
1

XEROX Lisp Library Packages

IMAGE OBJECTS

INTRODUCING OBJECTS INTO DOCUMENTS

Image Objects is a general-purpose interface that enables you to include graphics in documents.

More generally, it enables you to include one kind of image, with its own semantics, layout rules,

and editing paradigms, inside another kind of image. One side can be implemented by image users

who want to include other images, and the other side can be implemented by image producers, who

create images for use, say, in documents.

Images are encapsulated inside a uniform barrier--the IMAGEOBJ data type. From the outside, you

communicate to the image by calling a standard set of functions. For example, calling one function

tells you how big the image is; calling another causes the image object to be displayed where you

tell it, and so on. Anyone who wants to create images for general use can implement his own

brand of IMAGEOBJ. IMAGEOBJs have already been implemented for menus, bit maps,

annotations, and graphs.

Similarly, any imaging system that wants to use other kinds of images has only to implement the

consumer side of the interface and needn’t worry about internal details.

Image Objects for TEdit allows objects to exist in TEdit documents and be edited with their own

editor. It also provides a facility in which objects can be shift-selected (or "copy-selected")

between TEdit and non-TEdit windows. For example, the Image Objects interface allows you to

copy-select graphs from a Grapher window into a TEdit window. You can also perform more

complicated copy-selections, such as copy-selecting text from a DEdit window into a TEdit window

to preserve its structure, while copy-selecting it into a typescript window to treat it as a type-in. The

source window (where the object comes from) does not have to know what sort of window the

destination window (where the object is inserted) is, and the destination does not have to know

where the insertion comes from.

A new data type, IMAGEOBJ, contains the data and the procedures necessary to manipulate an

object that is to be part of a document. IMAGEOBJs are created with the function

IMAGEOBJCREATE.

Another new data type, IMAGEFNS, is a vector of the procedures necessary to define the behavior

of a type of IMAGEOBJ. Grouping the operations in a separate data type allows multiple instances



2

XEROX Lisp Library Packages

of the same type of image object to share procedure vectors. The data and procedure fields of an

IMAGEOBJ have a uniform interface through the function IMAGEOBJPROP. IMAGEFNS are

created with the function IMAGEFNSCREATE.

(IMAGEFNSCREATE DisplayFn ImageBoxFn PutFn GetFn CopyFn ButtonEventInFn

CopyButtonEventInFn WhenMovedFn WhenInsertedFn WhenDeletedFn WhenCopiedFn

WhenOperatedOnFn PrePrintFn) [Function]

returns an IMAGEFNS that contains the functions necessary to define the behavior of an

IMAGEOBJ. The arguments are as follows:

DisplayFn is applied to the arguments ImageObj and ImageStream. It is called to display the object

at the current position on ImageStream. The type of stream indicates whether the device is the

display or some other image stream.

ImageBoxFn is applied to the arguments ImageObj, ImageStream, CurrentX, and RightMargin. It

returns the size of the object as a list . The list’s first and second elements are the width and height

of the object image; its third and fourth elements are the position of the left edge and baseline of the

image relative to where you want to position it. For characters, the third element is the descent

(height of the descender) and the fourth element is zero because TEdit doesn’t support left kerning.

The ImageBoxFn returns the RECORD IMAGEBOX, which is a data structure that describes the

image laid down when an IMAGEOBJ is displayed in terms of width, height, and descender height.

It is provided with four fields: XSIZE, YSIZE, YDESC, and XKERN. The ImageBoxFn looks at the

type of the stream to determine the output device if the object’s size changes from device to device.

(For example, a bit-map object may specify a scale factor that is ignored when the bit map is

displayed on the screen.) The CurrentX and RightMargin fields allow an object to take account of its

environment when deciding how big it is. If these fields are not available, they are NIL.

PutFn is applied to the arguments ImageObj and FileStream. It is called to save the object on a file.

It prints a description on FileStream that, when read by GetFn (see below) , regenerates the TEdit

object. (TEdit takes care of writing out the name of the GetFn.)

GetFn is applied to the arguments FileStream and TextStream. It is called when the object is

encountered on the file during input. It reads the description that was written by the PutFn and

returns an IMAGEOBJ.

CopyFn is applied to the argument ImageObj and returns a copy of ImageObj. The CopyFn is called

during a copy-select operation.



3

XEROX Lisp Library Packages

ButtonEventInFn is applied to the arguments ImageObj, WindowStream, Selection, RelX, RelY,

Window, TextStream, and Button. ButtonEventInFn is called when you press a mouse button

inside the object. The ButtonEventInFn decides whether or not to handle the button, to track the

cursor in parallel with mouse movement, and to invoke selections or edits supported by the object

(but see CopyButtonEventInFn below). If ButtonEventInFn returns NIL, TEdit treats the button

press as a selection at its level. Note that when this function is first called, a button is down. The

ButtonEventInFn should also support the button-down protocol to descend inside of any composite

objects with in it. In most cases, the ButtonEventInFn relinquishes control (i.e., RETURNs) when

the cursor leaves its object’s region.

