothing (appropriate if the hints are in the client’s global

frame).

 InHeapFreeHintsProc: FreeHintsProcType;
 NopFreeHintsProc: FreeHintsProcType;

5.9.2.5 Number Items

The number and longNumber item types are identical except in some small and obvious ways.

Only the number item is discussed in detail; the differences found in longNumber are

enumerated.

Implementation Components 37

For number parameter items the special trailer "= " is appended to the tag. The user can select

and edit a number item just like a string item, and the client can also exercise control over the

alteration and display of the item, similar to a string item.

ItemObject: TYPE = RECORD [...
 body: SELECT type: ItemType FROM

 longNumber => [

 signed, notNegative: BOOLEAN,

 radix: Radix,

 boxWidth: CARDINAL [0..256),
 proc: LongNumberNotifyProcType,

 default: LONG UNSPECIFIED,

 value: POINTER TO LONG UNSPECIFIED,

 string: STRING],

 number => [
 signed, notNegative: BOOLEAN,

 radix: Radix,

 boxWidth: CARDINAL [0..128),
 proc: NumberNotifyProcType,

 default: UNSPECIFIED,

 value: POINTER TO UNSPECIFIED,

 string: STRING],

 ...];

signed - FormSW needs to know whether or not to treat the value as a signed number (i.e.,

INTEGER). It is treated as a CARDINAL iff signed is FALSE.

notNegative - The user is permitted to enter negative values iff notNegative is FALSE.

radix - If the user does not provide a specific radix, ’D for decimal or ’O for octal, when he

enters or modifies the item, then the radix is assumed to be 10 if radix is decimal, 8 if

radix is octal.

 Radix: TYPE = {decimal, octal};

boxWidth - Just as for a string item.

proc - The client’s proc is called after each user edit to the item. If the client is not interested

in such notification, it can use the "do-nothing" NopNumberNotifyProc.

 NumberNotifyProcType: TYPE = PROCEDURE [

 sw: Window.Handle _ NIL, item: ItemHandle _ NIL,

 index: CARDINAL _ nullIndex, oldValue: UNSPECIFIED _ LAST[INTEGER]];

 NopNumberNotifyProc: NumberNotifyProcType;

default - It is possible that the user will not wish to enter any value for the item. In this case,

the value is forced to default.

Tajo: Functional Specification38

value - is a POINTER TO UNSPECIFIED so that the client need not have access to the

ItemObject in order to have access to the UNSPECIFIED. FormSW assumes that the

UNSPECIFIED occupies a full word, hence it should not be declared by the client to be a

subrange of CARDINAL or INTEGER. value points to an UNSPECIFIED so that it can be either a

CARDINAL or an INTEGER.

string - is the string representation of value^. It is always be convertible to value^ unless it

is empty, in which case value^ will be default.

The longNumber parameter item differs in that: boxWidth should be larger; value points to a

LONG UNSPECIFIED instead of an UNSPECIFIED; default is a LONG UNSPECIFIED instead of an

UNSPECIFIED; proc takes a LONG UNSPECIFIED instead of an UNSPECIFIED for the old value, and the

FormSW supplied "do nothing" procedure is also different.

LongNumberNotifyProcType: TYPE = PROCEDURE [

 sw: Window.Handle _ NIL, item: ItemHandle _ NIL,

 index: CARDINAL _ nullIndex, oldValue: LONG UNSPECIFIED _ LAST[LONG INTEGER]];

NopLongNumberNotifyProc: LongNumberNotifyProcType;

5.9.2.6 Label and Tag Items

The tagOnly item type is provided for two purposes. The first is to act as a label for some part of

the form; for example, a form might consist of two parts, one for specifying input parameters and

the other for output parameters. The client could distinguish the individual items by having their

tags prefixed by "Input-" or "Output-", or it could have two sets of items with the same tags but

preceded by a labelling line consisting of an item whose tag was "Input parameters" or "Output

parameters".

The second purpose is to substitute for the tag of a string item. This is useful when the client

wishes to present the illusion that the tag for an item is not on the same line as the item’s body. It

is these two styles of usage that motivate the types LabelHandle and TagOnlyHandle.

ItemObject: TYPE = RECORD [...
 body: SELECT type: ItemType FROM

 tagOnly => [sw: Window.Handle, otherItem: CARDINAL],
 ...];

sw - This is the Form subwindow that contains the item. It is automatically set by Create;

clients should ignore it.

otherItem - This is the index of the other item for which this item is acting as a tag. If

otherItem is nullIndex, then the tagOnly is treated as a label instead of a substitute tag.

Otherwise, it must be the index of a string item or the ERROR

ItemError[notStringOtherItem, i] will be generated by Create, where i is the index of

the tagOnly item.

In order to allow a tagOnly to act as a substitute tag, there is no special trailer appended to the tag.

When a tagOnly item is used as a substitute tag, all of the user actions directed at its tag are

redirected by FormSW to the otherItem. Due to this redirection the notification procedures of the

Implementation Components 39

target string item are called with arguments identical to the ones provided by FormSW when the

string item’s tag is operated on by the user.

5.9.3 ItemObject allocation and de-allocation

5.9.3.1 Allocating an ItemObject from the Heap

The allocation procedures always allocate from the system Heap, using the standard facilites

provided by Storage. There is no provision made for the client to provide an alternative allocator

to FormSW. Allocation procedures always return a differentiated ItemHandle. ItemObjects allocated

this way occupy a node only big enough for the specific variant allocated.

A call to an allocation procedure looks like a record constructor, with some of the fields found in an

ItemObject omitted. Each field is defaulted if a reasonable default exists. An allocated item

always has a FALSE clientOwnsItem.

BooleanItem: PROCEDURE [

 tag: STRING _ NIL, readOnly, invisible, drawBox, hasContext: BOOLEAN _ FALSE,

 place: Window.Place _ nextPlace, proc: NotifyProcType _ NopNotifyProc,
 switch: POINTER TO BOOLEAN]

 RETURNS [BooleanHandle];

CommandItem: PROCEDURE [

 tag: STRING _ NIL, readOnly, invisible, drawBox, hasContext: BOOLEAN _ FALSE,

 place: Window.Place _ nextPlace, proc: ProcType]

 RETURNS [CommandHandle];

EnumeratedItem: PROCEDURE [

 tag: STRING _ NIL, readOnly, invisible, drawBox, hasContext: BOOLEAN _ FALSE,

 place: Window.Place _ nextPlace, feedback: EnumeratedFeedback _ one,
 proc: EnumeratedNotifyProcType _ NopEnumeratedNotifyProc,
 copyChoices: BOOLEAN _ TRUE, choices: EnumeratedDescriptor, value: POINTER TO UNSPECIFIED]

 RETURNS [EnumeratedHandle];

LabelItem: PROCEDURE [

 tag: STRING _ NIL, readOnly, invisible, drawBox, hasContext: BOOLEAN _ FALSE,

 place: Window.Place _ nextPlace]

 RETURNS [LabelHandle];

Tajo: Functional Specification40

LongNumberItem: PROCEDURE [

 tag: STRING _ NIL, readOnly, invisible, drawBox, hasContext: BOOLEAN _ FALSE,

 place: Window.Place _ nextPlace, signed: BOOLEAN _ TRUE, notNegative: BOOLEAN _ FALSE,

 radix: Radix _ decimal, boxWidth: CARDINAL [0..256) _ 64,

 proc: LongNumberNotifyProcType _ NopLongNumberNotifyProc,
 default: LONG UNSPECIFIED _ LAST[LONG INTEGER], value: POINTER TO LONG UNSPECIFIED]

 RETURNS [LongNumberHandle];

NumberItem: PROCEDURE [

 tag: STRING _ NIL, readOnly, invisible, drawBox, hasContext: BOOLEAN _ FALSE,

 place: Window.Place _ nextPlace, signed: BOOLEAN _ TRUE, notNegative: BOOLEAN _ FALSE,

 radix: Radix _ decimal, boxWidth: CARDINAL [0..128) _ 64,

 proc: NumberNotifyProcType _ NopNumberNotifyProc,
 default: UNSPECIFIED _ LAST[INTEGER], value: POINTER TO UNSPECIFIED]

 RETURNS [NumberHandle];

StringItem: PROCEDURE [

 tag: STRING _ NIL, readOnly, invisible, drawBox, hasContext, inHeap: BOOLEAN _ FALSE,

 place: Window.Place _ nextPlace, feedback: StringFeedback _ normal,
 boxWidth: CARDINAL _ defaultBoxWidth, filterProc: FilterProcType _ StringEditProc,
 menuProc: MenuProcType _ VanillaMenuProc, string: POINTER TO STRING]

 RETURNS [StringHandle];

TagOnlyItem: PROCEDURE [
 tag: STRING _ NIL, readOnly, invisible, drawBox, hasContext: BOOLEAN _ FALSE,
 place: Window.Place _ nextPlace, otherItem: CARDINAL _ nullIndex]
 RETURNS [TagOnlyHandle];

5.9.3.2 De-allocating an ItemObject from the Heap

An item allocated by FormSW can be de-allocated by calling

FreeItem: PROCEDURE [item: ItemHandle] RETURNS [ItemHandle];

If item.clientOwnsItem is TRUE, then the actions taken (which differ for each item type) are:

enumerated - If copyChoices is TRUE, the choices are freed.

longNumber, number - The string is freed.

string - If inHeap is TRUE, the ItemObject.string is freed.

All other types - Nothing is freed.

If clientOwnsItem is FALSE, then the actions taken are those for when it is TRUE, but in addition

the tag and the item are also freed. The ItemHandle returned by FreeItem is NIL if

Implementation Components 41

clientOwnsItem is FALSE, otherwise it is the argument.

The client must be very careful when using this procedure as it may deallocate the item that contains

either the selection or insertion, in which case the client must guarantee that there will be no

references to either of them. It is considerably safer to deallocate all of the items at once. This is

done by calling

FreeAllItems: PROCEDURE [sw: Window.Handle];

5.9.4 Subwindow Global Operations

The Tool writer creates a Form subwindow by calling

Create: PROCEDURE [sw: Window.Handle, clientItemsProc: ClientItemsProcType,
 readOnlyNotifyProc: ReadOnlyProcType _ IgnoreReadOnlyProc,
 options: Options _ [], initialState: ToolWindow.State _ active];

ClientItemsProcType: TYPE = PROCEDURE RETURNS [items: ItemDescriptor, freeDesc: BOOLEAN];
ReadOnlyProcType: TYPE = ProcType;

Type: TYPE = {fixed, relative};
Options: TYPE = RECORD [type: Type _ fixed, scrollVertical: BOOLEAN _ TRUE];

sw - This is the subwindow that is transformed into a Form subwindow. If the subwindow is

already a Form subwindow, the ERROR Error[alreadyAFormSW] results.

clientItemsProc - This will be called at FormSW’s discretion to get the items. If the

ItemDescriptor was manufactured from The Heap, perhaps by calling

AllocateItemDescriptor, then the client can have FormSW free it by returning a TRUE

freeDesc.

AllocateItemDescriptor: PROCEDURE [CARDINAL] RETURNS [ItemDescriptor];

readOnlyNotifyProc - This is called whenever the user attempts to modify an item with a

TRUE readOnly flag. Two standard ReadOnlyProcTypes are supplied by FormSW:

IgnoreReadOnlyProc blinks the display when called, while NopReadOnlyProc simply

does nothing.

ReadOnlyProcType: TYPE = ProcType;

IgnoreReadOnlyProc: ReadOnlyProcType;

NopReadOnlyProc: ReadOnlyProcType;

options - A type of relative directs the Form subwindow to automatically determine where

and how the items and their associated data are displayed. If the client specifies a type of

fixed then the client must designate a subwindow place for each item to be displayed; it is

the client’s responsibility to avoid overlapping or overwriting of items and their data. If

scrollVertical is TRUE, a vertical scrollbar is provided.

Tajo: Functional Specification42

[Note: In the relative case the parameter items are simply displayed one per line. This implies that the height

of a subwindow that would contain all of your parameters is = n*LineHeight[].]

initialState - This determines whether the Form subwindow is awake when created. If

initialState is not active, then the Form subwindow will be asleep. If initialState is

active, then the clientItemsProc is called while still in Create.

You may transform a Form subwindow back into an undifferentiated subwindow by calling

Destroy: PROCEDURE [Window.Handle];

If the subwindow is not currently a Form subwindow, the ERROR Error[notAFormSW] results. It

is possible to test whether a subwindow is in fact a Form subwindow by calling

IsIt: PROCEDURE [sw: Window.Handle] RETURNS [yes: BOOLEAN];

If it is necessary to move the subwindow within the parent window, or to change its size, the

adjustment is done by calling

Adjust: ToolWindow.AdjustProcType;

The current Options are changed by calling

SetOptions: PROCEDURE [sw: Window.Handle, options: Options];

Display is provided to allow the Tool to re-display the contents of the subwindow. Note that

Display allows the Tool to scroll, or unscroll, the items before the redisplay via the yOffset, which

specifies the number of bits to offset the items upwards

Display: PROCEDURE [sw: Window.Handle, yOffset: CARDINAL _ 0];

If the Tool window is being made tiny, there is no need for its subwindows to keep state

information that is used only for display purposes. A Form subwindow can be told to discard such

state data by calling Sleep, and to recreate the display state (when the window becomes big) by

calling Wakeup. This is done automatically if using the Tool interface.

Sleep: PROCEDURE [Window.Handle];

Wakeup: PROCEDURE [Window.Handle];

A Tool often wishes to know how high a Form subwindow should be to just display all of the items,

assuming that they are not scrolled. There are two heights of interest; the minimum height for the

subwindow is attained if none of the textual item types (i.e. longNumber, number, string,

source) overflow a single line; the current height is the true height of the subwindow, accounting

for overflowing items. These are returned by the following procedure as min and current
respectively.

NeededHeight: PROCEDURE [Window.Handle] RETURNS[min, current: CARDINAL];

Unfortunately, NeededHeight requires that the Form subwindow already exist. It is occasionally

convenient to know the height a Form subwindow would need at a minimum without having it exist

yet. This number can be ascertained by calling

Implementation Components 43

MinHeight: PROCEDURE [items: ItemDescriptor, type: Type] RETURNS [CARDINAL];

5.9.5 Operations Affecting One or Two Items

DisplayItem is provided to allow the Tool to re-display the contents of an individual item.

Redisplaying a single item may cause other items to also be redisplayed. DisplayItem must be

called immediately if the client changes any of the flags that effect the way the item is displayed or

if the client changes the backing store for the item. Such changes are not safe in an arbitrary preemption

environment as there is a potential race condition.

DisplayItem: PROCEDURE [sw: Window.Handle, index: CARDINAL];

The best way to modify the backing store of an editable item (i.e. one of type string, number or

longNumber) is to call ModifyEditable. This changes the backing store and the display as little

and as quickly as possible. The position is the left end of the text in the item’s body that is to be

changed. If new is NIL, then the modification is a deletion, otherwise if length is 0 it is an

insertion else it is a replacement. In all cases, the removed characters are discarded unless

keepTrash is TRUE, in which case they become the current contents of the global trash bin.

ModifyEditable: PROCEDURE [sw: Window.Handle, index, position, length: CARDINAL,

 new: STRING _ NIL, keepTrash: BOOLEAN _ FALSE];

ToggleVisibility minimizes the repainting that is necessary when the visibility of an item is

changed. Additionally, it accounts for the case of the item being made invisible when it contains the

selection or insertion.

ToggleVisibility: PROCEDURE [sw: Window.Handle, index: CARDINAL];

The following procedures allow a Tool to get and set the currently selected item and the item

containing the insert point. These procedures should be used judiciously so as to not preempt the

user.

