Tajo Functional Specification

Version 6.0
October 1980

This document is for Xerox internal use only

XEROX

OFFICE PRODUCTS DIVISION
SYSTEMS DEVELOPMENT DEPARTMENT
El Segundo / Palo Alto California

Table of Contents

1.0 INTRODUCTION AND SCOPE
1.1 Introduction to Tgjo
1.2 The Tgjo User Illusion

2.0 REFERENCES

3.0 BASIC CONCEPTS AND RELIGION
3.1 Windows
3.2 User Input
3.2.1 Notification
3.2.2 Typeln
3.3 Menus
3.4 Selections
3.5 Forms
3.6 Text
3.7 Cursors
3.8 Scrollbars
3.9 Librarian Interface
3.9.1 Property Lists
3.10 Basic precepts (The Commandments)

4.0 SOFTWARE DESIGN OVERVIEW
4.0.1 Tgjo's Components
4.0.2 Tajo Naming Conventions
4.1 Subwindows
4.2 System Supplied Subwindow Types
4.2.1 Form Subwindows
4.2.2 Text Subwindows
4.2.2.1 Text Sources
4.2.2.2 Text Subwindow Types
4.2.3 Message Subwindows
4.2.4 TeleType Subwindows
4.3 Client Subwindow Types
4.3.1 Implementing A Package
4.4 Tool Interface
4.4.1 Tool Creation
4.4.2 Tool States

5.0 MPLEMENTATION COMPONENTS
5.1 Caret
5.2 CmFile

N ~NOoO oo o1 oo DWW WN

(o]

10
10
11
11
11
12
12
12
12
12
13
14
14
14

15
17
18

5.3 Compatihility
5.4 Context
5.5 Cursor

5.5.1 The Cursor Object
5.5.2 Manipulating the Cursor

5.6 Event

5.6.1 ltems
5.6.2 Notification

5.7 FileSW
5.8 Format
5.9 FormSwW

5.9.1 Conventions

5.9.2 The ItemObject
5.9.2.1 Command Items
5.9.2.2 Boolean Items
5.9.2.3 Enumerated Items
5.9.2.4 String Items
5.9.2.5 Number Items
5.9.2.6 Labelsand Tag Items

5.9.3 Allocation of ItemObjects

5.9.3.1 Allocating an ItemObject from the Heap
5.9.3.2 Deallocating an ItemObject from the Heap

5.9.4 Subwindow Global Operations

20
21
23
23
23
25
25
26
27
29
30
30
30
33
33

35
36
38
39
39
40

5.9.5 Operations Affecting One or Two Items
5.9.6 Errors and Abnormal Conditions

5.10 HeapString

5.11 Keys

5.12 Librarian
5.12.1 Altering the Librarian Data Base
5.12.2 Interrogating the Librarian Data Base

GR&AR

5.12.3 Accessing the Contents of Libjects
5.12.4 Errors and Abnormal Conditions

5.12.5 Property Lists
5.12.6 Property Lists Operations
5.12.7 Property Pair Operations

5.13 Menu

5.13.1 Simple Creation of Menus
5.13.2 The Menu Object

5.13.3 Menu Instances

5.13.4 Menu ltems

5.13.5 Procedures For Setting up Menus

5.13.6 Utilities

5.14 MsgSW

49
49
50
51
51
53

GELLY

55
57

5.14.1 Creation/Destruction
5.14.2 Output
5.14.3 Status Retrieval
5.15 Profile
5.16 Put
5.17 Scrollbar
5.18 Selection
5.18.1 Selection Sources
5.18.2 The Trash Bin
5.19 StringSW
5.20 TgjoMisc
5.21 TextSource
5.21.1 Basic Operations
5.21.2 Useful Operations on Text Sources
5.21.3 Disk Sources
5.21.4 String Sources
5.21.5 Errors
5.22 TextSW
5.22.1 Basic Operations
5.22.2 Positioning and Selection Operations
5.22.3 Information/Alteration Operations
5.22.4 Activation Operations
5.22.5 Menu Operations
5.23 Tool
5.23.1 Tool Creation
5.23.2 Subwindow Creation
5.23.3 Unique SWTypes
5.23.4 Destruction and Deallocation
5.23.5 Utilities
5.23.6 Errors
5.24 ToolDriver
5.25 ToolFont
5.26 ToolWindow
5.26.1 Tajo' s use of Windows
5.26.2 Tool Windows
5.26.2.1 Adjust and Limit Procedures
5.26.2.2 Transition Procedure
5.26.3 Subwindows
5.26.3.1 Display Procedure
5.26.4 Window Content Manipulation
5.26.5 Utilities
5.26.6 Errors
527TTYSW

57
57
58
59
60
61
62
63

65
66
67
67
69
70
70
71
72
72
73
73
74
75
76
76
76
77
78
78
79
80
81
82
82

FRER

85
86
86
86
87

5.27.1 Create/Destruction
5.27.2 Input and Output
5.27.3 Utilities

5.28 Userlnput
5.28.1 Natification
5.28.2 Character Trangdation
5.28.3 User Typeln
5.28.4 Utilities

5.29 UserTerminal

5.30 Window

5.31 WindowFont

6.0 OPERATIONAL CONSIDERATIONS
6.1 AltoMesaversion
6.2 Pilot version

GLOSSARY

Appendix 1: A smple Tool

Appendix 2: A sample Tool

88
88
89
90
90
93
93
95
97
98
99

100

100

100

101

103

105

Tajo Functional Specification

1.0 INTRODUCTION AND SCOPE

This document describes Tajo, a collection of interfaces that provides the framework and runtime
system for the Mesa Devel opment Environment.

Throughout this document the term user describes a person who interacts with Tajo viathe mouse,
keyset and keyboard. The term client is used to describe a program or a programmer that uses the
interfaces described herein.

Terms that occur in the glossary of this document are bold the first time they are used, e.g., "Tajo"
above. All Mesa code and names of variables or types that are defined in the definitions modules
appear in this sans serif font (Mesa reserved words appear in SMALL CAPITALS). Namesthat are
part of the interface are in boldface when used in the text. Thissmall font is used for fine points.

1.1 Introduction to Tajo

Tajo is designed to facilitate the implementation and execution of awide range of software
development programs. These programs are referred to as Tools. In the strict sense, any Mesa
program that will executein TagjoisaTool. However, considerably more semantics are applied to
the term Tool in this document.

This document describes the interfaces provided by Tgjo that are utilized in building Tools. Itis
intended primarily for writers (programmers) of Tools. Advice and hints about how a Tool can best
use the facilities provided is a so given. The documentation (not the definitions modules) is
considered to be the final word on interfaces implemented by Tajo. It isexpected that clients of
Tajo will write code from this specification.

This document is a reference manual, not atutorial. Section 3 contains a motivation of why the
separate facilities of Tajo exist and explains their expected use. Section 4 describesin more detail
the design and philosophy of Tgjo and offers some stylized patterns of use that have evolved during
the development of Tgjo. The detailed descriptions of the interfaces are contained in Section 5.
Section 6 describes some Alto/Mesa and Pilot operational considerations. Example programs are
listed in the appendices. The recommended way for aclient to become proficient with Tgjoisto
start with one of these Tools and to modify it into the Tool desired.

1.2 TheTajo User Illusion

Thefollowing is abrief description of the Tajo user illusion. A complete description isfound in the
Tajo User’s Guide.

From the user’s point of view Tgjo provides uniform and consistent interaction modes for both inter-
Tool and intra-Tool actions. Thisis accomplished by providing a user illusion that consists of
standard mechanisms and procedures for interacting with Tools. Central to Tajo is the notion of
breaking the user’ s interactions down into a reasonably small number of atomic actions when

2 Tajo Functional Specification

specifying parameters and commands. Long sequences and context dependent interactions are
discouraged. The goal isto make similar actions, in different contexts, have predictable results.

The user interface for Tools provides the unifying framework for Tgjo. Tools utilize display windows
to present information to the user. They all receive input and commands from the user using the
same mechanisms. The user is encouraged to have an arbitrary number of Tool windows on the
display screen. The windows may overlap each other, some obscuring portions of others. The user
directs his actions to the Tool whose window contains the cursor. The primary command invocation
mechanisms are via menus and command items contained in forms. In addition, facilities are
provided for running new Tools and manipul ating windows on the display screen.

2.0 REFERENCES

Vista Functional Specification October, 1980.

Mesa Language Manual Version 5.0 April, 1979.

Mesa System Documentation Version 6.0 October, 1980.

OIS Software Tools Environment Functional Specification January, 1977.

The above document discusses the whole of the Development Environment and severa
individual Tools from the viewpoints of both a human user and a programmer client. Where
the present document parallels the above document, the above document is to be taken as
superceded.

The Pilot Programmer’s Manual Version 5.0 October, 1980
Tajo User’s Guide Version 6.0 October, 1980

DD Software Development Procedures and Standards April, 1977.

3.0 CONCEPTSAND RELIGION

The following sections describe the fundamental facilities that are the building blocks for Tajo and
implementation of Tools. These facilties implement and make concrete the fundamental ideas and
philosophy of Tgjo. Thesefacilities are:

Windows and subwindows
User input

Menus

Selections

Forms

Text

Tajo Functional Specification

3.1 Windows

The concept of the window provides the mechanism by which Tajo isolates functions from one
another on the display. A window is operated upon without regard for its position on the physical
display screen.

A client commonly creates a single tool window. Overlapping between atool window and other tool
windows isignored by the client. Usually, a client wishesto consider that the tool window is
divided into a number of rectangular areas, subwindows, that are to be separately acted upon.
Subwindows are used for actually displaying client data: textual information, graphical constructions
or pictures. Tajo provides appropriate primitive procedures to facilitate each of these. Although
"window" is usually a generic term in this document, it occasionally acquires from the surrounding context the restriction

that it be tool window.

A digression isin order here to describe the relationship between Tajo and the software package,
Vista, that it uses to implement windows. Vistaimplements a general tree of windows. Vistahas no
notion of depth-dependent window specialization within the tree (except for the top level). Thus,
Vista allows awindow to be moved from any depth in the tree to any other depth.

Tajo does not preclude clients from utilizing all of Vista's generality, but it does not use all of the
generality itself. Tajo defines five types of windows corresponding to the depth of the windowsin
the tree and applies specific semantics to each type. The topmost window in the treeis called the
root window. It isthe size of the bitmap, and is used to define the dimensions of what the user can
see. Thenext level aretool windows. The third level windows are called clipping windows and are
used to define the "inside" or clipping box of tool windows for display purposes. Usualy clients
shouldn’t have to deal with clipping windows. The fourth level are subwindows. All windows of
depth greater than four are treated by Tajo as other windows, with no Tajo-supplied specialization.

3.2 User Input

Given that a user may be simultaneously interacting with numerous Tools, Tgjo must provide a
mechanism for specifying to which Tool (or window) any particular user action (mouse, keyboard, or
keyset activity) is directed. The requirement to direct user actions to various windows has given rise
to anotification mechanism.

3.2.1 Notification

This mechanism is designed to be flexible and have minimal overhead for the processing of user
input actions. The basic schemeisthat a Tool may install a number of procedures, one for each
user action, to be called (notified) when achangein the user input state occurs. A Tool isallowed
to get control immediately when the state change occurs, or at alater time when other user-initiated
processing has completed. The rest of this subsection can be skipped during an initial reading.

The Notification mechanismis basically split into two distinct processes. 1) a high priority process,
called the Interrupt Level, for queuing user actions, and 2) anormal priority process, called the
Notifier (or Processing L evel), for the actual processing of user actions.

4 Tajo Functional Specification

The Interrupt Level gets control of the CPU every vertical retrace of the display. Thisisaround 50

times per second, depending on the processor type. This level watches for changes in the hardware user state,
i.e.,, mouse movements or key station (paddle on the keyset, button on the mouse, or key on the
keyboard) depressions or releases. A Tool may have Stimulus Notification Routines (SNR’s) that get
control at thislevel.

Warning: The Interrupt level of the notification mechanism is a high priority process and as such has potential
preemption difficulties (in particular, it cannot cause code swapping while it is executing on the Alto). This has
serious implications, so if you plan to use thisfacility please consult with Tgjo implementors.

The Notifier's primary function isto call Tool-supplied Processing Notification Routines (PNR’Ss).
The Interrupt Level communicates with the Notifier viaaqueue. Basically, the Notifier dequeues
the head item from the queue and the appropriate PNR is called. The secondary Notifier function
isto process the queue of periodic notifiers. Thisisaqueue of procedures that wish to run on a
periodic basis, but which do not want to execute unless the Notifier would be otherwise unoccupied.
If itisidle the Notifier wAITs on a condition variable so that other processes (e.g communications,
etc.) may run.

[Note: When PNRs or periodic notifiers are executing they are extensions of the Natifier (i.e., on the same call
chain). This means that notification processing is suspended or "backs up" until control is returned from the PNR.
If you intend to do some serious computing you should FORK a process and let the Notifier get back to its task.]

3.22Typeln

The Typeln facility lets the client supply a procedure that will be called whenever a character is
typed. Itisimportant to note that the client gets called upon input of a character instead of calling

a GetChar procedure for one. This has a major impact upon the control structure of Toals,

requiring more explicit program state data. The user Typeln facilities are built using the notification
facilities described above. Typeln allows the client to be essentially free of any concern for "how it
is done."

3.3Menus

A menu isaset of options and commands associated with awindow. It is possible to have multiple
menus in asingle window. When the menus associated with a subwindow are displayed, the menus
associated with its tool window are also displayed.

A menu isimplemented as an array of items. Each menu item isapair: a keyword and a menu
command routine (a procedure to be called when the keyword is chosen by the user). A new menu
instance is created each time a menu object is associated with awindow. When the same menu
appears in multiple windows, the menu object itself is shared.

Tajo Functional Specification

3.4 Selections

An example of aselection isatext string or a graphic icon that the user has caused to become
highlighted in some way. Many commands operate on the current selection. Tgjo providesa
mechanism by which windows pass around "ownership" of the current selection. A Tool may
operate upon the current selection even though it is not in its own window.

Some commands may require more than one parameter. These commands usually gather their
parameters through the use of formsinstead of using the selection mechanism.

3.5Forms

A Tool often needs to collect more than one parameter from the user, but the collection of multiple
parameters using only menus and the current selection is difficult to program, and tends to create a
clumsy (and often inconsistent) user interface. In addition, such a Tool often wishes to display both
the current parameter settings and internal program state data. It also wants to allow modification of
the parameters.

A mode problem arises whenever commands require multiple arguments. In most systems, each such
command enters a special mode in which the user can only perform actions that are pertinent to the
collection of the current command’ s parameters; the parameters themselves are often collected in a
specific order that does not allow modification of any parameter except the one currently being
collected. Thisisdiscouraged in Tajo because the system should not preempt the user. Thus, a

form allows the user to enter or modify any or all parametersin any order prior to command
execution. This can cause the display of parameters in which the user is momentarily not interested. A middle ground

is achieved between a single modeless form and sequential parameter collection through the use of multiple forms, each of
which makes available a subset of the commands and their parameters.

The Tajo Forms package frees the Tool writer from the concerns of parameter collection, display
and modification. The package shields the Tool writer from the display management tasks of
making selections, displaying characters, wrapping long lines and scrolling. A form also providesa
uniform and consistent way for the user to interact with many different Tools.

The Forms package isimplemented so that the Tool writer has access to various levels at which he
can beinvolved in the display and alteration of the fields in the form. However, the interfaceis
primarily aimed at two distinct clients: the Tool writer who only wants minimal control, and the
Tool writer who wishes absolute control over parameter display and alteration. Some facilities are
provided for clients that wish to be somewhere in the middle of these two positions.

3.6 Text

All text displayed by Tajo is managed by a common set of display and user input facilities. This
allows the user to have one consistent way of selecting and modifying text. This management is
provided by two packages, alow-level one that does not know about the display but which provides
the primitive operations on the concrete representation of the text (i.e., disk operations for text that
is coming from files, string operations for text that is stored only in primary memory, etc), and a

6 Tajo Functional Specification

high-level package that handles the displaying of the text and interactions with the user trying to
manipul ate the text.

3.7 Cursors

The cursor management routines are asmall set of definitions and procedures which provide, in
essence, avirtual interface to the hardware cursor.

These routines provide for the setting of the 256-bit pattern which is displayed by the hardware as
the human-visible cursor. They also provide for the specification of the hot spot, the position within
the 16x16-bit cursor that is meant to indicate the screen position pointed to by the mouse. Since
hardware implements the 16x16-bit cursor shape, but does not implement a hot spot, the
implementing routines themselves contain what might be considered the hardware hot spot
coordinates.

3.8 Scrollbars

In general, Tajo has no knowledge of the contents of awindow or subwindow so the actual scrolling
operations (i.e. moving the bits) are the responsibility of the client. Tgjo does provide a standard
user illusion and mechanism for the user to invoke and cause the client to perform scrolling
operations.

39 Librarian Interface

The Librarian Interface is the component in Tajo whose primary task is to provide a procedural
interface to a physically remote function. The Librarian Interface is the Tool writer’s access
mechanism to the contents of objects, Libjects, stored in the Librarian Data Base and under the
control of the Librarian Service Tool. It isintended to be the only method of access to these data.

The primary purpose of the Librarian Interfaceis to provide a uniform procedural interface to the
Librarian Service. The interface servesto define and enforce both the syntax and semantics of the
basic request/response activity. It further insulates its users from the how's and where's of Librarian
functions as well asinsulating the Librarian Service from malformed requests.

Most Libjects are used as access locks for Mesa source files to prevent simultaneous editing. If these
files are managed by Tools that use the Librarian Interface, then the classical simultaneous-
conflicting-edits problem is avoided. Each timethe Libject lock is acquired (checkout) and released
(checkin) anew version of the Libject is created. All versions of a Libject are kept forever, allowing
the history of a project to be traced from its conception. The type of historical data maintained
includes the who, why, what, where and when of lock operations.

Tajo Functional Specification

3.9.1 Property Lists

The Librarian Interface needs a standard way of discussing the various elements that make up a
Libject version. Thisis made difficult by the fact that neither the Librarian Interface nor Librarian
Service know anything about the items that it stores, and therefore cannot, in general, know their
TYPES or (in particular) their sizes. The resolution of this difficulty liesin the creation of a
PropertyList.

o A PropertyList isan array of PropertyPairs. Each PropertyPair defines an item within
aLibject-version.

o A PropertyPair consists of aPropertyNumber and a PropertyValue, the former serving
to name the particular item-type, and the latter serving to contain the information.

To allow the Librarian Interface to manipulate PropertyPairs without knowing about each type of
property, we assign PropertyNumbersin a manner which supplies some information about the
PropertyValue from an examination of the PropertyNumber. In particular, the scheme alows
adetermination of both the size of the PropertyValue and whether the PropertyValue isa
LibjectID (aLibrarian-Interface-assigned identifier) from examination of the PropertyNumber.

3.10 Basic precepts (The Commandments)

The above facilities were designed with some specific goalsin mind. These goals are aresult of a
philosophy that can be summed up in the following "religious commandments'.

Clients shall not preempt the user. (Swinehart’s Law)

Thisis Tgjo's basic tenet. The user should never be forced by the clients into a situation where
the only thing that he can do isinteract with only one Tool. Even stronger, the client should try
to avoid falling into a particular "mode" when interacting with the user, i.e. the Tool should try
to avoid imposing unnecessary restrictions on the permitted sequencing of user actions.

Don't call us, we'll call you. (Hollywood's Law)

A client should never seize control of the processor while getting user input, which is exactly
what tends to happen when the client wants to use the "get a command from the user and
execute it" model of operation. Instead, the Tool should arrange for Tajo to notify it when the
user wishes to communicate some event to the Tool.

The user owns the window layout.

Although it is possible for the client to re-arrange the window tree and the positions and sizes of
the windows on the display, thisis discouraged. Each user has particular and differing tastesin
the way that he wishes to lay out windows on the display, and it is not the client’ srole to
overide the user’ s decisions. In particular, clients should avoid having windows jump up and
down trying to capture the user’ s attention. |If the user has put a window off to the side, then

he does not want to be bothered by it.

Tajo Functional Specification

The display belongs to the Notifier.

Although an attempt has been made to accommodate clients that want to use multiple processes,
the display interactions are sufficiently fragile (especially in the presence of the destruction of
windows) that the display is considered to belong to the Notifier. 1f some background process
(here al non-Notifier processes are referred to as background processes) wants to do something
that could affect the display, it must make sure that the routines it calls are explicitly declared to
be callable from a background process.

4.0 SOFTWARE DESIGN OVERVIEW

This section provides an overview of the interactions between Tgjo’'s major software components.
Pieces of Tgjo are delineated and some of the interdependencies are described. Hints are offered on
how the client programmer might best use Tajo facilities.

Clientswho are interested in writing only a simple Tool and who have some idea about how Tgjo is
structured might consider skimming the following sections up to the section entitled Tool Interface.
This section gives an overview of the top layer of software that a client deals with when writing a
simple tool.

4.0.1 Tajo's Components

The most basic portion of Tgjo dealswith user input devices, specifically the keyboard, keyset and
mouse, and the display output devices, specifically the cursor and bitmap. This portion can be
changed by the client without badly affecting the rest of Tgjo provided that the changes are made by
replacing the SNRs and PNRs. The interfaces of interest are Keys, Userlnput and UserTerminal
for input, Cursor and Vista's Window for output. Further routines that Tajo uses to augment the
Window and User | nput interfaces are provided by the Context and ToolWindow interfaces.

The next level of output complexity isthe simple display of text. Theinterfaces of interest are
ToolFont, Window and WindowFont.

Continuing along the axis involving text on the display, the next level isinvolved with more
complicated display of text. Theinterfaces of interest are TextDisplay and TextSource. TextDisplay
isaprivate interface but some clients, particularly those contemplating creating their own subwindow types, might need to
useit. If youfind thisis necessary you should consult a Tajo implementor. The interfaces Caret, Scrollbar and
Selection are concerned with text marking and user input.

These lower-level functions are used to implement Tajo-supplied subwindow types described by the
interfaces: FileSW, FormSW, MsgSW, StringSW, TextSW and TTYSW. The Menu interface
provides simple command invocation and is required by several of the subwindow types.

The combining of subwindows within awindow to make a Tool isfacilitated by the Tool interface.
The FileWindow and TTY interfaces enable the creation of Tools that each contain one subwindow
of a predefined type. The same caveat appliesto FileWindow that applies to TextDisplay.

To one side are STRING and formatting utilities. These cannot be discarded without affecting some
of the higher levels of Tgjo such as the subwindow types. Theinterfaces of interest are Format,
HeapString and Put.

There are several interfaces dedicated to interacting with the surrounding runtime environment, and
to informing clients of changesin that environment. The interfaces of interest are CmFile, Event,
Profile and TajoMisc.

10 Tajo: Functional Specification

Implemented as a strict add-on to the other levels are the routines used to converse with the remote
Librarian Service; they are provided by Librarian.

4.0.2 Tajo Naming Conventions

Although there are many exceptions to these rules, the following are the general naming conventions
practiced in Tgjo.

Procedure types have the suffix ProcType. These types aways use keyword notation to name their
arguments, and when there is more than one return value they are a'so named. The same

convention for naming arguments in the procedure typesis used for naming argumentsin the
interface procedures. In general, the argument is called: window if it is ageneral window, sw if it
isaTao subwindow, ss if itisaString.SubString, and index if it isa CARDINAL identifying a
position in some descriptor. Thereis extensive use of defaults.

The primary object supported by an interfaceis a TYPE named Object. Secondary objects have
suffix Object. A POINTER TO Object has suffix Handle.

Most of the interfaces have one signal called Error used to note exceptional conditions (usually
client errors or failures of the runtime environment). Thissignal has an argument called code
whichisan ErrorCode defined in the same interface asthe signal. The signal cannot be RESUMEd
except when thisis explicitly permitted.

Interfaces that implement subwindow types have procedures named Adjust, Create, Destroy,
Islt, Sleep and Wakeup. However, note that Create and Destroy do not actually create and
destroy subwindows; rather, they add or remove specialization to existing Tajo subwindows.

Private definitions modules usually have the substring Ops appended to the name of the associated
Public definitions module. For implementing modules the suffixes are Impl or sA, sB, sC, etc.
Bound groups of implementing modules have suffix s.

An enumerated type is often referred to as being "open-ended.” This meansthat it is declared to be
aMACHINE DEPENDENT enumerated type, and that room has been left in the enumeration for future
expansion or to allow Tajo to generate unique, un-named elements of the type at runtime.

4.1 Subwindows

The subwindow is the fundamental object from both the user’ s and the client’ s points of view. This
should not be surprising since user actions are directed at specific subwindows; as a consequence
subwindow handles are constantly passed back and forth between clients and Tgjo. Thisleadsto the
practice by both Tajo and clients of associating data about the user’ s current context with
subwindows.

