
GCHAX�access to GC and storage allocation information

GCHAX contains functions that are useful for tracking down storage leaks, i.e., objects that ‘‘should be’’
garbage, but which do not get garbage collected. There are functions for examining reference counts, locating
pointers to objects, and finding circularities (one of the chief culprits in storage leaks). Typically, you might
turn to GCHAX when you notice that STORAGE claims there are more instances of a datatype than you believe
there should be.

UnderstandingSTORAGE

STORAGE displays, for each Lisp datatype, the amount of space allocated to the datatype, and how much is
currently in use. The headings are:

Type Assigned Free items In use Total Alloc

Type is the name of the datatype. Assigned is how much of your virtual memory is set aside for items of this
type. In the current implementation, memory is allocated in quanta of two pages (1024 bytes). The numbers
under Assigned show the number of pages and the total number of items that fit on those pages. Free items
shows how many items are available to be allocated (by the create construct); these constitute the ‘‘free list’’
for that datatype. In use shows how many items of this type are currently in use, i.e., have pointers to them
and hence have not been garbage collected. If this number is higher than your program seems to warrant, you
may want to look for storage leaks. The sum of Free items and In use is always the same as the total Assigned
items. Total Alloc is simply the total number of items of this type that you have ever allocated, or at least
since the last call to BOXCOUNT that reset the counter.

The information about number of items of type LISTP is only approximate, as lists are allocated in a special
way that precludes easy computation of the number of items per page.

STORAGE also prints some summary information about how much space is allocated and available collectively
for fixed-length items (mainly datatypes, both user and built-in) and variable-length items (arrays, bitmaps,
strings). The variable-length items have fixed-length ‘‘headers’’, which is why they also appear in the printout
of fixed-length items. Thus, the line printed for BITMAP says how many bitmaps have been allocated, but the
‘‘assigned pages’’ counts only the headers, not the space used by the variable-length part of the bitmap.

In the summary, the figure ‘‘Remaining Pages’’ for ‘‘Fixed-datum space’’ assumes a concrete upper limit on
the number of pages allocatable to Fixed-datum space. The limit is actually flexible�once those pages are
exhausted, Fixed-datum space starts eating up unused Variable-datum space. Only when Variable-datum
space is also nearly exhausted will you get a STORAGE FULL error.

STORAGE in Interlisp-D has two optional arguments that make it useful for tracking particular storage
behavior:

(STORAGE TYPES PAGETHRESHOLD )

If TYPES is given, STORAGE only lists statistics for those types. TYPES is an atom or list of types (either
names or numbers). If PAGETHRESHOLD is given, then STORAGE only lists statistics for types that have
at least PAGETHRESHOLD pages allocated to them.

For example, (STORAGE ’(ARRAYP BITMAP)) lists only statistics for the types ARRAYP and BITMAP;
(STORAGE NIL 6) lists only statistics for datatypes that have at least 6 pages allocated; (STORAGE) lists
statistics for all datatypes, and prints the summary described above.

Tracking Storage Leaks

The functions in GCHAX are oriented toward finding leaks that involve items of some datatype not getting
garbage collected. There are two main kinds of leaks: (a) items that are unintentionally being held onto, and
(b) items that no user structure is pointing to but are not collected because of the nature of Interlisp-D’s
garbage collector. Examples of the former are structures assigned to global variables and left there after the



program finishes. Examples of the latter are principally circular structures�structures where you can follow a
chain of pointers from the object that eventually returns to the object. Circular lists, such as you get from
(NCONC A A), are a special case of circular structures. GCHAX is not very useful for finding ordinary circular
lists, as all lists pretty much look alike; unless there is something distinctive about the particular list, the set of
all list structures in the system is too large a set to conveniently search. However, if the circular list also
contains instances of user datatypes, then those datatypes will tend to show up as over-allocated, and hence
amenable to the search functions in this package.

All the functions listed below have names beginning with ‘‘\’’ to remind you that you are dealing with system
internals, and to proceed with at least a little caution. Although these functions are generally ‘‘safe’’,in that
their casual use will not cause arbitrary damage, you certainly can produce unintended side effects. In
particular, the functions \SHOWGC and \COLLECTINUSE have modes wherein they return a list of some kind
of pointer; beware of unintentionally holding on to such a list (e.g., by having it get onto the history list),
thereby preventing the eventual garbage collection of any of those pointers. Useful for keeping values off the
history list are the lispxmacro SHH for completely inhibiting history list entry, and the idiom (PROG1 NIL
operation ), e.g., (PROG1 NIL (INSPECT value)) to inspect a structure without unintentionally holding
on to a pointer to the inspect window.

