:Title[LFloat]; * * Edit history * January 26, 1985 7:36 PM, Masinter, add UBFLOAT scaffolding * and unboxed greaterp * March 5, 1984 5:22 PM, JonL, opFGREATERP was not adjusting TSP enough * January 12, 1984 3:54 AM, JonL, passed NARGS of 2 to TL.CREATECELL * in .storefloat * January 4, 1984 10:40 PM, JonL, .storefloat tails into TL.CREATECELL, * and exits from FP code reset the HardWare stack to empty. * Fleshed-out opFGREATERP. floatfail becomes CallUFN * November 29, 1983 2:14 PM, JonL * - - - , Masinter, Taft *----------------------------------------------------------- InsSet[LispInsSet, 1]; TOPLEVEL; * Local R-register usage: SetRMRegion[BBRegs]; * Overlay BitBlt registers RVN[ExpSign1]; * Exponent and sign of argument 1 RVN[Frac1H]; * Fraction of argument 1 (high part) RVN[Frac1L]; * (low part) RVN[ExpSign2]; * Argument 2 ... RVN[Frac2H]; RVN[Frac2L]; RVN[FTemp0]; * Temporaries RVN[FTemp1]; RVN[FTemp2]; KnowRBase[LTEMP0]; *----------------------------------------------------------- opUBFLOAT1: *----------------------------------------------------------- T← ID; BDispatch← T; branch[.xx1disp]; .xx1disp: DispTable[10]; branch[.xxbox]; branch[.xxunbox]; branch[.xxabs]; branch[.xxnegate]; branch[.xxround]; CallUFN; CallUFN; CallUFN; .xxbox: CallUFN; .xxunbox: CallUFN; .xxabs: CallUFN; .xxnegate: CallUFN; .xxround: CallUFN; regOP2[355, StackM2BR, opUBFLOAT1, NoNData]; KnowRBase[LTEMP0]; *----------------------------------------------------------- opUBFLOAT2: *----------------------------------------------------------- LTEMP0← 1C; STKP← LTEMP0; LEFT← (LEFT) + 1; T← (TSP) - 1; T← (fetch← T) - 1; Stack&+1← Md, T← (fetch← T) + (3c); Stack&+1← Md, T← (fetch← T) - 1; Stack&+1← Md, fetch← T; T← Stack&-1← Md; LTEMP0← ID; BDispatch← LTEMP0; branch[.xx2disp]; .xx2disp: DISPTABLE[10]; branch[.xxadd]; BRANCH[.xxsub]; BRANCH[.xxIsub]; BRANCH[.xxmul]; BRANCH[.xxdiv]; BRANCH[.XXGTP]; BRANCH[.xxmax]; BRANCH[.xxmin]; .xxadd: callUfn; .xxsub: callUFN; .xxIsub: callUfn; .xxmul: callUfn; .xxdiv: callUfn; .XXGTP: RBase← RBase[FTEMP0], SCall[FUnPack2]; T← Stack&+2, Branch[FGT2]; T← Stack&+2, Branch[FGT2]; .xxmax: callUfn; .xxmin: callUfn; regOP2[354, StackM2BR, opUBFLOAT2, NoNData]; KnowRBase[LTEMP0]; *----------------------------------------------------------- opFDIFFERENCE: *----------------------------------------------------------- * Just flip sign of 2nd arg and join fplus code T← (fetch← TSP) + 1; LEFT← (LEFT) + 1, SCall[.FUNBOX2]; KnowRBase[FTemp0]; ExpSign2← (ExpSign2) + 1, Branch[FAddZeroR]; * one arg = 0 ExpSign2← (ExpSign2) + 1, Branch[FAddNonZero]; * both non-0 regOP1[351, StackM2BR, opFDIFFERENCE, 0]; KnowRBase[LTEMP0]; *----------------------------------------------------------- opFPLUS2: *----------------------------------------------------------- T← (fetch← TSP) + 1; LEFT← (LEFT) + 1, SCall[.FUNBOX2]; KnowRBase[FTemp0]; FAddZeroR: * one arg = 0 pd← (Stack&+2) + (Stack&+2), Branch[FAddZero]; regOP1[350, StackM2BR, opFPLUS2, 0]; % Difference between exponents is the amount of unnormalization required. The low 7 bits of ExpSign1 contain either 4 or 5, whereas the low 7 bits of ExpSign2 contain 0, 1, or 2. Thus subtracting ExpSign2 from ExpSign1 cannot cause a carry out of the low 7 bits. Furthermore, the low bit gets the xor of the two signs, useful later when determining whether to add or subtract the fractions. % FAddNonZero: T← ExpSign1; FAddNZ2: ExpSign2← T← T - (Q← ExpSign2); FTemp1← A0, Q RSH 1; T← T + T, DblBranch[UnNorm1, UnNorm2, Carry']; * Un-normalize operand 1. T[0:7] has negative of right-shift count. UnNorm1: ExpSign1← (B← Q) LSH 1, Branch[.