Subwindows come in various degrees of complexity. A raw subwindow is created by calling
ToolWindow.CreateSubwindow, which resultsin aWindow.Handle and additional associated
data used by Tgj0. These datainclude, but are not limited to, the subwindow’s PNRs. Such a subwindow is

not very interesting for it does nothing but display white bits, and either ignores or gives away all

Softwar e Design Overview 11

user actions directed to it. Tajo supplies severa interfaces that support particular styles of
subwindow enhancement.

The next level of complexity is realized by replacing the subwindow’ s display procedure by one that
shows the state of some associated client data structure.

The higher levels of complexity affect the user input and display output facilities of the subwindow
(such asthe PNRs and StringIn and StringOut routines defined in the User | nput interface),
usualy by replacing them with more powerful ones. It is not uncommon for different subwindow
types to share common input routines (a good example of thisisthe Menu.PNR which is often the
PNR for the yellow mouse button), or to share the marking and resol ution routines (such as those
involved in the selection of text) provided by lower levels of Tgjo.

4.2 System-Supplied Subwindow Types

Tajo provides subwindow types which display in a particular stylized layout data structures defined
by Tajo and supplied by the client. Some of these types are built upon the others; however, it is not
possible to arbitrarily mix these typesin a single subwindow (e.g., a subwindow cannot have the
attributes of both Form and File subwindow types).

The process of calling a system-supplied subwindow type Create routine is usually termed
"creation” of a system-supplied subwindow type. Thisisamisnomer, becauseit isactualy a
differentiation process; the client must have aready created the subwindow to be operated upon by
acdl to Tool W ndow. Create.

4.2.1 Form Subwindows

Clients of the For nSWinterface need to supply a procedure that completely defines the form that is
to be presented to the user. Much of the detail of the form layout and individual item options can
be defaulted, thus permitting the direct specification of only those things that are important to the
client. Much of the work of defining the form is accomplished by callsto For mBW * | t em
procedures where * can be one of { Bool ean, Comrand, Enuner at ed, Label , LongNunber ,
Number, St ri ng, TagOnl y}. Inaddition, the client may supply notification routines that get
called when the user aters the form items.

4.2.2 Text Subwindows

The Text SWinterface presents a set of procedures that define atop level of uniform text displaying
and editing capabilities that are used by higher-level subwindow-types. A subwindow of thistype
allowsthe client to present a menu to the user that allows him to search for text strings, normalize
the insertion point to the top of the display region, normalize the selection to the top of the display
region, jJump to the any character in the text, split the subwindow into separately scrollable display
regions and change the line-break mode (which determines whether along lineis clipped at the
subwindow boundary or iswrapped down to the next line).

12 Tajo: Functional Specification

4.2.2.1 Text Sources

When a Text subwindow is created, it is passed a TextSource.Handle. Thishandle contains a set
of proceduresthat are used to manipulate the backing data structure, the "source”, that holds the
characters displayed by the Text subwindow. Thus, aclient could create a Text subwindow with a
backing data representation of his own design.

4.2.2.2 Text Subwindow Types

Two system-supplied subwindow types are built directly on top of the Text subwindow mechanism.
One of theseis defined by the Fi | e SWinterface and uses a file as the source of its characters. This
interface has procedures that do file-specific operations; other operations may be found in the

Text SWinterface. The St ri ngSWinterface supports a subwindow type that uses a STRING as the
source.

4.2.3 Message Subwindows

The Ms g SWinterface defines a set of procedures for posting messages to the user. The client may
direct that in addition to writing to a Message subwindow he wishes the output to go to another
subwindow aswell. Thisisuseful for logging error messages. Message subwindows are built on top
of String subwindows. So, if the procedure that you need isn’t in the Ms g SWinterface then it might
beinthe St ri ngSWor Text SWinterface.

4.2.4 TeleType Subwindows

In Tajo, client programs are notified of user keystrokes; thisisin contrast to teletype environments
in which the client polls some keyboard handler for type-in. Many programmers are used to code
that is structured to use ateletype-like interface. To accommodate this style of user interaction there
is asystem supplied subwindow type defined by the TTYSWinterface. TeleType subwindows are
built on top of File subwindows.

4.3 Client Subwindow Types

Thereis considerable flexibility built into the system-supplied subwindows. However, radical
changesin the style of the layout of the subwindow, changesin the definition of the client data
structures or the alteration of the details of the user-input interactions can only be achieved by the
writing of new code. Thisresultsin client-implemented subwindow types. The implementors of
Tajo encourage clients that find it necessary to implement their own subwindow typesto do soin
the same manner in which the system-supplied types are constructed; namely to have a stand-alone
package, complete with a definitions module and documentation, that can be loaded as asingle,
possibly bound, .bcd file into Tgjo.

There are two possible approaches to implementing a new subwindow type. Thefirstisto build
upon an existing subwindow type without changing the implementation code for that type. Thiscan
be done only by strict augmentation or by the process of interposition. By augmentation we mean

Softwar e Design Overview

adding totally new facilities to a subwindow type without conflicting or modifying existing facilities.
Thisisdifficult to do with the Tajo-supplied types because each one of them has a full complement
of user input and output features. The more common approach is interposition: replacing one or
more of the procedures provided or used by an existing subwindow type with client procedures,
either by changing the binding path or by replacing procedure variables. This allows the client to
detect the occurrence of the event that the replaced procedure is associated with and to do pre- or
post-processing.

An example of interposition that occursin Tajo isan empty String subwindow’ s recognition of the
escape character as a command to act upon the text in the subwindow. Thisisimplemented by
replacing the keyboard PNR of the String subwindow with another PNR which watches all keyboard
input. When an escape is typed by the user and sent to the PNR, instead of sending it on to the
regular PNR the interposed PNR makes the contents of the String subwindow the current selection
and then operates on the current selection.

[Fine point: An attempt has been made to allow interposition of any system PNR. Thisis accomplished by Tajo
setting the PNR only when the subwindow is created. If it was done at any other time it might overwrite an
interposing PNR. In other words, if the subwindow type wants a PNR to behave differently in a time-dependent
manner, it should set flags rather than changing the PNR. No such claim is made for the interposition of a
subwindow display procedure.]

4.3.1 Implementing A Package

A subwindow type that would be useful to others should implement the Adjust, Sleep and
Wakeup procedures (although they need not have those names, see Tool . Regi st er SWIype).
Good citizenship encourages the implementation of the Destroy and Islt procedures, while
common sense dictates that there be a Create procedure.

A common problem that arises when implementing a subwindow type is where to keep a
subwindow’ s state data. Tajo associates the data directly with the Window.Handle using contexts,
defined by the interface Context. The next two paragraphes can be skipped on the first reading.

Typically aclient using contexts to store his state data passes through a start-up transient and three
phases: initialization, steady-state, and finalization. The transient occurs when the subwindow-type
implementor isfirst STARTed. At that time the implementor gets a unique context type from Tajo.
Then, when a subwindow is differentiated by a client calling the implementor’s Create procedure
(the initialization phase), the implementor creates a context with the previously obtained unique type
on that subwindow. The data argument of the context creation call is a pointer to the subwindow’s
state data.

Whenever Tajo calls the implementor to operate upon the subwindow (the steady-state phase), a
subwindow handle with which the implementor can get the state datais provided. Eventualy, the
finalization phase is reached when either the client calls the implementor’s Destroy procedure or
Tajo decides to destroy the subwindow. When Tajo destroys the subwindow, it causes all the
contexts associated with the subwindow to be destroyed. The implementor’s
Context.DestroyProcType, which should free the state data, is called. Theimplementor’s
Destroy procedure should call Context.Destroy.

13

14 Tajo: Functional Specification

4.4 Tool Interface

The Tool interface is designed to make the writing of Toolswith a standard user interface as easy as
possible. It alows the client to avoid having to deal with many of Tajo’s low-level facilitiesin
exchange for some lossin flexibility.

In windows created using the Tool interface the user has the ability to dynamically move the
horizontal boundaries between subwindows. The interface supports automatic window layout of
subwindows vertically on the screen but not horizontally across the screen.

4.4.1 Tool Creation

The client controls the number and type of subwindows availablein the Tool’swindow. By using
the Tool.Make*SW routines the client can have Tgjo create a vanilla subwindow, differentiate it to
be of type * and add it to the Tool. Note that thisisin contrast to the Create procedures for the
system-supplied subwindow types which never create a vanilla subwindow but only differentiate it.
Additional routinesin the Tool interface make it possible to include client-defined subwindowsin a
Tool.

4.4.2 Tool States

The state of a Tool isaresult of the following user illusion projected by Tgjo. A Tool can bein one
of three states: normal, in which the user has access to the full functionality and user interface
provided by the Tool; tiny, in which the Tool’ s window is displayed as asmall, labelled icon, but in
which the algorithmic functions of the Tool are still available (but potentially not user invokable
because of the display change); and inactive, in which the Tool’ s window does not appear on the
display and it isnot functional. The user can cause transitions between these states by interacting
with Tgjo. The Tool interface helpsto shield the client from the changesin the Tool’ s state caused
by the user.

It isthe responsibility of the client to support the above model and to consume only those resources
necessary for a particular state. Thus, if aTool istiny, it should not hang on to resources needed
only for updating of the display sinceit is not being displayed (Tajo manages displaying the icon).
If aTool isinactive, it should additionally free all resourcestied up in interna state (i.e. free all
streams, turn off all communications packages, deallocate all storage from the system heap, etc).
Since many of the resources belonging to a Tool are allocated by Tajo on the Tool’ s behalf, the
client must understand what those resources are so that Tajo and the client don’t both deall ocate the
same resource.

The Tool interface provides a degree of automation for these transition tasks. For instance, when a
Tool is made tiny the Tool interface will get each of the subwindows to free up resources that they
use only to paint on the display. When aTool is made inactive Tagjo deallocates the subwindows
and their associated data structures, destroys any menus associated with the Tool and closes streams.
The client cannot be totally oblivious to the state transitions, or else it might try to use a subwindow,
or other Tajo object, that had been deallocated. The client is asked to clean up its own private data
structures.

I mplementation Components 15

50 IMPLEMENTATION COMPONENTS

This section deals with the actual procedures and data structures that are to be used in building
Toolsthat runin Tajo. There are, of course, considerably more definitionsinside the interface files
than appear in this document. However, as discussed in Section 1, this document is the specification
for writers of Tools. It isthe supported external interface for Tool writers (i.e., the defsfiles are
not!). For completeness, some interfaces are included below that are not specific to Tajo, but which
are necessary for writing Tools. They are flagged in the list below by a preceding *.

This section is organized with each major subsection representing a definitions module. The
following is atable of contents for the Tgjo Definitions modules:

Caret Blinking caret management.

CmFile Processing ".cm" files such as User.cm.

Compatibility Provides some compatibility between Alto/Mesa and Pilot types.
Context State saving/retrieving associated with windows.
Cursor Altering/Setting the cursor.

Event Notification/Veto of significant Tgjo events.

FileSW Display and editing of Files.

*Format Datato string formatting.

FormSwW Form creation and manipulation.

HeapString System Heap String operations.

Keys The keyboard, keyset and mouse bit assignments and synonyms.
Librarian Librarian Interface.

Menu Menu creation and manipulation.

MsgSW Manages message posting to the user.

Profile User and system attributes.

Put Formatted text output to subwindows.

Scrollbar Creation and destruction of scrollbars.

Selection Management of the current selection/trashbin.
StringSW Display and editing of strings.

TajoMisc Miscellaneous utilities.

TextSource Creation and manipulation of text sources.

TextSW Shared Text subwindow operations.

Tool Simple Tool creation.

ToolDriver Allows Tool to be manipulated by ToolDriver package.
ToolFont Font loading/initialization.

ToolWindow Tajo window creation and manipulation.

16

TTYSW

User I nput
*UserTerminal
*Window
*WindowFont

Tajo Functional Specification

Teletype-like operation.

User input/notification.

Display termina primitives.
Window contents manipulation.
Font information primitives.

I mplementation Components 17

5.1 Caret

Tajo provides a simple mechanism for clients to implement and manage a blinking caret, i.e.,
insertion point. Actual positioning and marking viathe window package is the client’ s responsibility.
First, some definitions:

Action: TYPE = {clear, mark, invert, stop, reset, ...};

MarkProcType: TYPE = PROCEDURE [data: POINTER, action: Action];

To become the manager of the caret, call
Set: PROCEDURE [data: POINTER, marker: MarkProcType];

data is passed back to marker whenever it is called by Tagjo. If aclient does not want to
actually mark the display when it isthe manager of the caret it can use NopMarkerProc asits
marker.

NopMarkerProc: MarkProcType;

ActOn: PROCEDURE [Action];
This procedure allows clients to act upon the current caret without regard to who is the current
owner.

ResetOnMatch: PROCEDURE [data: POINTER];

This procedure allows clients to relinquish control of the blinking caret if they are currently the
OWnNeY. Notethat simply doing a Set with amarker that isthe NopM arker Proc does not work because of race

conditionsin an arbitrary pre-emption environment.

UniqueAction: PROCEDURE RETURNS [Action];

This procedure allows clients to define private actions. Thisimplies that implementors of caret-
marking procedures should ignore actions they do not implement or understand.

18 Tajo Functional Specification

5.2 CmFile

Tajo provides asimple set of procedures for processing "User.cm” format files. Thisformat is
defined by the CmFile implementation as follows. A "cm" fileis asequence of sections. A section
isatitle line followed by zero or more name-value pairs. A section may not have embedded blank lines
because a blank line is considered to terminate asection. Thetitle line beginswith a"[" and the section title

is defined to terminate with the first succeeding "]". Each name-value pair is on a separate line; the
name must be followed by a": . Both the name and the value can be preceded by white space.
This leading white space is removed from the name and value before they are returned to the client.
Trailing white spaceis not stripped. Tajo does not support the simultaneous processing of cm files
by multiple processes. If the client wishes to do such processing, the client must create alayer
above CmpFile with appropriate monitoring.

If you simply want the value for name from section title the following procedure will suffice. It
returns NIL if the file, section or the named entry cannot be found.

Line: PROCEDURE [fileName, title, name: STRING] RETURNS [STRING];

If you are planning to process multiple entriesin only one section you should open the section,

process the entries and then close the file. If you are planning to process more than one section,
you should first call Open, then process all of the sections and finally call Close.

Open: PROCEDURE [fileName: STRING];

Can raise any of the environment-specific SIGNALS associated with opening afile.

OpenSection: PROCEDURE [fileName, title: STRING] RETURNS [BOOLEAN];

The returned BOOLEAN signifies success in finding the file and section title.
Close: PROCEDURE [fileName: STRING];
Close should be called after a successful call to either Open or OpenSection.

The following procedure allows efficient sequentia processing of all the entriesin a User.cm section.
It returns the next name-value pair in the section each timeit is called.

Nextltem: PROCEDURE RETURNS [name, args: STRING];
When name isNIL the end of the section has been encountered.

The STRINGS returned by Nextltem and Line are allocated from the system storage heap. The
responsibility for de-allocating them isthe caller’s.

All the procedures mentioned thus far have equivalent procedures that have the same names
prefixed with "UserDotCm" that deal with the file User.cm without requiring the client to specify a
fileName.

The following procedures are provided to aid clientsin parsing lines. Notethat Lop returns
Ascii.NUL when the String.SubString is exhausted.

Lop: PROCEDURE [ss: String.SubString] RETURNS [C: CHARACTER];

I mplementation Components 19

Returnsthe first character of ss and removes it from the substring by incrementing ss.offset
and decrementing ss.length by one.

GetNextToken: PROCEDURE [source: String.SubString, token: STRING] RETURNS [valid: BOOLEAN];
GetNextTokenAsABoolean: PROCEDURE [source: String.SubString] RETURNS [b: BOOLEAN];
GetNextTokenAsANumber: PROCEDURE [source: String.SubString] RETURNS [i: INTEGER];
ReadLineOrToken reads from the stream sh until terminator isfound, unless either end-of-line

or end-of-stream is encountered. The resulting line or token is returned viabuffer and the

resulting CHARACTER is the break character. If buffer istoo short, ReadLineOrToken quits and
the resulting CHARACTER is the character being processed when the buffer overflows.

ReadLineOrToken: PROCEDURE [sh: Compatibility.SHandle, buffer: STRING, terminator: CHARACTER]
RETURNS [CHARACTER];

TitleMatch returns TRUE if and only if the contents of buffer isin the right format to be the start
of the section specified by title.

TitleMatch: PROCEDURE [buffer, title: STRING] RETURNS [BOOLEAN];

The following SIGNAL is defined for thisinterface. It can be RESUMEd only if the code is
multipleOpens.

Error: SIGNAL [code: ErrorCode];

ErrorCode: TYPE = {multipleOpens, noneOpen, hotOpen};

multipleOpens can be raised on calls to open afile. noneOpen can beraised on calls that
read data. notOpen can beraised on callsto close afile.

20 Tajo Functional Specification

5.3 Compatibility

The type definitionsin this interface provide some source-level compatibility between corresponding
Alto/Mesaand Pilot types. A Tool writer must be cognizant of thisinterface’ s existence because
other Tajo interfaces use these types.

In the Alto world:
FHandle: TYyPE = SegmentDefs.FileHandle;

SHandle: TYPE = StreamDefs.StreamHandle;

In the Pilot world:
FHandle: TYPE = File.Capability;

Warning: this FHandle corresponds more to a SegmentDefs.FP in the Alto world than a SegmentDefs.FileHandle.
Thisisan interface bug that will almost surely have to be rectified in afuture release.

SHandle: TYPE = Stream.Handle;

I mplementation Components

5.4 Context

In performing various functions a Tool may wish to save and retrieve state from one notification to
the next. Thisisan immediate consequence of the notification scheme, for a Tool cannot keep its
state in the program counter after responding to an event without stealing the processor. Thus, it
becomes necessary for aTool to explicitly storeits state. Since most notification callsto a Tool
provide awindow or subwindow handle, it is natural to associate these contexts with windows. As
an alternative to the Tool having to build its own associative memory to retrieve its context given a
window handle, the context mechanism is provided. The actual context implementation mechanism
is hidden from clients.

First, some definitions:

Data: TYPE = POINTER TO UNSPECIFIED;
DestroyProcType: TYPE = PROCEDURE [Data, Window.Handle]
Type: TYPE = {first, last};

Type isan open enumeration.

Now the definitions of the procedures that deal with contexts:

UnigueType: PROCEDURE RETURNS [Type];

This procedure is called if a client needs aunique Type not already in use by either Tajo or
another client.

Create: PROCEDURE [type: Type, data: Data, proc: DestroyProcType, window: Window.Handle];

Creates a new context of typetype that contains data. The context is associated with the
indicated window; it is said to "hang" on the window. If the window already possesses a
context of the specified type, the ERROR Error[duplicateType] will beraised. Theproc is
supplied so that when the window is destroyed all of the context data can be destroyed
(deallocated) in a straightforward and orderly manner.

To destroy a context of specific type onwindow call Destroy. If the context exists on the
window, thiswill first call the DestroyProcType for the context being destroyed and then
deallocate the context itself. To destroy all of the contexts on window call DestroyAll. DestroyAll
can be very dangerous because Tajo keeps its window-specific datain contexts on the window. DestroyAll should not be
used except in special circumstances. It is called by the routines that destroy window.

Destroy: PROCEDURE [type: Type, window: Window.Handle]
DestroyAll: PROCEDURE [window: Window.Handle];

Find: PROCEDURE [type: Type, window: Window.Handle] RETURNS [Data];

Retrieves the data field from the specified context for the window. NIL isreturned if no such
context exists on the window.

21

22 Tajo Functional Specification

The client can change the data pointed to by the data field of a context at any time. Note that this
could lead to race conditions if multiple processes are doing Find’s for the same context and
modifying the data. It isthe client’s responsibility to MONITOR the datain such cases. Call Set to
change the data pointer itself. Subsequent Find’swill return the new data.

Set: PROCEDURE [type: Type, data: Data, window: Window.Handle];

Thisisano-op if no such context exists on the window.

SimpleDestroyProc: DestroyProcType;

This procedure merely calls the system heap deallocator on the data field. It isprovided for
clients whose context datais a simple heap node.

The only error condition detected by contextsis an attempt to create a context of a specific type
when one of that type already exists.

Error: ERROR [code: ErrorCode];

ErrorCode: TYPE = {duplicateType};

I mplementation Components

5.5 Cursor

The Cursor interface provides a procedural interface to the hardware mechanism that implements
the cursor on the screen. To prevent chaos, all Tools must manipulate the cursor through this
interface.

5.5.1 The Cursor Object

The cursor facilities define an Object which contains atype, a specification of which bit in the
cursor isto be considered "hot", and a 16 by 16 array of bitsthat are the bitmap for the cursor (i.e.,
the array of bits that are or’ ed into the display):

Object: TYPE = RECORD [info: Info, array: UserTerminal.CursorArrayy];
Handle: TYPE = POINTER TO Object;
Info: TYPE = RECORD [type: Type, hotX: [0..16), hotY: [0..16)];

Type: TYPE ={
activate, blank, bullseye, confirm, crossHairsCircle, ftp, ftpBoxes, hourGlass, lib,
menu, mouseRed, mouseYellow, mouseBlue, mtp, pointDown, pointLeft, pointRight,
pointUp, questionMark, retry, scrollDown, scrollLeft, scrollLeftRight, scrollRight, scrollUp,
scrollUpDown, textPointer, typeKey, last};

There is adistinction made between user and system-manufactured cursors. To keep things straight
clients may access system cursors only by their type.

5.5.2 Manipulating the Cursor

Cursor objects are normally created and managed by Tajo using the following routines.
Defined: TYPE = Type[activate..typeKey];

Set: PROCEDURE [Defined];

The above procedure alows you to set the displayed cursor to be one of the system-defined
CUrsors.

Store: PROCEDURE [Handle];

Swap: PROCEDURE [old, new: Handle];

The above two procedures allow aclient to store a cursor of his own design.

Fetch: PROCEDURE [Handle];

Copies the current cursor object into the cursor object pointed to by Handle.

FetchFromType: PROCEDURE [cursor: Handle, type: Defined];

23

24 Tajo Functional Specification

Copies the cursor object that constitutes type into the cursor object pointed to by Handle.

Getlnfo: PROCEDURE RETURNS [Info];

This procedure lets you find out about the current cursor.

UniqueType: PROCEDURE RETURNS [Type];
This procedure lets clients assign a unique type to their defined cursors.
The cursorsin the subrange Type[activate..typeKey] are built-in (system-supplied). Some

special notes on what the built-in cursorslook like follows. In general, the Type names are
sufficient description.

activate - used by the Librarian interface to indicate that alibject is being activated, it says
LIB in the upper half, ACT in the lower.

ftp - used to indicate afile transfer in progress, it says FTP along the diagonal from the
upper left to the lower right, with triangles in the lower left and upper right corners.

ftpBoxes - also used to indicate afile transfer in progress, it has black quadrantsin the
upper left and lower right, white quadrants el sewhere.

lib - used to indicate a Librarian transaction in progress, it says L1B along the diagonal from
the upper I€eft to the lower right, with triangles in the lower left and upper right corners.

mouseRed, mouseYellow, mouseBlue - a picture of a mouse, with the appropriate
button highlighted.

textPointer - just like the onein Bravo.

The following procedures are useful for user feedback functions. Invert makes each white bit in
the current cursor black, and vice versa. It returns TRUE if the new state of the cursor is positive.
MakePositive restores the current cursor’s polarity to be asif a Set or Store had just been done,
and MakeNegative is equivaent to MakePositive followed by Invert.

Invert: PROCEDURE RETURNS [BOOLEAN];
MakeNegative: PROCEDURE;

MakePositive: PROCEDURE;

I mplementation Components

5.6 Event

Client programs sometimes need to be notified when certain system global events occur so that they
can perform some operation. The Event mechanism provides that facility. The implementation of
this mechanism parallels the ImageDefs Cleanup mechanism in the Mesa System with these main
differences:

Additions have been made to the list of Reasons.
The event list isrun with interrupts and timeouts turned on.

For events that mean the current environment is being left, a client can veto, i.e., cancel, the
execution of the event. The client might do thisif a Tool can’t properly handle the event or
there is some operation that the user should have an opportunity to perform before the
event actually takes place (e.g., saving an edited fil€). Vetoing is not supported in the debugger.

5.6.1 Items

The types and data structures involved with client Event procedures are as follows:

Item: TYPE = RECORD [link: ItemHandle _ NIL, eventMask: WORD, eventProc: Notifier,
vetoMask: woRD _ NullMask, vetoProc: VetoProc _ NiL];

ltemHandle: TYPE = POINTER TO ltem;

Notifier: TYPE = PROCEDURE [why: Reason];
VetoProc: TYPE = PROCEDURE [why: EndReasons] RETURNS [BOOLEAN];
Returns TRUE when the client wants to cancel the event.