GetSelection: PROCEDURE [Window.Handle] RETURNS [index: CARDINAL, first, last: CARDINAL];

GetTypeIn: PROCEDURE [Window.Handle] RETURNS [index: CARDINAL, position: CARDINAL];

SetCurrent: PROCEDURE [sw: Window.Handle, index: CARDINAL];

SetSelection: PROCEDURE [sw: Window.Handle, index: CARDINAL, first, last: CARDINAL];

SetTypeIn: PROCEDURE [sw: Window.Handle, index: CARDINAL, position: CARDINAL];

nullIndex is used as an index when the client wants "nothing" selected or wants no insert point.

SetCurrent is equivalent to SetSelection with first and last selecting the non-tag and trailer

portion of the item; it also places the insert point at the item’s end.

FormSW assumes that there is a unique mapping between an item and an index into the

ItemDescriptor for each subwindow. The client notification procedures are called with the item,

or its index, or both. If only one is provided, FormSW provides a way to get the other. Given an

item, it is possible to find its index by calling

Tajo: Functional Specification44

FindIndex: PROCEDURE [sw: Window.Handle, item: ItemHandle] RETURNS [CARDINAL];

To go in the other direction, call

FindItem: PROCEDURE [sw: Window.Handle, index: CARDINAL] RETURNS [ItemHandle];

If a client notification procedure wants to implement a synonym for the Next function it should call

SkipToNext: PROCEDURE [sw: Window.Handle];

5.9.6 Errors and Abnormal Conditions

The following are all the ERRORs generated directly by FormSW.

Error: SIGNAL [code: ErrorCode];

ErrorCode: TYPE = {alreadyAFormSW, notAFormSW};

ItemError: SIGNAL [code: ItemErrorCode, index: CARDINAL];

ItemErrorCode: TYPE = {illegalCoordinate, notStringOtherItem, nilBackingStore};

The index argument to ItemError is the index of the item that FormSW was processing when it

discovered the error condition.

Implementation Components 45

5.10 HeapString

HeapString provides operations for STRINGs that are allocated from the system Heap. This

assumption allows the procedures to provide automatic allocation of initially NIL string values and

automatic expansion or shortening when required.

AppendChar: PROCEDURE [p: POINTER TO STRING, c: CHARACTER];

Appends the character c to the string pointed to by p.

AppendExtensionIfNeeded: PROCEDURE [to: POINTER TO STRING, extension: STRING]
 RETURNS [BOOLEAN];

Checks the passed string pointed to by to to see if it contains an extension (contains a period

followed by at least one character. If not; it appends extension (but does not supply a

period!).

AppendString: PROCEDURE [to: POINTER TO STRING, from: STRING, extra: CARDINAL _ 0];

Appends the string from to the string pointed to by to. If the string must be expanded, it will

be expanded to the new required length plus extra.

Replace: PROCEDURE [to: POINTER TO STRING, from: STRING];

Replaces the string pointed to by to with a copy of the string from.

Tajo: Functional Specification46

5.11 Keys

Keys defines the user input devices’ key layouts. It depends heavily on the KeyStations interface

which defines the bits generated by the microcode for each key station. There are five types of key

stations 1) typing keys such as alphanumerics, punctuation, tab, CR, etc. 2) function keys such as the

left, right, and top function groups 3) the mouse buttons 4) the keyset paddles and 5) diagnostic

pseudo-keys for hardware diagnostic purposes.

DownUp: TYPE = {down, up};

KeyBits: TYPE = PACKED ARRAY KeyName OF DownUp;

Each element of the KeyName enumeration is a KeyStations.KeyStation. Refer to the

definitions files if you need to know the exact bit assigned to a particular key station.

KeyStation: TYPE = [0..112);

KeyName: TYPE = MACHINE DEPENDENT {

Keyset1, Keyset2, Keyset3, Keyset4, Keyset5,

Red, Blue, Yellow,

Five, Four, Six, E, Seven, D, U, V, Zero, K, Dash, P, Slash, BackSlash, LF, BS, Three, Two, W,

Q, S, A, Nine, I, X, O, L, Comma, Quote, RightBracket, Spare2, Spare1, One, ESC, TAB,

F, Ctrl, C, J, B, Z, LeftShift, Period, SemiColon, Return, Arrow, DEL, FL3, R, T, G, Y, H,

Eight, N, M, Lock, Space, LeftBracket, Equal, RightShift, Spare3, FL4, FR5, R5, R9,

L10, L7, L4, L1L, A9, R10, A8, L8, L5, L2, R2, R7, R4, D2, D1, Key48, T1, T3, T4, T5, T6,

T7, T8, T10, R3, Key47, A10, R8};

There are some common synonyms defined for use on the Alto II keyboard.

FL1: KeyName = DEL;
FL2: KeyName = LF;
BW: KeyName = Spare1;
FR1: KeyName = Spare3;
Swat: KeyName = FR1;
FR2: KeyName = BackSlash;
FR3: KeyName = Arrow;
FR4: KeyName = Spare2;

Implementation Components 47

5.12 Librarian

This set of procedures is the lowest level of interface to the Librarian Server. It allows the client to

alter and interrogate the Librarian Data Base and access the Contents of Libjects.

First, some types:

Card13: TYPE = [0..17777B];

LibjectID: TYPE = LONG CARDINAL;

LibjectVersionType: TYPE = {version, replacementID, timeAndDate};

LibjectVersion: TYPE = MACHINE DEPENDENT RECORD [

type: LibjectVersionType,
body: SELECT LibjectVersionType COMPUTED FROM

version => [
compatablity: CARDINAL,
addition: CARDINAL,
modification: CARDINAL,
patch: CARDINAL];

replacementID => [
pad: Card13,
id: LibjectID,
zip: CARDINAL _ 0];

timeAndDate => [
pad: Card13 _ 17776B,
tod: Time.Packed,
zip: CARDINAL _ 0];

zeroVersion: LibjectVersion = [version, version[0,0,0,0]];

LibjectUpdateType: TYPE = {compatability, addition, modification, patch};

FullLibjectIDHandle: TYPE = POINTER TO FullLibjectID;

FullLibjectID: TYPE = RECORD [id: LibjectID, version: LibjectVersion];

SnapShot: TYPE = ARRAY [0..1) OF FullLibjectID;

SnapShotHandle: TYPE = DESCRIPTOR FOR ARRAY OF FullLibjectID;

5.12.1 Altering The Librarian Data Base

LibjectCreate: PROCEDURE [s: STRING] RETURNS [id: LibjectID];

Ensures that the supplied string is not in use or is not a hash collision in the LibjectID space,

then marks it as used and returns that LibjectID. Fine point: The name of a Libject is its LibjectID!

The string is associated with the Libject for annotation and other purposes. The version of this newly

created libject is versionZero.

Tajo: Functional Specification48

Callers of LibjectCreate should be prepared to handle the error codes AlreadyExists and

IDConflict.

The librarian data base, for any instance of a Librarian service, can grow arbitrarily large. The

actual data base is maintained on a network file service, where the number and size of files is not a

problem. The Librarian service maintains, on local disk storage, a cache of the most recently

accessed Libjects. Libjects that are in the cache are said to be active. The following procedures

allow clients to explicitly activate and deactivate Libjects.

LibjectActivate: PROCEDURE [id: LibjectID, wait: BOOLEAN _ FALSE];

LibjectDeactivate: PROCEDURE [id: LibjectID];

Procedures that access the Librarian data base take an activate BOOLEAN argument. The Librarian

interface automatically activates a Libject if activate is TRUE and the error code InactiveLibject
is encountered during the execution of the procedure.

LibjectCheckout: PROCEDURE [
 fid: FullLibjectIDHandle, reason: STRING, activate: BOOLEAN _ FALSE];

Marks the Libject as checked-out. This is essentially a write lock with the added feature of

supplying a STRING which can be examined by other clients of the data base.

LibjectCheckin: PROCEDURE [
 id: FullLibjectIDHandle, updatetype: LibjectUpdateType, pl: PropertyList,
 s: Compatiblity.SHandle, activate: BOOLEAN _ FALSE];

Creates a new version of the Libject from the supplied property list (described below), and

clears the checked-out lock. If the stream is non-NIL, then the contents of the stream will be

stored at the destination specified by the ContentsFile property (with a new version number),

and the ContentsFile property updated.

The client need not know the algorithm for updating libject versions. However, the client is

asked to specify his intended updatetype and the interface will compute the next version

number.

[Note: The stream is destroyed by the procedure.]

5.12.2 Interrogating the Librarian Data Base

LibjectFindID: PUBLIC PROCEDURE [s: STRING, activate, wait: BOOLEAN _ FALSE]
 RETURNS [id: LibjectID];

Performs the string-to-LibjectID conversion.

LibjectFindVersion: PROCEDURE [id: LibjectID, s: SnapShotHandle, activate: BOOLEAN _ FALSE]
 RETURNS [fid: FullLibjectIDHandle];

Implementation Components 49

Will supply the right version of the Libject for the supplied snapshot.

The code used to create a snapShotHandle that means current version follows:

 BEGIN OPEN Librarian;

 snap: SnapShot;

 snapshot: SnapShotHandle _ DESCRIPTOR[snap];

 snap _ [[id: AllFromHereID, version: [timeAndDate, timeAndDate[tod: Time.Current[]]]]];

 END;

LibjectHeaderLook: PROCEDURE [
 fid: FullLibjectIDHandle, pl: PropertyList, activate: BOOLEAN _ FALSE];

This is the basic question/answer procedure. It fills in the property values in the supplied property

list.

5.12.3 Accessing the Contents of Libjects

The term contents is used to mean the file of which the libject is keeping track (e.g., mesa source

files, text files, etc.).

LibjectContentFile: PROCEDURE [
 id: FullLibjectIDHandle, localname: STRING, activate: BOOLEAN _ FALSE]
 RETURNS [Compatibility.FHandle];

Gives the caller a handle to the file that contains the contents of the specific Libject version. It

makes a copy (via some file-transfer facility) of the contents of the specified Libject on the local

volume and gives it the supplied localname. The client should be prepared to catch

Error[code: UnknownError, ...] if no file is found. In Pilot the returned value is NULL and the

client should get a handle on the file using localname.

5.12.4 Errors and Abnormal Conditions

In general, most error conditions are non-resumable and recovery should be handled by the caller

outside of a catch phrase. The responsibility of the Librarian interface is to clean up on UNWINDs.

Error: SIGNAL [code: ErrorCode, message: STRING, pl: PropertyList];

Unusual conditions encountered by the Librarian Interface are reported to the client via the

SIGNAL Error. This SIGNAL has three arguments: code, an enumerated type that is to be

interpreted by the client; an optional (possibly NIL) STRING, message, to be interpreted by the

client; and an optional (may be empty) PropertyList, pl, that supplies more detailed

information about the abnormal condition (normally only of interest to the Librarian Interface).

[Fine Point: The storage for the parameters message and pl is owned by the Librarian Interface (i.e., the Librarian

Interface is responsible for its allocation and destruction). This means that if a client wishes to make use of the

values of these parameters outside a catch phrase local copies should be made.]

ErrorCode: TYPE = {CheckedOut, NotCheckedOut, WrongVersion, ServerDead,
InvalidServerName, AlreadyExists, UnassignedID, IDConflict, FTPError, BufferOverFlow,
InactiveLibject, UnknownError};

Tajo: Functional Specification50

5.12.5 Property Lists

The basic mechanism used for data communication (and its type information) with the Librarian

Interface (and ultimately the Librarian Data Base) is via a record called a PropertyList.
Understanding the syntax and semantics of these records and the operations upon them is essential

to conversing with the Librarian Interface. The Librarian Interface makes no effort to hide anything

about PropertyLists from clients.

As mentioned earlier, we assign PropertyNumbers. The interface LibrarianPN contains the

currently assigned PropertyNumbers. Any client desiring additional PropertyNumbers should

contact us. It is not safe to use random unassigned PropertyNumbers because they may be used

in the future by the Librarian Service.

PropertyNumber: TYPE = RECORD [prefix: [0..3777B], type: PropertyValueType];

PropertyValueType: TYPE = {
 TwoWord, LibjectID, LibjectIDARRAY, String, Record, PropertyList};

PropertyPairs are defined as a variant record as follows:

PropertyPairHandle: TYPE = POINTER TO PropertyPair;
PropertyPair: TYPE = RECORD [

empty: BOOLEAN,
pn: PropertyNumber,
body: SELECT COMPUTED PropertyValueType FROM

TwoWord => [value: Inline.LongNumber],

LibjectID => [id: LibjectID],

LibjectIDArray, Record => [length: CARDINAL, ptr: POINTER],

String => [

length: CARDINAL,-- length of storage block (words)
string: STRING],

PropertyList => [pl: PropertyList],

ENDCASE];

The BOOLEAN field empty is useful for constructing lists of property pairs whose

PropertyNumber’s are correct but whose values are incorrect or empty. This feature is used,

for example, to construct lists to be filled in.

[Note that all VARIANTs are three (3) words long! This is not accidental and may cause troubles as new

PropertyValueTypes are invented or needed.]

Finally, a PropertyList is simply a descriptor for an array of PropertyPair’s. [Caution: each element

in an array of variant records will be the length of the largest variant.]

Implementation Components 51

PropertyList: TYPE = DESCRIPTOR FOR ARRAY OF PropertyPair;

5.12.6 Property List Operations

The following procedures are supplied for manipulating PropertyLists.

CreatePropertyList: PROCEDURE [n: CARDINAL] RETURNS [PropertyList];

Allocates the storage necessary for a PropertyList of LENGTH[n*SIZE[PropertyPair]] and

initializes the PropertyPairs with empty TRUE.

DestroyPropertyList: PROCEDURE [plist: PropertyList]

Destroys a PropertyList (i.e., both the PropertyList contents and actual list storage is

released). [The implementation of these two procedures uses the Mesa Heap allocation package.]

ResetPropertyList: PROCEDURE [plist: PropertyList]

ResetPropertyPair (described below) is called for all non-empty values in the supplied

PropertyList.

ValidatePropertyList: PROCEDURE [plist: PropertyList] RETURNS [size: CARDINAL]

Simple checking of the PropertyList is performed and its size in words is computed and

returned if the PropertyList is valid; otherwise the SIGNAL InvalidPropertyList is raised.

5.12.7 PropertyPair Operations

ResetPropertyPair: PROCEDURE[pair: PropertyPairHandle]

The contents of a PropertyPair are released. [The structure of a PropertyList tree is preserved across

Reset. This means resetting a PropertyList PropertyPair does not release the PropertyList "pointed to."]

AddPropertyPair: PROCEDURE [plist: PropertyList, pp: PropertyPair] RETURNS [CARDINAL]

Allows you to set the values in a PropertyList. The PropertyList is searched for the first

empty PropertyPair, which is set to the passed PropertyPair. The resultant index of the

PropertyPair within the PropertyList is returned.

Users of the above procedure must be prepared to handle the SIGNAL PropertyListFull.

FindPropertyPair: PROCEDURE [plist: PropertyList, pn: PropertyNumber]
 RETURNS [pp: PropertyPairHandle]

Finds the specified PropertyNumber in the PropertyList and returns its

PropertyPairHandle. If the PropertyNumber cannot be found, a NIL is returned.

GetPropertyPair: PROCEDURE [plist: PropertyList, pn: PropertyNumber]
 RETURNS [pp: PropertyPairHandle]

Tajo: Functional Specification52

Like FindPropertyPair, but will signal PropertyNotFound instead.

The following procedures construct PropertyPair’s. These procedures allocate storage and copy

the contents where necessary.