+2, R even]; * Result exponent is Exp2 ExpSign1← (ExpSign1)+1; * But preserve Sign1 T← T+(LShift[20, 10]C); T← T+(LShift[20, 10]C), Branch[UnNorm1le20, Carry]; T← T+(LShift[20, 10]C), Branch[UnNorm1le40, Carry]; * Exponents differ by more than 40. * Just zero operand 1, but be sure to set the sticky bit. Frac1L← 1C; ZeroFrac1H: Frac1H← A0, Branch[UnNormDone]; * Exponent difference IN [1..20]. Let n = the difference. * T[0:7] now has 40 - n, i.e., IN [20..37], so SHA=R, SHB=T. * This is correct shift control for LCY[R, T, 20-n] = RCY[T, R, n] UnNorm1le20: T← Frac1L, ShC← T; PD← ShiftNoMask[FTemp1]; * PD← RCY[Frac1L, 0, [1..20]] T← Frac1H, FreezeBC; Frac1L← ShiftNoMask[Frac1L], * Frac1L← RCY[Frac1H, Frac1L, [1..20]] Branch[.+2, ALU=0]; * Test bits shifted out of Frac1L Frac1L← (Frac1L) OR (1C); * Nonzero bits lost, set sticky bit T← A0, Q← Frac2L; Frac1H← ShiftNoMask[Frac1H], * Frac1H← RCY[0, Frac1H, [1..20]] Branch[UnNormDone1]; * Exponent difference IN [21..40]. Let n = the difference. * T[0:7] now has 60 - n, i.e., IN [20..37], so SHA=R, SHB=T. * This is correct shift control for LCY[R, T, 40-n] = RCY[T, R, n-20] UnNorm1le40: T← Frac1H, ShC← T; T← ShiftNoMask[FTemp1]; * T← RCY[Frac1H, 0, [1..20]] PD← T OR (Frac1L); * Bits lost from Frac1H and Frac1L T← A0, FreezeBC; Frac1L← ShiftNoMask[Frac1H], * Frac1L← RCY[0, Frac1H, [1..20]] Branch[ZeroFrac1H, ALU=0]; Frac1L← (Frac1L) OR (1C), * Nonzero bits lost, set sticky bit Branch[ZeroFrac1H]; * Un-normalize operand 2. T[0:7] has right-shift count, and T[8:15] is IN [0..12]. UnNorm2: T← (12S)-T; * Negate count; ensure no borrow by ALU[8:15] T← T+(LShift[20, 10]C), Branch[UnNormDone, Carry]; * Branch if exponents equal T← T+(LShift[20, 10]C), Branch[UnNorm2le20, Carry]; T← T+(LShift[20, 10]C), Branch[UnNorm2le40, Carry]; * Exponents differ by more than 40. * Just zero operand 2, but be sure to set the sticky bit. Frac2L← 1C, Branch[ZeroFrac2H]; UnNorm2gr40: Frac2L← 1C; ZeroFrac2H: Frac2H← A0, Branch[UnNormDone]; * Exponent difference in [1..20]. Let n = the difference. * T[0:7] now has 40 - n, i.e., in [20..37], so SHA=R, SHB=T. * This is correct shift control for LCY[R, T, 20-n] = RCY[T, R, n] UnNorm2le20: T← Frac2L, ShC← T; PD← ShiftNoMask[FTemp1]; * PD← RCY[Frac2L, 0, [1..20]] T← Frac2H, FreezeBC; Frac2L← ShiftNoMask[Frac2L], * Frac2L← RCY[Frac2H, Frac2L, [1..20]] Branch[.+2, ALU=0]; * Test bits shifted out of Frac2L Frac2L← (Frac2L) OR (1C); * Nonzero bits lost, set sticky bit T← A0, Q← Frac2L; T← Frac2H← ShiftNoMask[Frac2H], * Frac2H← RCY[0, Frac2H, [1..20]] Branch[UnNormDone2]; * Exponent difference IN [21..40]. Let n = the difference. * T[0:7] now has 60 - n, i.e., IN [20..37], so SHA=R, SHB=T. * This is correct shift control for LCY[R, T, 40-n] = RCY[T, R, n-20] UnNorm2le40: T← Frac2H, ShC← T; T← ShiftNoMask[FTemp1]; * T← RCY[Frac2H, 0, [1..20]] PD← T OR (Frac2L); * Bits lost from Frac2H and Frac2L T← A0, FreezeBC; Frac2L← ShiftNoMask[Frac2H], * Frac1L← RCY[0, Frac1H, [1..20]] Branch[ZeroFrac2H, ALU=0]; Frac2L← (Frac2L) OR (1C), * Nonzero bits lost, set sticky bit Branch[ZeroFrac2H]; * Now decide whether fractions are to be added or subtracted. UnNormDone: Q← Frac2L; UnNormDone1: T← Frac2H; UnNormDone2: * Subtract if signs differ ExpSign2, DblBranch[SubFractions, AddFractions, R odd]; * Signs equal, add fractions. T = Frac2H, Q = Frac2L. AddFractions: Frac1L← (Frac1L)+Q; Frac1H← T← (Frac1H)+T, XorSavedCarry; PD← (Frac1L) AND (377C), Branch[FRePackNZ1, Carry']; * If carry out of high result, must normalize right 1 position. * Need not restore leading "1", since rounding cannot cause a carry into this * position, and the leading bit is otherwise ignored during repacking. Frac1H← (Frac1H) RSH 1; Frac1L← RCY[T, Frac1L, 1], Branch[.