ConmonlLi sp- Conpati bl e Array Functions

File: <l i spuser s>CMLARRAY. tty
Revi sed: Feb 21, Jul 1, and Sep 28, 1983, by JonL Wite

The followi ng functions are based on the definitions in the
CommonLi sp comunity, and provide many features lacking in Interlisp’s
ARRAY support, in particular nulti-dinmensional arrays, shared arrays
and super-fast accessing ("open-coding" of access wth "unsafe"
primtives). These definitions follow those fromthe "Excelsior" edition
of the CommonLi sp nmanual (5 August 1983, copyright Guy L. Steele Jr.)
and sone of the prose below is reproduced fromthe aforesaid "Excelsior"
edition by perm ssion.

Docurent ati on Ter ni nol ogy

Not all options and features of the Common Lisp specifiction are
i mpl enented; descriptions of limtations are encolsed as notes within
doubl e square brackets. Furthernore, for the benefit of Interlisp-D users,
some non-portabl e extensions have been nmade, and these are described as
noted within single square brackets.

A nunber of functions take argunments in "keyword" format; this neans
that the arglist, after sone point, alternates between an argunent which
nanes the neaning of the next argunment and the next "real" argunent.
E.g., suppose COLORMYWORLD is a function with conceptually dozens
of parameters, but which is typically called with only one or two of
them set to a non-default value. Then you m ght see

(COLORMYWORLD SQVEBI TMAP ' HUE BLUE ' DURATI ON 5HOURS)
where the first argunent is "required", but all the others are optiona

and are obtained fromthe appropriate pair in the real arglist; in this
exanpl e, one such "keyword" argument is called HUE, and it will be set
to the value of the variable BLUE, also "coloring" will last for a

duration of time found in the variabl e 5HOURS

As a general rule, any synmbol ("litatom in the Interlisp sense)
which has a "-" inits name, will have those "-"'s rempoved in the
Interlisp incarnation (because of weird potential interaction with
CLISP). Thus, MAKE- ARRAY in the CommonLi sp manual becones MAKEARRAY
in the Interlisp world. Also, since Interlisp doesn’t have &optional
& est, or &key argument spreading, then any function with such an
argunent spectrum will be inplenented as a no-spread |anbda; curly
brackets wll enclose the name for a sequence of such argunents.

Creation of Arrays

An array, for the purpose of this docunentation, is an instance of a
new datatype (called CMLARRAY), and is not related to the previously-
docunented Interlisp array facility. By convention, all indexing in the
ConmmonLi sp world is O-origin.

(MAKEARRAY <di mensi onslst> ... {keyword-argunents} ...)

<di mensionslst> is a list of non-negative integers that are to be
the dimensions of the array; the length of the list will be the rank, or
di nensionality, of the array. Note that if <dinmensionslst> is NL, then
a zero-dinensional array is created. For conveni ence when naking a one-
di nensional array, the single dinmension my be provided as an integer
rather than a list of one integer.

The keyword argunents are
ELENMENTTYPE
- T, [or NIL, or PO NTER] neans that the elenents are all general

Lisp "pointers"; this is the default.

- FIXNUM [or FIXP, or CELL] for entries which are integers stored
as 2's conplenent 32-bits [[31-bits in Interlisp/VAX, 36-bits
in Interlisp-10]]

- FLONUM [or FLOATP] entries are all 32-bit |EEE format

fl oati ng- poi nt
[[36-bit pdpl0 format for Interlisp-10]]

The follow ng type specifiers are sub-types of INTEGER for which the

accessing is nuch nore efficient than for other random field sizes.

- (MOD 65536) [or DOUBLEBYTE; or additionally, for Interlisp-D only,
WORD or SMALLPGCSP] for 16- bi t non- negati ve integers.

- (MOD 256) [or BYTE, or CHARACTER] for 8-bit non-negative integers

- (MOD 16) [or NIBBLE] for 4-bit non-negative integers.

- (MDD 2), or BIT, for single-bit entries.

I [[In general, the ComonLisp type heirarchy isn't supported; thus
only
. the explicit nanmes above will work. However, for Interlisp-D, as
0
28-Sep-83, the type (MO n) for any reasonable "n", is supported.]]
I NI TI ALELEMENT
- Argument must be a quantity of the type specified by the
ELEMENTTYPE
argunment, and is used to initalize all the entries of the array.
Default is NIL for pointer type, and zero for nuneric types.
I NI TI ALCONTENTS
- If the array is zero-dinmensional, the this specifies its contents;
otherwise, it nust a sequence whose length is equal to the first
. di mensi on, and each el enent thereof nust be a nested structure
or
an array whose dinensions are the remaining dinensions, and so
on.