MakeEmptyPair: PROCEDURE [pn: PropertyNumber] RETURNS [PropertyPair];

MakeStringPair: PROCEDURE [pn: PropertyNumber, s: STRING] RETURNS [PropertyPair];

MakeRecordPair: PROCEDURE [pn: PropertyNumber, length: CARDINAL, ptr: POINTER]
 RETURNS [PropertyPair];

The following procedures are controlled LOOPHOLEs.

GetPropertyID: PROCEDURE [plist: PropertyList, pn: PropertyNumber]
 RETURNS [pp: POINTER TO LibjectID PropertyPair, id: LibjectID];

GetPropertyList: PROCEDURE [plist: PropertyList, pn: PropertyNumber]
 RETURNS [pp: POINTER TO PropertyList PropertyPair, pl: PropertyList];

GetPropertyRecord: PROCEDURE [plist: PropertyList, pn: PropertyNumber]
 RETURNS [pp: POINTER TO Record PropertyPair, p: POINTER];

GetPropertyString: PROCEDURE [plist: PropertyList, pn: PropertyNumber]
 RETURNS [pp: POINTER TO String PropertyPair, STRING, s: STRING];

GetPropertyTwoWord: PROCEDURE [plist: PropertyList, pn: PropertyNumber]
 RETURNS [pp: POINTER TO TwoWord PropertyPair, ln: Inline.LongNumber];

GetPropertyValue: PROCEDURE [plist: PropertyList, pn: PropertyNumber]
 RETURNS [pp: POINTER TO TwoWord PropertyPair, lowbits, highbits: UNSPECIFIED];

The following procedures will pack(unpack) a PropertyList into(from) a contiguous block of

storage of size 2+ValidatePropertyList words. They are useful for storing PropertyList’s on

files.

BundleOfBitsFromPropertyList: PROCEDURE [plist: PropertyList, p: POINTER];

plist is packed into a contiguous block of storage pointed to by p. It is the client’s responsibility to

supply a block large enough for the passed PropertyList.

PropertyListFromBundleOfBits: PROCEDURE [p: POINTER] RETURNS [PropertyList];

Unpacks a packed PropertyList and verifies that the passed pointer really points to a packed

PropertyList; if not, it generates an ERROR.

Implementation Components 53

5.13 Menu

One of the primary command invocation mechanisms in Tajo is the menu. The Menu Interface

gives the Tool writer control over which menus the user will see and what actions an individual

menu item will perform. How menus appear to the user and how he interacts with them is built-in

and not of concern to the client of this interface.

5.13.1 Simple Creation of Menus

The following two procedures are designed to allow clients to easily make and free menus and menu

items. For those who need to know more about menus, subsequent sections explain menus and

their implementation in detail.

MCRType: TYPE = PROCEDURE [

 window: Window.Handle _ NIL, menu: Handle _ NIL, index: CARDINAL _ LAST[CARDINAL]];

Make: PROCEDURE [name: STRING, strings: DESCRIPTOR FOR ARRAY OF STRING, mcrProc: MCRType,

 copyStrings: BOOLEAN _ TRUE, permanent: BOOLEAN _ FALSE]
 RETURNS [Handle];

Makes a menu named name that has the elements contained in strings. When one of the

strings is selected the mcrProc will be called indicating the index of the string in the array.

The permanent flag indicates whether the created object can subsequently be destroyed. The

copyStrings flag indicates whether strings should be copied into the system Heap.

Free: PROCEDURE [menu: Handle, freeStrings: BOOLEAN _ TRUE];

Frees the menu, optionally freeing the copied strings.

The menus that are chosen for display depend upon the window that the cursor is over. This allows

the displayed menu stack to vary depending on the window layout. The following two procedures

allow clients to associate menus with windows.

Instantiate: PROCEDURE [menu: Handle, window: Window.Handle];

Associates the menu with the passed window and increments a use count in menu. If this is

the first menu to be instantiated in window the system global menu(s) is also instantiated. If

menu is NIL only the system global menu is instantiated. If menu is already instantiated the

ERROR Error[alreadyInstantiated] is generated.

Tajo Functional Specification54

Uninstantiate: PROCEDURE [menu: Handle, window: Window.Handle];

This procedure removes menu from the window and decrements its use count. Eventual

deallocation of the menu must be performed by the client. If this menu is not instantiated with

this window, then the ERROR Error[notInstantiated] is generated. It is also possible that the

ERROR Error[contextNotAvailable] will be generated; this indicates that Tajo has detected

an internal inconsistency in its data structures.

The following sections document more advanced uses of this interface and can be skipped on a first

reading.

5.13.2 The Menu Object

The Object contains the normally invariant data associated with a menu.

Handle: TYPE = POINTER TO Object;
Object: TYPE = RECORD [...name: STRING, items: Items...];

Items: TYPE = DESCRIPTOR FOR ARRAY OF ItemObject;

5.13.3 Menu Instances

An unlimited number of menus may be associated (instantiated) with the Tool window or any

subwindow. The menu mechanism maintains a ring of menu instances (pointers to associated

menus) for each subwindow (if there is at least one associated menu). One of these associated

menus is taken to be the "current" menu for that subwindow.

Some menus (at least the system global ones) want to be available from virtually every subwindow.

This could be accomplished by creating an Object for each use, but the primary memory cost of

multiple copies of an Object is large. Additionally, some users may want to dynamically alter the

items contained in menus (e.g. lists of available fonts, etc.). These requirements lead to the use of a

level of indirection. Thus Tajo never copies a client’s Object; instead it always keeps a pointer to

that Object. It is the client’s responsibility to guarantee that the Object is valid as long as Tajo

has a pointer to it.

5.13.4 Menu Items

Each menu item has a keyword (a string of characters). A menu item has a Menu Command

Routine (MCR) associated with it. A MCR is a procedure that is called when the user specifies its

corresponding item. Clients have found that using one MCR per menu is useful because only one large catch phrase

need be written to handle common exception cases.

ItemObject: TYPE = RECORD [keyword: STRING, mcrProc: MCRType];

ItemHandle: TYPE = POINTER TO ItemObject;

Implementation Components 55

The following two procedures allow clients to make and free menu items:

MakeItem: PROCEDURE [keyword: STRING, mcrProc: MCRType] RETURNS [ItemObject];

FreeItem: PROCEDURE [ItemObject];

5.13.5 Procedures For Setting up Menus

The following procedures allow the Tool to create and destroy menus, to specify which menu

selection techniques (in addition to the standard one) will be used, and to specify what procedures

will be invoked when a menu item is selected.

The following two procedures allow the Tool to create and destroy menus.

Create: PROCEDURE [items: Items, name: STRING, permanent: BOOLEAN] RETURNS [Handle];

Returns a pointer to a menu Object named name which is made up of items. The

permanent flag indicates whether the created object can subsequently be destroyed.

Destroy: PROCEDURE [Handle];

Deallocates storage for the Object pointed to by Handle. It first verifies that the Object has

an instantiation count = 0; if not, the ERROR Error[isInstantiated] is generated. If the

menu is permanent, the ERROR Error[isPermanent] is generated.

The above procedures set up the data stuctures required for menu operations. They do not,

however, set up a specific window’s PNR for invoking menus. If the window is one managed by

Tajo the standard menu PNR is already set up. If not, the client may set the standard menu PNR

by calling

SetPNR[window: Window.Handle];

If it is necessary to set the menu PNR under a different mouse button than the one used by

SetPNR, the PNR itself is accessible as PNR.

PNR: UserInput.KeyPNRType;

The following two procedures allow the Tool to get a handle for and to set the font used for menus.

GetFont: PROCEDURE RETURNS [font: WindowFont.Handle];

SetFont: PROCEDURE [font: WindowFont.Handle];

5.13.6 Utilities

A client can enumerate the menus instantiated with a window.

EnumerateProcType: TYPE = PROCEDURE [window: Window.Handle, menu: Handle]
 RETURNS [stop: BOOLEAN];

Tajo Functional Specification56

If stop is TRUE the enumeration is terminated.

EnumerateFor: TYPE = {all, inSW, availableInSW};

Enumerate: PROCEDURE [
 window: Window.Handle, which: EnumerateFor, proc: EnumerateProcType];

The which argument specifies which menus that proc will be called with during the

enumeration. If which is all, window is expected to be a Tool window and all the menus

instantiated with window are enumerated. If which is inSW, window is expected to be a

subwindow and all the menus instantiated with the subwindow are enumerated. If which is

availableInSW, window is expected to be a subwindow and all the menus that the user

could display are enumerated (i.e., this includes the system menus and menus instantiated on the

Tool window).

The following procedure allows the client to get the arguments necessary to invoke a menu item by

knowing only the subwindow, menu name and item name.

MCRForKeyword: PROCEDURE [sw: Window.Handle, menuName, keyword: STRING]
 RETURNS [mcr: MCRType, menu: Handle, index: CARDINAL];

Implementation Components 57

5.14 MsgSW

The MsgSW interface provides a simple way of posting messages to the user. A Message

subwindow is built upon a String subwindow.

5.14.1 Creation/Destruction

To create a MsgSW call:

Create: PROCEDURE [sw: Window.Handle, lines: CARDINAL _ 1,
 options: TextSW.Options _ defaultOptions];

defaultOptions: TextSW.Options = [access: append, menu: TRUE, split: TRUE,
 wrap: TRUE, scrollbar: TRUE, flushTop: FALSE, flushBottom: FALSE];

The lines parameter specifies the minimum number of lines that the subwindow will keep in its

backing store before discarding the oldest line. The subwindow height controls how many lines

will be visible to the user. If the number of lines visible to the user is greater than lines, then

all the visible lines are kept in the backing store.

When the options.access parameter is anything but append an Error is raised with a code

of appendOnly.

The following procedure destroys the backing store and transforms the Message subwindow into an

ordinary subwindow.

Destroy: PROCEDURE [sw: Window.Handle];

5.14.2 Output

A message line is delimited by a carriage return at its end. The latest message has a severity

associated with it.

Severity: TYPE = {info, warning, fatal};

Here are the procedures for managing the contents of a MsgSW.

Post: PROCEDURE [sw: Window.Handle, string: STRING, severity: Severity _ info,
 prefix: BOOLEAN _ TRUE, endOfMsg: BOOLEAN _ TRUE];

Appends string onto the latest message. The severity of the message is severity. If the

prefix parameter is TRUE and the message is starting a new line, a short string that depends on

severity (info: "", warning: "Warning: " or fatal: "Fatal Error: ") starts the line before the

client message. The endOfMsg parameter set to TRUE delimits the message without having to

put an Ascii.CR in string.

PostAndLog: PROCEDURE [sw: Window.Handle, string: STRING, severity: Severity _ info,
 prefix: BOOLEAN _ TRUE, endOfMsg: BOOLEAN _ TRUE, logSW: Window.Handle _ NIL];

Tajo Functional Specification58

This procedure is like Post but with the additional logSW parameter that enables the same

message appearing in the Message subwindow to be directed to another subwindow for logging.

If the value is NIL then the output is directed to the UserInput.GetDefaultWindow[] and

the Tool’s name is prefixed to the message.

AppendString: PROCEDURE [window: Window.Handle, string: STRING];

Appends string onto the latest message. This is the procedure used for

UserInput.StringOut. The severity is set to info.

Clear: PROCEDURE [sw: Window.Handle];

Erases the contents of the MsgSW. The severity is set to info.

The various message-posting routines impart a severity to the current message. The following

procedure sets it explicitly:

SetSeverity: PROCEDURE [sw: Window.Handle, severity: Severity];

5.14.3 Status Retrieval

These procedures provided status information about the current message:

GetSeverity: PROCEDURE [sw: Window.Handle] RETURNS [severity: Severity];

LastLine: PROCEDURE [sw: Window.Handle, ss: String.SubString];

The parameter ss is filled in with base, offset and length of the current message. The client

may want to copy ss and the string ss.base since this information is liable to change.

Implementation Components 59

5.15 Profile

The Profile interface provides an interface to a number of commonly accessed user and system data

items. All these items are read only.

bitmap: READONLY Window.Box;

The current size and position of the bitmap.

debugging: READONLY BOOLEAN;

TRUE if debugging. Used internally by Tajo to decide whether to attempt error recovery or call

the debugger. If Tajo invokes the debugger, it may not be possible to continue the session.

librarian: READONLY STRING;

The current name of the Librarian server being used in librarian transactions.

registry: READONLY STRING;

The currently logged-in user’s mail registry.

userName: READONLY STRING;

userPassword: READONLY STRING;

The currently logged-in user’s name and password strings.

Tajo provides a Tool called the ProfileTool that allows users to set or alter these values. The

TajoMisc interface provides procedures for clients to modify these items.

If a client needs to notice when one of these values has changed, either by the user or another client,

it should have an Event.Notify procedure that detects the setDefaults event.

Tajo Functional Specification60

5.16 Put

All the procedures in the Put interface take a Window.Handle, a piece of data to be formatted

and, where appropriate, a format specification. The data is formatted by the Format mechanism and

then output by a call to the UserInput.StringOut procedure associated with the

Window.Handle. If the Window.Handle passed into any Put procedure is NIL the output is

directed to the UserInput.StringOut procedure of UserInput.GetDefaultWindow[]. See the

documentation on the Format interface for comments about the actual output format of the

following procedures:

Blanks: PROCEDURE [h: Window.Handle, n: CARDINAL _ 1];

Char: PROCEDURE [h: Window.Handle, char: CHARACTER];

CR: PROCEDURE [h: Window.Handle];

CurrentSelection: PROCEDURE [h: Window.Handle];

Date: PROCEDURE [h: Window.Handle, pt: Time.Packed, format: Format.DateFormat];

Decimal: PROCEDURE [h: Window.Handle, n: INTEGER];

Line: PROCEDURE [h: Window.Handle, s: STRING];

LongDecimal: PROCEDURE [h: Window.Handle, n: LONG INTEGER];

LongNumber: PROCEDURE [
 h: Window.Handle, n: LONG UNSPECIFIED, format: Format.NumberFormat];

LongOctal: PROCEDURE [h: Window.Handle, n: LONG UNSPECIFIED];

LongString: PROCEDURE [h: Window.Handle, s: LONG STRING];

LongSubString: PROCEDURE [h: Window.Handle, ss: Format.LongSubString];

Number: PROCEDURE [h: Window.Handle, n: UNSPECIFIED, format: Format.NumberFormat];

Octal: PROCEDURE [h: Window.Handle, n: UNSPECIFIED];

SubString: PROCEDURE [h: Window.Handle, ss: String.SubString];

Text: PROCEDURE [h: Window.Handle, s: STRING];

Text is not String because it causes a name conflict with the interface named String.

Implementation Components 61

5.17 Scrollbar

The Scrollbar interface does not do scrolling, i.e., moving of bits on the screen, but rather provides

a consistent user interface and mechanism for specifying and invoking scroll actions.

First, some definitions.

Type: TYPE = {horizontal, vertical};

Direction: TYPE = {forward, backward, relative};

Percent: TYPE = [0..100];

Two types of procedures are used to perform the scroll operation. ScrollProcType procedures are

used to communicate to the client a user’s scroll request. ScrollbarProcType procedures are used

to get the scrollbar data from the client in order to display them to the user.

ScrollProcType: TYPE = PROCEDURE [
 window: Window.Handle, direction: Direction, percent: Percent];

ScrollbarProcType: TYPE = PROCEDURE [window: Window.Handle]
 RETURNS[box: Window.Box, offset, portion: Percent];

Scrollbars may be created for vertical or horizontal scroll functions by the following procedure.

Create: PROCEDURE [window: Window.Handle, type: Type,
 scroll: ScrollProcType, scrollbar: ScrollbarProcType];

If Create is called for a subwindow that already has scrollbars of that type the following ERROR is

generated.