CopyButtonEventInFn is applied to the arguments ImageObj and WindowStream. It is called when

you button inside an object and hold down a copy (shift) key. Many of the comments about

ButtonEventInFn apply here too. Also, see the discussion below about copy-selecting objects.

WhenMovedFn is applied to the arguments ImageObj, TargetWindowStream, SourceTextStream,

and TargetTextStream. It provides hooks by which the object is notified when TEdit performs an

operation (MOVEing) on the whole object. It allows objects to have side effects.

WhenInsertedFn is applied to the arguments ImageObj, TargetWindowStream, SourceTextStream,

and TargetTextStream. It provides hooks by which the object is notified when TEdit performs an

operation (INSERTing) on the whole object. It allows objects to have side effects.

WhenDeletedFn is applied to the arguments ImageObj, TargetWindowStream, SourceTextStream,

and TargetTextStream. It provides hooks by which the object is notified when TEdit performs an

operation (DELETEing) on the whole object. It allows objects to have side effects.

WhenCopiedFn is applied to the arguments ImageObj, TargetWindowStream, SourceTextStream,

and TargetTextStream. It provides hooks by which the object is notified when TEdit performs an

operation (COPYing) on the whole object. WhenCopiedFn is called in addition to (and after) the

CopyFn above. It allows objects to have side effects.

WhenOperatedOnFn is applied to the arguments ImageObj, WindowStream, HowOperatedOn,

Selection, and TextStream. It provides a hook for edit operations. The values of HowOperatedOn

are SELECTED, DESELECTED, HIGHLIGHTED, and UNHILIGHTED. The WhenOperatedOnFn

differs from the ButtonEventInFn because it is called when you extend a selection through the

object. That is, the object is treated in toto as a TEdit character. HIGHLIGHTED refers to the

selection being highlighted on the screen, and UNHIGHLIGHTED means that the highlighting is

being turned off.



4

XEROX Lisp Library Packages

PrePrintFn is applied to the argument ImageObj. It is called to convert the object into something

that can be printed for inclusion in documents. It returns an object that the receiving window can

print (using either PRIN1 or PRIN2,its choice) to obtain a character representation of the object. If

PrePrintFn is NIL, the OBJECTDATUM itself is used. TEdit uses this function when you indicate that

you want to print the characters from an object rather than the object itself (presumably using

PRIN1 case).

IDENTIFYING LEGITIMATE GETFNS

Each legitimate GetFn needs to be known to the system, to prevent various Trojan-horse problems

and to allow the automatic loading of the supporting code for infrequently used IMAGEOBJs. To

this end, there is a global list, IMAGEOBJGETFNs, that contains an entry for each GetFn. The

existence of the entry marks the GetFn as legitimate; the entry itself is a property list (PList), which

can hold information about the GetFn (see the following section).

No action needs to be taken for GetFns that are currently in use: the function IMAGEFNSCREATE

automatically adds its GetFn argument to the list. However, packages that support obsolete

versions of objects may need to explicitly add the obsolete GetFns. For example, TEdit supports

bit-map IMAGEOBJs. Recently, a change was made in the format in which objects are stored; to

retain compatibility with the old object format, there are now two GetFns. The current GetFn is

automatically on the list, courtesy of IMAGEFNSCREATE. However, the code file that supports the

old bit-map objects contains the clause: (ADDVARS (IMAGEOBJGETFNS (OldGetFnName) )),

which adds the old GetFn to IMAGEOBJGETFNS.

For a given GetFn, the entry on IMAGEOBJGETFNS may be a property list of information. Currently

the only possible property is FILE.

FILE is the name of the file that can be LOADed if the GetFn isn’t defined. This file also defines all

the other functions needed to support that kind of IMAGEOBJ.

For example, the bit-map IMAGEOBJs implemented by TEdit use the GETFN BMOBJ.GETFN2. Its

entry is (BMOBJ.GETFN2 FILE IMAGEOBJ), indicating that the support code for bit-map image

objects resides on the file IMAGEOBJ, and that the GetFn for them is BMOBJ.GETFN2.

This makes it possible to have entries for GetFns whose supporting code isn’t loaded--you might,

for instance, have your init file add entries to IMAGEOBJGETFNS for the kinds of image objects you

commonly use. The system’s default reading method will automatically load the code when

necessary.



5

XEROX Lisp Library Packages

USING THE BUILT-IN SUPPORT FUNCTIONS

(IMAGEFNSP X) [Function]

returns X if X is an IMAGEFNS, NIL otherwise.

(IMAGEOBJCREATE ObjectDatum ImageFns) [Function]

returns an IMAGEOBJ that contains the object datum ObjectDatum and the operations vector

IMAGEFNS. ObjectDatum can be arbitrary data.

(IMAGEOBJP X) [Function]

returns X if X is an IMAGEOBJ, NIL otherwise.