DI SPLACEDTO
- Argunent will be an array whose linearized data segnent will be
shared with the one being "made"; see also the D SPLACEDOFFSET
argunent al so.
DI SPLACEDI NDEXOFFSET
- Wen the data vector is being "shared", this specifies the offset
N fromthe origin of the data vector at which the new array wl|l
ave
its zero-origin.

The inplenmentational constraints, as specified by the synmbolic constants
ARRAY- RANK- LI M T, ARRAY-DI MENSI ON-LIM T, and ARRAY- TOTAL-SIZE-LIMT are:
Ranks up to 63 are supported; each individual dinension of an array is
constrained only to be a FIXP; in Interlisp-D, the total storage for the
data block of an array may not exceed (2716-5)*275 bits, and since a
poi nt er

requires 32 bits, then an array may contain up to 27"16-5 pointer el enents,
or 2718-20 byte elenents; Interlisp/VAX and Interlisp-10 nmay have other
constraints.

[[The follomnng limtations exist as of 9-MAY-84:

(1) the :FILL-PO NTER keyword argunent is not inplenented at al |

(2) all arrays automatically have the : ADJUSTABLE property

(3) the "nested structures" used to specify the :INITIAL-CCNTENTS may be
Fither anot her array of the same dinensionality, or else just lists of

i sts.

(4) the synbolic constants ARRAY-RANK-LIM T, ARRAY-DIMENSION-LIMT, and
ARRAY- TOTAL- SI ZE-LIM T are not actually in the code. Just be aware
of these linmts by reading the docunentation presented above.]]

Exanpl es:
(MAKEARRAY 5) - Create a one-dinmensional array of five el enents
(MAKEARRAY ' (3 4) 'ELEMENTTYPE ' (MOD 256)) -- Create a two-

di mensional array, 3 by 4, with 8-bit el enents;
(SETQ A (MAKEARRAY ' (4 2 3) 'I N TI ALCONTENTS
"(((a bc) (123))
((def) (312)

i) (2 3 1))
1) (0.00)))))

TI ALCONTENTS A)

ELEMENTTYPE ' BIT))

((g hi)
(()_k 1)
(MAKEARRAY '(4 2 3) "IN
(SETQ B (MAKEARRAY 107
(SETQ C (MAKEARRAY 8 ' ELEMENTTYPE ' BYTE

' DI SPLACEDTO A

' DI SPLACEDI NDEXOFFSET 51)

Thus B and C share their data portion; the second elenment of C, with
index 1, is the byte obtained by concatening the bits with indices 67
t hrough 74 of B. Note that el enent type specification of BYTE is

equivalent to that in the first exanple of (MXD 256)

Conpatibililty note: For multi-dinmension arrays, both LispMchinelLisp and
FCETRAN store in colum-ngjor order; MaclLisp stores arrays in row najor

or der.

A "row' is the collection of all elenents obtained by holding all but the

| ast index constant, and cycling through that index in order fromO to its
[imt. [This package generally stores in rowmajor order, but there may be
ocasi onal "gaps" in the index-sequencing if the ALI GNMENT options is used
See below for a description of the non-ComonLi sp option ALI GNVENT.]

Accessing and Changing the El enents of an Array

The main prinmtive to access the elenments of an array is called AREF
(for "Array REFerence of elenment").

(AREF <array> ... {subscripts} ...)

This returns the elenent of <array> specified by the subscripts (which
are all the remaining argunents after <array>), and each subscript nust be
a non-negative integer less than the corresponding array dinension.

[The main prinmtive to change the contents of an array is called ASET (for
"Array SET value of element"), nodeled after the MT Lisp Machi ne nane.
Utimately, ASET will operate so as to translate into the same code that
SETF woul d have produced thus Interlisp users need not fear that such code
won't run on a "by-the-book" CommonLisp inplenmentation

(ASET <newval ue> <array> ... {subscripts} ...
Changes the contents of the el enent of <array> accessed by
(AREF <array> ... {subscripts} ...)

to be <newal ue>.]

[[CormonLi sp does not require separate nanes for the update functions;
updating rmay al ways be specified by the SETF construct, which takes an
access expression and a "new value" nmuch the way Interlisp’s CHANGE does
As of 28-Sep-83, there is no changetran entry for AREF, but it is expected
to be added soneday.]]