Error: ERROR [code: ErrorCode];
ErrorCode: TYPE = {alreadyExists};

Scrollbars are deleted by calling

Destroy: PROCEDURE [sw: Window.Handle, type: Type];

The following procedure should be called when scollbars are to be displayed, normally when the

cursor exits a window. The UserInput.DefaultCursorPNR already does this.

InvokeScrollbar: PROCEDURE [window: Window.Handle, place: Window.Place];

Tajo Functional Specification62

5.18 Selection

The Selection interface is the mechanism used to communicate the current selection among the

various Tools. It is the responsibility of clients of this interface to provide for actual selection of text

and/or graphics within its window(s). The client window that contains the current selection is

referred to as the manager of the current selection.

There are two distinct sets of clients of the Selection interface. On one hand are those clients that

simply want to obtain the current selection in order to use it as the argument to some command or

other user invocation. On the other hand are those clients that wish to become the manager of the

current selection. Basically, this is done by calling Set and supplying the Selection interface with a

pair of procedures.

ActOnProcType: TYPE = PROCEDURE [data: POINTER, action: Action];

ConvertProcType: TYPE = PROCEDURE [data: POINTER, target: Target] RETURNS [POINTER];

The ActOnProcType is called to modify the current selection. The ConvertProcType is called

to get the value of the current selection. The data argument is the current selection (i.e., it is the

pointer passed to Set).

These requests are communicated to the manager of the current selection by passing an Action or

Target which are defined as follows.

Action: TYPE = {clear, delete, mark, unmark, replace};

Target: TYPE = {window, subwindow, string, source, length, position};

The above definitions are presented as exact enumerations when in fact they are defined as open

enumerations. The following two procedures allow clients to define their own private conversion

types.

UniqueAction: PROCEDURE RETURNS [Action];

UniqueTarget: PROCEDURE RETURNS [Target];

Clients may act on the current selection, independent of who is the current owner, by calling

ActOn: PROCEDURE [Action];

The following useful specializations are also supplied.

Clear: PROCEDURE = INLINE BEGIN ActOn[clear]; END;

Delete: PROCEDURE = INLINE BEGIN ActOn[delete]; END;

The following procedure sets the ActOnProcType and ConvertProcType procedures for the

current selection.

Implementation Components 63

Set: PROCEDURE [pointer: POINTER, conversion: ConvertProcType, actOn: ActOnProcType];

pointer is whatever is useful to the client when it is passed to conversion or actOn.

It is sometimes difficult to determine if you are the manager of the current selection. The following

procedure will clear the current selection iff you are the current owner. You are the current owner

if pointer is equal to the latest pointer that was passed into Set.

ClearOnMatch: PROCEDURE [pointer: POINTER];

The following procedure will perform the requested conversion and return a POINTER to the data.

The data returned for items larger that one word is allocated out of the system Heap with the

storage ownership passed to the recipient which must deallocate it. Target’s of window and

subwindow return a one word Window.Handle. A Target of string returns a STRING

allocated from the Heap. Target’s of length and position return POINTER TO LONG CARDINAL.

Convert: PROCEDURE [Target] RETURNS [POINTER];

The manager of the current selection may chose not to implement some (or all) of the possible

conversions. In that case, it simply returns NIL.

The following special conversions are supplied as a convenience to clients. If the current selection is

not acceptable to the Mesa runtime as a number, then String.InvalidNumber will be raised by

the runtime and allowed to propagate through these procedures.

Number: PROCEDURE [radix: CARDINAL _ 10] RETURNS [CARDINAL];

LongNumber: PROCEDURE [radix: CARDINAL _ 10] RETURNS [LONG CARDINAL];

5.18.1 Selection Sources

The selection interface defines the Source mechanism for processing textual selections that are

more than a few hundred characters in length.

Source: TYPE = POINTER TO SourceObject;

SourceObject: TYPE = RECORD [

data: POINTER TO UNSPECIFIED,

proc: SourceProc,
destroy: DestroyProc];

DestroyProc: TYPE = PROCEDURE [source: Source];

SourceProc: TYPE = PROCEDURE [data: POINTER, string: STRING];

The source mechanism works as follows:

The client asks for the current selection to be converted as a Source.

Tajo Functional Specification64

The owner of the current selection creates an instance of the Source data structure and returns

a pointer to it to the client.

The client then makes repeated calls on proc, supplying a string of arbitrary size.

The owner of the current selection fills the string with text and returns. The owner need not fill

the string completely but it must return some data with each call as end-of-selection is indicated

by returning an empty string.

When the client receives a zero-length string it must call the destroy procedure supplied in the

SourceObject; otherwise the space allocated for the source will be lost.

5.18.2 Trash Bin

The selection interface defines an abstraction, somewhat similar to the current selection, known as

the trash bin. The trash bin is used to save the most recent text cuts for subsequent pastes. Clients

may become owners of the trash bin by calling

SetTrashBin: PROCEDURE [pointer: POINTER, ConvertProcType, clear: ClearTrashBinProcType];

ClearTrashBinProcType: TYPE = PROCEDURE [data: POINTER];

Clients can convert the contents of the trash bin in the same manner as the current selection by

calling

ConvertTrashBin: PROCEDURE [Target] RETURNS [POINTER];

Implementation Components 65

5.19 StringSW

The interface StringSW provides the definitions and procedures to create and manipulate text

subwindows whose backing store is a STRING. Further text subwindow operations are described in

the TextSW interface.

First, some definitions.

Options: TYPE = TextSW.Options;

defaultOptions: Options = [access: edit, menu: TRUE, split: TRUE, wrap: TRUE,

 scrollbar: TRUE, flushTop: FALSE, flushBottom: FALSE];

A StringSW is created by calling

Create: PROCEDURE [sw: Window.Handle, s: POINTER TO STRING _ NIL

 options: Options _ defaultOptions];

If s is NIL or s^ is NIL, the subwindow will allocate and manage a heap string for the

backing store; otherwise, the client is responsible for the storage management of the string.

A subwindow’s String subwindow properties are destroyed by calling

Destroy: PROCEDURE [sw: Window.Handle];

The current backing STRING for a string subwindow is returned by

GetString: PROCEDURE [sw: Window.Handle] RETURNS [s: POINTER TO STRING];

Clients can determine if a window is a string subwindow by calling

IsIt: PROCEDURE [sw: Window.Handle] RETURNS [yes: BOOLEAN];

Tajo Functional Specification66

5.20 TajoMisc

The interface TajoMisc is a catch-all for public and semi-public Tajo utilities that did not fit

logically into any of the other interfaces.

Part of Tajo’s runtime state can be deduced from the following variable:

initialToolStateDefault: ToolWindow.State;

This is the state in which a Tool is created if it does not override the default provided in the

Tool.Create call.

To change the values in the Profile interface the following six procedures are used. Each of these

procedures call Event.Notify[why: setDefaults]. STRINGs passed in as arguments are copied.

SetBitmap: PROCEDURE [box: Window.Box];

Actually changes the bitmap to be box, relative to the screen. Check Profile.bitmap for the

actual box used.

SetUserName: PROCEDURE [s: STRING _ NIL];
SetUserPassword: PROCEDURE [s: STRING _ NIL];

In AltoTajo, these procedures change OsStaticDefs.OsStatics. Also, if s = NIL then

the Profile string is copied from OsStaticDefs.OsStatics.

SetDebugging: PROCEDURE [b: BOOLEAN];
SetLibrarian: PROCEDURE [s: STRING];
SetRegistry: PROCEDURE [s: STRING];

The following procedure must be used rather than UserTerminal.SetState to change the state of

the display bitmap because UserTerminal.SetState bypasses Tajo with disastrous consequences.

SetState: PROCEDURE [new: UserTerminal.State] RETURNS [old: UserTerminal.State];

The next two procedures allow a process to do a WAIT for a period of time without having to be in a

convenient MONITOR. They return within 1 second if UserInput.userAbort is TRUE.

WaitMilliSecs: PROCEDURE[msec: CARDINAL];

WaitSecs: PROCEDURE[sec: CARDINAL];

If a client wishes to stop Tajo and all other Tools in a safe manner it should call Quit. This lets the

normal cleanup mechanisms run which are responsible for making files on the disk consistent, etc.

Quit: PROCEDURE;

To load a Tool name from the disk, call the following procedure:

CreateTool: PROCEDURE [name: STRING];

Implementation Components 67

5.21 TextSource

The interface TextSource provides the primary underlying mechanism for the representation of data

that is used to implement Tajo’s uniform text display, selection and editing facilities. TextSource
defines the standard set of operations that are sufficient for all access to a text source. Specific

implementations may use additional operations for setting or altering the state of a text source. Text

sources transmit information in atomic units called blocks.

Position: TYPE = LONG CARDINAL;
nullPosition: Position = LAST[LONG CARDINAL];

5.21.1 Basic Operations

The procedures which create text sources return a Handle which is an object oriented pointer to a

record of procedures which defines the operations on a text source.

Handle: TYPE = POINTER TO Procedures;

Procedures: TYPE = POINTER TO ProceduresObject;

ProceduresObject: TYPE = RECORD [
 readText: ReadTextProc,
 deleteText: DeleteTextProc,
 insertText: InsertTextProc,
 getLength: GetLengthProc,
 setLength: SetLengthProc,
 actOn: ActOnProc,
 readBlock: ReadBlockProc];

Following are the definitions and semantics of each operation on a text source.

ActOnProc: TYPE = PROCEDURE [source: Handle, action: Action] RETURNS [ActionResult];

Action: TYPE = {destroy, mark, sleep, truncate, wakeup};

destroy - free all storage and release all resources associated with the text source instance.

mark - mark the text source in some distinctive manner at its current end.

sleep - the text source will not be used for a while (hint to reduce current resources for this
text source).

truncate - truncate the text source at it’s current end. This has a noticable effect only for
sources that have some representation in a file system.

wakeup - the text source is going to be used (undo what you did for sleep).

[Note: sleep and wakeup are only hints for storage and resource management purposes. This means that

implementors must be able to handle all operations on sleeping text sources.]

Tajo Functional Specification68

All ActionProcs return an ActionResult to indicate the status of the requested action.

ActionResult: TYPE = {ok, new, bad};

Text is deleted in a text source by invoking deleteText.

DeleteTextProc: TYPE = PROCEDURE [
 source: Handle, position: Position, n: LONG CARDINAL, trash: BOOLEAN]
 RETURNS [realPos: Position, realN: LONG CARDINAL];

The deleteText operation is a request to delete the specified range of characters. The text

source implementor may refuse to delete any (read or append) or only an initial subset of the

requested interval. In any event the returned realN is the actual number of characters deleted

(if any) and realPos is the index into the text source from which one should update the

display representation.

The current length of the text source is obtained by the getLength operation. This operation is

used extensively and its implementation should be efficient.

GetLengthProc: TYPE = PROCEDURE [source: Handle] RETURNS [Position];

Text is inserted into a text source by invoking the insertText operation.

InsertTextProc: TYPE = PROCEDURE [
 source: Handle, ss: String.SubString, position: Position]
 RETURNS [Position];

The returned Position is the index into the text source from which one should update the

display representation.

Text is read from a text source by invoking either the readText or readBlock operation.

Block: TYPE = RECORD [
 base: POINTER TO PACKED ARRAY [0..0) OF CHARACTER, offset, length: CARDINAL];
Class: TYPE = {none, cr, alpha, space, other};

ReadBlockProc: TYPE = PROCEDURE [
 source: Handle, position: Position, maxLength: CARDINAL, class: Class]
 RETURNS [b: Block, pos: Position];

ReadTextProc: TYPE = PROCEDURE [
 source: Handle, position: Position, maxLength: CARDINAL, class: Class]
 RETURNS [ss: String.SubString, pos: Position];

ss.base is not a real STRING so don’t reference the length or maxlength fields in it.

The basic semantics of these two procedures is: return a sequence of text that is either maxLength
long or is terminated by a character of the specified class.

Implementation Components 69

The following additional semantic rules for reading text sources are designed to ease the job of

implementing a text source and to facilitate the implementation of discontinuous sources.

Discontinuous sources are text sources that either have holes in them or contain sequences of non-

textual data embedded in them (e.g. Bravo files that contain formatting).

A text source may not return more text than was requested.

A single call on read may not return text that is not contiguous in the text source’s address

space (i.e. it cannot concatinate two discontiguous runs of text).

A text source may return less text than was requested.

A text source may only return no text (i.e. length = 0) if the position is equal to the value

returned by getLength or pos is greater than position.

Clients can determine if a character is in a given class by calling

TestClass: PROCEDURE [char: CHARACTER, class: Class] RETURNS [equal: BOOLEAN];

Clients can set the length of a text source by calling the setLength operation. For most sources

attempting to lengthen a source by this operation is undefined and will produce unexpected results.

SetLengthProc: TYPE = PROCEDURE [source: Handle, position: Position] RETURNS [Position];

5.21.2 Useful Operations on TextSources

To append a portion of a source to a string call

Append: PROCEDURE [string: STRING, source: Handle, start: Position, n: CARDINAL];

The following collection of procedures work for all text sources.

The following two procedures are useful for identifying words and lines in text sources.

ScanType: TYPE = {word, line};
ScanLeft: PROCEDURE [source: Handle, start: Position, type: ScanType] RETURNS [left: Position];
ScanRight: PROCEDURE [source: Handle, start: Position, type: ScanType]
 RETURNS [right: Position];

The following procedure will scan a subrange of a text source looking for a string match.

TextSearch: PROCEDURE [source: Handle, string: STRING,
 start: Position _ 0, stop: Position _ LAST[LONG CARDINAL]]
 RETURNS [lineStart, left: Position];

In the event that string is not found the following error is raised.

SearchFailed: ERROR;

Tajo Functional Specification70

The following procedures are useful for processing substrings and doing simple edits such as backchar

and backword while typing.

CharIsEditChar: PROCEDURE [char: CHARACTER] RETURNS [BOOLEAN];
DoEdit: PROCEDURE [source: Handle, editChar: CHARACTER, editPos: Position]
 RETURNS [delta: INTEGER];

The return argument delta is the count of the number of characters altered by the edit (e.g.

the number of characters deleted by backword).

The following two procedures are used to identify edit and control characters in ss. On the return,

ss is divided into ss (the part of the ss before the returned character) and theRest (the part of

the original ss following the returned character).

FindEditChar: PROCEDURE [ss, theRest: String.SubString]
 RETURNS [editChar: CHARACTER, found: BOOLEAN];

FindControlChar: PROCEDURE [ss, theRest: String.SubString]
 RETURNS [char: CHARACTER, found: BOOLEAN];

5.21.3 Disk Sources

Disk file type text sources can be created with read or append access only. This is because mid file

modifications (direct editing) are not supported. Disk file sources are created, with the specified

access, by calling

Access: TYPE = {read, append, edit};

Stream: TYPE = Compatibility.SHandle;

CreateDisk: PROCEDURE [name: STRING, access: Access, s: Stream _ NIL]
 RETURNS [source: Handle];

If s is not NIL then it is used instead of getting a stream from the file named name.

Clients may determine the disk file name and the backing stream for a disk type text source by

calling.

DiskInfo: PROCEDURE [source:Handle] RETURNS [name: STRING, s: Stream, access: Access];

A currently existing disk source can be renamed by calling the following procedure. The current

disk source is destroyed and a disk source for the new file, with the specified access, is created.

RenameDisk: PROCEDURE [source: Handle, newName: STRING, access: Access, newSN: BOOLEAN]
 RETURNS [Handle];

5.21.4 String Sources

String type text sources can be created with read, append or edit access. String sources are created,

with the specified access, by calling.