Reason: TYPE = {

newFiles, -- Afile hasjust been retrieved to or deleted from the disk.
flushSymbols, -- Any symbols cached in the debugger may no longer be valid.
newSession, -- A new debugging session is starting.

resumeSession, -- Just swapped from the client to the debugger & not newSession.
resumeDebuggee, -- About to swap into the client world from the debugger.
abortSession, -- User hasjust Killed from the debugger.

stopMesa, -- Some client is about to call ImageDefs.SopMesa.

abort, -- User has keyed Shift-Swat.

makelmage, -- About to make an imagefile.

makeCheck, -- About to make a checkpoint file.

startimage, -- Have just started an image file.

restartCheck, -- Have just started a checkpoint file.

continueCheck, -- Continuing to run after just having made a checkpoint file.
setDefaults -- Some system global default has changed, e.g., Profile value. -- };

EndReasons: TYPE = Reason [resumeDebuggee..makelmage];

25

26 Tajo Functional Specification

Masks: ARRAY Reason OF WORD = [...];

NullMask: WoRD = OB;

When the Event notification mechanism isinvoked, each item is examined. If the bit corresponding
tothereason is set initem.eventMask, item.eventProc iscalled. To avoid unnecessary code-
swapping, clients should set the mask field so that their procedure is invoked only for those events
about which they wish to be notified. Thisalso appliestoitem.vetoMask and item.vetoProc.

For example, if aclient needed to be notified when an image file was being made or started, the
mask would be set to:

Masks[makelmage] +Masks[startimage]

The following procedures are used to add or remove an Item. The storage for the Item isthe
responsibility of the client.

AddNotifier: PROCEDURE [item: ItemHandle];

DropNoatifier: PROCEDURE [item: ItemHandle];

Warning: These procedures should not be invoked from inside an Event.Notifier procedure.

5.6.2 Notification

A client runsthelist of Itemsby calling Notify, which cannot be invoked from inside an
Event.Notifier procedure. Thelist of Itemsisreversed by Notify asit executes, unlessthe why
isnewFiles, flushSymbols or setDefaults. A caler of Notify in which why isin
EndReason should be prepared to catch Vetoed.

Notify: PROCEDURE [why: Reason];

Vetoed: SIGNAL;

Warning: aclient that doesn't call Notify when it instigates an event may cause other Toolsto
fail. However, do not call Notify with awhy other than newFiles or setDefaults without
talking to a Tajo implementor.

I mplementation Components 27

5.7 FileSW

Theinterface FileSW provides the definitions and procedures to create text subwindows whose
backing storageis a disk file, plus procedures that are specific to file-type subwindows. All non-file
subwindow-specific manipulations are contained in the interface TextSW.

First, some definitions:

Access: TYPE = TextSource.Access; -- i.e. {read, append, edit};
Options: TYPE = TextSW.Options;
Stream: TYPE = TextSource.Stream;

defaultOptions: Options = [access: read, menu: TRUE, split: TRUE, wrap: TRUE, scrollbar: TRUE,
flushTop: FALSE, flushBottom: FALSE];

The following procedure creates a disk source and atext subwindow using that disk source. If s is
NIL then a stream is automatically attached to the file name. If s isnot NIL then name must be
the name of the fileto which s isattached. Thetext is positioned so that the character specified by
position isdisplayed on thefirst line of sw. If options.access isread and thefile can’'t be
found TextSource.Error[fileNameError] israised.

Create: PROCEDURE [sw: Window.Handle, name: STRING, options: Options _ defaultOptions,
s: Stream _ NIL, position: TextSource.Position _ 0];

Clients may destroy afile subwindow by calling

Destroy: PROCEDURE [sw: Window.Handle];

The following procedure will enumerate al of the current file subwindows. Thisincludesfile
subwindows which are not in the window tree and file subwindows which are part of inactive Tools.

Enumerate: PROCEDURE [proc: EnumerateProcType];

EnumerateProcType: TYPE = PROCEDURE [sw: Window.Handle, name: STRING, access: Access]
RETURNS [done: BOOLEAN];

The file name and stream that are currently attached to a file subwindow are returned by

GetFile: PROCEDURE [sw: Window.Handle] RETURNS [name: STRING, S: Stream];

Islt returns TRUE if and only if awindow is afile subwindow.

Islt: PROCEDURE [sw: Window.Handle] RETURNS [yes: BOOLEAN];

A new fileisloaded into afile subwindow by calling

SetFile: PROCEDURE [sw: Window.Handle, name: STRING, s: Stream _ NIL,
position: TextSource.Position _0];

28 Tajo Functional Specification

Clientsthat construct their own menus may include the following menu command routine. It does
the standard |oad operation using the current selection as the file-name argument.

LoadMCR: Menu.MCRType;

Tajo provides simple file editing facilities. Clients may determineif afile subwindow is currently
editable by calling

IsEditable: PROCEDURE [sw: Window.Handle] RETURNS [yes: BOOLEAN];
A file subwindow is made editable by calling

MakeEditable: PROCEDURE [sw: Window.Handle] RETURNS [Ok: BOOLEAN];

PutEditableFile stores the edited file on the new filename. If name = NIL then the old version
of the fileis saved as "currentName$" and the edited file is output to currentName.

PutEditableFile: PROCEDURE [sw: Window.Handle, name: STRING];

Toreset the edited file to its original state call ResetEditableFile. The file subwindow is not
editable after the call.

ResetEditableFile: PROCEDURE [sw: Window.Handle];

All of the file-subwindow procedures can generate one or more of the following error conditions.

ErrorCode: TYPE = {notAFileSW, isAFileSW, notEditable, accessDenied};

Error: SIGNAL [code: ErrorCode];

I mplementation Components 29

5.8 Format

All the procedures in the Format interface take as arguments a procedure whose argument is a
STRING, apiece of datato be formatted and where appropriate, aformat specification.
DateFormat: TYPE = {dateOnly, noSeconds, dateTime, full};

NumberFormat: TYPE = RECORD [base: [2..36], zerofill, unsigned: BOOLEAN, columns: [0..255]];

The string produced using this record as a format specification for number formatting is
columns wide. If columns isO0 only the needed number of columns are used. Extra columns
arefilled with zerosif zerofill is true, otherwise spaces are used. The number istreated as
unsigned if unsigned istrue.

LongSubStringDescriptor: TYPE = RECORD [base: LONG STRING, offset, length: CARDINAL];
LongSubString: TYPE = POINTER TO LongSubStringDescriptor;
StringProc: TYPE = PROCEDURE [S: STRING];

The datais formatted into a string which is passed in the call to the StringProc. Thetypes of data
that can be formatted are reflected in the following procedures:

Char: PROCEDURE [char: CHARACTER, proc: StringProc];

Date: PROCEDURE [pt: Time.Packed, format: DateFormat, proc: StringProc];

The date format used isthe Mesasystem’s. A full dateis formatted into something that looks
like" 1-Jun-78 14:56:01 PDT". dateTime omitsthetime zone, noSeconds additionally
omits the seconds from the time of day and dateOnly omitsal of the time of day.

Decimal: PROCEDURE [n: INTEGER, proc: StringProc];
LongDecimal: PROCEDURE [Nn: LONG INTEGER, proc: StringProc];
LongNumber: PROCEDURE [n: LONG UNSPECIFIED, format: NumberFormat, proc: StringProc];

LongOctal: PROCEDURE [Nn: LONG UNSPECIFIED, proc: StringProc];
Appends aB to the string if the value is greater than 7.

LongString: PROCEDURE [S: STRING, proc: StringProc];

LongSubStringltem: PROCEDURE [ss: LongSubString, proc: StringProc];

If ss.base islarge, proc iscaled multiple times with pieces of the substring.
Number: PROCEDURE [Nn: UNSPECIFIED, format: NumberFormat, proc: StringProc];

Octal: PROCEDURE [n: UNSPECIFIED, proc: StringProc];
Appends aB to the string if the value is greater than 7.

SubString: PROCEDURE [ss: String.SubString, proc: StringProc];
If ss.base islarge, proc iscaled multiple times with pieces of the substring.

30 Tajo: Functional Specification

59 FormSw

The client constructs a Form subwindow by specifying an array of form-item handles. Each handle
points to an item; each item is avariant record which contains a pointer to the specific datato be
displayed and altered. The item contains information about how and, optionally, where it should be
displayed. When appropriate, the item also contains notification procedures that are called by the
Form subwindow to inform the client of events affecting the item.

The client’s items are displayed in a subwindow, and are alterable by the user at any time unless
explicitly prohibited by the client. The Form subwindow supplies procedures (viathe PNR
mechanism) to display, select or ater any of these items.

Clients of thisinterface should keep in mind that forms can't be arbitrarily large due to sizable storage requirements. The
fixed overhead in heap usage per form item is 23 words (broken down as follows: 4 words for the item record, 1 word

for the handle, 8 words for the item’s TextSource plus 1 word for heap overhead, and 9 words for the item’s TextDisplay
Object). The variable overhead is due to the STRINGs associated with an item (the tag, for example), line tables
associated with multi-line items, and the variant part of the item record.

5.9.1 Some conventions

It isimportant to distinguish between the user actions of choice and selection: the user is said to
select an item (or part of an item) if that action changes the current selection; otherwise the user is
said to make a choice of (or in) theitem. Note that it is often not possible to distinguish between
the two cases by simply looking at the display-marking actions.

Some parts of the FormSW interface describe character positions within an item. These positions
are usually relative to azero origin, which isto the left of the first character of the tag (or main
body of theitem, if thereisno tag). The exceptionisthat the string filterProc and
ModifyEditable use positions with the zero position defined to be the left of the first character of
the main body of the item (because the client cannot determine the length of the tag and trailer).
When an interval is being specified (i.e. as arguments to SetSelection) theinterval is half-open,
(i.e. first = last = 0 isan empty selection; first = 0, last = 1 isa selection containing asingle
character, namely the first onein the item).

5.9.2 TheltemObject

The Tool may specify any of the following generic types of item:

Commands
Labels
Numbers
Sets
Strings

The ItemObject isthe fundamental data structure of the Form subwindow. Unfortunately, the
IltemObject iscomplex in order to provide sufficient flexibility to the Tool writer who wants fine
control over displaying and atering the item. Most clients should not explicitly construct an

I mplementation Components 31

ItemObject, but should instead use the procedures that allocate an ItemObject and take
advantage of the defaulting mechanism; see the sample Tools in the appendices for examples. In
FormSW procedure types the argument is called item if itisan ItemHandle and items if itisan
ItemDescriptor. Notethat DESCRIPTOR FOR ARRAY isimplicitly aDESCRIPTOR FOR ARRAY [0..0). In

particular, this means that trying to index an ItemDescriptor by an enumerated type results in a compilation error.

IltemObject: TYPE = RECORD |

tag: STRING,

place: Window.Place,

flags: ItemFlags,

body: SELECT type: ltemType FROM
boolean =>[...],
command =>[...],
enumerated =>[...],
longNumber =>..],
number =>[..],
string =>[...],
tagOnly =>1..1],
ENDCASE];

ItemFlags: TYPE = RECORD [readOnly: BOOLEAN _ FALSE, invisible: BOOLEAN _ FALSE,
drawBox: BOOLEAN _ FALSE, hasContext: BOOLEAN _ FALSE, clientOwnsltem: BOOLEAN _ FALSE];

ltemType: TYPE = {boolean, command, enumerated, longNumber, number, string, tagOnly};
IltemHandle: TYPE = POINTER TO ItemObiject;
ItemDescriptor: TYPE = DESCRIPTOR FOR ARRAY OF ItemHandle;

BooleanHandle: TYPE = POINTER TO boolean ItemObiject;
CommandHandle: TYPE = POINTER TO command ItemObject;
EnumeratedHandle: TYPE = POINTER TO enumerated ItemObiject;
LabelHandle: TyPE = TagOnlyHandle;

LongNumberHandle: TYPE = POINTER TO longNumber IltemObject;
NumberHandle: TYPE = POINTER TO humber ItemObject;
StringHandle: TYPE = POINTER TO string ItemObject;
TagOnlyHandle: TYPE = POINTER TO tagOnly ItemObiject;

nullitems: ltemDescriptor = DESCRIPTOR|NIL, 0];
nullindex: CARDINAL = LAST[CARDINAL];

tag isaclient-supplied string that is displayed immediately preceding the data associated with the
parameter (e.g., "tag: string"). 1t may be NIL, in which case any trailer characters that are usually
displayed after the tag will be suppressed (e.g., ":).

place isthe x,y position (subwindow relative) where the tag and data are to be displayed if the
subwindow is of type fixed, otherwise place isignored (see procedural interface). The array of item
pointersis required to have the places in ascending (English reading) order, i.e. left to right, top to
bottom. If the x position is negative, it is treated as a relative offset, where the magnitude of x
specifies the number of bits to leave between the end of the preceeding item and the start of the tag

32 Tajo: Functional Specification

for thisitem. Note that the use of a negative x following a string item with defaultBoxWidth
resultsin the ERROR ItemError[illegalCoordinate, i], wherei isthe index of the offending item.
Similarly, negative y positions are interpreted specially. They are line positions, i.e. they specify
position as a multiple of the line height for the subwindow. The constants line0 through line9 can
be used asy values to specify that the item should be on the zeroth through ninth linesin the
subwindow. The procedure LineN takes aline number and returns the appropriate negative y.

LineN: PROCEDURE [Nn: CARDINAL] RETURNS [INTEGER];

In addition, there are several special constants. sameLine specifiesthat they position for thisitem
should be the same as the y position for the preceding item. If thisisthefirst item, the ERROR
ItemError[illegalCoordinate, ----] results. nextLine specifies that they position for thisitem
should be the next line after the y position of the preceding item.

Two specia places are provided. nextPlace specifies that thisitem should be on the same line as
the preceding one, and should start alittle past where the previous one left off. Thisis subject to al of
the caveats mentioned for negative x’sabove. newLine specifiesthat thisitem should start on the next line
down from the preceding item, and works even if there is no preceding item.

nextPlace: Window.Place = [-10, sameLine];
newLine: Window.Place = [0, nextLine];

It is often desirable to have the items on different lines have the same horizontal positions. To
simplify thistask the SetTagPlaces procedureis provided. ThetabStops arein raster pointsif
bitTabs is TRUE, otherwise they are multiplied by the width of the digit 0. A positive x isused as
azero-origin index into the tabStops array. If the place isnextPlace it means moveto the
next tab stop. Negative X’ s are left alone. Thisroutine is a pre-processor that changes the items’
places; it should be called before giving the items to the FormSW package.

SetTagPlaces: PROCEDURE [

items: ltemDescriptor, tabStops: DESCRIPTOR FOR ARRAY OF CARDINAL, bitTabs: BOOLEAN];
The height of aline can be determined by calling LineHeight, which accounts for al fudge factors
added to the fontHeight.

LineHeight: PROCEDURE RETURNS [CARDINAL];

flags isaRECORD of state bitsfor theitem. The meaning of the flagsis as follows.

If readOnly is TRUE, the user cannot modify this parameter. If any modification is
attempted, the readOnlyNotifyProc for this subwindow is called.

If invisible isTRUE, the item is not displayed in the subwindow, and it is treated by Form
subwindows exactly asif it were not present, except that it is occupying an index slot.

If drawBox is TRUE, the item is displayed enclosed within a box that is one bit thick.

If hasContext is TRUE, aclient context one word long is associated with theitem. This
context serves the same function as a client context associated with a subwindow. However,
unlike Context, FormSW returns a pointer to the client data word, not the value of the data
word. To get to the context given the item call

I mplementation Components

ContextFromltem: PROCEDURE [ItemHandle] RETURNS [POINTER];

If clientOwnsltem is TRUE, the Form subwindow will not try to de-allocate theitem if the
subwindow is destroyed.

The following sections describe the feedback and actions that are associated with each generic
parameter type.

5.9.2.1 Command ltems

For command parameter items the character "!" is appended to the tag asan indication to the
user that thisisacommand item. User choice of thistype of parameter item causes invocation of
the supplied client proc in amanner analogous to menu-command choice. FormSW supplies
NopNotifyProc that does nothing when called.

ItemObject: TYPE = RECORD ...
body: SELECT type: ltemType FROM
command => [proc: ProcType],

S

ProcType: TYPE = PROCEDURE [
sw: Window.Handle _ NiL, item: ItemHandle _NiL, index: CARDINAL _ nullindex];

NotifyProcType: TYPE = ProcType;
NopNotifyProc: NotifyProcType;

5.9.2.2 Boolean Items

For boolean parameter items there is no special trailer appended to the tag. User choice of this
type of parameter item causes this sequence of actions: the tag isinverted on the display; the sense
of the BOOLEAN pointed to by switch isinverted; and then the supplied client proc isinvoked.
FormSW supplies NopNotifyProc that does nothing when called.

IltemObject: TYPE = RECORD ...
body: SELECT type: ltemType FROM
boolean => [switch: POINTER TO BOOLEAN, proc: NotifyProcType],

.

switch isaPOINTER TO BOOLEAN so that the client need not have accessto the ltemObject in
order to have access to the BOOLEAN. Note that this requires that the BOOLEAN occupy its own word
in memory. This can be achieved by allocating the BOOLEAN in the client’ s global frame (but not in
aRECORD in the global frame unlessit isa MACHINE DEPENDENT RECORD and the BOOLEAN is
specified to occupy aword) or by using the overlaid variant

WordBoolean: TYPE = RECORD |
SELECT OVERLAID * FROM
f1 => [b: BOOLEAN],
f2 => [w: WORD],

33

Tajo: Functional Specification

ENDCASE];

Of these solutions, the overlaid variant tends to be the most clumsy and should be avoided.

5.9.2.3 Enumerated [tems

For enumerated parameter items the special trailer ": {" is appended to the tag. Inaddition, a
"1" is appended at the end of the item’ s display representation. User modification of this type of
parameter item causes this sequence of actions: the display is updated, in a manner that depends
upon the feedback; the UNSPECIFIED pointed to by value is updated to match the display; and
then the supplied client proc isinvoked. FormSW supplies NopEnumeratedNotifyProc that
does nothing when called.

ItemObject: TYPE = RECORD [...
body: SELECT type: ItemType FROM
enumerated => [

K

feedback: EnumeratedFeedback,
copyChoices: BOOLEAN,

value: POINTER TO UNSPECIFIED,
proc: EnumeratedNotifyProcType,
choices: EnumeratedDescriptor],

feedback - Examples of the two forms of feedback are:

all - Theitem displaysas"tag: {a, b, c}". Choosing any item within the curly brackets
video reverses that item and sets the value in the associated record.

one - Theitem displaysas"tag: {a}". Only the currently chosen valueis displayed.

[Note: An enumerated can never have an unknown value (unless the client is not playing by the rules). It may
have nullEnumeratedValue, in which case the display of the item has nothing between the braces (for one
feedback) or nothing selected (for all feedback).]

EnumeratedFeedback: TYPE = {all, one};

choices - For both forms, the items available for choice are those STRINGS supplied by the

clientinthechoices. When the string from one of the choices is chosen, the
corresponding value from the Enumerated is stored into ItemObject.value~.
Depressing the menu mouse button displays the set of strings available for choice.

EnumeratedDescriptor: TYPE = DESCRIPTOR FOR ARRAY OF Enumerated;
Enumerated: TYPE = RECORD [String: STRING, value: UNSPECIFIED];

value - Thisfield isaPOINTER TO UNSPECIFIED S0 that the client need not have access to the

ItemObject in order to have access to the UNSPECIFIED. Thisintroduces the same
problems that occur with the boolean ItemObject’s switch, and the same solutions and
caveats apply here. value pointsto an UNSPECIFIED so that its possible values can be from
any type (usually an enumeration).

I mplementation Components

nullEnumeratedValue: UNSPECIFIED = LAST[CARDINAL];

proc - Thisfield isaPROCEDURE that is called whenever the user changesvalue.

EnumeratedNotifyProcType: TYPE = PROCEDURE [

sw: Window.Handle _ NIL, item: ItemHandle _ NIL,

index: CARDINAL _ nullindex, oldValue: UNSPECIFIED _ nullEnumeratedValuej;
NopEnumeratedNotifyProc: EnumeratedNotifyProcType;

The copyChoices BOOLEAN is TRUE iff Form subwindow believesthat the client’schoices
were copied into The Heap. See 5.9.3 for further details.

Occasionaly a Tool wantsto display a BOOLEAN choice without using the boolean ItemObject’s
display conventions. The procedure BooleanChoices and an enumerated ItemObject can be
used in this case.

BooleanChoices: PROCEDURE RETURNS [EnumeratedDescriptor];
5.9.24 String Items

For string parameter items the characters": " are appended to the tag as an indication to the user
that thisisastring item. String items give the Tool writer explicit control over the alteration of the
supplied string and over how it isto be displayed. The Tool-supplied procedures are called
whenever characters are to be added to the string.

ItemObject: TYPE = RECORD [...
body: SELECT type: ltemType FROM
string => [
feedback: StringFeedback,
inHeap: BOOLEAN,
string: POINTER TO STRING,
boxWidth: CARDINAL,
filterProc: FilterProcType,
menuProc: MenuProcType],

K

inHeap - If thisBOOLEAN is TRUE, the Tgjo StringEditProc will dynamically alocate and de-
allocate the backing string from The Heap.

string - ThisisaPOINTER TO STRING that contains the characters entered by the user. The
level of indirection is provided so that the original string may be replaced.

feedback - The characters of string are displayed on the screen astext unlessfeedback is
password, inwhich casea"*" is printed in place of each character of string.

StringFeedback: TYPE = {normal, password},

35

36

Tajo: Functional Specification

boxWidth - Thisis added to thetag’s width (including the supplied trailer) in order to
determine the width of the box in which the STRING isdisplayed. If the special value
defaultBoxWidth isused, then the box will extend to the right edge of the subwindow or
to the next item, whichever is closer.

filterProc - The client’ sfilterProc is called whenever characters are input for a selected string
item. Itisthe responsibility of this procedure to actualy edit the string.

FilterProcType: TYPE = PROCEDURE |
sw: Window.Handle, item: ItemHandle, insert: CARDINAL, string: STRING];
StringEditProc: FilterProcType;

string, which may be NIL, contains the characters to edit into the existing string at position
insert. The actual edit must be performed by calling StringEditProc. Thisallows
FormSW to optimize the display updating and to maintain the consistency of the selection
and insert. In other words, the filterProc can look at the string (and possibly modify it)
but must then call StringEditProc and pass through the arguments.

menuProc - Theclient’smenuProc is caled whenever the user selects the string item with
the menu button. This gives the client the opportunity to supply alist of strings to be
displayed in a menu.

Hints: TYPE = DESCRIPTOR FOR ARRAY OF STRING;

FreeHintsProcType: TYPE = PROCEDURE [hints: Hints];

MenuProcType: TYPE = PROCEDURE [sw: Window.Handle, index: CARDINAL]
RETURNS [hints: Hints, freeHintsProc: FreeHintsProcType, replace: BOOLEAN];

If replace is TRUE, then when the user chooses an appropriate menu item (i.e., hint) it will
replace theitem’s string’s contents. If replace isFALSE, then when the user chooses the
menu item it will be inserted into the item’ s string just asif the user had typed the menu
string. If BASE[hints] = NIL, no prompt menu will be available to the user. This condition
holdsif the menuProc is

VanillaMenuProc: MenuProcType;

freeHintsProc iscalled to free the hints, alowing the hints to be somewhere other than
in the client’s global frame. Two standard hints de-allocators are FormSW-supplied.
InHeapFreeHintsProc assumes that the hints are from The Heap, while
NopFreeHintsProc does nothing (appropriate if the hints arein the client’s global
frame).

InHeapFreeHintsProc: FreeHintsProcType;
NopFreeHintsProc: FreeHintsProcType;

5.9.2.5 Number Items

Thenumber and longNumber item types are identical except in some small and obvious ways.
Only thenumber item is discussed in detail; the differences found inlongNumber are
enumerated.

I mplementation Components 37

For number parameter itemsthe special trailer "=" is appended to the tag. The user can select
and edit anumber item just like astring item, and the client can also exercise control over the
alteration and display of the item, similar to astring item.

ItemObject: TYPE = RECORD [...
body: SELECT type: ltemType FROM

longNumber => [
signed, notNegative: BOOLEAN,
radix: Radix,
boxWidth: CARDINAL [0..256),
proc: LongNumberNotifyProcType,
default: LONG UNSPECIFIED,
value: POINTER TO LONG UNSPECIFIED,
string: STRING],

number => [
signed, notNegative: BOOLEAN,
radix: Radix,
boxWidth: CARDINAL [0..128),
proc: NumberNotifyProcType,
default: UNSPECIFIED,
value: POINTER TO UNSPECIFIED,
string: STRING],

.

signed - FormSW needs to know whether or not to treat the value as a signed number (i.e.,
INTEGER). Itistreated asa CARDINAL iff signed isFALSE.

notNegative - The user is permitted to enter negative values iff notNegative isFALSE.

radix - If the user does not provide a specific radix, ' D for decimal or 'O for octal, when he
enters or modifies the item, then the radix is assumed to be 10 if radix isdecimal, 8 if
radix isoctal.