I nformati onal Functions

(ARRAYELEMENTTYPE <arr ay>)

Returns a type specifier for the set of objects that can be stored in
<array>. This set may be larger than the set requested when <array> was
created; that is,

(ARRAYELEMENTTYPE (MAKEARRAY 5 * ELEMENTTYPE ’ (MOD 8)))
could be (MDD 8), or BYTE, or (MDD 256), etc., or even PO NTER
[[as of 28-Sep-83, only the types enunerated above under MAKEARRAY are
supported; there is no "coercion upwards" in order to find a type-specifier
whi ch could hold the elenments of some non-enunerated type. Renenber also
that the Interlisp-D version supports (MOD n) for all i1ntegral n.]]

(ARRAYRANK <ar ray>)

Returns the nunmber of dinensions (axes) of <array>, to par
i ndexing range, this is a zero-origin nunber and thus wll be
non- negative

allel the
a

i nteger.

(ARRAYDI MENSI ON <array> <axi s- nunber >)

Returns the length of dinension nunber <axis-nunber> of <array> [which
may be any kind of array, i.e., any instance of the \ CMLARRAY dat at ype];
<axi s-nunber> should be a non-negative integer |less than the rank of
<array>.

(ARRAYDI MENSI ONS <array> <optionsl st >)

Returns a list whose elenments are the di nensions of <array>. [The
second argunent, <optionslst> is not a ComonLisp argunment -- it is
provi ded

in Interlisp so that one may specify the NOCOPY option. Default action is
to return a copy of the internal dinensions list.]

(ARRAYTOTALSI ZE <array> <in-bits-p>)

Returns the total nunber of elenents in <array>, calculated as the
pr oduct
of all the dinensions. Roughly equivalent to

(APPLY ' TI MES (ARRAYDI MENSI ONS <array>))
Note that the total size of a zero-dinensional array is 1. [The second
argunment, <in-bits-p> 1is not a CormonLisp argument -- it is provided in
Interlisp in order to find out how nuch space is actually occupied by the
array, including any gaps caused by the ALI GNMENT option.]

(ARRAYI NBOUNDSP <array> ... {subscripts} ...

This predicate checks whether the subscripts are all |egal subscripts
for <array> and is true if they are; otherwise it is false. The
subscripts
must be integers. The nunber of subscripts supplied nmust equal the rank of
the array. E.g., if HAis a three-dinensional array, then

(ARRAYI NBOUNDSP HA 4 25 62)
nmakes the check such that (AREF HA 4 25 62) will not cause an ill egal
subscript error.

(ARRAYROAWWAJCORI NDEX <array> ... {subscripts} ...)

This function takes an array and valid subscrlpts for the array, and
returns a single non-negative integer less than the total size of the array
that identifies the accessed elenment in the row nmajor ordering of the
el ement s.

The nunber of subscripts supplied nust equal the rank of the arry. Each

subscript nust be a non-negative integer |ess than the corresponding array
di mrension. For a one-dimensional array, the result of this function always

gquals the supplied subscript. [However, if the ALIGNVENT option is used
or

a multi-dinmensional array in Interlisp-D, then the maxi mum |inearized index

W'II exceed the value returned by ARRAYTOTALSI ZE. In such a case, the

val ue

returned by (ARRAYTOTALSIZE <array> T) will be the field size per el enent

times one plus the maxi mum |inearized index. The quantity
(fetch (CMLARRAY CM.I MAX) of <array>)
will always be this maxi num |linearized index.]

Changi ng the Di nmensions of an Array

(ADJUSTARRAY <array> <di mensi onsl st >)

Takes an array, and a list of dinensions just as wth MAKEARRAY; the
nunber of dinmensions specified by <dinmensionslst> must equal the rank of
<array>. Returns <array>, whose conponents have been updated to conform
to the new specifications (but if the new dinensions require nore space in
Lre Elock data area, this will cause a copying into a newy allocated

ock,
and <array> will be DI SPLACEDTO to this new bl ock.)
[[None of the keyword options mentioned in the ComonLi sp manual are
support ed

as of 28-Sep-83.]]

Extensions to the Interlisp CommonLisp Array Functions

Al'though the following facilities aren't specified by the "Excelsior
Edition",
they nay be quite useful in Interlisp-D systens progranmi ng

*) Filepkg com CMLARRAYS is simlar to the BITMAPS com -- nanely
(CMLARRAYS <var 1> <var 2> <var3> .)
will save and restore the value of each gl obal variable <vari>
assum ng
it holds a CM_ARRAY.