Implementation Components 71

CreateString: PROCEDURE [ps: POINTER TO STRING, expandable: BOOLEAN]
 RETURNS [source: Handle];

[Note: The current implementation of string sources requires a contiguous block of memory large enough to entirely

contain the backing string. More importantly, when the string is expanded a new larger string will be allocated and

then the string copied, requiring 2*n+delta characters of memory. Beware of large string sources]

Clients may determine the backing string currently in use and its state by calling

StringInfo: PROCEDURE [source:Handle] RETURNS [ps: POINTER TO STRING, expandable: BOOLEAN];

The following two procedures will edit strings.

DeleteSubString: PROCEDURE [ss: SubString, keepTrash: BOOLEAN] RETURNS [trash: STRING];

keepTrash indicates whether the deleted text is to be put into the global trash bin. (See

Selection interface)

InsertString: PROCEDURE [
 string: POINTER TO STRING, position: CARDINAL, toAdd: SubString, extra: CARDINAL];

A string can be designated non-expandable by using the following special value for extra.

cannotExpand: CARDINAL = LAST[CARDINAL];

5.21.5 Errors

ErrorCode: TYPE = {fileNameError, accessError, isBad};
Error: SIGNAL [code: ErrorCode];

fileNameError - indicates either doesn’t exist or bad syntax.

accessError - attempt to perform an operation that violates the created access option.

isBad - indicates that the source is no longer extant. This occurs on core swaps when the file

is deleted.

Tajo Functional Specification72

5.22 TextSW

The Text Subwindow Package implements a comprehensive set of facilities for viewing text

independent of source. This package essentially takes a client created subwindow and text source,

creates the necessary data structures and then sets appropriate PNR’s for viewing, scrolling, and

text selection.

The available options for text subwindows are specified via the following options record.

Options: TYPE = RECORD [
 access: Access, menu, split, wrap, scrollbar, flushTop, flushBottom: BOOLEAN];

Access: TYPE = TextSource.Access;

If menu is TRUE, the standard text operations menu is instantiated with the subwindow at create

time. If split is TRUE, the subwindow may be divided into an arbitrary number of splits or

horizontal subregions by the user. If wrap is TRUE, a line that is too long to fit across the

subwindow will be broken at a word boundary and continued on the next line, instead of

terminating at the subwindow boundary. If scrollbar is TRUE, the subwindow will be provided

with a vertical scrollbar. The BOOLEAN’s flushTop and flushBottom specify if a standard border

is to be supplied at the top and bottom of the subwindow.

If the client does not supply the options argument at create time the following defaults will be

supplied.

defaultOptions: Options = [access: read, menu: TRUE, split: TRUE, wrap: TRUE,

 scrollbar: TRUE, flushTop: FALSE, flushBottom: FALSE];

5.22.1 Basic Operations

Text subwindows are created by calling

Create: PROCEDURE [sw: Window.Handle, source: TextSource.Handle,
 options: Options _ defaultOptions, position: Position _ 0];

position indicates the initial character position in source that should be displayed at the top

of the subwindow.

The following procedure destroys a text subwindow, freeing all data structures and setting all PNRs

to system defaults. However, the client supplied source is not destroyed.

Destroy: PROCEDURE [sw: Window.Handle];

Attempting to destroy a non-text subwindow is a nop.

The following procedures allow the client to alter the contents of the text source currently being

displayed in the text subwindow. The text subwindow and source must have either edit or append

access to correctly use these operations.

DeleteText: PROCEDURE [
 sw: Window.Handle, pos: Position, count: LONG CARDINAL];

Implementation Components 73

Clients may insert text, at the current insertion position, by calling one of the following procedures.

InsertChar: PROCEDURE [sw: Window.Handle, char: CHARACTER];

InsertString: PROCEDURE [sw: Window.Handle, s: STRING];

InsertSubString: PROCEDURE [sw: Window.Handle, ss: String.SubString];

5.22.2 Positioning and Selection Operations

The following procedures allow clients to obtain and alter the current state of a text subwindows

insertion, selection and "end-of-file" positions.

GetEOF: PROCEDURE [sw: Window.Handle] RETURNS [Position];

GetInsertion: PROCEDURE [sw: Window.Handle] RETURNS [Position];

GetSelection: PROCEDURE [sw: Window.Handle] RETURNS [left, right: Position];

SetEOF: PROCEDURE [sw: Window.Handle, eof: Position];

SetInsertion: PROCEDURE [sw: Window.Handle, position: Position];

SetSelection: PROCEDURE [sw: Window.Handle, left, right: Position];

The client can determine if any portion of the source is currently being displayed with the following

procedure.

PositionIsVisible: PROCEDURE [sw: Window.Handle, position: Position] RETURNS [BOOLEAN];

The following procedure enables clients to resolve window coordinates to the nearest text source

positions. It always returns a valid position.

PositionFromPlace: PROCEDURE [sw: Window.Handle, place: Window.Place]
 RETURNS [position: Position];

Clients may determine the position of the first character on any line by calling.

GetPosition: PROCEDURE [sw: Window.Handle, line: CARDINAL]
 RETURNS[Position];

Clients can position the top of a text subwindow to an arbitrary position within the text source by

calling.

SetPosition: PROCEDURE [sw: Window.Handle, position: Position];

The following procedure first finds the next line break and then does a SetPosition.

PositionToLine: PROCEDURE [sw: Window.Handle, position: Position];

5.22.3 Information/Alteration Operations

The following operations allow clients to interrogate and alter internal aspects of a text subwindow.

When a text subwindow is moved or sized clients must call.

Tajo Functional Specification74

Adjust: ToolWindow.AdjustProcType;

Clients can enable/disable the blinking caret for an append or edit text subwindow by calling.

BlinkingCaret: PROCEDURE [sw: Window.Handle, state: OnOff];

All output to text subwindows is buffered for efficiency purposes. To ensure all pending output has

really made it to the source clients can call.

ForceOutput: PROCEDURE [sw: Window.Handle];

The following two procedures allow clients to interrogate or alter the current options setting for a

text subwindow.

GetOptions: PROCEDURE [sw: Window.Handle] RETURNS [options: Options];

SetOptions: PROCEDURE [sw: Window.Handle, options: Options];

The following two procedures allow clients to interrogate or alter the text source for a text

subwindow.

GetSource: PROCEDURE [sw: Window.Handle] RETURNS [source: TextSource.Handle];

SetSource: PROCEDURE [
 sw: Window.Handle, source: TextSource.Handle, position: Position _ 0, reset: BOOLEAN _

TRUE];

The reset BOOLEAN indicates whether the display/source correspondance is valid or should be

rebuilt.

The following procedures are used internally in building the menu and split view facilities. They

are potentially useful for constructing client menu routines.

SplitView: PROCEDURE [sw: Window.Handle, key: Keys.KeyName, y: INTEGER];

Split a text subwindow y bits down from the top of sw. key should be Yellow.

DisplayHandleFromPlace: PROCEDURE [sw: Window.Handle, place: Window.Place]
 RETURNS [display: TextDisplay.Handle];

Returns the display object for the split that contains the place.

5.22.4 Activation Operations

Tajo provides facilties for notifying Tools that users are not interested in the display state of a

particular Tool (i.e. make yourself tiny). The following procedures are provided to allow clients to

make a similar request of a specific text subwindow.

Sleep: PROCEDURE [sw: Window.Handle];

Requests that the text subwindow package minimize it’s storage and resource requirements by

destroying all state related to the displaying of text.

Implementation Components 75

Wakeup: PROCEDURE [sw: Window.Handle];

Requests that the text subwindow package recompute all it’s display state.

5.22.5 Menu Operations

The following procedures are used by the text subwindow package to implement the TextOps
menu. They are presented here so clients may contruct their own menus that contain these

operations. In the following descriptions a display region is either a subwindow or one of its splits.

FindMCR: Menu.MCRType;

Implements the Find command. Uses the current selection as the argument to find. If the

current selection is contained in this display region then search from that position otherwise use

the current top of this display region.

NormalizeInsertionMCR: Menu.MCRType;

Position the display region such that the line containing the insertion position is at the top of

the display region.

NormalizeSelectionMCR: Menu.MCRType;

If is subwindow contains the current selection, position the display region such that the line

containing the current selection is at the top.

PositionMCR: Menu.MCRType;

Convert the current selection as an octal number and position the display region such that the

line containing that position is at the top of the display region.

SplitMCR: Menu.MCRType;

Splits the display region into two splits.

WrapMCR: Menu.MCRType;

Toggles the wrap boolean in the text subwindow options record.

Tajo Functional Specification76

5.23 Tool

Many Tool writers want the user interface mechanisms of Tajo without worrying about the details of

invocation. The Tool interface reduces the client’s needed knowledge of the more basic levels of

Tajo to a minimum. Refer to the Simple and Sample Tool descriptions in the appendices for

examples of Tools that uses the Tool interface.

5.23.1 Tool Creation

The first thing a Tool does is call:

Create: PROCEDURE [name: STRING, makeSWsProc: MakeSWsProc,
 initialState: State _ default, clientTransition: ToolWindow.TransitionProcType _ NIL,
 movableBoundaries: BOOLEAN _ TRUE, initialBox: Window.Box _ ToolWindow.nullBox]
 RETURNS [window: Window.Handle];
MakeSWsProc: TYPE = PROCEDURE [window: Window.Handle];

The name parameter is the string that appears in a Tool’s black name band. From this string

are derived the strings that are used in the tiny box and inactive menu.

When the initialState is default the Tool assumes a predetermined state depending on how it

is created. The Tool is initialized to be inactive when loaded from the command line in order

to facilitate building image and checkpoint files with collections of inactive Tools. The Tool is

initialized to be active when loaded while the user is in Tajo because it is likely that he wants to

use the Tool right away.

If the clientTransition procedure is not NIL it is called before the Tool is about to change

state (e.g., before calling makeSWsProc, see below) and before anything is done to the data

managed by the Tool interface. The one exception to this ordering rule is that

FormSW.FreeAllItems is called for each FormSW in the Tool when the Tool is going

inactive before the client’s transition procedure is called. This is done because it is common for

a client’s transition procedure to deallocate a record containing data that the FreeAllItems
procedure references. Thus, the data must be referenced before it goes away. [If the client doesn’t

like being called in this order he could set his own procedure to be the window transition procedure which could

call Tool.Transition.]

When the movableBoundaries parameter is TRUE the user may select the boundary line

between subwindows and reposition it.

The initialBox parameter can be used to specify the Tool box (bitmap relative). A value of

ToolWindow.nullBox lets Tajo assign the box from the next available box slot.

5.23.2 Subwindow Creation

At various points, depending on the initial state of the Tool and user actions, the makeSWsProc
procedure supplied to Create is called by Tajo in order to give the client the opportunity to create

subwindows and menus. In the makeSWsProc procedure, the client may call one or more of the

Implementation Components 77

following procedures to create subwindows:

MakeFileSW: PROCEDURE [window: Window.Handle, name: STRING,
 access: TextSW.Access _ append, h: INTEGER _ DefaultHeight]
 RETURNS [sw: Window.Handle];

May raise TextSource.Error[fileNameError] if access is read and the file is not found.

MakeFormSW: PROCEDURE [window: Window.Handle, formProc: FormSW.ClientitemsProcType,
 h: INTEGER _ DefaultHeight]
 RETURNS [sw: Window.Handle];

MakeMsgSW: PROCEDURE [window: Window.Handle, lines: INTEGER _ 1]
 RETURNS [sw: Window.Handle];

MakeStringSW: PROCEDURE [window: Window.Handle, access: TextSW.Access _ append,
 h: INTEGER _ DefaultHeight]
 RETURNS [sw: Window.Handle];

MakeTTYSW: PROCEDURE [window: Window.Handle, name: STRING, h: INTEGER _ DefaultHeight]
 RETURNS [sw: Window.Handle];

Clients can use above procedures succesfully with only cursory knowledge of Tajo.

The client can use other methods to create subwindows and then communicate the existence of them

to the Tool interface by calling.

AddThisSW: PROCEDURE [window, sw: Window.Handle, swType: SWType _ predefined];

[Warning: Usually the Create call hasn’t returned when the makeSWsProc procedure is called. This means that the

Window.Handle variable into which the client assigns the value returned from Create is uninitialized. Thus, the client

should not reference this variable in his makeSWsProc procedure. Instead, the client should use the window parameter

passed to the makeSWsProc procedure].

5.23.3 Unique SWTypes

The Tool interface can manage client defined subwindow types just as it manages the predefined
subwindow types: Form, File, Message, String and Teletype.

SWType: TYPE = MACHINE DEPENDENT {vanilla(0), predefined(376B), last(377B)};

Defining your own subwindow type is covered in Section 4.3. To register a subwindow type with

the Tool interface call:

RegisterSWType: PROCEDURE [adjust: ToolWindow.AdjustProcType _ SimpleAdjustProc,
 sleep: SWProc _ NopSleepProc, wakeup: SWProc _ NopWakeupProc]
 RETURNS [uniqueSWType: SWType];

Tajo Functional Specification78

The adjust procedure is called whenever the user causes the subwindow size to change or be

moved. The sleep procedure is called whenever the window in which the subwindow lives

becomes tiny. The subwindow is then expected to throw away any data that it uses only to

display its contents. The wakeup procedure undoes what sleep did when the Tool becomes

active again.

If the client wanted to register a subwindow type that would use the SimpleAdjustProc, the

NopSleepProc and the NopWakeupProc he could instead refer to the subwindow as vanilla.

5.23.4 Destruction and De-allocation

Normally, anything that the client creates should be destroyed by him before a Tool goes inactive,

e.g. any private data. The Tool mechanism relieves the client of the chore of destroying subwindows

and menus that were created in a standard way. In particular, menus should be created by a call to

Menu.Make, FormSW.ItemDescriptors should be created by a call to

FormSW.AllocateItemDescriptor, FormSW.ItemObjects should be created by calls to

FormSW.*Item procedures.

The following procedure is used to destroy a Tool window created by the Tool interface. It may

also be used for removing a subwindow of the Tool.

Destroy: PROCEDURE [window: Window.Handle];

This procedure has the side effect of calling the clientTransition procedure with a new state

of inactive before the Tool is destroyed. If window is a subwindow its associated data

structures are cleaned up as described above.

5.23.5 Utilities

A Tool might want to switch one subwindow for another subwindow in a Tool. This can be done

by a call to:

SwapSWs: PROCEDURE [window, oldSW, newSW: Window.Handle,
 newType: SWType _ predefined]
 RETURNS [oldType: SWType];

window is the Tool window. oldSW identifies the subwindow that is currently displayed that

will be replaced by newSW. newSW can not currently be part of the tree that makes up the

hierarchy of displayed windows. When this procedure has returned, oldSW has been removed

from this tree. Error[code: swNotFound] may be raised from this procedure.

The original newSW must be created with procedures other then the ones provided in the Tool

interface, e.g., you might call ToolWindow.CreateSubwindow followed by a call to

FormSW.Create. In addition, the call to CreateSubwindow should supply NIL as the

parent argument.

Implementation Components 79

UnusedLogName guarantees unique log file names among File and Teletype subwindows. It does

this by enumerating all of the current file subwindows and checking that the name is not currently

in use. If it is, then a derived name is generated and the check made again. This continues until a

unique name is generated. Note that the Alto file system and Mesa streams do not protect a client

from simultaneous multiple updates of a file, so this procedure should be called if there is a

possibility of there being multiple instances of the Tool or if the same Tool might be run in both

Alto/Tajo and XDebug during the same session.

UnusedLogName: PROCEDURE [unused, root: STRING];

unused’s length is set to 0, root is appended to unused, some designation of the running

environment is appended to unused (nothing when in Tajo, ’D when in the debugger and ’I

when in the internal debugger) and (if the unused is still not unique) a number is appended to

unused.