(\SHOWGC TYPES COLLECT FILE CARLVL CDRLVL MINCNT )

Displays on FILE (default T) all objects in the gc reference count table whose reference count is at least
mincnt, default 2. If TYPES is given, it is a list of datatypes (name or number) to which \SHOWGC
confines itself. If COLLECT is true, \SHOWGC returns a list of all the objects it displays. CARLVL and
CDRLVL are print levels affecting the displaying of lists; they default to 2 and 6, respectively. In the
listing, collision entries in the reference count table are tagged with a *. Reference count operations on
pointers in collision entries are much slower than on non-collision entries.

Note that if COLLECT is true, then the reference count of all the collected items is now one greater, due
to the pointer to each from the list returned.

(\REFCNT PTR )

Returns the current reference count of PTR . Pointers that are not reference counted (e.g., litatoms and
smallp’s) are considered to have reference count 1. Since pointers from the stack (e.g., PROG variables)
do not affect reference counts, it is possible for the reference count of an object to be zero without the
object being garbage collected.

(\#COLLISIONS)

Returns a list of three elements: the number of entries in the table, the number which are in collision
chains, and the ratio of these numbers.

(\COLLECTINUSE TYPE)

TYPE is a datatype name or number other than LISTP = 5. \COLLECTINUSE returns a list of all
objects of that type that are thought to be in use, i.e., not free. It is useful when (STORAGE TYPE )
shows more objects ‘‘In use’’ than you think is right, but you can’t find any such pointers yourself. This
obviously should be used with care.

In a correctly functioning system, \COLLECTINUSE is generally safe. However, if the freelist of TYPE

has been smashed so that some free objects are not on it, this function can make matters much more
confused, especially if the first 32-bit field of the datatype in question contains a pointer field.

(\FINDPOINTER PTR COLLECT/INSPECT? ALLFLG )

A brute-force approach to answering the question, ‘‘Who has a pointer to x?’’ \FINDPOINTER searches
virtual memory, looking for places where PTR is stored. The search is not completely blind: unless



ALLFLG is true, it does not look in places that cannot have reference-counted pointers, such as pname
space, or the stack. Prints out a description of each place PTR is found. If it is found in a list, asks
whether to recursively search for pointers to the list, so you can track lists back to a more identifying
place, such as a litatom value cell, or some datatype. Stops searching once it thinks it has found enough
places to account for PTR ’s reference count (unless ALLFLG is true).

If COLLECT/INSPECT? is true, \FINDPOINTER saves the identifiable pointers in a list, which it presents
for inspection. If COLLECT/INSPECT? = COLLECT , the list of pointers is returned as value instead of
being inspected.

The current version does not know how to parse array space, so it is really only helpful if the pointer is
stored in fixed-length data space (i.e., in a field of a datatype, or as the top-level value of a litatom), but
that handles most of the interesting cases except pointer arrays.

Of course, since it touches (potentially) a huge percentage of your virtual memory, \FINDPOINTER is
completely disruptive of your working set.

(\SHOWCIRCULARITY OBJECT MAXLEVEL )

Follows pointers from OBJECT . If it finds a path back to itself, it prints that path. This function is not
exceptionally fast, and deliberately (for performance reasons) does not detect circularities in lists; it
simply bottoms out on lists at MAXLEVEL , which defaults to 1000. Circular lists are usually obvious
enough anyway.

(\MAPGC MAPFN INCLUDEZEROCNT )

Maps over all entries in the gc reference count table, applying MAPFN to three arguments: the pointer, its
reference count (an integer), and collisionp, a flag that is T if the entry is a collision entry. Entries with
reference count zero are not included unless INCLUDEZEROCNT is true. This function underlies
\SHOWGC . Some care is required in the writing of MAPFN ; it should try to minimize any reference
counting activity of its own, and in particular avoid anything that would decrement the reference count
of the pointer passed to it.