Radix: TYPE = {decimal, octal};
boxWidth - Just asfor astring item.

proc - Theclient'sproc is called after each user edit to theitem. If the client is not interested
in such notification, it can use the "do-nothing” NopNumberNotifyProc.

NumberNotifyProcType: TYPE = PROCEDURE |

sw: Window.Handle _ NIL, item: ItemHandle _ NIL,

index: CARDINAL _ nullindex, oldValue: UNSPECIFIED _ LAST[INTEGER]];
NopNumberNotifyProc: NumberNotifyProcType;

default - It is possible that the user will not wish to enter any value for the item. In this case,
thevalueisforced to default.

38 Tajo: Functional Specification

value - isaPOINTER TO UNSPECIFIED S0 that the client need not have access to the
ItemObject in order to have access to the UNSPECIFIED. FormSW assumes that the
UNSPECIFIED occupies afull word, hence it should not be declared by the client to be a
subrange of CARDINAL or INTEGER. Vvalue pointsto an UNSPECIFIED so that it can be either a
CARDINAL OF an INTEGER.

string - isthe string representation of value~. It isaways be convertible to value~ unlessit
is empty, in which case value~ will be default.

ThelongNumber parameter item differsin that: boxWidth should be larger; value pointsto a
LONG UNSPECIFIED instead of an UNSPECIFIED; default isaLONG UNSPECIFIED instead of an
UNSPECIFIED; proc takes a LONG UNSPECIFIED instead of an UNSPECIFIED for the old value, and the
FormSW supplied "do nothing" procedure is also different.

LongNumberNotifyProcType: TYPE = PROCEDURE |

sw: Window.Handle _NIL, item: ItemHandle _ NiL,

index: CARDINAL _ nullindex, oldValue: LONG UNSPECIFIED _ LAST[LONG INTEGER]];
NopLongNumberNotifyProc: LongNumberNotifyProcType;

5.9.2.6 Label and Tag Items

ThetagOnly item type is provided for two purposes. Thefirst isto act asalabel for some part of
the form; for example, aform might consist of two parts, one for specifying input parameters and
the other for output parameters. The client could distinguish the individual items by having their
tags prefixed by "Input-" or "Output-", or it could have two sets of items with the same tags but
preceded by alabelling line consisting of an item whose tag was "Input parameters" or "Output
parameters’.

The second purpose is to substitute for thetag of astring item. Thisisuseful when the client
wishes to present the illusion that the tag for an item is not on the same line asthe item’s body. It
isthese two styles of usage that motivate the types LabelHandle and TagOnlyHandle.

ItemObject: TYPE = RECORD [...
body: SELECT type: ltemType FROM
tagOnly => [sw: Window.Handle, otherltem: CARDINAL],

Wt

sw - Thisisthe Form subwindow that contains theitem. It isautomatically set by Create;
clients should ignore it.

otherltem - Thisisthe index of the other item for which thisitemisacting asatag. If
otherltem isnullindex, then thetagOnly istreated as alabel instead of a substitute tag.
Otherwise, it must be the index of astring item or the ERROR
ltemErrornotStringOtherltem, i] will be generated by Create, wherei isthe index of
thetagOnly item.

In order to allow atagOnly to act as a substitute tag, there is no special trailer appended to the tag.
When atagOnly itemis used as a substitute tag, all of the user actions directed at itstag are
redirected by FormSW to the otherltem. Dueto thisredirection the notification procedures of the

I mplementation Components 39

target string item are called with arguments identical to the ones provided by FormSW when the
string item’'stag is operated on by the user.

5.9.3 ItemObject allocation and de-allocation

5.9.3.1 Allocating an ItemObject from the Heap

The alocation procedures always allocate from the system Heap, using the standard facilites
provided by Storage. Thereisno provision made for the client to provide an alternative allocator
to FormSW. Allocation procedures always return a differentiated ItemHandle. ItemObjects allocated
thisway occupy anode only big enough for the specific variant allocated.

A call to an alocation procedure looks like a record constructor, with some of the fields found in an
ItemObject omitted. Each field is defaulted if areasonable default exists. An alocated item
aways hasaFALSE clientOwnsltem.

Booleanltem: PROCEDURE |
tag: STRING _ NIL, readOnly, invisible, drawBox, hasContext: BOOLEAN _ FALSE,
place: Window.Place _ nextPlace, proc: NotifyProcType _ NopNotifyProc,
switch: POINTER TO BOOLEAN]
RETURNS [BooleanHandlegj;

CommandItem: PROCEDURE [
tag: STRING _ NIL, readOnly, invisible, drawBox, hasContext: BOOLEAN _ FALSE,
place: Window.Place _ nextPlace, proc: ProcType]
RETURNS [CommandHandlej;

Enumeratedltem: PROCEDURE |
tag: STRING _ NIL, readOnly, invisible, drawBox, hasContext: BOOLEAN _ FALSE,
place: Window.Place _ nextPlace, feedback: EnumeratedFeedback _ one,
proc: EnumeratedNotifyProcType _ NopEnumeratedNotifyProc,
copyChoices: BOOLEAN _ TRUE, choices: EnumeratedDescriptor, value: POINTER TO UNSPECIFIED]
RETURNS [EnumeratedHandlej;

Labelltem: PROCEDURE |
tag: STRING _ NIL, readOnly, invisible, drawBox, hasContext: BOOLEAN _ FALSE,
place: Window.Place _ nextPlace]
RETURNS [LabelHandlej;

40 Tajo: Functional Specification

LongNumberltem: PROCEDURE [
tag: STRING _ NIL, readOnly, invisible, drawBox, hasContext: BOOLEAN _ FALSE,
place: Window.Place _ nextPlace, signed: BOOLEAN _ TRUE, notNegative: BOOLEAN _ FALSE,
radix: Radix _ decimal, boxWidth: CARDINAL [0..256) _ 64,
proc: LongNumberNotifyProcType _ NopLongNumberNotifyProc,
default: LONG UNSPECIFIED _ LAST[LONG INTEGER], value: POINTER TO LONG UNSPECIFIED]
RETURNS [LongNumberHandlej;

Numberltem: PROCEDURE |
tag: STRING _ NIL, readOnly, invisible, drawBox, hasContext: BOOLEAN _ FALSE,
place: Window.Place _ nextPlace, sighed: BOOLEAN _ TRUE, notNegative: BOOLEAN _ FALSE,
radix: Radix _ decimal, boxWidth: CARDINAL [0..128) _ 64,
proc: NumberNotifyProcType _ NopNumberNotifyProc,
default: UNSPECIFIED _ LAST[INTEGER], value: POINTER TO UNSPECIFIED]
RETURNS [NumberHandlej;

Stringltem: PROCEDURE [
tag: STRING _ NIL, readOnly, invisible, drawBox, hasContext, inHeap: BOOLEAN _ FALSE,
place: Window.Place _ nextPlace, feedback: StringFeedback _ normal,
boxWidth: CARDINAL _ defaultBoxWidth, filterProc: FilterProcType _ StringEditProc,
menuProc: MenuProcType _ VanillaMenuProc, string: POINTER TO STRING]
RETURNS [StringHandle];

TagOnlyltem: PROCEDURE [
tag: STRING _ NIL, readOnly, invisible, drawBox, hasContext: BOOLEAN _ FALSE,
place: Window.Place _ nextPlace, otherltem: CARDINAL _ nullindex]
RETURNS [TagOnlyHandle];

5.9.3.2 De-allocating an 1temObject from the Heap

An item alocated by FormSW can be de-allocated by calling

Freeltem: PROCEDURE [item: ItemHandle] RETURNS [ItemHandle];

If item.clientOwnsltem is TRUE, then the actions taken (which differ for each item type) are:
enumerated - If copyChoices isTRUE, thechoices are freed.
longNumber, number - The string isfreed.
string - If inHeap is TRUE, the temObject.string isfreed.

All other types - Nothing is freed.

If clientOwnsltem is FALSE, then the actions taken are those for when it is TRUE, but in addition
thetag and theitem are also freed. The ltemHandle returned by Freeltem isNIL if

I mplementation Components

clientOwnsltem is FALSE, otherwise it is the argument.

The client must be very careful when using this procedure as it may deallocate the item that contains
either the selection or insertion, in which case the client must guarantee that there will be no
references to either of them. Itisconsiderably safer to deallocate all of theitemsat once. Thisis
done by calling

FreeAllltems: PROCEDURE [sw: Window.Handle];

5.9.4 Subwindow Global Operations

The Tool writer creates a Form subwindow by calling

Create: PROCEDURE [sw: Window.Handle, clientitemsProc: ClientitemsProcType,
readOnlyNotifyProc: ReadOnlyProcType _ IgnoreReadOnlyProc,
options: Options _ [], initialState: ToolWindow.State _ active];

ClientltemsProcType: TYPE = PROCEDURE RETURNS [items: ItemDescriptor, freeDesc: BOOLEAN];

ReadOnlyProcType: TYPE = ProcType;

Type: TYPE = {fixed, relative},
Options: TYPE = RECORD [type: Type _ fixed, scrollVertical: BOOLEAN _ TRUE];

sw - Thisisthe subwindow that is transformed into a Form subwindow. If the subwindow is
aready a Form subwindow, the ERROR Error[already AFormSW] results.

clientltemsProc - Thiswill be called at FormSW’ s discretion to get theitems. If the
ItemDescriptor was manufactured from The Heap, perhaps by calling
AllocateltemDescriptor, then the client can have FormSW freeit by returning a TRUE
freeDesc.

AllocateltemDescriptor: PROCEDURE [CARDINAL] RETURNS [ltemDescriptor];

readOnlyNotifyProc - Thisis caled whenever the user attempts to modify an item with a
TRUE readOnly flag. Two standard ReadOnlyProcTypes are supplied by FormSW:
IgnoreReadOnlyProc blinks the display when called, while NopReadOnlyProc simply
does nothing.

ReadOnlyProcType: TYPE = ProcType;
IgnoreReadOnlyProc: ReadOnlyProcType;
NopReadOnlyProc: ReadOnlyProcType;

options - A type of relative directs the Form subwindow to automatically determine where
and how the items and their associated data are displayed. If the client specifiesatype of
fixed then the client must designate a subwindow place for each item to be displayed; it is
the client’ s responsibility to avoid overlapping or overwriting of items and their data. If
scrollVertical isTRUE, avertical scrollbar is provided.

41

42 Tajo: Functional Specification

[Note: In therelative case the parameter items are simply displayed one per line. Thisimplies that the height
of asubwindow that would contain al of your parametersis = n*LineHeight[].]

initialState - This determines whether the Form subwindow is awake when created. If
initialState is not active, then the Form subwindow will be aseep. If initialState is
active, then the clientltemsProc iscalled while still in Create.

Y ou may transform a Form subwindow back into an undifferentiated subwindow by calling
Destroy: PROCEDURE [Window.Handle];

If the subwindow is not currently a Form subwindow, the ERROR Error[notAFormSW] results. It
is possible to test whether a subwindow isin fact a Form subwindow by calling

Islt: PROCEDURE [sw: Window.Handle] RETURNS [yes: BOOLEAN];

If it is necessary to move the subwindow within the parent window, or to change its size, the
adjustment is done by calling

Adjust: ToolWindow.AdjustProcType;

The current Options are changed by calling

SetOptions: PROCEDURE [sw: Window.Handle, options: Options];

Display isprovided to allow the Tool to re-display the contents of the subwindow. Note that
Display alowsthe Tool to scrall, or unscroll, the items before the redisplay viathe yOffset, which
specifies the number of bits to offset the items upwards

Display: PROCEDURE [sw: Window.Handle, yOffset: CARDINAL _ 0];

If the Tool window is being made tiny, there is no need for its subwindows to keep state
information that is used only for display purposes. A Form subwindow can be told to discard such
state data by calling Sleep, and to recreate the display state (when the window becomes big) by
calling Wakeup. Thisis done automatically if using the Tool interface.

Sleep: PROCEDURE [Window.Handle;
Wakeup: PROCEDURE [Window.Handle];

A Tool often wishes to know how high a Form subwindow should be to just display al of the items,
assuming that they are not scrolled. There are two heights of interest; the minimum height for the
subwindow is attained if none of the textual item types (i.e. longNumber, number, string,
source) overflow asingle ling; the current height is the true height of the subwindow, accounting
for overflowing items. These are returned by the following procedure as min and current
respectively.

NeededHeight: PROCEDURE [Window.Handle] RETURNS[mIn, current: CARDINAL];
Unfortunately, NeededHeight requires that the Form subwindow already exist. It isoccasionaly

convenient to know the height a Form subwindow would need at a minimum without having it exist
yet. This number can be ascertained by calling

I mplementation Components

MinHeight: PROCEDURE [items: ItemDescriptor, type: Type] RETURNS [CARDINAL];

5.9.5 Operations Affecting One or Two Items

Displayltem is provided to alow the Tool to re-display the contents of an individua item.
Redisplaying asingle item may cause other items to also be redisplayed. Displayltem must be
called immediately if the client changes any of the flags that effect the way the item is displayed or
if the client changes the backing store for the item. Such changes are not safe in an arbitrary preemption

environment as thereis a potential race condition.

Displayltem: PROCEDURE [sw: Window.Handle, index: CARDINAL]J;

The best way to modify the backing store of an editableitem (i.e. one of type string, number or
longNumber) isto call ModifyEditable. This changes the backing store and the display asllittle
and as quickly as possible. The position istheleft end of the text in the item’s body that isto be
changed. If new isNIL, then the modification is adeletion, otherwiseif length isOitisan
insertion else it isareplacement. In all cases, the removed characters are discarded unless
keepTrash is TRUE, in which case they become the current contents of the global trash bin.

ModifyEditable: PROCEDURE [sw: Window.Handle, index, position, length: CARDINAL,
new: STRING _ NIL, keepTrash: BOOLEAN _ FALSE];

ToggleVisibility minimizes the repainting that is necessary when the visibility of anitemis
changed. Additionally, it accounts for the case of the item being made invisible when it contains the
selection or insertion.

ToggleVisibility: PROCEDURE [sw: Window.Handle, index: CARDINAL];

The following procedures allow a Tool to get and set the currently selected item and the item
containing the insert point. These procedures should be used judiciously so asto not preempt the
user.

GetSelection: PROCEDURE [Window.Handle] RETURNS [index: CARDINAL, first, last: CARDINAL];
GetTypeln: PROCEDURE [Window.Handle] RETURNS [index: CARDINAL, position: CARDINALJ;
SetCurrent: PROCEDURE [sw: Window.Handle, index: CARDINAL];

SetSelection: PROCEDURE [sw: Window.Handle, index: CARDINAL, first, last: CARDINALJ;
SetTypeln: PROCEDURE [sw: Window.Handle, index: CARDINAL, position: CARDINAL];

nullindex isused as an index when the client wants "nothing" selected or wants no insert point.
SetCurrent isequivaent to SetSelection with first and last selecting the non-tag and trailer
portion of the item; it also places the insert point at the item’s end.

FormSW assumes that there is a unique mapping between an item and an index into the
ItemDescriptor for each subwindow. The client notification procedures are called with the item,
or itsindex, or both. If only oneis provided, FormSW provides away to get the other. Given an
item, it is possible to find itsindex by calling

44 Tajo: Functional Specification

FindIindex: PROCEDURE [sw: Window.Handle, item: ItemHandle] RETURNS [CARDINALJ;

To go in the other direction, call

Findltem: PROCEDURE [sw: Window.Handle, index: CARDINAL] RETURNS [ltemHandle];

If aclient notification procedure wants to implement a synonym for the Next function it should call

SkipToNext: PROCEDURE [sw: Window.Handle];

5.9.6 Errorsand Abnormal Conditions

The following are all the ERRORS generated directly by FormSW.
Error: SIGNAL [code: ErrorCode;

ErrorCode: TYPE = {alreadyAFormSW, notAFormSW,

ItemError: SIGNAL [code: ItemErrorCode, index: CARDINAL];
ltemErrorCode: TYPE = {illegalCoordinate, notStringOtherltem, nilBackingStore};

Theindex argument to ItemError isthe index of the item that FormSW was processing when it
discovered the error condition.

I mplementation Components

5.10 HeapString

HeapString provides operations for STRINGS that are allocated from the system Heap. This
assumption allows the procedures to provide automatic allocation of initially NIL string values and
automatic expansion or shortening when required.

AppendChar: PROCEDURE [p: POINTER TO STRING, C: CHARACTER];

Appends the character ¢ to the string pointed to by p.

AppendExtensionlfNeeded: PROCEDURE [t0: POINTER TO STRING, extension: STRING]
RETURNS [BOOLEAN];

Checks the passed string pointed to by to to seeif it contains an extension (contains a period
followed by at least one character. If not; it appends extension (but does not supply a
period!).

AppendString: PROCEDURE [t0: POINTER TO STRING, from: STRING, extra: CARDINAL _ 0];

Appends the string from to the string pointed to by to. If the string must be expanded, it will
be expanded to the new required length plus extra.

Replace: PROCEDURE [t0: POINTER TO STRING, from: STRING];

Replaces the string pointed to by to with a copy of the string from.

46 Tajo: Functional Specification

5.11 Keys

Keys defines the user input devices' key layouts. It depends heavily on the KeyStations interface
which defines the bits generated by the microcode for each key station. There are five types of key
stations 1) typing keys such as al phanumerics, punctuation, tab, CR, etc. 2) function keys such asthe
left, right, and top function groups 3) the mouse buttons 4) the keyset paddles and 5) diagnostic
pseudo-keys for hardware diagnostic purposes.

DownUp: TYPE = {down, up};

KeyBits: TYPE = PACKED ARRAY KeyName oF DownUp;

Each element of the KeyName enumeration isaKeyStations.KeyStation. Refer tothe
definitionsfiles if you need to know the exact bit assigned to a particular key station.

KeyStation: TYPE =[0..112);

KeyName: TYPE = MACHINE DEPENDENT {

Keysetl, Keyset2, Keyset3, Keyset4, Keysetb,

Red, Blue, Yellow,

Five, Four, Six, E, Seven, D, U, V, Zero, K, Dash, P, Slash, BackSlash, LF, BS, Three, Two, W,
Q. S, A Nine, |, X, O, L, Comma, Quote, RightBracket, Spare2, Sparel, One, ESC, TAB,
F, Ctrl, C, J, B, Z, LeftShift, Period, SemiColon, Return, Arrow, DEL, FL3, R, T, G, Y, H,
Eight, N, M, Lock, Space, LeftBracket, Equal, RightShift, Spare3, FL4, FR5, R5, R9,
L10, L7, L4, L1L, A9, R10, A8, L8, L5, L2, R2, R7, R4, D2, D1, Key48, T1, T3, T4, T5, T6,
T7, T8, T10, R3, Key47, A10, R8};

There are some common synonyms defined for use on the Alto |1 keyboard.

FL1: KeyName = DEL;

FL2: KeyName = LF;

BW: KeyName = Sparel,
FR1: KeyName = Spare3;
Swat: KeyName = FR1;

FR2: KeyName = BackSlash;
FR3: KeyName = Arrow;
FR4: KeyName = Spare2;

I mplementation Components

5.12 Librarian

This set of procedures isthe lowest level of interface to the Librarian Server. It allowstheclient to
ater and interrogate the Librarian Data Base and access the Contents of Libjects.

First, some types:

Card13: TYPE = [0..177778B];
LibjectID: TYPE = LONG CARDINAL;
LibjectVersionType: TYPE = {version, replacementID, timeAndDate};

LibjectVersion: TYPE = MACHINE DEPENDENT RECORD [
type: LibjectVersionType,
body: SELECT LibjectVersionType COMPUTED FROM
version => [
compatablity: CARDINAL,
addition: CARDINAL,
modification: CARDINAL,
patch: CARDINAL];
replacementID => [
pad: Card13,
id: LibjectID,
Zip: CARDINAL _ 0];
timeAndDate => [
pad: Card13 _17776B,
tod: Time.Packed,
Zip: CARDINAL _0];

zeroVersion: LibjectVersion = [version, version[0,0,0,0]];
LibjectUpdateType: TYPE = {compatability, addition, modification, patch};
FullLibjectiDHandle: TYPE = POINTER TO FullLibjectID;

FullLibjectID: TYPE = RECORD [id: LibjectID, version: LibjectVersion];
SnapShot: TYPE = ARRAY [0..1) OF FullLibjectID;

SnapShotHandle: TYPE = DESCRIPTOR FOR ARRAY OF FullLibjectID;

5.12.1 Altering The Librarian Data Base

LibjectCreate: PROCEDURE [s: STRING] RETURNS [id: LibjectID];

Ensures that the supplied string is not in use or is not a hash collision in the LibjectID space,
then marksit as used and returns that LibjectID. Fine point: The name of a Libject is its LibjectID!
The string is associated with the Libject for annotation and other purposes. The version of this newly
created libject is versionZero.

48 Tajo: Functional Specification

Callersof LibjectCreate should be prepared to handle the error codes AlreadyExists and
IDConflict.

The librarian data base, for any instance of a Librarian service, can grow arbitrarily large. The
actual data base is maintained on a network file service, where the number and size of filesisnot a
problem. The Librarian service maintains, on local disk storage, a cache of the most recently
accessed Libjects. Libjectsthat are in the cache are said to be active. The following procedures
allow clientsto explicitly activate and deactivate Libjects.

LibjectActivate: PROCEDURE [id: LibjectID, wait: BOOLEAN _ FALSE];
LibjectDeactivate: PROCEDURE [id: LibjectID];

Procedures that access the Librarian data base take an activate BOOLEAN argument. The Librarian
interface automatically activatesaLibject if activate is TRUE and the error code InactiveLibject
is encountered during the execution of the procedure.

LibjectCheckout: PROCEDURE [
fid: FullLibjectiDHandle, reason: STRING, activate: BOOLEAN _ FALSE];

Marks the Libject as checked-out. Thisisessentially awrite lock with the added feature of
supplying a STRING which can be examined by other clients of the data base.

LibjectCheckin: PROCEDURE [
id: FullLibjectiDHandle, updatetype: LibjectUpdateType, pl: PropertyList,
s: Compatiblity.SHandle, activate: BOOLEAN _ FALSE];

Creates anew version of the Libject from the supplied property list (described below), and
clears the checked-out lock. If the stream is non-NiL, then the contents of the stream will be
stored at the destination specified by the ContentsFile property (with a new version number),
and the ContentsFile property updated.

The client need not know the algorithm for updating libject versions. However, theclient is
asked to specify hisintended updatetype and the interface will compute the next version
number.

[Note: The stream is destroyed by the procedure.]

5.12.2 Interrogating the Librarian Data Base

LibjectFindID: PUBLIC PROCEDURE [S: STRING, activate, wait: BOOLEAN _ FALSE]
RETURNS [id: LibjectID];
Performs the string-to-LibjectID conversion.

LibjectFindVersion: PROCEDURE [id: LibjectID, s: SnapShotHandle, activate: BOOLEAN _ FALSE]
RETURNS [fid: FullLibjectiDHandle];

I mplementation Components

Will supply the right version of the Libject for the supplied snapshot.

The code used to create a snapShotHandle that means current version follows:

BEGIN OPEN Librarian;

snap: SnapShot;

snapshot: SnapShotHandle DESCRIPTOR[snap];

snap _ [[id: AllIFromHerelD, version: [timeAndDate, timeAndDate[tod: Time.Current[]]]1];
END;

LibjectHeaderLook: PROCEDURE |[
fid: FullLibjectiDHandle, pl: PropertyList, activate: BOOLEAN _ FALSE];

Thisisthe basic question/answer procedure. It fillsin the property valuesin the supplied property
list.

5.12.3 Accessing the Contents of Libjects

The term contents is used to mean the file of which the libject is keeping track (e.g., mesa source
files, text files, etc.).
LibjectContentFile: PROCEDURE [

id: FullLibjectiDHandle, localname: STRING, activate: BOOLEAN _ FALSE]

RETURNS [Compatibility.FHandle];

Givesthe caller ahandle to the file that contains the contents of the specific Libject version. It
makes a copy (via some file-transfer facility) of the contents of the specified Libject on the local
volume and givesit the supplied localname. The client should be prepared to catch
Error[code: UnknownError, ...] if nofileisfound. InPilot the returned valueis NULL and the

client should get a handle on the file using localname.

5.12.4 Errorsand Abnormal Conditions

In general, most error conditions are non-resumable and recovery should be handled by the caller
outside of a catch phrase. The responsibility of the Librarian interfaceisto clean up on UNWINDS.