5.23.6 Errors

ErrorCode: TYPE = {notATool, unknownSWType, swNotFound, invalidWindow};
Error: SIGNAL [code: ErrorCode];

Any procedure that takes a window argument can raise invalidWindow (if window is not valid)

or notATool (if window was not created by Create). unknownSWType can be raised by any

procedure that takes a SWType argument.

Tajo Functional Specification80

5.24 ToolDriver

The ToolDriver interface allows a Tool to inform the ToolDriver package of its existence, and of the

existence of its subwindows. This allows the ToolDriver package to make use of the functions

provided by a Tool on behalf of a user communicating with the package via a script file. Every

Tool should use the ToolDriver facilities if it is providing some generally useful function. Although

the ToolDriver is an add-on package (i.e., it is not built into the regular Tajo), the interface routines

are available in Tajo even without the ToolDriver so that the Tool being STARTed need not concern

itself with unbound procedures.

To announce its existence, a Tool should call

NoteSWs: PROCEDURE [tool: STRING, subwindows: AddressDescriptor];

AddressDescriptor: TYPE = DESCRIPTOR FOR ARRAY OF Address;

Address: TYPE = RECORD [name: STRING, sw: Window.Handle];

tool is whatever name the Tool wishes to go by for purposes of the ToolDriver. It need not be the

same as the name displayed in the herald of the Tool’s window, and in general it will be different

because the ToolDriver imposes the restriction that tool contain only alphanumerics.

subwindows is a list of subwindows that the Tool wishes to make available to the ToolDriver.

The name for each of these must also obey the restriction to contain only alphanumerics.

When a Tool goes inactive, unless it is prepared to be called by the ToolDriver while inactive, it

should call

RemoveSWs: PROCEDURE [tool: STRING];

Tools that register with the ToolDriver interface should have unique names in each of the menus

used by the Tool so as not to be ambiguous to the ToolDriver package.

Implementation Components 81

5.25 ToolFont

The following routines provide Tajo’s interface to the more primitive Vista WindowFont facilities.

Basically, these routines provide font storage management and/or font swapping.

Create: PROCEDURE [Compatibility.FHandle] RETURNS [WindowFont.Handle];

Allocates a font object, initializes it, and provides routines to manage font swapping (if

appropriate).

Destroy: PROCEDURE [WindowFont.Handle];

Destoys the data segment and font object.

StringWidth: PROCEDURE [string: STRING, font: WindowFont.Handle _ NIL]
 RETURNS [[0..LAST[INTEGER]]];

Computes the width of the passed string. This routine maps non-printing characters (e.g.,

control characters, etc.) into a font specific default character.

Tajo Functional Specification82

5.26 ToolWindow

The Window illusion is one of the central notions of the Tajo. The ToolWindow interface provides

the functions required to implement the window illusion for Tajo and relies heavily on the interface

Window, in the Vista window package.

Most useful TYPES are copied from Window into the ToolWindow interface.

5.26.1 Tajo’s use of Windows

Vista defines a window object which is a record which contains only the information necessary to

define and operate upon a window, independent of Tajo. Within this section of the specification we

will discuss only the fields within the window object that are germane to the functions provided by

ToolWindow.

Tajo implements a mechanism for associating Tool specific data with Vista window objects that is

transparent to clients of Tajo. Such information is omitted from the following descriptions.

As mentioned earlier, Tajo specializes Vista’s windows. The five defined types are:

WindowType: TYPE = {root, tool, clipping, sub, other};

In descending levels of the window tree: the root window is the bitmap, a tool window is

referred to in this document as a Tool window, a clipping window is associated with each tool
window and should be of no concern to clients, sub windows are functional display areas and

other windows are all lower levels.

In the event you have a pointer to a window and you want to find out what type of window it is you

can call.

Type: PROCEDURE [window: Handle] RETURNS [WindowType];

A box is a rectangular part of something -- either a display screen or the bitmap or a window or a

subwindow. Vista also does the appropriate clipping required when actually putting bits into the

objects. The fields in a box’s defining record are the x and y coordinates of its top left corner,

relative to the window that it is a part of, and its width and height. Note that the box can extend

"beyond" the edges of the thing that it is in.

Place: TYPE = RECORD [x, y: INTERGER];
Dims: TYPE = RECORD [w, h: INTEGER];
Box: TYPE = RECORD [place: Place, dims: Dims];

5.26.2 Tool Windows

Several routines are provided for the creation and adjustment of the tool window and all its

children -- that is, of the space occupied by the Tool’s window, as distinct from the content within the

window.

Implementation Components 83

These routines allow a Tool to create new windows. They also allow for the re-ordering of the stack

of windows, thus altering which windows are on top of and contain others.

It is the Tajo philosophy that the (human) user of the Tools should be able to arrange the windows

on his display any way he wants. More importantly, the Tool is at the mercy of the user in terms of

the size and position of windows. Tools should be written with this understanding.

The following routine is provided for the creation of a tool window:

Create: PROCEDURE [name: STRING, adjust: AdjustProcType, transition: TransitionProcType,
 box: Box _ nullBox, limit: LimitProcType _ StandardLimitProc,
 initialState: State _ active, named: BOOLEAN _ TRUE]
 RETURNS [Handle];

This procedure creates a new tool window with the indicated box. A nullBox value is used to

indicate automatic system allocation of initial position and size. If named is TRUE the window

will have a black band across the top which displays name. The three procedures which are

passed as arguments are discussed in detail below.

Tool windows can be in one of the following states.

State: TYPE = {inactive, tiny, active};

When a tool window is inactive this is an indication to the Tool that the user is not now interested in

any of the functions implemented by this Tool and all resources utilized by the Tool should be freed.

When the tool window is tiny this is an indication to the Tool that the user is not interested in the

display and that all resources asscoiated with the display state should be freed.

The state of a Tool window is returned from

GetState: PROCEDURE [window: Handle] RETURNS [state: State];

Tool windows can have one of the following size attributes.

SIze: TYPE = {tiny, normal, zoomed};

When a Tool is tiny a small rectangular box is displayed that contains some text derived from the

name of the Tool. This text can be changed by a call to:

SetTinyName: PROCEDURE [window: Handle, name: STRING, name2: STRING _ NIL];

name is the first line of text and name2 is the second.

When a Tool is inactive a menu entry whose text is derived from the name of Tool is placed on the

Inactive menu. To change the Tool name call:

SetName: PROCEDURE [window: Handle, name: STRING];

The following two procedures return heap strings that describe the STRINGs used as names in the

various Tool states. The client must free these heap strings.

Tajo Functional Specification84

GetName, GetInactiveName: PROCEDURE [window: Handle] RETURNS [name: STRING];
GetTinyName: PROCEDURE [window: Handle] RETURNS [name, name2: STRING];

Three client-defined procedures are supplied on a create tool window call. The functions of these

procedures in the next two sections.

5.26.2.1 Adjust and Limit Procedures

Although it is the user who, in general, moves windows around on the display in order to satisfy his

own ideas about a suitable arrangement, Tajo allows the individual Tools to, a) know when one of

their windows has been so adjusted and, b) exercise veto or modification rights over moves. The

latter is particularly useful in allowing a Tool to prohibit, for example, its window becoming smaller

than some certain size or being moved completly off the visible display region.

The Tool’s limit procedure is of the form

LimitProcType: TYPE = PROCEDURE [window: Handle, box: Box] RETURNS [Box];

The Tool’s adjust procedure is of the form

AdjustProcType: TYPE = PROCEDURE [window: Handle, box: Box, when: When];
When: TYPE = {before, after};

Whenever the system is about to adjust the window’s location or size, it calls the limit procedure. It

then uses the returned box to call the Tool’s adjust procedure. The adjust procedure is called both

before and after the actual adjustment is made. The adjust procedure is also called whenever the

bitmap is altered. Unlike previous versions of Tajo it is now appropriate to manipulate subwindow boxes in the

adjust procedure by procedure calls on the Window interface.

The following procedure performs what we consider the normal window limiting operations.

StandardLimitProc: LimitProcType;

5.26.2.2 Transition Procedure

The Tool is notified whenever a user action causes Tajo to change the state of the Tool.

TransitionProcType: TYPE = PROCEDURE [window: Handle, old, new: State];

A Tool’s TransitionProc can be changed by a call to:

SetTransitionProc: PROCEDURE [window: Handle, proc: TransitionProcType]
 RETURNS [TransitionProcType];

After a Tool window is all set up, the client should call the following procedure that causes window,

and its subtree of windows, to be displayed:

Implementation Components 85

Show: PROCEDURE [window: Handle];

The following procedure removes window from the group of windows displayed on the bitmap:

Hide: PROCEDURE [window: Handle];

The following procedure is used to destroy both tool windows and subwindows.

Destroy: PROCEDURE [window: Handle];

5.26.3 Subwindows

To aid the Tool in the manipulation of the content of the window, the notion of the subwindow has

been invented. A subwindow is a box (rectangle defined by an x,y and a width and height) within

the clipping window. Within is in quotes there, because although the subwindow box is defined in

terms of the clipping window -- that is its coordinates are subwindow-relative, it may extend "outside"

of the actual window -- say if its "x" is negative or its height is greater than that of the window.

Subwindows are normally created by the client in order to simplify his window manipulations. For

instance, he can create a subwindow and arrange it to be the left half of his window. Then, if he

draws pictures in the subwindow, the pictures will be truncated by the system when they reach the

right edge of his subwindow and won’t overlay whatever is in the right half of the window.

The system provides three procedures to define subwindows:

CreateSubwindow: PROCEDURE [parent: Handle, display: DisplayProcType _ NIL,
 box: Box _ nullBox, boxesCount: BoxesCount _ one]
 RETURNS [Handle]

Creates a new subwindow object with the indicated box within its (as yet unspecified) window

and enlinks it into the parent window’s chain of subwindows.

5.26.3.1 Display Procedure

The display procedure is a procedure of the form

DisplayProcType: TYPE = PROCEDURE [Handle];

This procedure is called whenever the content of the window needs to be refreshed onto the bitmap

display. This can be required, for instance, if a window previously on top of this window is moved

out of the way.

This version of Tajo supports and encourages both partial and incremental display updating. The

Vista package documentation describes how a display procedure accomplishes partial repainting.

Therein the boxesCount parameter is explained. For all Tajo-supplied subwindow types, display

procedures are automatically supplied at create time.

Tajo Functional Specification86

The following two procedures are not normally used, as subwindows are enlinked upon creation.

EnlinkSubwindow: PROCEDURE [parent, child, youngerSibling: Handle]

Links the subwindow into the chain in the indicated position.

DelinkSubwindow: PROCEDURE [child: Handle]

Removes the subwindow and it’s children from the window structure.

5.26.4 Window Content Manipulation

The Vista window package provides a large number of procedures for putting light and dark bits into

the window or moving them about. These procedures are only of interest to clients who wish to

construct their own subwindow types and we refer them to the Vista documentation.

5.26.5 Utilities

Inorder to determine the Tool window of a subwindow call

WindowForSubwindow: PROCEDURE [sw: Handle] RETURNS [window: Handle];

To enumerate all the subwindow within a Tool window call

EnumerateSWs: PROCEDURE [window: Handle, proc: EnumerateSWProcType];
EnumerateSWProcType: PROCEDURE [window, sw: Window.Handle]
 RETURNS [done: BOOLEAN];

To active or deactivate a Tool window call

Activate, Deactivate: PROCEDURE [window: Handle];

To change the Size of a Tool window call

MakeSize: PROCEDURE [window: Handle, size: Size];

To change the size and position of a Tool window call

SetBox: PROCEDURE [window: Handle, box: Box];

5.26.6 Errors and Abnormal Conditions

The ToolWindow routines generate no SIGNALs as a result of improper use or specification. In

general, the conditions that one might expect to generate a SIGNAL just do nothing. This is in line

with the philosophy that the window is really just showing the user a piece of an infinite plane -- the

Tool can (attempt to) put things anywhere on that plane; only the portion of the plane within the

window is displayed to the user.

Implementation Components 87

5.27 TTYSW

The teletype subwindow interface enables traditional teletype interaction with a user. Other Tajo user

interaction facilities are based on the notification concept. Since many programs are already written

using a teletype-like control structure the teletype subwindow is available to clients.

5.27.1 Creation/Destruction

A Teletype subwindow is created by a call to:

Create: PROCEDURE [sw: Window.Handle, backupFile: STRING, s: Stream _ NIL,
 newFile: BOOLEAN _ TRUE, options: TextSW.Options _ defaultOptions];

defaultOptions: TextSW.Options = [access: append, menu: TRUE, split: TRUE,
 wrap: TRUE, scrollbar: TRUE, flushTop: FALSE, flushBottom: FALSE];

The backupFile parameter specifies the name of the file on which the teletype subwindow writes.

The string is copied. However, if s is not NIL then s is the stream handle on the file used. When

newFile is TRUE the length of the file is set to zero at create time else the existing length is used.

Once the teletype subwindow is created the client must FORK a process to do Input. This process

should be able to handle the following SIGNALs and ERRORs:

LineOverflow: SIGNAL [s: STRING] RETURNS [ns: STRING];

Indicates that input has filled the string s, the current contents of the string is passed as a
parameter to the SIGNAL. The catch phrase should return a string ns with more room.

Rubout: SIGNAL;

Indicates that the DEL key was typed during TTYSW.GetEditedString.

Additionally these exception condition could arise:

ABORTED: ERROR;

Indicates that the Input process has been aborted.

String.InvalidNumber: ERROR;

Indicates that the user entered an invalid number in one of the number getting procedures.

ErrorCode: TYPE = {notATTYSW};
Error: SIGNAL [code: ErrorCode];

Indicates that a passed in subwindow is not a TTYSW.

The following procedure destroys teletype subwindow attributes of the subwindow. However, before

this procedure is called the Input process should be aborted.

Tajo Functional Specification88

Destroy: PROCEDURE [sw: Window.Handle];

If the client wishes to destroy the teletype subwindow from within the Input process he should

instead call

DestroyFromBackgroundProcess: PROCEDURE [sw: Window.Handle];

as he returns from the Input process.

5.27.2 Input and Output

From the Input process, these are the provided input routines:

GetChar: PROCEDURE [sw: Window.Handle] RETURNS [CHARACTER];

Returns the next character typed by the user.

The following procedure is used by the remaining input procedures to get input from the user while

allowing him simple editing functions.

GetEditedString: PROCEDURE [sw: Window.Handle, s: STRING,

 t: PROCEDURE [CHARACTER] RETURNS [BOOLEAN], newstring: BOOLEAN]

 RETURNS [CHARACTER];

User input is appended to the string s. The user-supplied procedure t determines which

character terminates the string; t should return TRUE if the character c passed to it should

terminate the string. If the BOOLEAN newstring is FALSE, characters are simply appended to s.

If newstring is TRUE, the first character of input plays a deciding role: if it is the Ascii.ESC
character, the current contents of s are displayed then subsequent input character(s) are appended

to s (note: the ESC is not appended to s); however, if it is not ESC, s is initialized to empty.

The SIGNAL TTYSW.LineOverflow is raised if s.maxlength is reached. The following special

characters are recognized on input (and are not appended to s):

DEL - raises the SIGNAL TTYSW.Rubout
^A, ^H (backspace) - delete the last character (sends ^H)

^W, ^Q (backword) - delete the last word (sends multiple ^H)

^X - delete everything (sends multiple ^H), s is set to empty

^R - retype the line (sends CR, LF, then s)

^V - quote the next character, used to input special characters

The returned character c is the character which terminated the string; c is not echoed nor
included in the string.

The following Get* procedures all call GetEditedString passing TRUE for newstring.

GetString: PROCEDURE [sw: Window.Handle, s: STRING, t: PROCEDURE [CHARACTER] RETURNS [BOOLEAN]]

 RETURNS [CHARACTER];

Implementation Components 89

The terminating character is echoed. No value is returned.