+2, R even]; Frac1L← (Frac1L) OR (1C); * Preserve sticky bit ExpSign1← (ExpSign1)+(LShift[1, 7]C), Branch[FRePackNonzero]; * Signs differ, subtract fractions. T = Frac2H, Q = Frac2L. SubFractions: Frac1L← (Frac1L)-Q; T← (Frac1H)-T-1, XorSavedCarry; Frac1H← A0, FreezeBC, Branch[Normalize, Carry]; * If carry, Frac1 was >= Frac2, so result sign is Sign1. * If no carry, sign of the result changed. Must negate fraction and * complement sign to restore sign-magnitude representation. ExpSign1← (ExpSign1)+1; Frac1L← (0S)-(Frac1L); T← (Frac1H)-T-1, XorSavedCarry, Branch[Normalize]; * Add/Subtract with zeroes: * One or both of the operands is zero. ALU = (high word of arg1) LSH 1. This is * zero iff arg1 is zero (note that we don't need to worry about denormalized numbers, * since they have been filtered out already). * StkP has been advanced to point to high word of arg2. FAddZero: T← (Stack&-1)+(Q← Stack&-1), * T← (high word of arg2) LSH 1 Branch[FAddArg2Zero, ALU#0]; * arg1#0 => arg2=0 Cnt← Stack&-1, * Cnt← low word of arg2 Branch[FAddArg1Zero, ALU#0]; * arg2#0 => arg1=0 * Both args are zero: result is -0 if both args negative, else +0. Stack← (Stack) AND Q, branch[.StoreFloat]; * Arg 1 is zero and arg 2 nonzero: result is arg 2. * Note: must re-pack sign explicitly, since FSub might have flipped it. FAddArg1Zero: T← RCY[ExpSign2, T, 1]; * Insert Sign2 into high result Stack&-1← T; Stack&+1← Cnt, branch[.StoreFloat]; * Arg 2 is zero and arg 1 nonzero: result is arg 1. FAddArg2Zero: StkP-1, branch[.StoreFloat]; * Result already on stack regOP1[352, StackM2BR, opFTIMES2, 0]; KnowRBase[LTEMP0]; *----------------------------------------------------------- opFTIMES2: *----------------------------------------------------------- T← (fetch← TSP) + 1; LEFT← (LEFT) + 1, SCall[.FUNBOX2]; KnowRBase[FTemp0]; T← ExpSign2, Branch[MulArgZero]; * one arg = 0 * XOR signs and add exponents. Subtract 200 from exponent to correct * for doubling bias, and add 1 to correct for 1-bit right shift of * binary point during multiply (binary point of product is between bits * 1 and 2 rather than between 0 and 1). T← (ExpSign2)-(LShift[200, 7]C); * Subtract 200 from ExpSign2[0:8] MulNormal: T← T+(LShift[1, 7]C); * and add 1 ExpSign1← (ExpSign1)+T; * Now do the multiplications. Initial registers: * Frac1H = F1H (high 16 bits of arg 1) * Frac1L = F1L,,0 (low 8 bits of arg 1) * Frac2H = F2H (high 16 bits of arg 2) * Frac2L = F2L,,0 (low 8 bits of arg 2) * Intermediate register usage: * Frac1L and FTemp0 accumulate sticky bits * FTemp2 is the initial product register for the Multiply subroutines. * Do 8-step multiply of F1L*F2L, with initial product of zero. Frac1L← T← RSH[Frac1L, 10]; * Frac1L← 0,,F1L Frac2L← RSH[Frac2L, 10], * Frac2L← 0,,F2L Call[MultTx2L8I]; * Force 8 iterations,initial product 0 * Low product is FTemp2[8:15],,Q[0:7]. FTemp2[0:7] = Q[8:15] = 0. * Do 8-step multiply of F2H*F1L, using high 8 bits of previous result as initial product. FTemp0← Q; * Save low 8 bits for later use as sticky bits T← Frac2H, Cnt← 6S, Call[MultTx1L]; * Cross product is FTemp2[0:15]..Q[0:7]. Q[8:15] = 0. * Do 8-step multiply of F1H*F2L, with initial product of zero. Frac1L← Q; * Frac1L← low 8 bits of cross product T← Frac1H, ShC← T, * ShC← high 16 bits of cross product Call[MultTx2L8I]; * Force 8 iterations,initial product 0 * Cross product is FTemp2[0:15]..Q[0:7]. Q[8:15] = 0. * Add cross products, propagate carries, and merge sticky bits. T← (Frac1L)+Q; * Add low 8 bits of cross products Frac1L← (FTemp0) OR T; * Merge with sticky bits from low product T← ShC, Branch[.+2, ALU=0]; * Collapse to single sticky bit in Frac1L[15] Frac1L← 1C; * Add high 16 bits of cross products FTemp2← (FTemp2)+T, XorSavedCarry; * Do 16-step multiply of F1H*F2H, using high 16 bits of previous result * as initial product. * Frac1H← (-1)+(carry out of sum of low and cross products). T← B← Frac1H, Cnt← 16S; Frac1H← T-T-1, XorSavedCarry, Call[MultTx2H]; * Final result is T,,Q. Merge in the sticky bit from low-order products * and exit. Frac1L← (Frac1L) OR Q, DispTable[1, 2, 2]; T← (Frac1H)+T+1, Branch[Normalize], DispTable[1, 2, 2]; * One or both arguments = zero. Return zero with appropriate sign. * T = ExpSign2 MulArgZero: ExpSign1← (ExpSign1) XOR T, Branch[FRePackZero]; *----------------------------------------------------------- * Unsigned