Error: SIGNAL [code: ErrorCode, message: STRING, pl: PropertyList];

Unusua conditions encountered by the Librarian Interface are reported to the client viathe
SIGNAL Error. This SIGNAL has three arguments: code, an enumerated type that is to be
interpreted by the client; an optional (possibly NIL) STRING, message, to be interpreted by the
client; and an optional (may be empty) PropertyList, pl, that supplies more detailed
information about the abnormal condition (nhormally only of interest to the Librarian Interface).

[Fine Point: The storage for the parameters message and pl is owned by the Librarian Interface (i.e., the Librarian
Interface is responsible for its allocation and destruction). This meansthat if a client wishes to make use of the
values of these parameters outside a catch phrase local copies should be made.]

ErrorCode: TYPE = {CheckedOut, NotCheckedOut, WrongVersion, ServerDead,
InvalidServerName, AlreadyEXxists, UnassignedID, IDConflict, FTPError, BufferOverFlow,
InactiveLibject, UnknownError};

49

50 Tajo: Functional Specification

5.12.5 Property Lists

The basic mechanism used for data communication (and its type information) with the Librarian
Interface (and ultimately the Librarian Data Base) isviaarecord caled aPropertyList.
Understanding the syntax and semantics of these records and the operations upon them is essential
to conversing with the Librarian Interface. The Librarian Interface makes no effort to hide anything
about PropertyListsfrom clients.

Asmentioned earlier, we assign PropertyNumbers. The interface LibrarianPN contains the
currently assigned PropertyNumbers. Any client desiring additional PropertyNumbers should
contact us. It isnot safe to use random unassigned PropertyNumbers because they may be used
in the future by the Librarian Service.

PropertyNumber: TYPE = RECORD [prefix: [0..3777B], type: PropertyValueType];

PropertyValueType: TYPE = {
TwoWord, LibjectID, LibjectiDARRAY, String, Record, PropertyList};

PropertyPairs are defined as a variant record as follows:

PropertyPairHandle: TYPE = POINTER TO PropertyPair;
PropertyPair: TYPE = RECORD [

empty: BOOLEAN,
pn: PropertyNumber,
body: SELECT COMPUTED PropertyValueType FROM

TwoWord => [value: Inline.LongNumber],
LibjectID => [id: LibjectlID],
LibjectIDArray, Record => [length: CARDINAL, ptr: POINTER],
String => [
length: CARDINAL,-- length of storage block (words)
string: STRING],
PropertyList => [pl: PropertyList],

ENDCASE];

The BOOLEAN field empty is useful for constructing lists of property pairs whose
PropertyNumber’s are correct but whose values are incorrect or empty. This feature is used,
for example, to construct liststo befilled in.

[Notethat all VARIANTSs are three (3) wordslong! Thisisnot accidental and may cause troubles as new
PropertyValueTypes are invented or needed.]

Finaly, aPropertyList issimply adescriptor for an array of PropertyPair’s. [Caution: each element
inan array of variant records will be the length of the largest variant.]

I mplementation Components

PropertyList: TYPE = DESCRIPTOR FOR ARRAY OF PropertyPair;

5.12.6 Property List Operations
The following procedures are supplied for manipulating PropertyLists.

CreatePropertyList: PROCEDURE [Nn: CARDINAL] RETURNS [PropertyList];
Allocates the storage necessary for aPropertyList of LENGTH[n*sizE[PropertyPair]] and
initializes the PropertyPairswith empty TRUE.
DestroyPropertyList: PROCEDURE [plist: PropertyList]
DestroysaPropertyList (i.e., both the PropertyList contents and actual list storageis
released). [Theimplementation of these two procedures uses the Mesa Heap allocation package.]
ResetPropertyList: PROCEDURE [plist: PropertyList]
ResetPropertyPair (described below) is called for al non-empty valuesin the supplied
PropertyList.
ValidatePropertyList: PROCEDURE [plist: PropertyList] RETURNS [Size: CARDINAL]

Simple checking of the PropertyList isperformed and its size in words is computed and
returned if the PropertyList isvalid; otherwise the SIGNAL InvalidPropertyList israised.

5.12.7 PropertyPair Operations

ResetPropertyPair: PROCEDURE[pair: PropertyPairHandle]
The contents of aPropertyPair are released. [The structure of a PropertyList tree is preserved across
Reset. This means resetting a PropertyList PropertyPair does not release the PropertyList "pointed to."]
AddPropertyPair: PROCEDURE [plist: PropertyList, pp: PropertyPair] RETURNS [CARDINAL]

Allowsyou to set thevaluesin aPropertyList. The PropertyList is searched for the first
empty PropertyPair, which is set to the passed PropertyPair. The resultant index of the
PropertyPair within the PropertyList isreturned.

Users of the above procedure must be prepared to handle the SIGNAL PropertyListFull.
FindPropertyPair: PROCEDURE [plist: PropertyList, pn: PropertyNumber]
RETURNS [pp: PropertyPairHandle]
Finds the specified PropertyNumber in the PropertyList and returnsits

PropertyPairHandle. If the PropertyNumber cannot be found, aNIL is returned.

GetPropertyPair: PROCEDURE [plist: PropertyList, pn: PropertyNumber]
RETURNS [pp: PropertyPairHandle]

52 Tajo: Functional Specification

Like FindPropertyPair, but will signal PropertyNotFound instead.

The following procedures construct PropertyPair’s. These procedures allocate storage and copy

the contents where necessary.

MakeEmptyPair: PROCEDURE [pn: PropertyNumber] RETURNS [PropertyPair];

MakeStringPair: PROCEDURE [pn: PropertyNumber, s: STRING] RETURNS [PropertyPair];

MakeRecordPair: PROCEDURE [pn: PropertyNumber, length: CARDINAL, ptr: POINTER]
RETURNS [PropertyPair];

The following procedures are controlled LOOPHOLEs.

GetPropertylD: PROCEDURE [plist: PropertyList, pn: PropertyNumber]
RETURNS [pp: POINTER TO LibjectID PropertyPair, id: LibjectID];

GetPropertyList: PROCEDURE [plist: PropertyList, pn: PropertyNumber]
RETURNS [pp: POINTER TO PropertyList PropertyPair, pl: PropertyList];

GetPropertyRecord: PROCEDURE [plist: PropertyList, pn: PropertyNumber]
RETURNS [pp: POINTER TO Record PropertyPair, p: POINTER];

GetPropertyString: PROCEDURE [plist: PropertyList, pn: PropertyNumber]
RETURNS [pp: POINTER TO String PropertyPair, STRING, S: STRING];

GetPropertyTwoWord: PROCEDURE [plist: PropertyList, pn: PropertyNumber]
RETURNS [pp: POINTER TO TwoWord PropertyPair, In: Inline.LongNumber];

GetPropertyValue: PROCEDURE [plist: PropertyList, pn: PropertyNumber]
RETURNS [pp: POINTER TO TwoWord PropertyPair, lowbits, highbits: UNSPECIFIED];

The following procedures will pack(unpack) a PropertyList into(from) a contiguous block of

storage of size 2+ValidatePropertyList words. They are useful for storing PropertyList’son

files.

BundleOfBitsFromPropertyList: PROCEDURE [plist: PropertyList, p: POINTER];
plist is packed into a contiguous block of storage pointed to by p. Itisthe client’s responsihility to
supply ablock large enough for the passed PropertyList.

PropertyListFromBundleOfBits: PROCEDURE [p: POINTER] RETURNS [PropertyList];

Unpacks a packed PropertyList and verifies that the passed pointer really points to a packed
PropertyList; if not, it generates an ERROR.

I mplementation Components 53

5.13Menu

One of the primary command invocation mechanismsin Tgjo isthe menu. The Menu Interface
givesthe Tool writer control over which menus the user will see and what actions an individual
menu item will perform. How menus appear to the user and how he interacts with them is built-in
and not of concern to the client of thisinterface.

5.13.1 Simple Creation of Menus

The following two procedures are designed to allow clients to easily make and free menus and menu
items. For those who need to know more about menus, subsequent sections explain menus and
their implementation in detail.

MCRType: TYPE = PROCEDURE |
window: Window.Handle _ NiL, menu: Handle _ NIL, index: CARDINAL _ LAST[CARDINAL]];

Make: PROCEDURE [name: STRING, strings: DESCRIPTOR FOR ARRAY OF STRING, mcrProc: MCRType,
copyStrings: BOOLEAN _ TRUE, permanent: BOOLEAN _ FALSE]
RETURNS [Handle];

Makes amenu named name that has the elements contained in strings. When one of the
strings is selected the mcrProc will be called indicating the index of the string in the array.
The permanent flag indicates whether the created object can subsequently be destroyed. The
copyStrings flag indicates whether strings should be copied into the system Heap.

Free: PROCEDURE [menu: Handle, freeStrings: BOOLEAN _ TRUE];

Frees the menu, optionally freeing the copied strings.

The menus that are chosen for display depend upon the window that the cursor is over. Thisallows
the displayed menu stack to vary depending on the window layout. The following two procedures
allow clients to associate menus with windows.

Instantiate: PROCEDURE [menu: Handle, window: Window.Handle];

Associates the menu with the passed window and increments ause count in menu. If thisis
the first menu to be instantiated in window the system global menu(s) is also instantiated. If
menu isNIL only the system global menu isinstantiated. If menu is aready instantiated the
ERROR Error[alreadylnstantiated] is generated.

54 Tajo Functional Specification

Uninstantiate: PROCEDURE [menu: Handle, window: Window.Handle];

This procedure removes menu from the window and decrements its use count. Eventual
deallocation of the menu must be performed by the client. If this menu is not instantiated with
this window, then the ERROR Error[notinstantiated] is generated. It isalso possible that the
ERROR Error[contextNotAvailable] will be generated; thisindicates that Tajo has detected
an internal inconsistency in its data structures.

The following sections document more advanced uses of this interface and can be skipped on afirst
reading.

5.13.2 The Menu Object

The Object contains the normally invariant data associated with a menu.

Handle: TYPE = POINTER TO Object;
Object: TYPE = RECORD [...name: STRING, items: Items..];

Items: TYPE = DESCRIPTOR FOR ARRAY OF ItemObject;

5.13.3 Menu I nstances

An unlimited number of menus may be associated (instantiated) with the Tool window or any
subwindow. The menu mechanism maintains aring of menu instances (pointers to associated
menus) for each subwindow (if thereis at least one associated menu). One of these associated
menus is taken to be the "current" menu for that subwindow.

Some menus (at least the system global ones) want to be available from virtually every subwindow.
This could be accomplished by creating an Object for each use, but the primary memory cost of
multiple copies of an Object islarge. Additionally, some users may want to dynamically alter the
items contained in menus (e.g. lists of available fonts, etc.). These requirements lead to the use of a
level of indirection. Thus Tajo never copiesaclient’s Object; instead it aways keeps a pointer to
that Object. Itisthe client’sresponsibility to guarantee that the Object isvalid aslong as Tgjo
has a pointer to it.

5.13.4 Menu ltems

Each menu item hasakeyword (astring of characters). A menu item has a Menu Command
Routine (MCR) associated with it. A MCR isaprocedure that is called when the user specifiesits
corresponding item. Clients have found that using one MCR per menu is useful because only one large catch phrase

need be written to handle common exception cases.

ItemObject: TYPE = RECORD [keyword: STRING, mcrProc: MCRType];

ItemHandle: TYPE = POINTER TO ltemObject;

I mplementation Components 55

The following two procedures allow clients to make and free menu items:
Makeltem: PROCEDURE [keyword: STRING, mcrProc: MCRType] RETURNS [ItemObject];

Freeltem: PROCEDURE [ItemObiject];

5.13.5 Procedures For Setting up Menus

The following procedures alow the Tool to create and destroy menus, to specify which menu
selection techniques (in addition to the standard one) will be used, and to specify what procedures
will beinvoked when amenu item is selected.

The following two procedures allow the Tool to create and destroy menus.

Create: PROCEDURE [items: Items, name: STRING, permanent: BOOLEAN] RETURNS [Handle];
Returns a pointer to a menu Object named name which is made up of items. The
permanent flag indicates whether the created object can subsequently be destroyed.

Destroy: PROCEDURE [Handle];

Deallocates storage for the Object pointed to by Handle. It first verifiesthat the Object has
an instantiation count = 0; if not, the ERROR Error[isinstantiated] is generated. If the
menu is permanent, the ERROR Error[isPermanent] is generated.

The above procedures set up the data stuctures required for menu operations. They do not,
however, set up a specific window’s PNR for invoking menus. If the window is one managed by
Tajo the standard menu PNR is already set up. If not, the client may set the standard menu PNR
by calling

SetPNR[window: Window.Handle];

If it is necessary to set the menu PNR under a different mouse button than the one used by
SetPNR, the PNR itself is accessible as PNR.

PNR: Userlnput.KeyPNRType;
The following two procedures allow the Tool to get ahandle for and to set the font used for menus.
GetFont: PROCEDURE RETURNS [font: WindowFont.Handle];

SetFont: PROCEDURE [font: WindowFont.Handle];

5.13.6 Utilities
A client can enumerate the menus instantiated with a window.

EnumerateProcType: TYPE = PROCEDURE [window: Window.Handle, menu: Handle]
RETURNS [stop: BOOLEAN];

56 Tajo Functional Specification

If stop is TRUE the enumeration is terminated.
EnumerateFor: TYPE = {all, inSW, availableInSWj;

Enumerate: PROCEDURE [
window: Window.Handle, which: EnumerateFor, proc: EnumerateProcType];

Thewhich argument specifies which menus that proc will be called with during the
enumeration. If which isall, window is expected to be a Tool window and all the menus
instantiated with window are enumerated. If which isinSW, window is expected to be a
subwindow and al the menus instantiated with the subwindow are enumerated. If which is
availablelInSW, window is expected to be a subwindow and all the menus that the user

could display are enumerated (i.e., this includes the system menus and menus instantiated on the
Tool window).

The following procedure allows the client to get the arguments necessary to invoke a menu item by
knowing only the subwindow, menu name and item name.

MCRForKeyword: PROCEDURE [sw: Window.Handle, menuName, keyword: STRING]
RETURNS [mcr: MCRType, menu: Handle, index: CARDINAL];

I mplementation Components 57

5.14 M sgSW

The MsgSW interface provides a simple way of posting messages to the user. A Message
subwindow is built upon a String subwindow.

5.14.1 Creation/Destr uction

To create aMsgSW call:

Create: PROCEDURE [sw: Window.Handle, lines: CARDINAL _ 1,
options: TextSW.Options _ defaultOptions];

defaultOptions: TextSW.Options = [access: append, menu: TRUE, split: TRUE,
wrap: TRUE, scrollbar: TRUE, flushTop: FALSE, flushBottom: FALSE];

Thelines parameter specifies the minimum number of lines that the subwindow will keep inits
backing store before discarding the oldest line. The subwindow height controls how many lines
will bevisibleto the user. If the number of linesvisible to the user is greater than lines, then
all the visible lines are kept in the backing store.

When the options.access parameter is anything but append an Error israised with acode
of appendOnly.

The following procedure destroys the backing store and transforms the Message subwindow into an
ordinary subwindow.

Destroy: PROCEDURE [sw: Window.Handle];

5.14.2 Output

A message lineis delimited by acarriage return at itsend. The latest message has a severity
associated with it.

Severity: TYPE = {info, warning, fatal};

Here are the procedures for managing the contents of a MsgSW.

Post: PROCEDURE [sw: Window.Handle, string: STRING, severity: Severity _ info,
prefix; BOOLEAN _ TRUE, endOfMsg: BOOLEAN _ TRUE];

Appends string onto the latest message. The severity of the messageis severity. If the
prefix parameter is TRUE and the message is starting a new line, a short string that depends on
severity (info: "", warning: "Warning: " or fatal: "Fatal Error: ") starts the line before the
client message. The endOfMsg parameter set to TRUE delimits the message without having to
put an Ascii.CR in string.

PostAndLog: PROCEDURE [sw: Window.Handle, string: STRING, severity: Severity _ info,
prefix; BOOLEAN _ TRUE, endOfMsg: BOOLEAN _ TRUE, logSW: Window.Handle _ NiL];

58 Tajo Functional Specification

This procedureis like Post but with the additional logSW parameter that enables the same
message appearing in the Message subwindow to be directed to another subwindow for logging.
If the value is NIL then the output is directed to the UserIinput.GetDefaultWindow[] and
the Tool’ s nameis prefixed to the message.

AppendString: PROCEDURE [window: Window.Handle, string: STRING];
Appends string onto the latest message. Thisisthe procedure used for
Userlnput.StringOut. The severity is set to info.

Clear: PROCEDURE [sw: Window.Handle];
Erases the contents of the MsgSW. The severity is set to info.

The various message-posting routines impart a severity to the current message. The following

procedure setsit explicitly:

SetSeverity: PROCEDURE [sw: Window.Handle, severity: Severity];
5.14.3 Status Retrieval
These procedures provided status information about the current message:

GetSeverity: PROCEDURE [sw: Window.Handle] RETURNS [severity: Severity];
LastLine: PROCEDURE [sw: Window.Handle, ss: String.SubString];

The parameter ss isfilled in with base, offset and length of the current message. The client
may want to copy ss and the string ss.base since thisinformation isliable to change.

I mplementation Components 59

5.15 Profile

The Profile interface provides an interface to a number of commonly accessed user and system data
items. All theseitems areread only.

bitmap: READONLY Window.Box;

The current size and position of the bitmap.

debugging: READONLY BOOLEAN;

TRUE if debugging. Used internally by Tajo to decide whether to attempt error recovery or call
the debugger. If Tgjo invokes the debugger, it may not be possible to continue the session.

librarian: READONLY STRING;

The current name of the Librarian server being used in librarian transactions.
registry: READONLY STRING;
The currently logged-in user’ s mail registry.

userName: READONLY STRING;
userPassword: READONLY STRING;

The currently logged-in user’ s name and password strings.

Tajo providesaTool caled the ProfileTool that allows usersto set or ater these values. The
TajoMisc interface provides procedures for clients to modify these items.

If aclient needs to notice when one of these values has changed, either by the user or another client,
it should have an Event.Notify procedure that detects the setDefaults event.

60 Tajo Functional Specification

5.16 Put

All the proceduresin the Put interface take aWindow.Handle, apiece of datato be formatted

and, where appropriate, aformat specification. The dataisformatted by the Format mechanism and
then output by a call to the Userinput.StringOut procedure associated with the
Window.Handle. If the Window.Handle passed into any Put procedure is NIL the output is
directed to the Userinput.StringOut procedure of Userinput.GetDefaultWindow([]. Seethe
documentation on the Format interface for comments about the actual output format of the
following procedures:

Blanks: PROCEDURE [h: Window.Handle, n: CARDINAL _ 1];
Char: PROCEDURE [h: Window.Handle, char: CHARACTER];
CR: PROCEDURE [h: Window.Handle];

CurrentSelection: PROCEDURE [h: Window.Handle];

Date: PROCEDURE [h: Window.Handle, pt: Time.Packed, format: Format.DateFormat];
Decimal: PROCEDURE [h: Window.Handle, n: INTEGER];

Line: PROCEDURE [h: Window.Handle, s: STRING];

LongDecimal: PROCEDURE [h: Window.Handle, n: LONG INTEGER];

LongNumber: PROCEDURE [
h: Window.Handle, n: LONG UNSPECIFIED, format: Format.NumberFormat];

LongOctal: PROCEDURE [h: Window.Handle, n: LONG UNSPECIFIED];

LongString: PROCEDURE [h: Window.Handle, S: LONG STRING];

LongSubsString: PROCEDURE [h: Window.Handle, ss: Format.LongSubString];

Number: PROCEDURE [h: Window.Handle, n: UNSPECIFIED, format: Format.NumberFormat];
Octal: PROCEDURE [h: Window.Handle, n: UNSPECIFIED];

SubString: PROCEDURE [h: Window.Handle, ss: String.SubString];

Text: PROCEDURE [h: Window.Handle, s: STRING];

Text isnot String because it causes a name conflict with the interface named String.

I mplementation Components 61

5.17 Scrollbar

The Scrollbar interface does not do scrolling, i.e., moving of bits on the screen, but rather provides
aconsistent user interface and mechanism for specifying and invoking scroll actions.

First, some definitions.

Type: TYPE = {horizontal, vertical};
Direction: TYPE = {forward, backward, relative};

Percent: TYyPe = [0..100];

Two types of procedures are used to perform the scroll operation. ScrollProcType procedures are
used to communicate to the client auser’s scroll request. ScrollbarProcType procedures are used
to get the scrollbar data from the client in order to display them to the user.

ScrollProcType: TYPE = PROCEDURE |
window: Window.Handle, direction: Direction, percent: Percent];

ScrollbarProcType: TYPE = PROCEDURE [window: Window.Handle]
RETURNS[box: Window.Box, offset, portion: Percent];

Scrollbars may be created for vertical or horizontal scroll functions by the following procedure.

Create: PROCEDURE [window: Window.Handle, type: Type,
scroll: ScrollProcType, scrollbar: ScrollbarProcType];

If Create iscalled for a subwindow that already has scrollbars of that type the following ERROR is
generated.

Error: ERROR [code: ErrorCode];

ErrorCode: TYPE = {alreadyEXxists};

Scrollbars are deleted by calling
Destroy: PROCEDURE [sw: Window.Handle, type: Type];

The following procedure should be called when scollbars are to be displayed, normally when the
cursor exitsawindow. The UserIinput.DefaultCursorPNR already does this.

InvokeScrollbar: PROCEDURE [window: Window.Handle, place: Window.Place];

62 Tajo Functional Specification

5.18 Selection

The Selection interface is the mechanism used to communicate the current selection among the
various Tools. Itisthe responsibility of clients of thisinterface to provide for actual selection of text
and/or graphics within itswindow(s). The client window that contains the current selection is
referred to as the manager of the current selection.

There are two distinct sets of clients of the Selection interface. On one hand are those clients that
simply want to obtain the current selection in order to use it as the argument to some command or
other user invocation. On the other hand are those clients that wish to become the manager of the
current selection. Basically, thisis done by calling Set and supplying the Selection interface with a
pair of procedures.

ActOnProcType: TYPE = PROCEDURE [data: POINTER, action: Actiony;
ConvertProcType: TYPE = PROCEDURE [data: POINTER, target: Target] RETURNS [POINTER];

The ActOnProcType is called to modify the current selection. The ConvertProcType iscalled
to get the value of the current selection. The data argument isthe current selection (i.e., it isthe
pointer passed to Set).

These requests are communicated to the manager of the current selection by passing an Action or
Target which are defined as follows.

Action: TYPE = {clear, delete, mark, unmark, replace};

Target: TYPE = {window, subwindow, string, source, length, position};

The above definitions are presented as exact enumerations when in fact they are defined as open
enumerations. The following two procedures allow clientsto define their own private conversion

types.
UniqueAction: PROCEDURE RETURNS [Action];

UniqueTarget: PROCEDURE RETURNS [Target];
Clients may act on the current selection, independent of who is the current owner, by calling
ActOn: PROCEDURE [Action];

The following useful specializations are aso supplied.
Clear: PROCEDURE = INLINE BEGIN ActOn[clear]; END;
Delete: PROCEDURE = INLINE BEGIN ActOn[delete]; END;

The following procedure sets the ActOnProcType and ConvertProcType procedures for the
current selection.

I mplementation Components

Set: PROCEDURE [pointer: POINTER, conversion: ConvertProcType, actOn: ActOnProcType];
pointer iswhatever is useful to the client when it is passed to conversion or actOn.

It is sometimes difficult to determineif you are the manager of the current selection. The following
procedure will clear the current selection iff you are the current owner. Y ou are the current owner
if pointer isequal to the latest pointer that was passed into Set.

ClearOnMatch: PROCEDURE [pointer: POINTER];

The following procedure will perform the requested conversion and return a POINTER to the data.
The datareturned for items larger that one word is alocated out of the system Heap with the
storage ownership passed to the recipient which must deallocate it. Target’s of window and
subwindow return aoneword Window.Handle. A Target of string returns a STRING
allocated from the Heap. Target’s of length and position return POINTER TO LONG CARDINAL.

Convert: PROCEDURE [Target] RETURNS [POINTER];

The manager of the current selection may chose not to implement some (or all) of the possible
conversions. Inthat case, it ssmply returns NiL.

The following special conversions are supplied as a convenienceto clients. If the current selection is
not acceptabl e to the Mesa runtime as a number, then String.InvalidNumber will be raised by
the runtime and allowed to propagate through these procedures.

Number: PROCEDURE [radix: CARDINAL _ 10] RETURNS [CARDINAL];

LongNumber: PROCEDURE [radiX: CARDINAL _ 10] RETURNS [LONG CARDINAL];

5.18.1 Selection Sour ces

The selection interface defines the Source mechanism for processing textual selectionsthat are
more than afew hundred charactersin length.