GetID: PROCEDURE [sw: Window.Handle, s: STRING];

Input is terminated with a space or carriage return. The terminating character is not echoed.

GetLine: PROCEDURE [sw: Window.Handle, s: STRING];

Input is terminated with a carriage return.

These are numerial input routines:

GetNumber: PROCEDURE [sw: Window.Handle, default: UNSPECIFIED, radix: CARDINAL]

 RETURNS [UNSPECIFIED];

GetID followed by a call to String.StringToNumber. The value default will be displayed
if ESC is type. radix is a default value, use the ’B or ’D notation to force octal or decimal.
radix values other that 8 or 10 cause unpredictable results.

GetDecimal: PROCEDURE [sw: Window.Handle] RETURNS [INTEGER];

GetID followed by a call to String.StringToDecimal.

GetOctal: PROCEDURE [sw: Window.Handle] RETURNS [UNSPECIFIED];

GetID followed by a call to String.StringToOctal.

Long numerial input routines are available:

GetLongDecimal: PROCEDURE [sw: Window.Handle] RETURNS [LONG INTEGER];
GetLongNumber: PROCEDURE [sw: Window.Handle, default: LONG UNSPECIFIED, radix: CARDINAL]

 RETURNS [LONG UNSPECIFIED];
GetLongOctal: PROCEDURE [sw: Window.Handle] RETURNS [LONG UNSPECIFIED];

The Put interface can be used to produce formatted output to the subwindow. However, clients can

use the following output procedures:

AppendChar: PROCEDURE [sw: Window.Handle, char: CHARACTER];
AppendString: UserInput.StringProcType;

5.27.3 Utilities

The following procedure returns TRUE when the next character of output would start a new line:

NewLine: PROCEDURE [sw: Window.Handle] RETURNS [BOOLEAN];

The following procedure sets the echoing mode of characters entered using GetEditedString. It

returns the previous state of the echoing mode. The default echoing mode is TRUE:

SetEcho: PROCEDURE [sw: Window.Handle, new: BOOLEAN] RETURNS [old: BOOLEAN];

Tajo Functional Specification90

5.28 UserInput

The UserInput interface provides the client with the routines that are used to interpret user actions.

Note that this interface depends heavily upon the definitions type and data definitions contained in

Keys interface.

5.28.1 Notification

Clients who are only interested in normal keyboard character input should skip this section and go

directly to Section 5.28.3 User TypeIn.

A Tool can get notified of a change in the user state at the Interrupt Level and the Processing Level.

Interrupt Level notifications usually take place within one vertical retrace of when the (hardware)

stimulus occurs. Processing Level notifications occur in the order in which the stimuli occured, but

may be far removed from the stimulus in time.

Processing Level

The Processing Level is where the usual processing of user input happens. The basic notion is

embodied in the phrase "Don’t call us, we’ll call you". The real interface here is a set of Processing

Notification Routines, or PNRs, one for each, Tajo defined, interesting device or event that may

change state.

Here are the relevant type declarations for PNRs:

CursorPNRType: TYPE = PROCEDURE [window: Window.Handle, enterExit: EnterExit];
KeyPNRType: TYPE = PROCEDURE [
 key: Keys.KeyName, downUp: Keys.DownUp, window: Window.Handle, place: Window.Place];

EnterExit: TYPE = {enter, exit};
KeyPNRClass: TYPE = {keyset, keyboard, redButton, yellowButton, blueButton}

KeyName: TYPE = Keys.KeyName;

Button: TYPE = KeyName[Red..Yellow];

Key: TYPE = KeyName[Five..R8];

Paddle: TYPE = KeyName[Keyset1..Keyset5];

We stated earlier that there is a problem in deciding which Tool should receive the notification for a

particular user action. Tools are notified of all user actions that occur when the cursor is in the

Tool’s window(s) or more specifically a subwindow within the Tool’s window. By associating a

context with each window object that contains the set of PNRs specific to that window, we can

simply call the PNR associated with the specific user action.

Fine Point: The cursor is considered to be in only one window at a time. This is because windows that are "on top

of" other windows are considered to "obscure" those that are "below" them.

Note that Tool writers are free to use the same PNR for more than one action. Also, the same PNR

may be used in more than one window.

Implementation Components 91

Various Tajo packages and Tools implement a wide range of useful PNRs that Tool writers should

feel free (indeed, encouraged) to use. To set the PNRs for a window, the following procedures are

available.

SetCursorPNR: PROCEDURE [window: Window.Handle, proc: CursorPNRType _ NIL];

Sets the cursor PNR for the indicated window to be the provided procedure. The procedure

proc will be called whenever the subwindow is entered or exited. If proc is not supplied then

the system default will be used.

SetKeyPNR: PROCEDURE [
 window: Window.Handle, keyClass: KeyPNRClass, proc: KeyPNRType _ NIL];

Sets the indicated key PNR for the indicated window to be the provided procedure. This

procedure will be called whenever the key(s) changes state. If proc is not supplied then the

system default will be used.

A standard cursor PNR is

NopCursorPNR: CursorPnrType;

A call on this PNR is always a Nop.

Three Tajo supplied key PNRs are

DefaultKeyPNR: KeyPNRType;

If this PNR is called the actions are indirected to the default window:

GetDefaultWindow: PROCEDURE RETURNS [Window.Handle];

IgnoreKeyPNR: KeyPNRType;

If the PNR is called with downUp equal down, it will blink the display, otherwise the call is a

Nop.

NopKeyPNR: KeyPNRType;

A call on this PNR is always a Nop.

To set all the key PNRs for a window to be DefaultKeyPNR, IgnoreKeyPNR or NopKeyPNR,

call

SetDefaultPNRs: PROCEDURE [window: Window.Handle];

SetIgnorePNRs: PROCEDURE [window: Window.Handle];

SetNopPNRs: PROCEDURE [window: Window.Handle];

respectively. All of these procedures will set the cursor PNR to be NopCursorPNR.

Tajo Functional Specification92

The following PNRs are the used during editing and append-only type-in:

EditTypeInPNR: KeyPNRType;

TypeInPNR: KeyPNRType;

FunctionKeysetPNR: KeyPNRType;

The following procedures allow you to access useful data that is maintained by the Processing Level.

GetCurrentCursorPosition: PROCEDURE [Window.Handle] RETURNS [Window.Place];

Returns the "current" state of the Processing Level cursor position (the coordinates of the "hot

spot" of the cursor in the specified windows coordinates), i.e., the state as of the last Processing

Level notification (the last call on a PNR).

EnumerateDownKeys: PROCEDURE [
 window: Window.Handle, downUp: DownUp, place: Window.Place];

This procedure will generate a call on the appropriate PNR for all keys that are downUp. This

means when you call this procedure it will process the current hardware state and call the

appropriate PNR, in the window, for every key that is in the same state as the passed downUp.

Interrupt Level

We do not envision that clients will really be concerned with the Interrupt Level. We present this

interface primarily for understanding purposes and for the rare cases that will require it.

User Input maintains two procedure variables that contain descriptors for the two Interrupt

Notification Routines (SNRs). Here are the type declarations for the two SNRs:

MouseSNRType: TYPE = PROCEDURE RETURNS [screenPlace: Window.Place];

The primary purpose of this procedure is to track the mouse.

KeySNRType: TYPE = PROCEDURE [key: KeyName, du: DownUp, screenPlace: Window.Place];

The mouse SNR is called every time the Interrupt Level gets control of the CPU. The key SNR is

called only if a paddle, button, or key has changed state. The Interrupt Level has routines to alter

the procedure variables so that a tool can get its own SNRs invoked.

The two SNR variables are initialized to point at the system supplied ones. The default mouse SNR

merely sees that the cursor doesn’t go off the screen. The default key SNR causes items to be

enqueued for later processing by the Processing Level. There is a separate call on the key SNR for

each depression or release of a key even if more than one happens "simultaneously". [Note that no

items are enqueued for subwindow boundary crossings. Queue items pertain only to a DownUp of a Key.]

SwapMouseSNR: PROCEDURE [new: MouseSNRType] RETURNS [old: MouseSNRType];

Implementation Components 93

This procedure allows you to subsitute your own mouse SNR for the current one.

SwapKeySNR: PROCEDURE [new: KeySnrType] RETURNS [old: KeySnrType];

These procedures allow you to subsitute your own mouse or key SNR for the current one.

We only envision use of SwapMouseSNR or SwapKeySNR in atypical situations. Considerable

knowledge is required to do your own processing at the Interrupt Level. If it’s really necessary, you

should use the system SNR’s as prototypes.

The following procedures are used by the Interrupt and Processing levels. They should only be of

interest if you are writing your own stimulus level routines (SNRs).

DequeueUA: PROCEDURE RETURNS [key: Keys.KeyName, downUp: DownUp, screenPlace: Window,
action: BOOLEAN];

Removes (dequeues) a user action and returns the head item of the queue. If the queue is

empty, action is FALSE.

EndOfUAQ: PROCEDURE RETURNS [BOOLEAN];

Returns TRUE if there are no items (user actions) in the queue, FALSE otherwise.

EnqueueUA: PROCEDURE [key: Keys.KeyName, downUp: DownUp, screenPlace: Window.Place];

Enqueues a user action (item) in the queue.

FlushUAQ: PROCEDURE;

Sets the user action queue empty ignoring any items in the queue.

5.28.2 Character Translation

The computer hardware presents an unencoded bit interface for the keyset and keyboard. Tajo

contains tables and procedures for doing key stroke to ASCII character translation using the

definitions and notification mechanism described above.

The following procedure translates keyboard and/or keyset actions into characters

TranslateKeyIntoChar: PROCEDURE [key: Key] RETURNS[char: CHARACTER];

5.28.3 User TypeIn

The User TypeIn facilities are built using the above described notification and character translation

facilities. The TypeIn facility lets the client supply a procedure that will be called whenever the

appropriate actions have taken place that correspond to a character being typed (e.g., key down, key

up, shift, control etc.). TypeIn allows the client to essentially be free of any concern for "how it is

done". There is one important exception to this rule: there can be changes made in a subwindow that are not noticable

above the TypeInPNR level. If a Tool wishes to see these changes, it must operate at or below the TypeInPNR level.

Tajo Functional Specification94

Clients of the type in mechanism supply procedures of the following TYPE.

CaretProcType: TYPE = PROCEDURE [window: Window.Handle, startStop: StartStop];

StringInProcType: TYPE = PROCEDURE [window: Window.Handle, string: STRING];

These two procedures allow clients to create/destroy type in for a specific subwindow.

CreateStringInOut: PROCEDURE [window: Window.Handle, in, out: StringProcType,
 caretProc: CaretProcType _ NopCaretProc];

Error[code: windowAlreadyHasStringInOut] can be raised if the window has type-in.

DestroyStringInOut: PROCEDURE [window: Window.Handle];

The following procedures allow clients to alter the procedures to be called for a window with already

existing type in.

SetStringIn: PROCEDURE [window: Window.Handle, proc: StringProcType]

 RETURNS[StringProcType];

SetStringOut: PROCEDURE [window: Window.Handle, proc: StringProcType]

 RETURNS[StringProcType];

For the above two procedures Error[code: noStringInOutForWindow] can be raised if the

window has no type in.

The typein mechanism is also designed to allow a client to redirect input/output to another window

(Tool or subwindow). For example, a Tool has a MsgSW and a FileSW which accepts user type-in.

Type-in to the MsgSW could be redirected to the FileSW so that the user would only have to have

the cursor in the Tool window and not specifically in the FileSW when typing to the FileSW.

CreateIndirectStringInOut: PROCEDURE [from, to: Window.Handle];

Error[code: windowAlreadyHasStringInOut] can be raised if the window has type in.

DestroyIndirectStringInOut: PROCEDURE [window: Window.Handle];

The following procedures allow clients to drive the type in mechanism as though the data was coming

from the user. The returned BOOLEANs are TRUE only if window was prepared to accept input.

StuffCharacter: PROCEDURE [window: Window.Handle, char: CHARACTER] RETURNS[BOOLEAN];

StuffCurrentSelection: PROCEDURE [window: Window.Handle] RETURNS[BOOLEAN];

StuffString: PROCEDURE [window: Window.Handle, string: STRING] RETURNS[BOOLEAN];

The following procedure allows clients to output directly to a window, bypassing any input filtering

that might have been performed.

StringOut: PROCEDURE [window: Window.Handle, string: STRING];

Implementation Components 95

5.28.4 Utilities

Client operations that run for more than a few seconds can poll

userAbort: READONLY BOOLEAN;

to see if the user has indicated that he wants to abort the operation by keying some abort sequence.

Everytime that a PNR is called this variable is set to FALSE. In the unusual case that a client needs to

explicitely set this variable to FALSE he should call

ResetUserAbort: PROCEDURE;

Sometimes a client is deep in the call stack of some notifier invoked operation from which he simply

wants to UNWIND. The following ERROR can be raised that will be caught at the top level of the PNR

mechanism.

ReturnToNotifier: ERROR [string: STRING];

The client can catch the ERROR, post a message with string in it and let the ERROR propagate on

up.

A standard Tajo mechanism of prompting for user confirmation is to set the cursor to mouseRed
and call

WaitForConfirmation: PROCEDURE RETURNS [place: Window.Place, okay: BOOLEAN];

If okay =TRUE then the user pushed the red mouse button otherwise the user pushed either the

yellow or the blue mouse buttons. place is the position of the cursor, bitmap relative, when the

button went down.

The cursor should be set back to its previous type upon return from the above procedure.

The following procedure returns when all the mouse buttons are released.

WaitNoButtons: PROCEDURE;

Clients sometimes want to wakeup at regular time intervals to do some operation. Mesa’s condition

variable timeout mechanism can be used to do this. However, sometimes a client needs to do a series

of operations that if done while the the PNR mechanism was invoking some other operation either

would preempt the user or could cause serious problems in Tajo, e.g., blinking the cursor. Thus, the

periodic notification mechanism is provided.

PeriodicNotifyHandle: TYPE = POINTER TO PeriodicNotifyEntry;
PeriodicNotifyEntry: TYPE;
PeriodicProcType: TYPE = PROCEDURE [window: Window.Handle, place: Window.Place];

CreatePeriodicNotify: PROCEDURE [
 proc: PeriodicProcType, window: Window.Handle, rate: Process.Ticks]
 RETURNS [PeriodicNotifyHandle];

Tajo Functional Specification96

proc is called every interval defined by rate as long as no other PNR operations are taking

place. If rate = 0 it will run as often as possible.

CancelPeriodicNotify: PROCEDURE [PeriodicNotifyHandle] RETURNS [nil: PeriodicNotifyHandle];

Stops the periodic notification. Raises Error[code: noSuchPeriodicNotifier] if the passed in

handle is not valid (NIL is a no-op).

Implementation Components 97

5.29 UserTerminal

The interface UserTerminal describes the state of the user input/output devices (i.e., display bitmap,

display cursor, keyboard, mouse, and keyset), and allows the client to manipulate them. This

interface takes as fixed many of the characteristics of these devices and only allows variations such as

the number of keys or the size and resolution of the display. This interface deals with many of the

lowest level attributes of the terminal and, with a few exceptions, should not be of interest to Tajo

clients. This section only presents definitions and functions of general interest to the Tajo client. The

Vista documentation describes other operations.

[Warning: Do not call UserTerminal.SetState. Instead call TajoMisc.SetState].

Clients can determine the physical attributes of the display via the following exported variables.

screenWidth: READONLY CARDINAL[0..32767];

screenHeight: READONLY CARDINAL[0..32767];

pixelsPerInch: READONLY CARDINAL;

The bitmap display is addressed by xy coordinates defined as follows.