multiply subroutines * Entry conditions (except as noted): * Cnt = n-2, where n is the number of iterations * T = multiplicand * FracXX = multiplier (register depends on entry point); * leftmost (16D-n) bits must be zero. * FTemp2 = initial product (to be added to low 16 bits of final product) * Exit conditions: * Product right-justified in T[0:15],,Q[0:n-1] * Q[n:15] = 0 * FTemp2 = copy of T * Carry = 1 iff T[0] = 1 * If n = 16D, caller must squash Multiply dispatches in the 2 instructions * following the Call. * Timing: n+2 *----------------------------------------------------------- SUBROUTINE; * Entry point for multiplier = Frac1L MultTx1L: Q← Frac1L, DblBranch[MultiplierO, MultiplierE, R odd]; * Entry point for multiplier = Frac2L. * This entry forces 8 iterations with an initial product of zero. MultTx2L8I: FTemp2← A0, Cnt← 6S; Q← Frac2L, DblBranch[MultiplierO, MultiplierE, R odd]; * Entry point for multiplier = Frac2H MultTx2H: Q← Frac2H, DblBranch[MultiplierO, MultiplierE, R odd]; * Execute first Multiply purely for side-effects (dispatch and shift Q) MultiplierE: PD← A0, Multiply, Branch[FM0]; MultiplierO: PD← A0, Multiply, Branch[FM1]; DispTable[4]; * here after Q[14] was 0 (no add) and continue FM0: FTemp2← A← FTemp2, Multiply, DblBranch[FM0E, FM0, Cnt=0&-1]; * here after Q[14] was 0 (no add) and exit FM0E: FTemp2← T← A← FTemp2, Multiply, Return; * here after Q[14] was 1 (add) and continue FM1: FTemp2← (FTemp2)+T, Multiply, DblBranch[FM0E, FM0, Cnt=0&-1]; * here after Q[14] was 1 (add) and exit FTemp2← T← (FTemp2)+T, Multiply, Return; TOPLEVEL; regOP1[353, StackM2BR, opFQUOTIENT, 0]; KnowRBase[LTEMP0]; *----------------------------------------------------------- opFQUOTIENT: *----------------------------------------------------------- T← (fetch← TSP) + 1; LEFT← (LEFT) + 1, SCall[.FUNBOX2]; KnowRBase[FTemp0]; T← ExpSign2, Branch[DivArgZero]; * one arg = 0 * XOR signs and subtract exponents. * Add 200 to resulting exponent to correct for cancellation of bias. T← (ExpSign2)-(LShift[200, 7]C); * Subtract 200 from ExpSign2[0:8] FDivNormal: ExpSign1← (ExpSign1)-T; * First, transfer dividend to Frac2H,,Frac2L and divisor to T,,Q, and * unnormalize both of them by one bit so that significant dividend bits * aren't lost during the division. Frac1H← (Frac1H) rsh 1, Branch[.+2, R odd]; T← (Frac1L) RSH 1, Branch[.+2]; T← ((Frac1L) + 1) rcy 1; * Know Frac1L is even here Frac2L← T, Q← Frac2L; T← A← Frac2H, Multiply; * T,,Q ← (Frac2H ,, Frac2L) RSH 1 * Know Q[14]=0, so can't dispatch * Now do the division. * Must do total of 26 iterations: 24 for quotient bits, plus one more * significant bit in case we need to normalize, +1 bit for rounding. Frac2H← Frac1H, Call[DivFrac]; * Do 16 iterations SUBROUTINE; * Preserve high quotient; do 10 more iterations Frac1H← Frac1L, CoReturn; * We may have subtracted too much (or not added enough) in the last * iteration. If so, adjust the remainder by adding back the divisor. * Since the remainder got shifted left one bit, we must double the * divisor first. T← A← T, Divide, Frac1L, Branch[NoRemAdjust, R odd]; * T,,Q ← (T,,Q) lsh 1 Frac2L← (Frac2L) + Q; Frac2H← T← (Frac2H) + T, XorSavedCarry, Branch[.+2]; * Left-justify low quotient bits and zero sticky bit. * Then, if the remainder is nonzero, set the sticky bit. * Then normalize if necessary. Should have to left-shift at most once, * since the original operands were normalized. NoRemAdjust: T← Frac2H; pd← (Frac2L) or T; Frac1L← LSH[Frac1L, 6], Branch[.