Source: TYPE = POINTER TO SourceObject;
SourceObject: TYPE = RECORD |
data: POINTER TO UNSPECIFIED,
proc: SourceProc,
destroy: DestroyProc];
DestroyProc: TYPE = PROCEDURE [sOUrce: Sourcej;
SourceProc: TYPE = PROCEDURE [data: POINTER, String: STRING];

The source mechanism works as follows:

The client asks for the current selection to be converted asa Source.

63

64 Tajo Functional Specification

The owner of the current selection creates an instance of the Source data structure and returns
apointer to it to the client.

The client then makes repeated calls on proc, supplying a string of arbitrary size.

The owner of the current selection fills the string with text and returns. The owner need not fill
the string completely but it must return some data with each call as end-of-selection is indicated
by returning an empty string.

When the client receives a zero-length string it must call the destroy procedure supplied in the
SourceObject; otherwise the space allocated for the source will be lost.

5.18.2 Trash Bin

The selection interface defines an abstraction, somewhat similar to the current selection, known as
thetrash bin. Thetrash binis used to save the most recent text cuts for subseguent pastes. Clients
may become owners of the trash bin by calling

SetTrashBin: PROCEDURE [pointer: POINTER, ConvertProcType, clear: ClearTrashBinProcType];
ClearTrashBinProcType: TYPE = PROCEDURE [data: POINTER];

Clients can convert the contents of the trash bin in the same manner as the current selection by
caling

ConvertTrashBin: PROCEDURE [Target] RETURNS [POINTER];

I mplementation Components

5.19 StringSW

Theinterface StringSW provides the definitions and procedures to create and manipulate text
subwindows whose backing store isa STRING. Further text subwindow operations are described in
the TextSW interface.

First, some definitions.

Options: TYPE = TextSW.Options;
defaultOptions: Options = [access: edit, menu: TRUE, split: TRUE, wrap: TRUE,
scrollbar: TRUE, flushTop: FALSE, flushBottom: FALSE];

A StringSW is created by calling

Create: PROCEDURE [sw: Window.Handle, s: POINTER TO STRING _ NIL
options: Options _ defaultOptions];

If s isNIL or s” isNIL, the subwindow will allocate and manage a heap string for the

backing store; otherwise, the client is responsible for the storage management of the string.

A subwindow’ s String subwindow properties are destroyed by calling

Destroy: PROCEDURE [sw: Window.Handle];

The current backing STRING for a string subwindow is returned by

GetString: PROCEDURE [sw: Window.Handle] RETURNS [S: POINTER TO STRING];

Clients can determine if awindow is a string subwindow by calling

Islt: PROCEDURE [sw: Window.Handle] RETURNS [yes: BOOLEAN];

65

66 Tajo Functional Specification

5.20 TajoMisc

Theinterface TajoMisc is a catch-all for public and semi-public Tgjo utilities that did not fit
logically into any of the other interfaces.
Part of Tgjo’s runtime state can be deduced from the following variable:
initialToolStateDefault: ToolWindow.State;
Thisisthe state in which aTool is created if it does not override the default provided in the
Tool.Create call.
To change the values in the Profile interface the following six procedures are used. Each of these
procedures call Event.Notify[why: setDefaults]. STRINGS passed in as arguments are copied.
SetBitmap: PROCEDURE [box: Window.Box];

Actually changes the bitmap to be box, relative to the screen. Check Profile.bitmap for the
actual box used.

SetUserName: PROCEDURE [S: STRING _ NIL];
SetUserPassword: PROCEDURE [S: STRING _ NIL];

In AltoTgjo, these procedures change Os StaticDefs.OsStatics. Also, if s =NIL then
the Profile string is copied from OsStaticDefs.OsStatics.

SetDebugging: PROCEDURE [b: BOOLEAN];
SetLibrarian: PROCEDURE [S: STRING];
SetRegistry: PROCEDURE [S: STRING];

The following procedure must be used rather than UserTerminal.SetState to change the state of
the display bitmap because UserTerminal.SetState bypasses Tajo with disastrous consequences.
SetState: PROCEDURE [new: UserTerminal.State] RETURNS [old: UserTerminal.State];

The next two procedures alow a process to do a wAlIT for a period of time without having to bein a
convenient MONITOR. They return within 1 second if Userlnput.userAbort is TRUE.
WaitMilliSecs: PROCEDURE[MSEC: CARDINALJ;

WaitSecs: PROCEDURE[SEC: CARDINALJ;

If aclient wishesto stop Tajo and al other Toolsin a safe manner it should call Quit. Thisletsthe
normal cleanup mechanisms run which are responsible for making files on the disk consistent, etc.

Quit: PROCEDURE;

To load aTool name from the disk, call the following procedure:

CreateTool: PROCEDURE [name: STRING];

I mplementation Components 67

5.21 TextSource

Theinterface TextSource provides the primary underlying mechanism for the representation of data
that is used to implement Tgjo’s uniform text display, selection and editing facilities. TextSource
defines the standard set of operations that are sufficient for all accessto atext source. Specific
implementations may use additional operations for setting or altering the state of atext source. Text
sources transmit information in atomic units called blocks.

Position: TYPE = LONG CARDINAL;
nullPosition: Position = LAST[LONG CARDINAL];

5.21.1 Basic Operations

The procedures which create text sources return aHandle which is an object oriented pointer to a
record of procedures which defines the operations on a text source.

Handle: TYPE = POINTER TO Procedures;

Procedures: TYPE = POINTER TO ProceduresObiject;

ProceduresObject: TYPE = RECORD |
readText: ReadTextProc,
deleteText: DeleteTextProc,
insertText: InsertTextProc,
getLength: GetLengthProc,
setLength: SetLengthProc,
actOn: ActOnProc,
readBlock: ReadBlockProc];

Following are the definitions and semantics of each operation on atext source.

ActOnProc: TYPE = PROCEDURE [source: Handle, action: Action] RETURNS [ActionResult];

Action: TYPE = {destroy, mark, sleep, truncate, wakeup};
destroy - free al storage and release all resources associated with the text source instance.
mark - mark the text source in some distinctive manner at its current end.

sleep - the text source will not be used for awhile (hint to reduce current resources for this
text source).

truncate - truncate the text source at it’s current end. This has a noticable effect only for
sources that have some representation in afile system.

wakeup - the text source is going to be used (undo what you did for sleep).

[Note: sleep and wakeup are only hints for storage and resource management purposes. This means that
implementors must be able to handle all operations on sleeping text sources.]

68 Tajo Functional Specification

All ActionProcsreturn an ActionResult to indicate the status of the requested action.

ActionResult: TYpE = {ok, new, bad};
Text isdeleted in atext source by invoking deleteText.

DeleteTextProc: TYPE = PROCEDURE [
source: Handle, position: Position, n: LONG CARDINAL, trash: BOOLEAN]
RETURNS [realPos: Position, realN: LONG CARDINAL];

The deleteText operation is arequest to delete the specified range of characters. The text
source implementor may refuse to delete any (read or append) or only aninitial subset of the
requested interval. In any event the returned realN isthe actual number of characters deleted
(if any) and realPos isthe index into the text source from which one should update the
display representation.

The current length of the text source is obtained by the getLength operation. Thisoperationis
used extensively and itsimplementation should be efficient.

GetLengthProc: TYPE = PROCEDURE [source: Handle] RETURNS [Position];

Text isinserted into atext source by invoking theinsertText operation.

InsertTextProc: TYPE = PROCEDURE [
source: Handle, ss: String.SubString, position: Position]
RETURNS [Position];

The returned Position isthe index into the text source from which one should update the
display representation.

Text is read from atext source by invoking either theread Text or readBlock operation.

Block: TYPE = RECORD |
base: POINTER TO PACKED ARRAY [0..0) OF CHARACTER, oOffset, length: CARDINAL];
Class: TYPE = {none, cr, alpha, space, other};

ReadBlockProc: TYPE = PROCEDURE [
source: Handle, position: Position, maxLength: CARDINAL, class: Class]
RETURNS [b: Block, pos: Position];

ReadTextProc: TYPE = PROCEDURE [
source: Handle, position: Position, maxLength: CARDINAL, class: Class]
RETURNS [ss: String.SubString, pos: Position];

ss.base isnot area STRING so don't reference the length or maxlength fieldsiniit.

The basic semantics of these two procedures is: return a sequence of text that is either maxLength
long or isterminated by a character of the specified class.

I mplementation Components 69

The following additional semantic rules for reading text sources are designed to ease the job of
implementing a text source and to facilitate the implementation of discontinuous sources.
Discontinuous sources are text sources that either have holes in them or contain sequences of non-
textual data embedded in them (e.g. Bravo files that contain formatting).

A text source may not return more text than was requested.

A single call on read may not return text that is not contiguous in the text source’s address
space (i.e. it cannot concatinate two discontiguous runs of text).

A text source may return less text than was requested.

A text source may only return no text (i.e. length = 0) if the position is equal to the value
returned by getLength or pos is greater than position.

Clients can determine if acharacter isin agiven class by calling

TestClass: PROCEDURE [char: CHARACTER, class: Class] RETURNS [equal: BOOLEAN];

Clients can set the length of atext source by calling the setLength operation. For most sources
attempting to lengthen a source by this operation is undefined and will produce unexpected results.

SetLengthProc: TYPE = PROCEDURE [source: Handle, position: Position] RETURNS [Position];

5.21.2 Useful Operations on TextSour ces

To append a portion of a source to a string call

Append: PROCEDURE [string: STRING, source: Handle, start: Position, n: CARDINAL];
The following collection of procedures work for all text sources.

The following two procedures are useful for identifying words and linesin text sources.

ScanType: TYPE = {word, line};
ScanLeft: PROCEDURE [source: Handle, start: Position, type: ScanType] RETURNS [left: Position];
ScanRight: PROCEDURE [source: Handle, start: Position, type: ScanType]

RETURNS [right: Position];

The following procedure will scan a subrange of atext source looking for a string match.

TextSearch: PROCEDURE [source: Handle, string: STRING,
start: Position _ 0, stop: Position _ LAST[LONG CARDINAL]]
RETURNS [lineStart, left: Position];

In the event that string is not found the following error is raised.

SearchFailed: ERROR;

70 Tajo Functional Specification

The following procedures are useful for processing substrings and doing simple edits such as backchar
and backword while typing.

CharlsEditChar: PROCEDURE [char: CHARACTER] RETURNS [BOOLEAN];
DoEdit: PROCEDURE [source: Handle, editChar: CHARACTER, editPos: Position]
RETURNS [delta: INTEGER];

The return argument delta is the count of the number of characters atered by the edit (e.g.

the number of characters deleted by backword).

The following two procedures are used to identify edit and control charactersinss. On the return,
ss isdivided into ss (the part of the ss before the returned character) and theRest (the part of
the origina ss following the returned character).

FindEditChar: PROCEDURE [sS, theRest: String.SubString]
RETURNS [editChar: CHARACTER, found: BOOLEAN];

FindControlChar: PROCEDURE [ss, theRest: String.SubString]
RETURNS [char; CHARACTER, found: BOOLEAN];

5.21.3 Disk Sour ces

Disk file type text sources can be created with read or append access only. Thisis because mid file
modifications (direct editing) are not supported. Disk file sources are created, with the specified
access, by calling

Access: TYPE = {read, append, edit};
Stream: TYPE = Compatibility.SHandle;

CreateDisk: PROCEDURE [name: STRING, access: Access, S: Stream _ NiL]
RETURNS [source: Handle];

If s isnot NIL then it isused instead of getting a stream from the file named name.

Clients may determine the disk file name and the backing stream for a disk type text source by
caling.

DiskInfo: PROCEDURE [source:Handle] RETURNS [name: STRING, S: Stream, access: Access];

A currently existing disk source can be renamed by calling the following procedure. The current
disk source is destroyed and a disk source for the new file, with the specified access, is created.

RenameDisk: PROCEDURE [source: Handle, newName: STRING, access: Access, NnewSN: BOOLEAN]
RETURNS [Handle];

5.21.4 String Sour ces

String type text sources can be created with read, append or edit access. String sources are created,
with the specified access, by calling.

I mplementation Components 71

CreateString: PROCEDURE [pS: POINTER TO STRING, expandable: BOOLEAN]
RETURNS [source: Handle];

[Note: The current implementation of string sources requires a contiguous block of memory large enough to entirely
contain the backing string. More importantly, when the string is expanded a new larger string will be allocated and
then the string copied, requiring 2* n+delta characters of memory. Beware of large string sources|

Clients may determine the backing string currently in use and its state by calling

StringInfo: PROCEDURE [source:Handle] RETURNS [pS: POINTER TO STRING, expandable: BOOLEAN];

The following two procedures will edit strings.

DeleteSubString: PROCEDURE [ss: SubString, keepTrash: BOOLEAN] RETURNS [trash: STRING];

keepTrash indicates whether the deleted text is to be put into the global trash bin. (See
Selection interface)

InsertString: PROCEDURE [
string: POINTER TO STRING, position: CARDINAL, toAdd: SubString, extra: CARDINAL];

A string can be designated non-expandable by using the following special value for extra.

cannotExpand: CARDINAL = LAST[CARDINAL];

5.215Errors

ErrorCode: TYPE = {fileNameError, accessError, isBad};
Error: SIGNAL [code: ErrorCode];

fileNameError - indicates either doesn’t exist or bad syntax.
accessError - attempt to perform an operation that violates the created access option.

isBad - indicates that the source is no longer extant. This occurs on core swaps when the file
is deleted.

72 Tajo Functional Specification

5.22 TextSW

The Text Subwindow Package implements a comprehensive set of facilities for viewing text
independent of source. This package essentially takes a client created subwindow and text source,
creates the necessary data structures and then sets appropriate PNR'’ s for viewing, scrolling, and
text selection.

The available options for text subwindows are specified via the following options record.

Options: TYPE = RECORD [
access: Access, menu, split, wrap, scrollbar, flushTop, flushBottom: BOOLEAN];

Access: TYPE = TextSource.Access;

If menu is TRUE, the standard text operations menu is instantiated with the subwindow at create
time. If split is TRUE, the subwindow may be divided into an arbitrary number of splits or
horizontal subregions by the user. If wrap isTRUE, alinethat istoo long to fit across the
subwindow will be broken at aword boundary and continued on the next line, instead of
terminating at the subwindow boundary. If scrollbar is TRUE, the subwindow will be provided
with avertical scrollbar. The BoOoLEAN'sflushTop and flushBottom specify if a standard border
isto be supplied at the top and bottom of the subwindow.

If the client does not supply the options argument at create time the following defaults will be
supplied.

defaultOptions: Options = [access: read, menu: TRUE, split: TRUE, wrap: TRUE,
scrollbar: TRUE, flushTop: FALSE, flushBottom: FALSE];

5.22.1 Basic Operations
Text subwindows are created by calling

Create: PROCEDURE [sw: Window.Handle, source: TextSource.Handle,
options: Options _ defaultOptions, position: Position _ 0];

position indicates theinitial character position in source that should be displayed at the top
of the subwindow.
The following procedure destroys atext subwindow, freeing all data structures and setting all PNRs
to system defaults. However, the client supplied source is not destroyed.
Destroy: PROCEDURE [sw: Window.Handle];
Attempting to destroy a non-text subwindow is a nop.
The following procedures allow the client to alter the contents of the text source currently being

displayed in the text subwindow. The text subwindow and source must have either edit or append
access to correctly use these operations.

DeleteText: PROCEDURE |
sw: Window.Handle, pos: Position, count: LONG CARDINAL];

I mplementation Components

Clients may insert text, at the current insertion position, by calling one of the following procedures.

InsertChar: PROCEDURE [sw: Window.Handle, char: CHARACTER];
InsertString: PROCEDURE [sw: Window.Handle, s: STRING];
InsertSubString: PROCEDURE [sw: Window.Handle, ss: String.SubString];

5.22.2 Positioning and Selection Operations

The following procedures allow clients to obtain and alter the current state of a text subwindows
insertion, selection and "end-of-file" positions.

GetEOF: PROCEDURE [sw: Window.Handle] RETURNS [Position];

Getlnsertion: PROCEDURE [sw: Window.Handle] RETURNS [Position];

GetSelection: PROCEDURE [sw: Window.Handle] RETURNS [left, right: Position];

SetEOF: PROCEDURE [sw: Window.Handle, eof: Position];

SetInsertion: PROCEDURE [sw: Window.Handle, position: Position];

SetSelection: PROCEDURE [sw: Window.Handle, left, right: Position];

The client can determine if any portion of the source is currently being displayed with the following
procedure.

PositionlsVisible: PROCEDURE [sw: Window.Handle, position: Position] RETURNS [BOOLEAN];

The following procedure enables clients to resolve window coordinates to the nearest text source
positions. It aways returnsavalid position.

PositionFromPlace: PROCEDURE [sw: Window.Handle, place: Window.Place]
RETURNS [position: Position];

Clients may determine the position of the first character on any line by calling.

GetPosition: PROCEDURE [sw: Window.Handle, line: CARDINAL]
RETURNS[Position];

Clients can position the top of atext subwindow to an arbitrary position within the text source by
caling.

SetPosition: PROCEDURE [sw: Window.Handle, position: Position];

The following procedure first finds the next line break and then does a SetPosition.
PositionToLine: PROCEDURE [sw: Window.Handle, position: Position];

5.22.3 Information/Alteration Operations

The following operations allow clients to interrogate and alter internal aspects of atext subwindow.

When atext subwindow is moved or sized clients must call.

73

74 Tajo Functional Specification

Adjust: ToolWindow.AdjustProcType;

Clients can enable/disable the blinking caret for an append or edit text subwindow by calling.

BlinkingCaret: PROCEDURE [sw: Window.Handle, state: OnOff];

All output to text subwindows is buffered for efficiency purposes. To ensure al pending output has
really made it to the source clients can call.

ForceOutput: PROCEDURE [sw: Window.Handle];

The following two procedures allow clientsto interrogate or alter the current options setting for a
text subwindow.

GetOptions: PROCEDURE [sw: Window.Handle] RETURNS [options: Options];

SetOptions: PROCEDURE [sw: Window.Handle, options: Options];

The following two procedures allow clients to interrogate or alter the text source for atext
subwindow.

GetSource: PROCEDURE [sw: Window.Handle] RETURNS [source: TextSource.Handle];

SetSource: PROCEDURE [
sw: Window.Handle, source: TextSource.Handle, position: Position _ 0, reset: BOOLEAN _
TRUE];

Thereset BOOLEAN indicates whether the display/source correspondance is valid or should be
rebuilt.

The following procedures are used internaly in building the menu and split view facilities. They
are potentially useful for constructing client menu routines.
SplitView: PROCEDURE [sw: Window.Handle, key: Keys.KeyName, y: INTEGER];

Split atext subwindow y bits down from the top of sw. key should be Yellow.

DisplayHandleFromPlace: PROCEDURE [sw: Window.Handle, place: Window.Place]
RETURNS [display: TextDisplay.Handle];

Returns the display object for the split that contains the place.

5.22.4 Activation Operations

Tajo provides facilties for notifying Tools that users are not interested in the display state of a
particular Tool (i.e. make yourself tiny). The following procedures are provided to allow clients to
make a similar request of a specific text subwindow.

Sleep: PROCEDURE [sw: Window.Handle];

Requests that the text subwindow package minimizeit’s storage and resource requirements by
destroying all state related to the displaying of text.

I mplementation Components

Wakeup: PROCEDURE [sw: Window.Handle];

Requests that the text subwindow package recompute all it’s display state.

5.22.5 Menu Operations

The following procedures are used by the text subwindow package to implement the TextOps
menu. They are presented here so clients may contruct their own menus that contain these
operations. In the following descriptions adisplay region is either a subwindow or one of its splits.

FindMCR: Menu.MCRType;
Implementsthe Find command. Uses the current selection as the argument to find. If the
current selection is contained in this display region then search from that position otherwise use
the current top of this display region.

NormalizelnsertionMCR: Menu.MCRTYype;
Position the display region such that the line containing the insertion position is at the top of
the display region.

NormalizeSelectionMCR: Menu.MCRTYype;
If is subwindow contains the current selection, position the display region such that the line
containing the current selection is at the top.

PositionMCR: Menu.MCRType;
Convert the current selection as an octal number and position the display region such that the
line containing that position is at the top of the display region.

SplitMCR: Menu.MCRType;
Splits the display region into two splits.

WrapMCR: Menu.MCRType;

Toggles the wrap boolean in the text subwindow options record.

75

76 Tajo Functional Specification

5.23 Tool

Many Tool writers want the user interface mechanisms of Tajo without worrying about the details of
invocation. The Tool interface reduces the client’s needed knowledge of the more basic levels of
Tajoto aminimum. Refer to the Simple and Sample Tool descriptionsin the appendices for
examples of Tools that uses the Tool interface.

5.23.1 Tool Creation

Thefirst thing a Tool doesiscall:

Create: PROCEDURE [name: STRING, makeSWsProc: MakeSWsProc,
initialState: State _ default, clientTransition: ToolWindow.TransitionProcType _ NiL,
movableBoundaries: BOOLEAN _ TRUE, initialBox: Window.Box _ ToolWindow.nullBox]
RETURNS [window: Window.Handle];

MakeSWSsProc: TYPE = PROCEDURE [window: Window.Handle];

The name parameter is the string that appearsin a Tool’ s black name band. From this string
are derived the strings that are used in the tiny box and inactive menu.

When the initialState isdefault the Tool assumes a predetermined state depending on how it
iscreated. The Tool isinitialized to be inactive when loaded from the command linein order
to facilitate building image and checkpoint files with collections of inactive Tools. The Tool is
initialized to be active when loaded while the user isin Tgjo becauseit islikely that he wants to
use the Tool right away.

If the clientTransition procedureis not NIL it is called before the Tool is about to change
state (e.g., before calling makeSWsProc, see below) and before anything is done to the data
managed by the Tool interface. The one exception to this ordering rule is that
FormSW.FreeAllltems is caled for each FormSW in the Tool when the Tool is going
inactive before the client’ s transition procedure is called. Thisis done becauseit is common for
aclient’stransition procedure to deallocate a record containing data that the FreeAllltems
procedure references. Thus, the data must be referenced before it goes away. [If the client doesn't
like being called in this order he could set his own procedure to be the window transition procedure which could

cal Tool.Transition.]

When the movableBoundaries parameter is TRUE the user may select the boundary line
between subwindows and reposition it.

TheinitialBox parameter can be used to specify the Tool box (bitmap relative). A value of
ToolWindow.nullBox lets Tgjo assign the box from the next available box slot.

5.23.2 Subwindow Creation

At various points, depending on theinitial state of the Tool and user actions, the makeSWsProc
procedure supplied to Create iscalled by Tgjo in order to give the client the opportunity to create
subwindows and menus. Inthe makeSWsProc procedure, the client may call one or more of the

I mplementation Components

following procedures to create subwindows:

MakeFileSW: PROCEDURE [window: Window.Handle, name: STRING,
access: TextSW.Access _ append, h: INTEGER _ DefaultHeight]
RETURNS [sw: Window.Handle];

May raise TextSource.Error[fileNameError] if access isread and the fileis not found.
MakeFormSW: PROCEDURE [window: Window.Handle, formProc: FormSW.ClientitemsProcType,

h: INTEGER _ DefaultHeight]
RETURNS [sw: Window.Handle];

MakeMsgSW: PROCEDURE [window: Window.Handle, lines: INTEGER _ 1]
RETURNS [sw: Window.Handle];

MakeStringSW: PROCEDURE [window: Window.Handle, access: TextSW.Access _ append,
h: INTEGER _ DefaultHeight]
RETURNS [sw: Window.Handle];

MakeTTYSW: PROCEDURE [window: Window.Handle, name: STRING, h: INTEGER _ DefaultHeight]
RETURNS [sw: Window.Handle];

Clients can use above procedures succesfully with only cursory knowledge of Tajo.

The client can use other methods to create subwindows and then communicate the existence of them
to the Tool interface by calling.

AddThisSW: PROCEDURE [window, sw: Window.Handle, swType: SWType _ predefined];

[Warning: Usually the Create call hasn’t returned when the makeSW sProc procedure is called. This means that the
Window.Handle variable into which the client assigns the value returned from Create is uninitialized. Thus, the client
should not reference this variable in his makeSW sProc procedure. Instead, the client should use the window parameter
passed to the makeSW sPr oc procedure].

5.23.3 Unique SWTypes

The Tool interface can manage client defined subwindow typesjust as it manages the predefined
subwindow types: Form, File, Message, String and Teletype.

SWType: TYPE = MACHINE DEPENDENT {vanilla(0), predefined(376B), last(377B)};

Defining your own subwindow typeis covered in Section 4.3. To register a subwindow type with
the Tool interface call:

RegisterSWType: PROCEDURE [adjust: ToolWindow.AdjustProcType _ SimpleAdjustProc,
sleep: SWProc _ NopSleepProc, wakeup: SWProc _ NopWakeupProc]
RETURNS [uniqueSWType: SWType];

77

78 Tajo Functional Specification

The adjust procedure is called whenever the user causes the subwindow size to change or be
moved. The sleep procedureis called whenever the window in which the subwindow lives
becomestiny. The subwindow isthen expected to throw away any datathat it uses only to
display its contents. Thewakeup procedure undoes what sleep did when the Tool becomes
active again.