(IMAGEOBJPROP ImageObject Property NewValue) [Function]

accesses and sets the properties of an IMAGEOBJ. It can be used on the system properties

OBJECTDATUM, DISPLAYFN, IMAGEBOXFN, PUTFN, GETFN, COPYFN, BUTTONEVENTINFN,

COPYBUTTONEVENTINFN, WHENOPERATEDONFN, and PREPRINTFN. Additionally, it can be

used to save arbitrary properties on an IMAGEOBJ.

READING AND WRITING IMAGEOBJS ON FILES

IMAGEOBJs can be written out to files using HPRINT and read back using READ. This method

uses the following functions, which can also be used in user code:

(WRITEIMAGEOBJ ImageObj Stream ) [Function]

PRIN2s a call to READIMAGEOBJ, then calls the PUTFN for ImageObj to write it onto Stream .

During input, then, the call to READIMAGEOBJ is read and evaluated; it in turn reads back the

object’s description, using the appropriate GetFn.

(READIMAGEOBJ Stream GetFn NoError ) [Function]

reads an IMAGEOBJ from Stream , starting at the current file position. Uses the function GetFn

after validating it (and loading support code, if necessary). If the GetFn can’t be validated or isn’t

defined, READIMAGEOBJ returns an IMAGEOBJ that is a safe encapsulation: It displays as a

rectangle that says, "Unknown IMAGEOBJ Type" and lists the GetFn’s name. However, if

NOERROR is non-NIL, READIMAGEOBJ returns NIL if it can’t successfully read the object.



6

XEROX Lisp Library Packages

Selecting an encapsulated IMAGEOBJ with the mouse causes another attempt to read the object

from the file; this is so you can load any necessary support code and then get to the object. NB:

You cannot save an encapsulated IMAGEOBJ on a file because there isn’t enough information to

allow copying the description to the new file from the old one.

COPY-SELECTING BETWEEN WINDOWS

The general idea behind copying between windows is that the source window builds an image

object of what you have selected and calls a system function. The system function finds the current

TTY window and calls a function associated with it that knows how to insert image objects. For

instance, BKSYSBUF is used to copy strings by having the system function call BKSYSBUF on the

PREPRINTFN of the image object if the target window doesn’t have an insert function.

The following new functions have been added to the system to implement copy-selecting image

objects between windows.

COPYBUTTONEVENTFN [Window property]

is called (if it exists) when a button event occurs and a copy key is down. If no

COPYBUTTONEVENTFN exists, the BUTTONEVENTFN is called.

COPYINSERTFN [Window property]

is called by COPYINSERT (see below) when the source window wants to insert something into the

destination window as a result of a copy-select. Its arguments are the object to be inserted and the

destination window . The object to be inserted can be a character string, an IMAGEOBJ, or a list of

IMAGEOBJs and character strings. As a convention, COPYINSERTFNs call BKSYSBUF if the

object they are to insert is a character string. For TEdit windows, the COPYINSERTFN is a function

that calls TEDIT.INSERT if given a string and TEDIT.INSERT.OBJECT if given a TEdit object.

(COPYINSERT ImageObject ) [Function]

is applied to the argument ImageObject. It inserts ImageObject into the window that currently has

the TTY. It first finds the window that has the TTY (say TTYWindow). If TTYWindow has a

COPYINSERTFN, this is called, passing it ImageObject. If no COPYINSERTFN exists and if

ImageObject is an image object, the result of calling its PREPRINTFN on it is BKSYSBUFed;

otherwise ImageObject is BKSYSBUFed. (The default BKSYSBUF uses PRINT2 with a read table

taken from the process associated with the TTY window. A window that wishes to use PRIN1 or a

different read table can provide its own COPYINSERTFN that does this.) Thus the



7

XEROX Lisp Library Packages

COPYBUTTONEVENTFN for a window allows you to select an object and then calls COPYINSERT

on an image object built (via IMAGEOBJCREATE) from the selected object and 13 functions that

define its behavior.

End Notes

1. TEdit calls the IMAGEBOXFN only during line formatting, then caches the imagebox as

(IMAGEOBJPROP obj ’BOUNDBOX). This avoids the need to call IMAGEBOXFN when incomplete

position and margin information is available.

2. When the ButtonEventInFn is called, the window’s clipping region and offsets have been

changed so that the lower-left corner of the object’s image is at (0,0), and only the object’s image

can be changed. The selection is available for changing to fit your needs; the mouse button went

down at (relX,relY) within the object’s image. You can affect how TEdit treats the selection by

returning one of several values. If you return NIL, TEdit forgets that you selected an object; if you

return the atom DON’T, TEdit doesn’t permit the selection; if you return the atom CHANGED, TEdit

updates the screen. Use CHANGED to signal TEdit that the object has changed size or will have

side effects on other parts of the screen image.

3. As with the ButtonEventInFn , the offset and clipping regions for the display are set so the object’s

image is at (0,0), and only that image area can be modified.