+2, alu=0]; Frac1L← (Frac1L) + 1; * Set sticky bit T← Frac1H, Branch[Normalize]; * Trap if divisor is zero; return zero with appropriate sign otherwise. DivArgZero: Frac2H, Branch[MulArgZero, R<0]; TOPLEVEL; callUFN; SUBROUTINE; * Division by zero *----------------------------------------------------------- DivFrac: * Divide fractions * Enter: Frac2H ,, Frac2L = dividend (high-order bit must be zero) * T ,, Q = divisor (high-order bit must be zero) * Exit: Frac2H ,, Frac2L = remainder, left-justified * Frac1L = quotient bits (see below) * T and Q unchanged * When first called, executes 16 iterations and returns 16 high-order * quotient bits. * When resumed with CoReturn, executes 10 more iterations and returns * 10 low-order quotient bits right-justified (other bits garbage). * Timing: first call: 66; resumption: 41 *----------------------------------------------------------- SUBROUTINE; Cnt← 17S; * Previous quotient bit was a 1, i.e., dividend was >= divisor. * Subtract divisor from dividend and left shift dividend. DivSubStep: Frac2L← ((Frac2L)-Q) LSH 1; DivSubStep1: Frac2H← (Frac2H)-T-1, XorSavedCarry, DblBranch[DivSh1, DivSh0, ALU<0]; * Previous quotient bit was a 0, i.e., dividend was < divisor * (subtracted too much). Add divisor to dividend and left shift * dividend. DivAddStep: Frac2L← ((Frac2L)+Q) LSH 1; DivAddStep1: Frac2H← (Frac2H)+T, XorSavedCarry, DblBranch[DivSh1, DivSh0, ALU<0]; * Shifted a zero out of low dividend (ALU<0 tested unshifted result). DivSh0: Frac2H← (Frac2H)+(Frac2H), DblBranch[DivQuot1, DivQuot0, Carry]; * Shifted a one out of low dividend (ALU<0 tested unshifted result). DivSh1: Frac2H← (Frac2H)+(Frac2H)+1, DblBranch[DivQuot1, DivQuot0, Carry]; * If the operation generated no carry then we have subtracted too much. * Shift a zero into the quotient and add the divisor next iteration. DivQuot0: Frac1L← (Frac1L)+(Frac1L), * Shift zero into quotient Branch[DivAddStep, Cnt#0&-1]; Cnt← 11S, CoReturn; Frac2L← ((Frac2L)+Q) LSH 1, Branch[DivAddStep1]; * If the operation generated a carry then we haven't subtracted too much * Shift a one into the quotient and subtract the divisor next iteration. DivQuot1: Frac1L← (Frac1L)+(Frac1L)+1, * Shift one into quotient Branch[DivSubStep, Cnt#0&-1]; Cnt← 11S, CoReturn; Frac2L← ((Frac2L)-Q) LSH 1, Branch[DivSubStep1]; TOPLEVEL; KnowRBase[LTEMP0]; regOP1[362, StackM2BR, opFGREATERP, noNData]; *----------------------------------------------------------- opFGREATERP: *----------------------------------------------------------- T← (fetch← TSP) + 1; LEFT← (LEFT) + 1, SCall[.FUNBOX2]; KnowRBase[FTemp0]; T← Stack&+2, Branch[FGT2]; * one arg = 0 T← Stack&+2, Branch[FGT2]; * T← high arg1 * First compare the signs FGT2: pd← T xor (Q← Stack&-1); * Q← high arg2 T← Stack&-1, FreezeBC, * T← low arg2 Branch[FCompSignsDiff, alu<0]; * Signs equal, compare magnitudes. * Q = high arg2, T = low arg2, StkP -> high arg1 pd← (Stack&-1) - Q, Branch[.+2, alu#0]; * Compute high (arg1 - arg2) pd← (Stack) - T; * If equal, compute low (arg1 - arg2) * Carry = 1 if arg1 >= arg2 when treated as unsigned numbers. * The sense of this is inverted if the arguments are in fact negative, * since the representation is sign-magnitude rather than 2s-complement. FCompTest: ExpSign1← (ExpSign1)+1, XorSavedCarry, Branch[FCompE, alu=0]; ExpSign1, DblBranch[FCompL, FCompG, R odd]; * Signs unequal. Unless both arguments are zero, return "less" if arg1 * is negative, else "greater". Q = high arg2. FCompSignsDiff: pd← T - T, StkP-1, Q lsh 1; * Carry← 1 pd← (Frac1H) or Q, Branch[FCompTest]; * alu=0 iff both args are zero FCompL: Stack← A0, memBase← StackBR, Branch[.fgtpret]; * arg1 < arg2 FCompE: Stack← A0, memBase← StackBR, Branch[.fgtpret]; * arg1 = arg2 FCompG: Stack← (Stack) - (Stack) - 1, memBase← StackBR, Branch[.fgtpret]; * arg1 > arg2 :if[StackEmpty!]; .fgtpret: T← (StackEmpty); RBase← RBase[LTEMP0]; :else; .fgtpret: T← A0, RBase← RBase[LTEMP0]; :endif; KnowRBase[LTEMP0]; TSP← (TSP) - (4c); * Adjust TSP back over args pd ← (Stack) + 1, StkP← T, Branch[TL.GREATERP]; KnowRBase[LTEMP0]; *----------------------------------------------------------- SUBROUTINE; .FUNBOX2: GLOBAL, *----------------------------------------------------------- * "unpack" two