If the client wanted to register a subwindow type that would use the SimpleAdjustProc, the
NopSleepProc and the NopWakeupProc he could instead refer to the subwindow as vanilla.

5.23.4 Destruction and De-allocation

Normally, anything that the client creates should be destroyed by him before a Tool goesinactive,
e.g. any private data. The Tool mechanism relieves the client of the chore of destroying subwindows
and menus that were created in a standard way. In particular, menus should be created by a call to
Menu.Make, FormSW.ltemDescriptors should be created by acall to
FormSW.AllocateltemDescriptor, FormSW.IltemObjects should be created by callsto
FormSW.*Item procedures.

The following procedure is used to destroy a Tool window created by the Tool interface. It may
also be used for removing a subwindow of the Toal.

Destroy: PROCEDURE [window: Window.Handle];

This procedure has the side effect of calling the clientTransition procedure with anew state
of inactive before the Tool is destroyed. If window is a subwindow its associated data
structures are cleaned up as described above.

5.23.5 Utilities

A Tool might want to switch one subwindow for another subwindow inaTool. This can be done
by acal to:

SwapSWs: PROCEDURE [window, oldSW, newSW: Window.Handle,
newType: SWType _ predefined]
RETURNS [oldType: SWType];

window isthe Tool window. oldSW identifies the subwindow that is currently displayed that
will be replaced by newSW. newSW can not currently be part of the tree that makes up the
hierarchy of displayed windows. When this procedure has returned, old SW has been removed
from thistree. Error[code: swNotFound] may be raised from this procedure.

The original newSW must be created with procedures other then the ones provided in the Tool
interface, e.g., you might call ToolWindow.CreateSubwindow followed by acall to
FormSW.Create. Inaddition, the call to CreateSubwindow should supply NIL asthe
parent argument.

I mplementation Components

UnusedLogName guarantees unique log file names among File and Teletype subwindows. It does
this by enumerating all of the current file subwindows and checking that the nameis not currently
inuse. If itis, then aderived name is generated and the check made again. This continues until a
unigue name is generated. Note that the Alto file system and Mesa streams do not protect a client
from simultaneous multiple updates of afile, so this procedure should be called if thereisa
possibility of there being multiple instances of the Tool or if the same Tool might be run in both
Alto/Tajo and X Debug during the same session.

UnusedLogName: PROCEDURE [unused, root: STRING];

unused’slengthisset to 0, root isappended to unused, some designation of the running
environment is appended to unused (nothing when in Tagjo, 'D when in the debugger and ’|
when in theinternal debugger) and (if the unused is still not unique) a number is appended to
unused.

5.23.6 Errors

ErrorCode: TYPE = {notATool, unknownSWType, swNotFound, invalidwWindow};
Error: SIGNAL [code: ErrorCode];

Any procedure that takes awindow argument can raise invalidWindow (if window is not valid)
or notATool (if window was not created by Create). unknownSWType can be raised by any
procedure that takes a SWType argument.

79

80 Tajo Functional Specification

5.24 ToolDriver

The ToolDriver interface allows a Tool to inform the Tool Driver package of its existence, and of the
existence of its subwindows. This allows the ToolDriver package to make use of the functions
provided by a Tool on behalf of auser communicating with the package viaa script file. Every

Tool should use the ToolDriver facilitiesif it is providing some generally useful function. Although
the ToolDriver is an add-on package (i.e., it is not built into the regular Tajo), the interface routines
are available in Tgjo even without the Tool Driver so that the Tool being STARTed need not concern
itself with unbound procedures.

To announce its existence, a Tool should call

NoteSWSs: PROCEDURE [tool: STRING, subwindows: AddressDescriptor];

AddressDescriptor: TYPE = DESCRIPTOR FOR ARRAY OF Address;

Address: TYPE = RECORD [name: STRING, sw: Window.Handle];

tool iswhatever name the Tool wishesto go by for purposes of the ToolDriver. It need not be the
same as the name displayed in the herald of the Tool’ s window, and in general it will be different
because the Tool Driver imposes the restriction that tool contain only alphanumerics.

subwindows isalist of subwindows that the Tool wishes to make available to the ToolDriver.
The name for each of these must also obey the restriction to contain only alphanumerics.

When aTool goesinactive, unlessit is prepared to be called by the Tool Driver while inactive, it
should call

RemoveSWSs: PROCEDURE [tool: STRING];

Tools that register with the ToolDriver interface should have unique names in each of the menus
used by the Tool so as not to be ambiguous to the Tool Driver package.

I mplementation Components 81

5.25 Tool Font

The following routines provide Tajo’ s interface to the more primitive Vista WindowFont facilities.
Basically, these routines provide font storage management and/or font swapping.

Create: PROCEDURE [Compatibility.FHandle] RETURNS [WindowFont.Handle;

Allocates afont object, initializesit, and provides routines to manage font swapping (if
appropriate).

Destroy: PROCEDURE [WindowFont.Handle];

Destoys the data segment and font object.

StringWidth: PROCEDURE [string: STRING, font: WindowFont.Handle _ NiL]
RETURNS [[0..LAST[INTEGER]]J;

Computes the width of the passed string. This routine maps non-printing characters (e.g.,
control characters, etc.) into afont specific default character.

82 Tajo Functional Specification

5.26 ToolWindow

The Window illusion is one of the central notions of the Tagjo. The ToolWindow interface provides
the functions required to implement the window illusion for Tajo and relies heavily on the interface
Window, in the Vistawindow package.

Most useful TYPES are copied from Window into the ToolWindow interface.

5.26.1 Tajo'suse of Windows

Vista defines awindow object which is arecord which contains only the information necessary to
define and operate upon awindow, independent of Tajo. Within this section of the specification we
will discuss only the fields within the window object that are germane to the functions provided by
ToolWindow.

Tajo implements a mechanism for associating Tool specific datawith Vistawindow objects that is
transparent to clients of Tgjo. Such information is omitted from the following descriptions.

Asmentioned earlier, Tgjo specializes Vista' swindows. The five defined types are:

WindowType: TYPE = {root, tool, clipping, sub, other};

In descending levels of the window tree: the root window is the bitmap, atool window is
referred to in this document as a Tool window, aclipping window is associated with each tool
window and should be of no concern to clients, sub windows are functional display areas and
other windows are all lower levels.

In the event you have a pointer to awindow and you want to find out what type of window it isyou
can call.

Type: PROCEDURE [window: Handle] RETURNS [WindowType];

A box isarectangular part of something -- either adisplay screen or the bitmap or awindow or a
subwindow. Vistaalso does the appropriate clipping required when actually putting bits into the
objects. Thefieldsin abox’s defining record are the x and y coordinates of itstop left corner,
relative to the window that it is apart of, and its width and height. Note that the box can extend
"beyond" the edges of the thing that it isin.

Place: TYPE = RECORD [X, Y: INTERGER];
Dims: TYPE = RECORD [w, h: INTEGER];
Box: TYPE = RECORD [place: Place, dims: Dims];

5.26.2 Tool Windows

Severa routines are provided for the creation and adjustment of the tool window and al its
children -- that is, of the space occupied by the Tool’ s window, as distinct from the content within the
window.

I mplementation Components 83

These routines allow a Tool to create new windows. They also alow for the re-ordering of the stack
of windows, thus altering which windows are on top of and contain others.

It isthe Tajo philosophy that the (human) user of the Tools should be able to arrange the windows
on hisdisplay any way he wants. Moreimportantly, the Tool is at the mercy of the user in terms of
the size and position of windows. Tools should be written with this understanding.

The following routine is provided for the creation of atool window:

Create: PROCEDURE [name: STRING, adjust: AdjustProcType, transition: TransitionProcType,
box: Box _ nullBox, limit: LimitProcType _ StandardLimitProc,
initialState: State _ active, named: BOOLEAN _ TRUE]
RETURNS [Handle];

This procedure creates a new tool window with the indicated box. A nullBox valueisused to
indicate automatic system allocation of initial position and size. If named is TRUE the window
will have ablack band across the top which displaysname. The three procedures which are
passed as arguments are discussed in detail below.

Tool windows can be in one of the following states.

State: TYPE = {inactive, tiny, active};

When atool window isinactive thisis an indication to the Tool that the user is not now interested in
any of the functions implemented by this Tool and all resources utilized by the Tool should be freed.
When the tool window istiny thisis an indication to the Tool that the user is not interested in the
display and that all resources asscoiated with the display state should be freed.

The state of a Tool window is returned from

GetState: PROCEDURE [window: Handle] RETURNS [state: State];

Tool windows can have one of the following size attributes.

Slze: TYPE = {tiny, normal, zoomed};

When aTool istiny asmall rectangular box is displayed that contains some text derived from the
name of the Tool. Thistext can be changed by acal to:

SetTinyName: PROCEDURE [window: Handle, name: STRING, hame2: STRING __ NIL];

name isthefirst line of text and name?2 is the second.

When aTool isinactive amenu entry whose text is derived from the name of Tool is placed on the
Inactive menu. To change the Tool name call:

SetName: PROCEDURE [window: Handle, name: STRING];

The following two procedures return heap strings that describe the STRINGS used as namesin the
various Tool states. The client must free these heap strings.

84 Tajo Functional Specification

GetName, GetlnactiveName: PROCEDURE [window: Handle] RETURNS [name: STRING];
GetTinyName: PROCEDURE [window: Handle] RETURNS [name, name2: STRING];

Three client-defined procedures are supplied on a create tool window call. The functions of these
procedures in the next two sections.

5.26.2.1 Adjust and Limit Procedures

Although it isthe user who, in general, moves windows around on the display in order to satisfy his
own ideas about a suitable arrangement, Tgjo alows theindividual Toolsto, @) know when one of
their windows has been so adjusted and, b) exercise veto or modification rights over moves. The
latter is particularly useful in allowing a Tool to prohibit, for example, its window becoming smaller
than some certain size or being moved completly off the visible display region.

The Tool’slimit procedureis of the form

LimitProcType: TYPE = PROCEDURE [window: Handle, box: Box] RETURNS [Box];

The Tool’ s adjust procedureis of the form

AdjustProcType: TYPE = PROCEDURE [window: Handle, box: Box, when: When];
When: TYPE = {before, after};

Whenever the system is about to adjust the window’ s location or size, it calls the limit procedure. 1t
then uses the returned box to call the Tool’ s adjust procedure. The adjust procedure is called both
before and after the actual adjustment is made. The adjust procedure is also called whenever the
bitmap is atered. Unlike previousversions of Tgjo it is now appropriate to manipulate subwindow boxes in the

adjust procedure by procedure calls on the Window interface.

The following procedure performs what we consider the normal window limiting operations.

StandardLimitProc: LimitProcType;

5.26.2.2 Transition Procedure
The Tool is notified whenever a user action causes Tgjo to change the state of the Tool.
TransitionProcType: TYPE = PROCEDURE [window: Handle, old, new: State];

A Toal’s TransitionProc can be changed by acall to:

SetTransitionProc: PROCEDURE [window: Handle, proc: TransitionProcType]
RETURNS [TransitionProcType];

After aTool window isall set up, the client should call the following procedure that causes window,
and its subtree of windows, to be displayed:

I mplementation Components 85

Show: PROCEDURE [window: Handle];

The following procedure removes window from the group of windows displayed on the bitmap:

Hide: PROCEDURE [window: Handle];

The following procedure is used to destroy both tool windows and subwindows.

Destroy: PROCEDURE [window: Handle];

5.26.3 Subwindows

To aid the Tool in the manipulation of the content of the window, the notion of the subwindow has
been invented. A subwindow isabox (rectangle defined by an x,y and awidth and height) within

the clipping window. Within isin quotes there, because although the subwindow box is defined in
terms of the clipping window -- that is its coordinates are subwindow-relative, it may extend "outside”
of the actual window -- say if its"X" is negative or its height is greater than that of the window.

Subwindows are normally created by the client in order to simplify his window manipulations. For
instance, he can create a subwindow and arrange it to be the left half of hiswindow. Then, if he
draws pictures in the subwindow, the pictures will be truncated by the system when they reach the
right edge of his subwindow and won't overlay whatever isin the right half of the window.

The system provides three procedures to define subwindows:

CreateSubwindow: PROCEDURE [parent: Handle, display: DisplayProcType _ NIL,
box: Box _ nullBox, boxesCount: BoxesCount _ one]
RETURNS [Handle]

Creates a new subwindow object with the indicated box within its (as yet unspecified) window
and enlinks it into the parent window’s chain of subwindows.

5.26.3.1 Display Procedure

Thedisplay procedure is a procedure of the form

DisplayProcType: TYPE = PROCEDURE [Handle];

This procedureis called whenever the content of the window needs to be refreshed onto the bitmap
display. This can berequired, for instance, if awindow previously on top of this window is moved
out of the way.

This version of Tajo supports and encourages both partial and incremental display updating. The
Vista package documentation describes how a display procedure accomplishes partial repainting.
Therein the boxesCount parameter is explained. For all Tajo-supplied subwindow types, display
procedures are automatically supplied at create time.

86 Tajo Functional Specification

The following two procedures are not normally used, as subwindows are enlinked upon creation.

EnlinkSubwindow: PROCEDURE [parent, child, youngerSibling: Handle]

Links the subwindow into the chain in the indicated position.

DelinkSubwindow: PROCEDURE [child: Handle]

Removes the subwindow and it’s children from the window structure.

5.26.4 Window Content Manipulation

The Vistawindow package provides alarge number of procedures for putting light and dark bitsinto
the window or moving them about. These procedures are only of interest to clients who wish to
construct their own subwindow types and we refer them to the Vista documentation.

5.26.5 Utilities

Inorder to determine the Tool window of a subwindow call

WindowForSubwindow: PROCEDURE [sw: Handle] RETURNS [window: Handle];

To enumerate al the subwindow within a Tool window call

EnumerateSWSs: PROCEDURE [window: Handle, proc: EnumerateSWProcType];
EnumerateSWProcType: PROCEDURE [window, sw: Window.Handle]
RETURNS [done: BOOLEAN];

To active or deactivate a Tool window call

Activate, Deactivate: PROCEDURE [window: Handle];

To change the Size of a Tool window call

MakeSize: PROCEDURE [window: Handle, size: Size];

To change the size and position of a Tool window call

SetBox: PROCEDURE [window: Handle, box: Box];

5.26.6 Errorsand Abnormal Conditions

The ToolWindow routines generate no SIGNALs as aresult of improper use or specification. In
general, the conditions that one might expect to generate a SIGNAL just do nothing. Thisisinline
with the philosophy that the window isreally just showing the user apiece of an infinite plane -- the
Tool can (attempt to) put things anywhere on that plane; only the portion of the plane within the
window is displayed to the user.

I mplementation Components 87

527TTYSW

The teletype subwindow interface enables traditional teletype interaction with auser. Other Tajo user
interaction facilities are based on the notification concept. Since many programs are already written
using ateletype-like control structure the tel etype subwindow is available to clients.

5.27.1 Creation/Destruction

A Teletype subwindow is created by acall to:

Create: PROCEDURE [sw: Window.Handle, backupFile: STRING, s: Stream _ NIL,
newFile: BOOLEAN _ TRUE, options: TextSW.Options _ defaultOptions];

defaultOptions: TextSW.Options = [access: append, menu: TRUE, split: TRUE,
wrap: TRUE, scrollbar: TRUE, flushTop: FALSE, flushBottom: FALSE];

ThebackupFile parameter specifies the name of the file on which the teletype subwindow writes.
The string is copied. However, if s isnot NIL then s is the stream handle on the file used. When
newFile is TRUE the length of the fileis set to zero at create time else the existing length is used.

Once the teletype subwindow is created the client must FORK a processto do Input. This process
should be able to handle the following SIGNALS and ERRORS:

LineOverflow: SIGNAL [S: STRING] RETURNS [NS: STRING];

Indicates that input hasfilled the string s, the current contents of the string is passed as a
parameter to the SIGNAL. The catch phrase should return a string ns with more room.

Rubout: SIGNAL;
Indicates that the DEL key was typed during TTYSW.GetEditedString.

Additionally these exception condition could arise:

ABORTED: ERROR;
Indicates that the Input process has been aborted.

String.InvalidNumber: ERROR;

Indicates that the user entered an invalid number in one of the number getting procedures.

ErrorCode: TYPE = {notATTYSW};
Error: SIGNAL [code: ErrorCode];

Indicates that a passed in subwindow isnot aTTY SW.

The following procedure destroys tel etype subwindow attributes of the subwindow. However, before
this procedureis called the Input process should be aborted.

88 Tajo Functional Specification

Destroy: PROCEDURE [sw: Window.Handle];

If the client wishes to destroy the teletype subwindow from within the Input process he should
instead call

DestroyFromBackgroundProcess: PROCEDURE [sw: Window.Handle];

as he returns from the Input process.

5.27.2 Input and Output

From the Input process, these are the provided input routines:

GetChar: PROCEDURE [sw: Window.Handle] RETURNS [CHARACTER];

Returns the next character typed by the user.

The following procedure is used by the remaining input procedures to get input from the user while
allowing him simple editing functions.

GetEditedString: PROCEDURE [sw: Window.Handle, s: STRING,
t: PROCEDURE [CHARACTER] RETURNS [BOOLEAN], newstring: BOOLEAN]
RETURNS [CHARACTER];

User input is appended to the string s. The user-supplied procedure t determines which
character terminates the string; t should return TRUE if the character ¢ passed to it should
terminate the string. If the BOOLEAN newstring is FALSE, characters are simply appended to s.
If newstring iS TRUE, the first character of input plays adeciding role: if it isthe Ascii.ESC
character, the current contents of s are displayed then subsequent input character(s) are appended
to s (note: the ESC is not appended to s); however, if itisnot ESC, s isinitialized to empty.
The SIGNAL TTYsw.LineOverflow israised if s.maxlength isreached. The following specia
characters are recognized on input (and are not appended to s):

DEL - raisesthe SIGNAL TTYSwW.Rubout

A, "H (backspace) - delete the last character (sends “H)

AW, ~Q (backword) - delete the last word (sends multiple ~H)
"X - delete everything (sends multiple *H), s is set to empty
"R - retype the line (sends CR, LF, then s)

AV - quote the next character, used to input special characters

The returned character ¢ is the character which terminated the string; ¢ is not echoed nor
included in the string.

The following Get* procedures all call GetEditedString passing TRUE for newstring.

GetString: PROCEDURE [sw: Window.Handle, s: STRING, t: PROCEDURE [CHARACTER] RETURNS [BOOLEAN]]
RETURNS [CHARACTER];

I mplementation Components 89

The terminating character is echoed. No valueis returned.

GetlD: PROCEDURE [sw: Window.Handle, s: STRING];
Input is terminated with a space or carriage return. The terminating character is not echoed.

GetLine: PROCEDURE [sw: Window.Handle, s: STRING];
Input is terminated with a carriage return.

These are numerial input routines:

GetNumber: PROCEDURE [sw: Window.Handle, default: UNSPECIFIED, radiX: CARDINAL]
RETURNS [UNSPECIFIED];

GetlID followed by acall to String.StringToNumber. The value default will be displayed
if ESC istype. radix isadefault value, usethe’B or ' D notation to force octal or decimal.
radix values other that 8 or 10 cause unpredictable results.

GetDecimal: PROCEDURE [sw: Window.Handle] RETURNS [INTEGER];
GetID followed by acall to String.StringToDecimal.

GetOctal: PROCEDURE [sw: Window.Handle] RETURNS [UNSPECIFIED];
GetlID followed by acall to String.StringToOctal.

Long numerial input routines are available:

GetLongDecimal: PROCEDURE [sw: Window.Handle] RETURNS [LONG INTEGER];

GetLongNumber: PROCEDURE [sw: Window.Handle, default: LONG UNSPECIFIED, radiX: CARDINAL]
RETURNS [LONG UNSPECIFIED];

GetLongOctal: PROCEDURE [sw: Window.Handle] RETURNS [LONG UNSPECIFIED];

The Put interface can be used to produce formatted output to the subwindow. However, clients can
use the following output procedures:

AppendChar: PROCEDURE [sw: Window.Handle, char: CHARACTER];
AppendString: Userlnput.StringProcType;

5.27.3 Utilities

The following procedure returns TRUE when the next character of output would start anew line;

NewLine: PROCEDURE [sw: Window.Handle] RETURNS [BOOLEAN];

The following procedure sets the echoing mode of characters entered using GetEditedString. It
returns the previous state of the echoing mode. The default echoing mode is TRUE:

SetEcho: PROCEDURE [sw: Window.Handle, new: BOOLEAN] RETURNS [old: BOOLEAN];

90 Tajo Functional Specification

5.28 User I nput

The Userlnput interface provides the client with the routines that are used to interpret user actions.
Note that this interface depends heavily upon the definitions type and data definitions contained in
Keys interface.

5.28.1 Notification

Clients who are only interested in normal keyboard character input should skip this section and go
directly to Section 5.28.3 User Typeln.

A Tool can get notified of achange in the user state at the Interrupt Level and the Processing Level.
Interrupt Level notifications usually take place within one vertical retrace of when the (hardware)
stimulus occurs. Processing Level natifications occur in the order in which the stimuli occured, but
may be far removed from the stimulus in time.

Processing L evel

The Processing Level iswhere the usual processing of user input happens. The basic notion is
embodied in the phrase "Don't call us, we'll call you". Thereal interface hereis a set of Processing
Notification Routines, or PNRs, one for each, Tgjo defined, interesting device or event that may
change state.

Here are the relevant type declarations for PNRs:

CursorPNRType: TYPE = PROCEDURE [window: Window.Handle, enterExit: EnterExit];
KeyPNRType: TYPE = PROCEDURE [

key: Keys.KeyName, downUp: Keys.DownUp, window: Window.Handle, place: Window.Place];
EnterExit: TYPE = {enter, exit};
KeyPNRClass: TYPE = {keyset, keyboard, redButton, yellowButton, blueButton}

KeyName: TYPE = Keys.KeyName;

Button: TYPE = KeyName[Red..Yellow];

Key: TYPE = KeyName[Five..R8];

Paddle: TYPE = KeyName[Keysetl..Keyset5];

We stated earlier that there is a problem in deciding which Tool should receive the notification for a
particular user action. Tools are notified of al user actions that occur when the cursor isin the
Tool’swindow(s) or more specifically a subwindow within the Tool’ swindow. By associating a
context with each window object that contains the set of PNRs specific to that window, we can
simply call the PNR associated with the specific user action.

Fine Point: The cursor is considered to bein only one window at atime. Thisis because windows that are "on top
of* other windows are considered to "obscure" those that are "below" them.

Note that Tool writers are free to use the same PNR for more than one action. Also, the same PNR
may be used in more than one window.

I mplementation Components

Various Tajo packages and Tools implement awide range of useful PNRs that Tool writers should
feel free (indeed, encouraged) to use. To set the PNRs for awindow, the following procedures are
available.

SetCursorPNR: PROCEDURE [window: Window.Handle, proc: CursorPNRType _ NIL];

Sets the cursor PNR for the indicated window to be the provided procedure. The procedure
proc will be called whenever the subwindow is entered or exited. If proc isnot supplied then
the system default will be used.

SetKeyPNR: PROCEDURE [
window: Window.Handle, keyClass: KeyPNRClass, proc: KeyPNRType _ NiL];

Setsthe indicated key PNR for the indicated window to be the provided procedure. This
procedure will be called whenever the key(s) changes state. If proc is not supplied then the
system default will be used.

A standard cursor PNR is
NopCursorPNR: CursorPnrType;

A call on thisPNR is always a Nop.
Three Tajo supplied key PNRs are

DefaultkeyPNR: KeyPNRType;

If this PNR is called the actions are indirected to the default window:

GetDefaultWindow: PROCEDURE RETURNS [Window.Handle];

IgnoreKeyPNR: KeyPNRTYype;
If the PNR is called with downUp equal down, it will blink the display, otherwisethe call isa
Nop.

NopKeyPNR: KeyPNRType;

A call onthisPNR is always a Nop.

To set al the key PNRs for awindow to be DefaultKeyPNR, IgnoreKeyPNR or NopKeyPNR,
call

SetDefaultPNRs: PROCEDURE [window: Window.Handle];
SetlgnorePNRs: PROCEDURE [window: Window.Handle];

SetNopPNRs: PROCEDURE [window: Window.Handle];

respectively. All of these procedures will set the cursor PNR to be NopCursorPNR.

91

92 Tajo Functional Specification

The following PNRs are the used during editing and append-only type-in:
EditTypelnPNR: KeyPNRType;
TypelnPNR: KeyPNRType;

FunctionKeysetPNR: KeyPNRType;

The following procedures allow you to access useful data that is maintained by the Processing Level.