*) Additional ELEMENTTYPE val ues for MAKEARRAY
- XPONTER is like PONTER, except that the entries aren't
reference
counted for the garbage collector; beware, beware
- DI SPLACEDTOBASE is |ike DI SPLACEDTO except its value is
just a random pointer/address, rather than another CM.ARRAY
This way, one can use the ConmonLisp array functions to access
parts of Interlisp-D s menory such as the screen bitnap.
- ALIGNMENT is for nulti-dinensional arrays; each row nmay be
required to begin a nultiple of sonme integer, with nulls or
zeros

filling any space between "rows". For exanple, it might be
t hat
a bitmap array nust have the raster scans beginning on a word
boundary; since there are 16 bits/word, then an alignment of
16

woul d be used.

*) Functions Interfaceing to LI STPs:
(LI STARRAY <array> <startindex> <endi ndex>)
— The second and third argunents are optional, and have meaning
simlar
to the corresponding argunments to SUBSTRI NG, but negative indicies
aren’t allowed. Elenents are selected fromthe <array> in
r ow- maj or
order, and CONS's up into a list.
(FI LLARRAY <array> <list> <startindex> <endi ndex>)
Simlar to LISTARRAY, except that the elenents of the <list> are
stored into the corresponding parts of the <array> As a
conveni ence,
if <list>isn't a LISTP, then it is converted into (LIST <list>);

furthermore, if there aren’'t enough elenents in <list> to fill out
t he

range specified by <startindex> and <no.of.elenents>, then the | ast

element of <list> is repeated until finished. Thus, for exanple,
one

could fill an array with a single value by a construct Iike
(FI LLARRAY SOVEARRAY (LIST THI SVAL))

*) "Fast" accessing functions:

(PAREF <array> ... {subscripts})
(NAREF <array> ... {subscripts})
(LAREF <array> ... {subscripts})
(16AREF <array> ... {subscripts})
(8AREF <array> ... {subscripts})
(4AREF <array> ... {subscripts})
(1AREF <array> {subscri pt s})

These are essentlally the same as AREF but have a consequence that,
for
PAREF, <array> mnmust be a PONTER or T array; and correspondi ngly, for
NAREF a FI XNUM array, for LAREF a FLONUM array, for 16AREF a
DOUBLEBYTE or (MOD 65536) array, for 8AREF a BYTE or (MOD 256)

array, for 4AREF a NIBBLE or (MOD 16) array, and for 1AREF a BIT or
(MDD 2) array.

Furthernmore, when conpiled, these functions will be conpiled "open",
with
little or no error checking, realizing orders of nagnitude speed-up
over
AREF; however, *** there is no certification as to what kind of
val ue

will be returned should the subscripts be "out of range". To aid in
debuggi ng, the run-tine code actually toggles on the global variable
AREFS|i ssyFLG, and when the flg is non-NIL, will call the function
AREF instead of the fast-but-unchecked "in-line" accessing

However, one may omit even these sinple checks for "all out, no holds
barred" code by prefixing a \ to these nanes (e.g. \PAREF ...)

*) "Fast" setting functions:
(PASET <newal ue> <array> ... {subscripts})
(NASET <newal ue> <array> ... {subscripts})
(LASET <newal ue> <array> ... {subscripts})
(16ASET <newal ue> <array> ... {subscripts})
(8ASET <newal ue> <array> ... {subscripts})
(4ASET <newal ue> <array> ... {subscripts})
(1ASET <newal ue> <array> {subscri pt s})

These are essentially the same as ASET, but have a consequence that,
for
PASET, <array> mnmust be a PONTER or T array; and correspondi ngly, for
NASET a FI XNUM array, for LAREF a FLONUM array, for 16ASET a
DOUBLEBYTE
or (MOD 65536) array, for 8ASET a BYTE or (MJD 256) array, for 4ASET

a

NI BBLE or (MOD 16) array, and for 1ASET a BIT or (MO 2) array.

Furt hermore, when conpiled, these functions will be conpiled "open"

with

little or no error checking, realizing orders of nagnitude speed-up
over

ASET; although some checking is perforned to insure nenory system

integrity (i.e. that the word nodified will actually be within the
dat a

bl ock of the specified array), **** there is no certification as to

which word will be clobbered should the subscripts be "out of range"
As

with AREF, the run-tine code toggles on the gl obal variable
AREFSi ssyFLG
and will call the function ASET when the flg is non-N L.

However, one may onit even these sinple checks for "all out, no holds
barred" code by prefixing a \ to these nanes (e.g. \PASET ...). |If
you use this option, there is no guarantee of nenory integrity, and
likely no one will want to listen to reports of any "system' bugs
encountered while such "unsafe" options were being exercised.