floating-point arguments. * Call: memBase← StackM2BR; * T← (fetch← TSP) + 1; LEFT← (LEFT) + 1, SCall[.FUNBOX2]; * Exit: ExpSign2, Frac2H, Frac2L set up with argument 2 (right); * ExpSign2[13:14]=00 * ExpSign1, Frac1H, Frac1L set up with argument 1 (left); * ExpSign1[13:14]=10 * StkP addresses high word of arg 1 (i.e., =2 if minimal stack) * Returns +1: at least one argument is zero * +2: both arguments are nonzero * Returns only for normal numbers or true zero. * Traps if denormalized, infinity, or Not-a-Number. * Clobbers Q LTEMP2← Md, T← (fetch← T) - (3c); * LTEMP2← YHi LTEMP3← Md, T← (fetch← T) + 1; * LTEMP3← YLo T← LTEMP0← Md, fetch← T; * T, LTEMP0← XHi LTEMP1← Md, memBase← tyBaseBR; * LTEMP1← XLo T← rcy[T, LTEMP1, 11]; * T ← type table ptr for X fetch← T, T← (2c); * Also shuffle a 2 into Q stkP← T; T← Md, memBase← ScratchLZBR; * T ← ntypx(X) pd← (T) xor (floatptype); branch[.+2, alu=0], BrHi← LTEMP0; TOPLEVEL; CallUFN; SUBROUTINE; * nope, not floatp PAGEFAULTOK; T← (FETCH← LTEMP1) + 1; Stack&-1← MD, fetch← T; Stack&+3← Md; * push unboxed X PAGEFAULTNOTOK; T← LTEMP2, memBase← tyBaseBR; * T← YHi T← rcy[T, LTEMP3, 11]; * T ← type table ptr for Y fetch← T; T← Md, memBase← ScratchLZBR; pd← (T) xor (floatptype); branch[.+2, alu=0], BrHi← LTEMP2; TOPLEVEL; CallUFN; SUBROUTINE; * nope, not floatp PAGEFAULTOK; T← (FETCH← LTEMP3) + 1; T← Stack&-1← MD, fetch← T; PAGEFAULTNOTOK; Stack← Md, RBase← RBase[FTEMP0]; ExpSign2← T AND (177600C), branch[FunPack2a]; FUnPack2: * Pop and unpack two floating-point arguments. * Enter: T = top-of-stack, StkP points to TOS-1 * Exit: ExpSign2, Frac2H, Frac2L set up with argument 2 (right); ExpSign2[13:14]=00 * ExpSign1, Frac1H, Frac1L set up with argument 1 (left); ExpSign1[13:14]=10 * StkP addresses high word of arg 1 (i.e., =2 if minimal stack) * Call by: SCall[FUnPack2] * Returns +1: at least one argument is zero * +2: both arguments are nonzero * Returns only for normal numbers or true zero. * Traps if denormalized, infinity, or Not-a-Number. * Clobbers Q *----------------------------------------------------------- ExpSign2← T AND (177600C); funpack2a: T← RCY[T, Stack, 10]; * Garbage bit and top 15 fraction bits ExpSign2← (ExpSign2) AND (77777C), * Exponent in bits 1:8, all else zero Branch[.+2, R<0]; * Branch if negative ExpSign2← (ExpSign2)+(200C), * Positive, add 1 to exponent, B15 ← 0 DblBranch[Exp2Zero, .+2, ALU=0]; * Branch if exponent zero ExpSign2← (ExpSign2)+(201C), * Negative, add 1 to exponent, B15 ← 1 Branch[Exp2Zero, ALU=0]; * Branch if exponent zero Frac2H← T OR (100000C), * Prefix explicit "1." to fraction Branch[Exp2NaN, ALU<0]; * Branch if exponent was 377 T← LSH[Stack&-1, 10]; * Left-justify low 8 fraction bits Frac2L← T; T← Stack&-1; * Now do arg 1 ExpSign1← T AND (177600C), Branch[FUnPack1a]; Exp2Zero: Frac2H← (Stack&-1) OR T; * See if entire fraction is zero Frac2L← A0, Branch[Arg2DeNorm, ALU#0]; * Branch if not true zero TopLevel; T← Stack&-1, Q← Link, SCall[FUnPack1]; * Zero, unpack other arg Link← Q, Branch[.+2]; * Return +1 regardless of what FUnpack1 did Link← Q; Subroutine; ExpSign2← (ExpSign2) AND (1C), Return; TOPLEVEL; Arg2DeNorm: CallUFN; * Denormalized number Exp2NaN: CallUFN; * Not-a-Number SUBROUTINE; *----------------------------------------------------------- FUnPack1: * Pop and unpack one floating-point argument. * Enter: T = top-of-stack, StkP points to TOS-1 * Exit: ExpSign1, Frac1H, Frac1L set up with argument * StkP addresses high word of arg 1 (i.e., =2 if minimal stack) * Call by: SCall[FUnPack1] * Returns +1: argument is zero * +2: argument is nonzero * Returns only for normal numbers or true zero. * Traps if denormalized, infinity, or Not-a-Number. * Timing: 7 cycles normally. *----------------------------------------------------------- ExpSign1← T AND (177600C), Global; FUnPack1a: T← RCY[T, Stack, 10]; * Garbage bit and top 15 fraction bits ExpSign1← (ExpSign1) AND (77777C), * Exponent in bits 1:8, all else zero Branch[.