GetCurrentCursorPosition: PROCEDURE [Window.Handle] RETURNS [Window.Place];

Returnsthe "current” state of the Processing Level cursor position (the coordinates of the "hot
spot" of the cursor in the specified windows coordinates), i.e., the state as of the last Processing
Level notification (the last call on aPNR).

EnumerateDownKeys: PROCEDURE [
window: Window.Handle, downUp: DownUp, place: Window.Place];

This procedure will generate acall on the appropriate PNR for all keysthat are downUp. This
means when you call this procedure it will process the current hardware state and call the
appropriate PNR, in the window, for every key that is in the same state as the passed downUp.

Interrupt Level

We do not envision that clients will really be concerned with the Interrupt Level. We present this
interface primarily for understanding purposes and for the rare cases that will requireit.

User Input maintains two procedure variables that contain descriptors for the two Interrupt
Notification Routines (SNRs). Here are the type declarations for the two SNRs:

MouseSNRType: TYPE = PROCEDURE RETURNS [screenPlace: Window.Place];

The primary purpose of this procedure is to track the mouse.

KeySNRType: TYPE = PROCEDURE [key: KeyName, du: DownUp, screenPlace: Window.Place];

The mouse SNR is called every time the Interrupt Level gets control of the CPU. The key SNRis
called only if a paddle, button, or key has changed state. The Interrupt Level has routines to alter
the procedure variables so that atool can get its own SNRs invoked.

Thetwo SNR variables are initialized to point at the system supplied ones. The default mouse SNR
merely sees that the cursor doesn’t go off the screen. The default key SNR causesitemsto be
enqueued for later processing by the Processing Level. Thereis a separate call on the key SNR for
each depression or release of akey even if more than one happens "simultaneously”. [Note that no

items are enqueued for subwindow boundary crossings. Queueitems pertain only to a DownUp of aKey.]

SwapMouseSNR: PROCEDURE [new: MouseSNRTYype] RETURNS [old: MouseSNRType];

I mplementation Components 93

This procedure allows you to subsitute your own mouse SNR for the current one.

SwapKeySNR: PROCEDURE [new: KeySnrType] RETURNS [old: KeySnrType];
These procedures alow you to subsitute your own mouse or key SNR for the current one.
We only envision use of SwapMouseSNR or SwapKeySNR in atypical situations. Considerable

knowledge is required to do your own processing at the Interrupt Level. If it'sreally necessary, you
should use the system SNR'’ s as prototypes.

The following procedures are used by the Interrupt and Processing levels. They should only be of
interest if you are writing your own stimulus level routines (SNRs).

DequeueUA: PROCEDURE RETURNS [key: Keys.KeyName, downUp: DownUp, screenPlace: Window,
action: BOOLEAN];

Removes (dequeues) a user action and returns the head item of the queue. If the queueis

empty, action iSFALSE.
EndOfUAQ: PROCEDURE RETURNS [BOOLEAN];

Returns TRUE if there are no items (user actions) in the queue, FALSE otherwise.

EnqueueUA: PROCEDURE [key: Keys.KeyName, downUp: DownUp, screenPlace: Window.Place];

Enqueues a user action (item) in the queue.

FlushUAQ: PROCEDURE;

Sets the user action queue empty ignoring any itemsin the queue.

5.28.2 Character Trandation

The computer hardware presents an unencoded bit interface for the keyset and keyboard. Tgo
contains tables and procedures for doing key stroke to ASCII character translation using the
definitions and notification mechanism described above.

The following procedure translates keyboard and/or keyset actions into characters

TranslateKeylntoChar: PROCEDURE [key: Key] RETURNS[char: CHARACTER];

5.28.3 User Typeln

The User Typeln facilities are built using the above described notification and character trandation
facilities. The Typeln facility lets the client supply a procedure that will be called whenever the
appropriate actions have taken place that correspond to a character being typed (e.g., key down, key
up, shift, control etc.). Typeln alowsthe client to essentially be free of any concern for "how it is
don€". Thereisoneimportant exception to this rule: there can be changes made in a subwindow that are not noticable
above the TypelnPNR level. If a Tool wishesto see these changes, it must operate at or below the TypelnPNR level.

94 Tajo Functional Specification

Clients of the type in mechanism supply procedures of the following TYPE.
CaretProcType: TYPE = PROCEDURE [window: Window.Handle, startStop: StartStop;

StringlnProcType: TYPE = PROCEDURE [window: Window.Handle, string: STRING];

These two procedures allow clientsto create/destroy type in for a specific subwindow.

CreateStringInOut: PROCEDURE [window: Window.Handle, in, out: StringProcType,
caretProc: CaretProcType _ NopCaretProc];

Error[code: windowAlreadyHasStringInOut] can be raised if the window has type-in.
DestroyStringlnOut: PROCEDURE [window: Window.Handle];
The following procedures allow clients to alter the procedures to be called for awindow with already
existing typein.

SetStringIn: PROCEDURE [window: Window.Handle, proc: StringProcType]
RETURNSJ[StringProcType];

SetStringOut: PROCEDURE [window: Window.Handle, proc: StringProcType]
RETURNS[StringProcType];

For the above two procedures Error[code: noStringInOutForWindow] can beraised if the
window has no typein.

The typein mechanismis also designed to allow a client to redirect input/output to another window
(Tool or subwindow). For example, a Tool has aMsgSW and a FileSW which accepts user type-in.
Type-in to the MsgSW could be redirected to the FileSW so that the user would only have to have
the cursor in the Tool window and not specifically in the FileSW when typing to the FileSW.

CreatelndirectStringInOut: PROCEDURE [from, to: Window.Handle];
Error[code: windowAlreadyHasStringInOut] can be raised if the window hastypein.

DestroylIndirectStringlnOut: PROCEDURE [window: Window.Handle];

The following procedures allow clients to drive the type in mechanism as though the data was coming
from the user. The returned BOOLEANS are TRUE only if window was prepared to accept input.

StuffCharacter: PROCEDURE [window: Window.Handle, char: CHARACTER] RETURNS[BOOLEAN];
StuffCurrentSelection: PROCEDURE [window: Window.Handle] RETURNS[BOOLEAN];

StuffString: PROCEDURE [window: Window.Handle, string: STRING] RETURNS[BOOLEAN];

The following procedure allows clients to output directly to awindow, bypassing any input filtering
that might have been performed.

StringOut: PROCEDURE [window: Window.Handle, string: STRING];

I mplementation Components

5.28.4 Utilities

Client operations that run for more than a few seconds can poll

userAbort: READONLY BOOLEAN,;

to seeif the user hasindicated that he wants to abort the operation by keying some abort sequence.
Everytimethat aPNR is called this variable is set to FALSE. In the unusual case that a client needs to
explicitely set this variable to FALSE he should call

ResetUserAbort: PROCEDURE;

Sometimes aclient is deep in the call stack of some notifier invoked operation from which he ssimply
wants to UNWIND. The following ERROR can be raised that will be caught at the top level of the PNR
mechanism.

ReturnToNotifier;: ERROR [string: STRING];

The client can catch the ERROR, post a message with string in it and let the ERROR propagate on
up.

A standard Tajo mechanism of prompting for user confirmation is to set the cursor to mouseRed
and call

WaitForConfirmation: PROCEDURE RETURNS [place: Window.Place, okay: BOOLEAN];

If okay =TRUE then the user pushed the red mouse button otherwise the user pushed either the
yellow or the blue mouse buttons. place isthe position of the cursor, bitmap relative, when the
button went down.

The cursor should be set back to its previous type upon return from the above procedure.

The following procedure returns when all the mouse buttons are rel eased.

WaitNoButtons: PROCEDURE;

Clients sometimes want to wakeup at regular time intervals to do some operation. Mesa's condition
variable timeout mechanism can be used to do this. However, sometimes a client needs to do a series
of operationsthat if done while the the PNR mechanism was invoking some other operation either
would preempt the user or could cause serious problemsin Tgjo, e.g., blinking the cursor. Thus, the
periodic notification mechanism is provided.

PeriodicNotifyHandle: TYPE = POINTER TO PeriodicNotifyEntry;
PeriodicNotifyEntry: TYPE;
PeriodicProcType: TYPE = PROCEDURE [window: Window.Handle, place: Window.Place];

CreatePeriodicNotify: PROCEDURE [
proc: PeriodicProcType, window: Window.Handle, rate: Process.Ticks]
RETURNS [PeriodicNotifyHandle];

95

96 Tajo Functional Specification

proc iscalled every interval defined by rate aslong as no other PNR operations are taking
place. If rate =0 it will run as often as possible.

CancelPeriodicNotify: PROCEDURE [PeriodicNotifyHandle] RETURNS [nil: PeriodicNotifyHandle];

Stops the periodic notification. Raises Error[code: noSuchPeriodicNotifier] if the passed in
handle is not valid (NIL is a no-op).

I mplementation Components

5.29 User Terminal

Theinterface UserTerminal describes the state of the user input/output devices (i.e., display bitmap,
display cursor, keyboard, mouse, and keyset), and allows the client to manipulate them. This
interface takes as fixed many of the characteristics of these devices and only allows variations such as
the number of keys or the size and resolution of the display. Thisinterface deals with many of the
lowest level attributes of the terminal and, with afew exceptions, should not be of interest to Tgjo
clients. This section only presents definitions and functions of general interest to the Tgjo client. The
Vista documentation describes other operations.

[Warning: Do not call User Terminal.SetState. Instead call TajoMisc.SetState].

Clients can determine the physical attributes of the display viathe following exported variables.

screenWidth: READONLY CARDINALJ[0..32767];
screenHeight: READONLY CARDINAL[0..32767];
pixelsPerInch: READONLY CARDINAL;

The bitmap display is addressed by xy coordinates defined as follows.

Coordinate: TYPE = MACHINE DEPENDENT RECORD [X, Y: INTEGER];

The state of the display is defined as:

State: TYPE = {on, off, disconnected};
on - Thedisplay is physically on and visible to the user (bitmap allocated).
off - The display is physically off and not visible to the user (bitmap allocated).
disconnected - The same as off with no allocated bitmap.

Clients may determine the current state of the bitmap display by calling

GetState: PROCEDURE RETURNS [state: State];

The bitmap display is capable of displaying black-on-white or white-on-black. Clients may determine
or ater the current state of the background by using the following procedures.

GetBackground: PROCEDURE RETURNS [background: Background];
SetBackground: PROCEDURE [new: Background] RETURNS [old: Background];

Background: TYPE = {white, black};

Clients may momentarily blink (video-reverse) the display by calling

BlinkDisplay: PROCEDURE;

97

98 Tajo Functional Specification
5.30 Window

Thisinterfaceis only of interest to clients who are implementing their own subwindow types. Itis
also the primary interface for the Vistawindow package and is documented as a part of that package.
The following occur elsewhere in this document and are included here to reduce the number of levels
of indirection needed to understand Tgjo.

Handle: TYPE = POINTER TO Object;
Object: TYPE = RECORD [...];

I mplementation Components 99

5.31 WindowFont

The following description of the interface WindowFont is taken from the Vista documentation. Itis
included in this document as convenience to clients. Vistafont routines deal only in .strike fonts.
Vista provides routines for initializing and manipulating fonts and font objects. For details of these
operations we refer you to the Vista documentation.

The text painting procedures of the Window interface take as an argument a Handle on an object
from WindowFont. Thefields of aHandle are mostly private to the implementation.

Handle: TYPE = POINTER TO Object;
Object: TYPE = RECORD [...];

The bits within the font object that define the character pictures are private to the implementation.
The only public interfaces allow the client to determine the sizes of the characters in screen dots:

CharWidth: PROCEDURE [char: CHARACTER, font: Handle _ NIL] RETURNS [[0..LAST[INTEGER]]]
FontHeight: PROCEDURE [font: Handle _ NIL] RETURNS [[0..LAST[INTEGER]]]

A font argument of NIL for these routines, as well as for the text painting routines of the Window
interface, means to use the defaultFont. The defaultFont isset by calling

SetDefault: PROCEDURE [font: Handle]

Using this defaulting mechanism before the defaultFont isset isaclient error.

100 Tajo Functional Specification

6.0 OPERATIONAL CONSIDERATIONS

The Compatiblity interface contains useful types that enable source level compatiblity between Tools
written for AltoMesa Tgjo and Pilot Tajo.

6.1 Alto/Mesa version

The following procedures apply to the Alto world and should be called instead of their counter parts
in ImageDefs:
TajoMisc.MakeCheckPoint: PROCEDURE [name: STRING];

TajoMisc.Makelmage: PROCEDURE [name: STRING];

6.2 Pilot version

Code that works on AltoMesa may not work on Pilot due to more extensive monitoring of Tgjo and
the preemptive process mechanism in Pilot.

Tajo Functional Specification

GLOSSARY
button: One of the three (sometimes 2) things on a mouse that go up and down.

choice: The process of pointing at a portion of the screen with the mouse and clicking a button such
that some operation is performed. (See select)

contents: Thefile or datathat the Librarian Data Base is keeping track of.
current selection: The system global selection. The argument to some menu commands.

form: A collection of values that the user may ater that usually serve as parameters to some operaion.
Commands may be invoked directly from forms.

Interrupt Level: The process responsible for capturing user actions and enqueuing them for subsequent

processing.
Interrupt Notification Routine (SNR): A procedure that may be notified on the Interrupt Level.
key: One of the things on a keyboard that go up and down.
Libject: Shorthand for Librarian Object. The name of an item contained in the Librarian Data Base.

Librarian Data Base: The complete history data files and data stored and controlled by the Librarian
Service.

Librarian Interface: The mechanism used to access the data stored in the Librarian Data Base.
Librarian Service: The network based program that controls the Librarian Data Base.

menu: A list of options and commands presented to the user that is displayed due to a button
depression. A choice can be made from thislist.

Menu Command Routine (MCR): A procedure that runs as aresult of a menu item being chosen.

natification mechanism (the notifier): The mechanism whereby PNRs and SNRs get notified of user
actions.

notify: InvokeaPNR or SNR; call aPNR or SNR to notify it that a user action has occurred.
paddle: One of the five things on a keyset that go up and down.

Processing Notification Routine (PNR): A procedure that may be notified on the Processing Level.
Processing Level: The process that implements the notification mechanism.

PropertyList: The data structure used for passing as well as receiving data from the librarian database.

101

102 Tajo Functional Specification

selection: The process of pointing at text or graphics on the screen with the mouse and clicking a
button such that it becomes highlighted in some way. Also, the data so selected.

SNR: See Interrupt Notification Routine definition.
subwindow: A rectangular sub-region of a Tool.
Tajo: The basic runtime system for tools.

Tool: A program that runsin Tgjo, but is not part of it.

user action: The depression or release of a paddle, button or key by a human user. Sometimes the term
includes the moving of the cursor across a subwindow boundary.

Vista: General window management software package.

window: A rectangular region on the display. The primary output medium for a Tool.

A Simple Tool

Appendix 1: A Simple Tool

-- File: SimpleTool.mesa - last edit by:
-- Mark, Sep 22, 1980 2:19 PM

-- This is an example of a minimal "Tool" that runs in Tajo. It is the equivalent of
-- everyone'’s first Mesa program to "read a character and echo it on the display".
-- We go beyond that to present a little of the Tajo religion. It is our goal that when
-- a Tool is inactive it should consume minimal resources.

DIRECTORY
Tool USING [Create, MakeFileSW, MakeSWsProc],
Storage USING [FreeNodeNil, Node],
ToolWindow USING [TransitionProcType],
Userlnput USING [SetStringln, StringProcType],
Window USING [Handle];

SimpleTool: PROGRAM IMPORTS Storage, Tool, Userlnput =
BEGIN

-- TYPEs

DataHandle: TYPE = POINTER TO Data;
Data: TYPE = RECORD |
-- File subwindow stuff
fileSW: Window.Handle _ NiL,
oldStringlIn: Userlnput.StringProcType _ NIL];

-- Variable declarations

-- This data illustrates a technique for minimizing memory use when this Tool is inactive

toolData: DataHandle _ NiL;
wh: Window.Handle; -- Tool's window

-- Tool needed routines

ClientTransition: ToolWindow.TransitionProcType =
-- This procedure is called whenever the system determines that this
-- Tool's state is undergoing a user invoked transition.
-- In this example we minimize the memory requirements when we are inactive.
BEGIN
SELECT TRUE FROM
old = inactive =>
IF toolData = NIL THEN
BEGIN toolData _ Storage.Node[size[Data]]; toolData” _ []; END;
new = inactive =>
IF toolData # NIL THEN
BEGIN toolData _ Storage.FreeNodeNil[toolData]; END;
ENDCASE;
END;

Init: PROCEDURE =
BEGIN
wh _ Tool.Create[

103

104 Tajo Functional Specification

makeSWSsProc: MakeSWs, initialState: default,
clientTransition: ClientTransition, name: "Simple Tool 6.0"L];
END;

MakeSWs: Tool.MakeSWsProc =
BEGIN
toolData.fileSW _ Tool.MakeFileSW[window: window, name: "Simple.log"L];
-- Here we demonstrate a common augmentation trick used by Tajo clients. We
-- interpose our procedure between the notification mechanism and the file
-- subwindow so that we can see what the user typed.
toolData.oldStringln _ Userlnput.SetStringin[toolData.fileSW, MyStringProc];
END;

MyStringProc: Userlnput.StringProcType =
BEGIN
-- To be useful the client would normally look at the characters as they go by.
-- We just pass them on.
toolData.oldStringIn[window, string];
END;

-- Mainline code
Init[]; -- this gets string out of global frame

END...

A Sample Tool

Appendix 2: A Sample Tool

-- File: SampleTool.mesa - last edit by:
-- Mark, Sep 23, 1980 5:21 PM

-- Smokey, May 2, 1980 6:12 PM

-- Evans, Jul 10, 1980 12:43 PM

-- This is an example of a "Tool" that runs in Tajo. It demonstrates the use of a

-- comprehensive set of commonly used Tajo facilities. Specifically we present examples
-- of the definition, creation, use and destruction of the following:

-- Windows and subwindows

-- Menus

-- Msg subwindows

-- Form subwindows

-- File subwindows

DIRECTORY

Ascii USING [CR],

Menu USING [Handle, Instantiate, Make, MCRType],

FormSW USING |
AllocateltemDescriptor, BooleanChoices, Booleanltem, ClientitemsProcType,
Commandltem, Enumerated, Enumerateditem, line0, linel, line2, line3, line4,
NotifyProcType, ProcType, Stringltem],

Put USING [Line],

Tool USING [
Create, MakeFileSW, MakeFormSW, MakeMsgSW, MakeSWsProc, UnusedLogName],

Storage USING [CopyString, FreeNodeNil, Node],

ToolWindow USING [TransitionProcType],

Window USING [Handle];

SampleTool: PROGRAM IMPORTS FormSW, Menu, Put, Storage, Tool =
BEGIN

-- TYPEs
StringNames: TYPE = {vanilla, password, readOnly};

DataHandle: TYPE = POINTER TO Data;
Data: TYPE = MACHINE DEPENDENT RECORD |
-- Message subwindow stuff
msgSW(0): Window.Handle _ NiL,
-- File subwindow stuff
fileSW(1): Window.Handle _ NIL,
-- Form subwindow stuff
-- Note: enumerateds and booleans must be word boundary
-- aligned as addresses for them must be generated
formSW(2): Window.Handle _ NiL,
switch1(3): BOOLEAN _ NULL,
switch2(4): BOOLEAN _ NULL,
enuml(5): Enuml _ NULL,
enum2(6): Enum2 _ NULL,
strings(7): ARRAY StringNames OF STRING _ NULL];

Enuml: TvPE = {a, b, c};

105

106 Tajo Functional Specification

Enum2: TYPE = {X, Y, z};
-- Variable declarations

-- This data illustrates a technique for minimizing memory use when this Tool is inactive
toolData: DataHandle _ NiL;
wh: Window.Handle; -- Tool’'s window

-- Sample Tool Menu support routines

MenuCommandRoutine: Menu.MCRType =
-- Do the tasks necessary to execute a menu command.
-- If the command will take a long time, then one might FORK a PROCESS to do it.
BEGIN
SELECT index FROM
0 => Put.Line[toolData.msgSW, "Message posted."L];
1 => Put.Line[toolData.fileSW, "A Menu command called."L];
ENDCASE => Put.Line[toolData.fileSW, "B Menu command called."L];
END;

-- Sample Tool FormSW support routines

FormSWCommandRoutine: FormSW.ProcType =
-- Do the tasks necessary to execute a form subwindow command.
-- Again, if the command will take a long time, then one might FORK a PROCESS to do it.
BEGIN
Put.Line[toolData.fileSW, "The Command Procedure has been called."L];
END;

NotifyClientOfFormAction: FormSW.NotifyProcType =
-- This procedure will be called whenever a potentially interesting state
-- change (user action) occurs in the Form subwindow.
BEGIN
Put.Line[toolData.fileSW, "The Notify Procedure has been called."L];
END;

-- Tool needed routines

ClientTransition: ToolWindow.TransitionProcType =
-- This procedure is called whenever the system determines that this
-- Tool’s state is undergoing a user invoked transition.
-- In this Example we demonstrate a technique that minimizes the memory
-- requirements for a Tool that is inactive.
BEGIN
SELECT TRUE FROM
old = inactive =>
IF toolData = NIL THEN
BEGIN toolData _ Storage.Node[size[Data]]; toolData” _[]; END;
new = inactive =>
IF toolData # NIL THEN
BEGIN toolData _ Storage.FreeNodeNil[toolData]; END;
ENDCASE;
END;

Init: PROCEDURE =
BEGIN
wh _ Tool.Create[
makeSWsProc: MakeSWs, initialState: default,
clientTransition: ClientTransition, name: "Sample Tool 6.0"L];

A Sample Tool

END;

MakeForm: FormSW.ClientltemsProcType =
BEGIN OPEN FormSW; -- This procedure creates a sample FormSW.
nitems: CARDINAL = 8;
el: ARRAY [0..3) OF Enumerated _
[["A"L, Enum1[a]], ['B"L, Enum1[b]], ['C"L, Enum1[c]]];
e2: ARRAY [0..3) oF Enumerated _
[["X"L, Enum2[x]], ["Y"L, Enum2[y]], ['Z"L, Enum2[z]]];
items _ AllocateltemDescriptor[nltems];
toolData.strings[vanilla] _ toolData.strings[password] _ NiL;
toolData.strings[readOnly] _ Storage.CopyString["Read Only String"L];
-- Create an example of command item usage
items[0] _ Commandltem][
tag: "Command"L, place: [0, line0], proc: FormSWCommandRoutine];
-- Create three examples of string item usage
items[1] _ Stringltem][
tag: "Vanilla"L, place: [200, line0], string: @toolData.strings[vanilla],
inHeap: TRUE];
items[2] _ Stringltem[
tag: "Password"L, place: [0, linel], string: @toolData.strings[password],
feedback: password, inHeap: TRUE];
items[3] _ Stringltem][
tag: "ReadOnly"L, place: [0, line2], string: @toolData.strings[readOnly],
readOnly: TRUE];
-- Create two examples of apparent booleans
-- The first one is actually done via an enumerated item
items[4] _ Enumerateditem][
tag: "boolean(trueFalse)"L, place: [0, line3], feedback: all,
value: @toolData.switchl, copyChoices: FALSE, choices: BooleanChoices[]];
toolData.switchl _ TRUE;
items[5] _ Booleanltem[
tag: "boolean(video)"L, place: [250, line3], switch: @toolData.switch?];
toolData.switch2 _ TRUE;
-- Create two examples of enumerated FormSWItem usage
items[6] _ Enumerateditem][
tag: "enumerated(one)"'L, place: [0, line4], feedback: one,
value: @toolData.enum1, choices: DESCRIPTOR[e1]];
toolData.enuml _ a;
items[7] _ Enumerateditem][
tag: "enumerated(all)'L, place: [175, line4], feedback: all,
value: @toolData.enum2, choices: DESCRIPTOR[e2]];
toolData.enum2 _y;
RETURN[items: items, freeDesc: TRUE];
END;

MakeSWs: Tool.MakeSWsProc =

BEGIN
logName: STRING __ [40];
menuStrings: ARRAY [0..3) OF STRING _

['Post message"L, "A Command"L, "B Command"L];
menu: Menu.Handle _ Menu.Make[

name: "Tests"L, strings: DESCRIPTOR[menuStrings],

mcrProc: MenuCommandRoutine];
Tool.UnusedLogName[unused: logName, root: "Sample.log"L];
toolData.msgSW _ Tool.MakeMsgSW[window: window];
toolData.formSW _ Tool.MakeFormSW[window: window, formProc: MakeForm];
toolData.fileSW _ Tool.MakeFileSW[window: window, name: logName];
Menu.Instantiate[menu, window];

107

108 Tajo Functional Specification

END;
-- Mainline code
Init[]; -- this gets string out of global frame

END...