Coordinate: TYPE = MACHINE DEPENDENT RECORD [x, y: INTEGER];

The state of the display is defined as:

State: TYPE = {on, off, disconnected};

on - The display is physically on and visible to the user (bitmap allocated).

off - The display is physically off and not visible to the user (bitmap allocated).

disconnected - The same as off with no allocated bitmap.

Clients may determine the current state of the bitmap display by calling

GetState: PROCEDURE RETURNS [state: State];

The bitmap display is capable of displaying black-on-white or white-on-black. Clients may determine

or alter the current state of the background by using the following procedures.

GetBackground: PROCEDURE RETURNS [background: Background];

SetBackground: PROCEDURE [new: Background] RETURNS [old: Background];

Background: TYPE = {white, black};

Clients may momentarily blink (video-reverse) the display by calling

BlinkDisplay: PROCEDURE;

Tajo Functional Specification98

5.30 Window

This interface is only of interest to clients who are implementing their own subwindow types. It is

also the primary interface for the Vista window package and is documented as a part of that package.

The following occur elsewhere in this document and are included here to reduce the number of levels

of indirection needed to understand Tajo.

Handle: TYPE = POINTER TO Object;
Object: TYPE = RECORD [...];

Implementation Components 99

5.31 WindowFont

The following description of the interface WindowFont is taken from the Vista documentation. It is
included in this document as convenience to clients. Vista font routines deal only in .strike fonts.
Vista provides routines for initializing and manipulating fonts and font objects. For details of these
operations we refer you to the Vista documentation.

The text painting procedures of the Window interface take as an argument a Handle on an object
from WindowFont. The fields of a Handle are mostly private to the implementation.

Handle: TYPE = POINTER TO Object;
Object: TYPE = RECORD [...];

The bits within the font object that define the character pictures are private to the implementation.
The only public interfaces allow the client to determine the sizes of the characters in screen dots:

CharWidth: PROCEDURE [char: CHARACTER, font: Handle _ NIL] RETURNS [[0..LAST[INTEGER]]]

FontHeight: PROCEDURE [font: Handle _ NIL] RETURNS [[0..LAST[INTEGER]]]

A font argument of NIL for these routines, as well as for the text painting routines of the Window
interface, means to use the defaultFont. The defaultFont is set by calling

SetDefault: PROCEDURE [font: Handle]

Using this defaulting mechanism before the defaultFont is set is a client error.

Tajo Functional Specification100

6.0 OPERATIONAL CONSIDERATIONS

The Compatiblity interface contains useful types that enable source level compatiblity between Tools

written for AltoMesa Tajo and Pilot Tajo.

6.1 Alto/Mesa version

The following procedures apply to the Alto world and should be called instead of their counter parts

in ImageDefs:

TajoMisc.MakeCheckPoint: PROCEDURE [name: STRING];

TajoMisc.MakeImage: PROCEDURE [name: STRING];

6.2 Pilot version

Code that works on AltoMesa may not work on Pilot due to more extensive monitoring of Tajo and

the preemptive process mechanism in Pilot.

Tajo Functional Specification 101

GLOSSARY

button: One of the three (sometimes 2) things on a mouse that go up and down.

choice: The process of pointing at a portion of the screen with the mouse and clicking a button such

that some operation is performed. (See select)

contents: The file or data that the Librarian Data Base is keeping track of.

current selection: The system global selection. The argument to some menu commands.

form: A collection of values that the user may alter that usually serve as parameters to some operaion.

Commands may be invoked directly from forms.

Interrupt Level: The process responsible for capturing user actions and enqueuing them for subsequent

processing.

Interrupt Notification Routine (SNR): A procedure that may be notified on the Interrupt Level.

key: One of the things on a keyboard that go up and down.

Libject: Shorthand for Librarian Object. The name of an item contained in the Librarian Data Base.

Librarian Data Base: The complete history data files and data stored and controlled by the Librarian

Service.

Librarian Interface: The mechanism used to access the data stored in the Librarian Data Base.

Librarian Service: The network based program that controls the Librarian Data Base.

menu: A list of options and commands presented to the user that is displayed due to a button

depression. A choice can be made from this list.

Menu Command Routine (MCR): A procedure that runs as a result of a menu item being chosen.

notification mechanism (the notifier): The mechanism whereby PNRs and SNRs get notified of user

actions.

notify: Invoke a PNR or SNR; call a PNR or SNR to notify it that a user action has occurred.

paddle: One of the five things on a keyset that go up and down.

Processing Notification Routine (PNR): A procedure that may be notified on the Processing Level.

Processing Level: The process that implements the notification mechanism.

PropertyList: The data structure used for passing as well as receiving data from the librarian database.

Tajo Functional Specification102

selection: The process of pointing at text or graphics on the screen with the mouse and clicking a

button such that it becomes highlighted in some way. Also, the data so selected.

SNR: See Interrupt Notification Routine definition.

subwindow: A rectangular sub-region of a Tool.

Tajo: The basic runtime system for tools.

Tool: A program that runs in Tajo, but is not part of it.

user action: The depression or release of a paddle, button or key by a human user. Sometimes the term

includes the moving of the cursor across a subwindow boundary.

Vista: General window management software package.

window: A rectangular region on the display. The primary output medium for a Tool.

A Simple Tool 103

Appendix 1: A Simple Tool

-- File: SimpleTool.mesa - last edit by:
-- Mark, Sep 22, 1980 2:19 PM

-- This is an example of a minimal "Tool" that runs in Tajo. It is the equivalent of
-- everyone’s first Mesa program to "read a character and echo it on the display".
-- We go beyond that to present a little of the Tajo religion. It is our goal that when
-- a Tool is inactive it should consume minimal resources.

DIRECTORY
 Tool USING [Create, MakeFileSW, MakeSWsProc],
 Storage USING [FreeNodeNil, Node],
 ToolWindow USING [TransitionProcType],
 UserInput USING [SetStringIn, StringProcType],
 Window USING [Handle];

SimpleTool: PROGRAM IMPORTS Storage, Tool, UserInput =
 BEGIN

 -- TYPEs

 DataHandle: TYPE = POINTER TO Data;
 Data: TYPE = RECORD [
 -- File subwindow stuff
 fileSW: Window.Handle _ NIL,
 oldStringIn: UserInput.StringProcType _ NIL];

 -- Variable declarations

 -- This data illustrates a technique for minimizing memory use when this Tool is inactive
 toolData: DataHandle _ NIL;
 wh: Window.Handle; -- Tool’s window

 -- Tool needed routines

 ClientTransition: ToolWindow.TransitionProcType =
 -- This procedure is called whenever the system determines that this
 -- Tool’s state is undergoing a user invoked transition.
 -- In this example we minimize the memory requirements when we are inactive.
 BEGIN
 SELECT TRUE FROM
 old = inactive =>
 IF toolData = NIL THEN
 BEGIN toolData _ Storage.Node[SIZE[Data]]; toolData^ _ []; END;
 new = inactive =>
 IF toolData # NIL THEN
 BEGIN toolData _ Storage.FreeNodeNil[toolData]; END;
 ENDCASE;
 END;

 Init: PROCEDURE =
 BEGIN
 wh _ Tool.Create[

Tajo Functional Specification104

 makeSWsProc: MakeSWs, initialState: default,
 clientTransition: ClientTransition, name: "Simple Tool 6.0"L];
 END;

 MakeSWs: Tool.MakeSWsProc =
 BEGIN
 toolData.fileSW _ Tool.MakeFileSW[window: window, name: "Simple.log"L];
 -- Here we demonstrate a common augmentation trick used by Tajo clients. We
 -- interpose our procedure between the notification mechanism and the file
 -- subwindow so that we can see what the user typed.
 toolData.oldStringIn _ UserInput.SetStringIn[toolData.fileSW, MyStringProc];
 END;

 MyStringProc: UserInput.StringProcType =
 BEGIN
 -- To be useful the client would normally look at the characters as they go by.
 -- We just pass them on.
 toolData.oldStringIn[window, string];
 END;

 -- Mainline code

 Init[]; -- this gets string out of global frame

 END...

A Sample Tool 105

Appendix 2: A Sample Tool

-- File: SampleTool.mesa - last edit by:
-- Mark, Sep 23, 1980 5:21 PM
-- Smokey, May 2, 1980 6:12 PM
-- Evans, Jul 10, 1980 12:43 PM

-- This is an example of a "Tool" that runs in Tajo. It demonstrates the use of a
-- comprehensive set of commonly used Tajo facilities. Specifically we present examples
-- of the definition, creation, use and destruction of the following:
-- Windows and subwindows
-- Menus
-- Msg subwindows
-- Form subwindows
-- File subwindows

DIRECTORY
 Ascii USING [CR],
 Menu USING [Handle, Instantiate, Make, MCRType],
 FormSW USING [
 AllocateItemDescriptor, BooleanChoices, BooleanItem, ClientItemsProcType,
 CommandItem, Enumerated, EnumeratedItem, line0, line1, line2, line3, line4,
 NotifyProcType, ProcType, StringItem],
 Put USING [Line],
 Tool USING [
 Create, MakeFileSW, MakeFormSW, MakeMsgSW, MakeSWsProc, UnusedLogName],
 Storage USING [CopyString, FreeNodeNil, Node],
 ToolWindow USING [TransitionProcType],
 Window USING [Handle];

SampleTool: PROGRAM IMPORTS FormSW, Menu, Put, Storage, Tool =
 BEGIN

 -- TYPEs

 StringNames: TYPE = {vanilla, password, readOnly};

 DataHandle: TYPE = POINTER TO Data;
 Data: TYPE = MACHINE DEPENDENT RECORD [
 -- Message subwindow stuff
 msgSW(0): Window.Handle _ NIL,
 -- File subwindow stuff
 fileSW(1): Window.Handle _ NIL,
 -- Form subwindow stuff
 -- Note: enumerateds and booleans must be word boundary
 -- aligned as addresses for them must be generated
 formSW(2): Window.Handle _ NIL,
 switch1(3): BOOLEAN _ NULL,
 switch2(4): BOOLEAN _ NULL,
 enum1(5): Enum1 _ NULL,
 enum2(6): Enum2 _ NULL,
 strings(7): ARRAY StringNames OF STRING _ NULL];

 Enum1: TYPE = {a, b, c};

Tajo Functional Specification106

 Enum2: TYPE = {x, y, z};

 -- Variable declarations

 -- This data illustrates a technique for minimizing memory use when this Tool is inactive
 toolData: DataHandle _ NIL;
 wh: Window.Handle; -- Tool’s window

 -- Sample Tool Menu support routines

 MenuCommandRoutine: Menu.MCRType =
 -- Do the tasks necessary to execute a menu command.
 -- If the command will take a long time, then one might FORK a PROCESS to do it.
 BEGIN
 SELECT index FROM
 0 => Put.Line[toolData.msgSW, "Message posted."L];
 1 => Put.Line[toolData.fileSW, "A Menu command called."L];
 ENDCASE => Put.Line[toolData.fileSW, "B Menu command called."L];
 END;

 -- Sample Tool FormSW support routines

 FormSWCommandRoutine: FormSW.ProcType =
 -- Do the tasks necessary to execute a form subwindow command.
 -- Again, if the command will take a long time, then one might FORK a PROCESS to do it.
 BEGIN
 Put.Line[toolData.fileSW, "The Command Procedure has been called."L];
 END;

 NotifyClientOfFormAction: FormSW.NotifyProcType =
 -- This procedure will be called whenever a potentially interesting state
 -- change (user action) occurs in the Form subwindow.
 BEGIN
 Put.Line[toolData.fileSW, "The Notify Procedure has been called."L];
 END;

 -- Tool needed routines

 ClientTransition: ToolWindow.TransitionProcType =
 -- This procedure is called whenever the system determines that this
 -- Tool’s state is undergoing a user invoked transition.
 -- In this Example we demonstrate a technique that minimizes the memory
 -- requirements for a Tool that is inactive.
 BEGIN
 SELECT TRUE FROM
 old = inactive =>
 IF toolData = NIL THEN
 BEGIN toolData _ Storage.Node[SIZE[Data]]; toolData^ _ []; END;
 new = inactive =>
 IF toolData # NIL THEN
 BEGIN toolData _ Storage.FreeNodeNil[toolData]; END;
 ENDCASE;
 END;

 Init: PROCEDURE =
 BEGIN
 wh _ Tool.Create[
 makeSWsProc: MakeSWs, initialState: default,
 clientTransition: ClientTransition, name: "Sample Tool 6.0"L];

A Sample Tool 107

 END;

 MakeForm: FormSW.ClientItemsProcType =
 BEGIN OPEN FormSW; -- This procedure creates a sample FormSW.
 nItems: CARDINAL = 8;
 e1: ARRAY [0..3) OF Enumerated _
 [["A"L, Enum1[a]], ["B"L, Enum1[b]], ["C"L, Enum1[c]]];
 e2: ARRAY [0..3) OF Enumerated _
 [["X"L, Enum2[x]], ["Y"L, Enum2[y]], ["Z"L, Enum2[z]]];
 items _ AllocateItemDescriptor[nItems];
 toolData.strings[vanilla] _ toolData.strings[password] _ NIL;
 toolData.strings[readOnly] _ Storage.CopyString["Read Only String"L];
 -- Create an example of command item usage
 items[0] _ CommandItem[
 tag: "Command"L, place: [0, line0], proc: FormSWCommandRoutine];
 -- Create three examples of string item usage
 items[1] _ StringItem[
 tag: "Vanilla"L, place: [200, line0], string: @toolData.strings[vanilla],
 inHeap: TRUE];
 items[2] _ StringItem[
 tag: "Password"L, place: [0, line1], string: @toolData.strings[password],
 feedback: password, inHeap: TRUE];
 items[3] _ StringItem[
 tag: "ReadOnly"L, place: [0, line2], string: @toolData.strings[readOnly],
 readOnly: TRUE];
 -- Create two examples of apparent booleans
 -- The first one is actually done via an enumerated item
 items[4] _ EnumeratedItem[
 tag: "boolean(trueFalse)"L, place: [0, line3], feedback: all,
 value: @toolData.switch1, copyChoices: FALSE, choices: BooleanChoices[]];
 toolData.switch1 _ TRUE;
 items[5] _ BooleanItem[
 tag: "boolean(video)"L, place: [250, line3], switch: @toolData.switch2];
 toolData.switch2 _ TRUE;
 -- Create two examples of enumerated FormSWItem usage
 items[6] _ EnumeratedItem[
 tag: "enumerated(one)"L, place: [0, line4], feedback: one,
 value: @toolData.enum1, choices: DESCRIPTOR[e1]];
 toolData.enum1 _ a;
 items[7] _ EnumeratedItem[
 tag: "enumerated(all)"L, place: [175, line4], feedback: all,
 value: @toolData.enum2, choices: DESCRIPTOR[e2]];
 toolData.enum2 _ y;
 RETURN[items: items, freeDesc: TRUE];
 END;

 MakeSWs: Tool.MakeSWsProc =
 BEGIN
 logName: STRING _ [40];
 menuStrings: ARRAY [0..3) OF STRING _
 ["Post message"L, "A Command"L, "B Command"L];
 menu: Menu.Handle _ Menu.Make[
 name: "Tests"L, strings: DESCRIPTOR[menuStrings],
 mcrProc: MenuCommandRoutine];
 Tool.UnusedLogName[unused: logName, root: "Sample.log"L];
 toolData.msgSW _ Tool.MakeMsgSW[window: window];
 toolData.formSW _ Tool.MakeFormSW[window: window, formProc: MakeForm];
 toolData.fileSW _ Tool.MakeFileSW[window: window, name: logName];
 Menu.Instantiate[menu, window];

Tajo Functional Specification108

 END;

 -- Mainline code

 Init[]; -- this gets string out of global frame

 END...