+2, R<0]; * Branch if negative ExpSign1← (ExpSign1)+(204C), * Positive, add 1 to exponent, [13:14]←10, [15]←0 DblBranch[Exp1Zero, .+2, ALU=0]; * Branch if exponent zero ExpSign1← (ExpSign1)+(205C), * Negative, add 1 to exponent, [13:14]←10, [15]←1 Branch[Exp1Zero, ALU=0]; * Branch if exponent zero Frac1H← T OR (100000C), * Prefix explicit "1" to fraction Branch[Exp1NaN, ALU<0]; * Branch if exponent was 377 T← LSH[Stack&+1, 10]; * Left-justify low 8 fraction bits Frac1L← T, Return[Carry']; * Always skip (carry is always zero here) Exp1Zero: Frac1H← (Stack&+1) OR T; * See if entire fraction is zero Frac1L← A0, Branch[Arg1DeNorm, ALU#0]; * Branch if not true zero ExpSign1← (ExpSign1) AND (1C), Return; * Zero, return +1 TOPLEVEL; Arg1DeNorm: CallUFN; * Denormalized number Exp1NaN: CallUFN; * Not-a-Number *----------------------------------------------------------- Normalize: * Normalize and re-pack floating-point result. * Enter: ExpSign1, T, Frac1L contain unpacked result * T = ALU = high fraction. * StkP addresses high word of result (i.e., =2 if minimal stack) * Timing: for nonzero result: 11 cycles minimum, +3 if need to normalize * at all, +2*(n MOD 16) if n>1, where n is the number of * normalization steps, +3 if n>15, +5 if need to round, +2 if * rounding causes a carry out of Frac1L, +1 or 2 in extremely * rare cases. For zero result: 6 cycles *----------------------------------------------------------- * See if result is already normalized or entirely zero. * Note that we want the cases of no normalization, one-step * normalization, and result entirely zero to be the fastest, since they * are by far the most common. So, do the first left shift in-line while * branching on the other conditions. PD← T OR (Q← Frac1L), * ALU← 0 iff entire fraction is 0 Branch[NormAlready, ALU<0]; * Branch if already normalized Frac1H← A← T, Divide, * (Frac1H,,Q) ← (T,,Q) LSH 1 Branch[NormalizeZero, ALU=0]; * Branch if fraction is zero ExpSign1← (ExpSign1)-(LShift[1, 7]C), * Subtract one from exponent Branch[NormBegin, ALU#0]; * Branch if high fraction was nonzero * If the high word of the fraction was zero, we discover that after * having left-shifted the fraction once. Effectively, left-shift the * fraction 16 bits and subtract 16D from the exponent. Actually, undo * the first left shift and subtract only 15D from the exponent, in case * the first left shift moved a one into the high fraction. ExpSign1← (ExpSign1)+(LShift[1, 7]C); ExpSign1← (ExpSign1)-(LShift[20, 7]C); Frac1H← Frac1L; * Left-shift original fraction 16 bits Q← T, Branch[NormLoop]; * Q← 0 * In this loop, the exponent is in ExpSign1[0:8] and the fraction in * Frac1H ,, Q. Left shift the fraction and decrement the exponent * until the high-order bit of the fraction is a one. NormBegin: T← A0, Frac1H, Branch[NormDone1, R<0]; * One shift enough ? NormLoop: Frac1H← A← Frac1H, Divide, Branch[NormDone, R<0]; * (Frac1H,,Q) ← (Frac1H,,Q) LSH 1 ExpSign1← (ExpSign1) - (LShift[1, 7]C), Branch[NormLoop]; * When we bail out of the loop, the exponent is correct, but we have * left-shifted the fraction one too many times. Right-shift the * fraction and exit. NormDone: Frac1H← (Frac1H)-T, Multiply; * (Frac1H,,Q) ← 1,,((Frac1H,,Q) RSH 1) NormDone1: Frac1L← Q, Branch[FRePackNonzero]; * Multiply dispatch pending!! NormAlready: Frac1H← T, Branch[FRePackNonzero]; * Placement (sigh) * Result was exactly zero: push +0 as answer. NormalizeZero: ExpSign1← A0, Branch[FRePackZero]; *----------------------------------------------------------- FRePackNonzero: * Re-pack nonzero floating-point result. * Enter: ExpSign1, Frac1H, Frac1L contain unpacked result, which must * be normalized but need not have its leading "1" so long as rounding * can't carry into this bit. * StkP addresses high word of result (i.e., =2 if minimal stack) * Timing: 9 cycles minimum, * +5 if need to round, +2 if rounding causes a carry * out of Frac1L, +1 or 2 in extremely rare cases. *----------------------------------------------------------- * Prepare to round according to Round-to-Nearest convention. * Frac1L[8:15] are fraction bits that will be rounded off; result * is exact only if these bits are zero. PD← (Frac1L) AND (377C), DispTable[1, 2, 2]; FRePackNZ1: ExpSign1← (ExpSign1) OR (176C), * unused bits of ExpSign1 get 1's Branch[NoRounding, ALU=0]; * Inexact result. Round up if result is greater than halfway between * representable numbers, down if less than halfway. If exactly * halfway, round in direction that makes least significant bit of * result zero. Adding 1 at the Frac1L[8] position causes a carry into * bit 7 iff the result is >= halfway between representable numbers. PD← (Frac1L) AND (177C); Frac1L← (Frac1L)+(200C), Branch[.+2, ALU#0]; * Exactly halfway. But we have already rounded up. * If the least significant bit was 1, it is now 0 (correct). * If it was 0, it is now 1 (incorrect). But in the latter case, no * carries have propagated beyond the least significant bit, so... Frac1L← (Frac1L) AND NOT (400C); * Just zero the bit to fix it * Now set the sticky flag and trap if appropriate. * Note we have not propagated the carry out of the low word yet, so * we must perform only logical ALU operations that don't clobber the * carry flag. T← B← Frac1H; T← T+1, RBase← RBase[FTemp0], * Prepare to do carry if appropriate Branch[DoneRounding, Carry']; * There was a carry out of Frac1L. Propagate it to Frac1H. * If this causes a carry out of Frac1H, the rounded fraction is * exactly 2.0, which we must normalize to 1.0; i.e., set fraction * to 1.0 and increment exponent. Frac1H← T, Branch[.+2, Carry']; ExpSign1← (ExpSign1)+(LShift[1, 7]C); ExpSign1← (ExpSign1)-(LShift[2, 7]C), DblBranch[ExpOverflow, .+3, R<0]; * Done rounding. Check for exponent over/underflow, and repack and * push result. DoneRounding: ExpSign1← (ExpSign1)-(LShift[2, 7]C), DblBranch[ExpOverflow, .+2, R<0]; NoRounding: * Subtract 2 from exponent; Branch if exponent > 377B originally ExpSign1← (ExpSign1)-(LShift[2, 7]C), Branch[ExpOverflow, R<0]; * Extract high 7 fraction bits, exclude leading 1, * Branch if exponent < 2 originally T← LDF[Frac1H, 7, 10], Branch[ExpUnderflow, ALU<0]; * Here, ExpSign1[1:8] = desired exponent -1, and [9:15] = 176 if * the sign is positive, 177 if negative. Thus adding 2 (if positive) * or 1 (negative) will correctly adjust the exponent and clear [9:15]. * Merge exponent with fraction and add 1. Branch if negative T← (ExpSign1)+T+1, Branch[.+2, R odd]; * Positive, add 1 more to finish fixing exponent Stack&-1← T+1, Branch[.+2]; Stack&-1← T or (signBit); * Negative, set sign bit of result T← Frac1H; * Construct low fraction T← rcy[T, Frac1L, 10]; Stack&+1← T, branch[.StoreFloat]; ExpOverflow: CallUFN; ExpUnderflow: CallUFN; *----------------------------------------------------------- FRePackZero: * Push a result of zero with the correct sign * Enter: ExpSign1 has correct sign * StkP addresses high word of result (i.e., =2 if minimal stack) *----------------------------------------------------------- T← LSH[ExpSign1, 17]; * Slide sign to bit 0 Stack&-1← T; * Push true zero with correct sign FRePackZ2: Stack&+1← A0, branch[.StoreFloat]; *----------------------------------------------------------- * .StoreFloat: * StackBr in effect *----------------------------------------------------------- :if[StackEmpty!]; .StoreFloat: T← (StackEmpty); RBase← RBase[LTEMP0]; :else; .StoreFloat: T← A0, RBase← RBase[LTEMP0]; :endif; KnowRBase[LTEMP0]; CELLHINUM← Stack&-1; CELLLONUM← Stack; StkP← T; * Resets the hardware stack NARGS← 2c; * All floating ops have two args, or 4 memBase← dtdBR; * wds on stack; 2c must come off. T← (LShift[floatpType!, 4]c), Branch[TL.CREATECELL];