
BUSMASTER -- attaching IBM-PC or Multibus peripherals to
an 1108 with Extended Processor
Option (CPE)

Initially released: 25 Sept 1984
Michael Herring
Edited: 22 Oct 1984

IBM PC- or Multibus- compatible peripheral devices (not both at once!) can be attached to an 1108
which has the Extended Processor Option (CPE), using Xerox’s BusMaster interface option.

This document describes the functionality of the BusMaster hardware, and the BUSMASTER
software package for controlling it. It is divided into sections:

this introductory section
single-byte transfers - the BUS functions
microcoded block transfers - the BUSBLT functions
dma - overview of direct memory access
dma - detailed discussion of the dma process
dma - register model of the BusMaster dma controller
dma - the BUSDMA functions
dma - summary of simple use
dma - technical notes

(This document and the accompanying BUSMASTER software package are somewhat preliminary:
While they have been used with IBM PC-compatible peripherals, the Multibus alternative has not been fully
integrated at this writing. Thus some changes can be expected before the BusMaster interface option is
released. In particular, more obscure details may change, the more technical documentation may become
more exact, the documentation will become less PC oriented, and (perhaps most importantly) well-packaged
diagnostic software will be included. Also hopefully global initialization will be better understood and better
packaged, and the problem of accessing nonexistent memory on the external bus will be properly addressed.

Note in particular that much of this documentation is written as though only IBM PC peripherals
were supported, which is false.

IBM PC, IPB PC-XT, Intel 8237-5A, and Data Translation DT2801 are proprietary names.)

Additional hardware is required between the BusMaster and the peripheral devices: an IBM PC or
PC-XT expansion chassis to mount the peripherals’ controller cards in, and in some cases a PC memory card,
mounted in the expansion chassis. The BusMaster connects the PC expansion chassis (the "external bus") to
the BusExtender high-speed parallel port of the 1108.

The BUSMASTER library package makes use of the BUSEXTENDER library package.

In terms of the hardware environment, PC peripherals fit into this augmented 1108 system in just the
same way they would into an IBM PC. Most programming of the peripherals is done in just the same way it
would be done in BASIC on an IBM PC: "peeks and pokes" -- that is, explicitly programmed transfers of
individual bytes from and to individual i/o and memory addresses. There are two restrictions affecting more
advanced i/o programming techniques:

1) Interrupts: Interrupts are not as yet supported. More precisely, while the hardware does support
interrupts, exactly as on an IBM PC, the 1108 microcode does not as yet support interrupts.

2) Direct memory access: PC peripherals cannot perform direct memory access (dma) to the internal
memory of the 1108. However, the peripheral can perform dma to/from PC memory mounted in the PC
expansion chassis, and the 1108 can simultaneously access that memory, either with peeks & pokes or with
microcoded high-speed block transfer instructions.

Our experience is that example i/o programs in BASIC, not involving interrupts or dma, can be
translated immediately to Interlisp-D without subtlety.

We have also implemented several applications that use dma techniques, with two different
peripheral devices, the Data Translation DT2801 Analog & Digital I/O System and a Tecmar-like
640x400x4-bit color board. One of our applications has the data acquisition board sampling acoustic data at



2

10KHz, while the 1108 processes the data (including FFTs) and graphs the results, continuously in real time.
This application uses quite sophisticated dma techniques: the data acquisition board dmas continuously into a
circular buffer in memory in the expansion chassis, while the program in the 1108 continuously reads &
processes data from the circular buffer. This is possible because (1) the PC’s dma controller (which is
functionally duplicated in the BusMaster) can be programmed to wrap dma around a circular buffer
continuously without software intervention, (2) the dma pointers can be read by the software program, and (3)
data transfer from the PC memory to the 1108 does not interfere with dma from the peripheral device. This
dma technique took only a couple of days to design & implement using the BUSMASTER software.

Our interface functions for the Data Translation board are available as the LISP Library Package
PCDAC; it is one example of how to use the BUSMASTER package.

Single-byte transfers to/from the external bus -- the BUS functions

Note that whenever you power-up or BUS.RESET, you then have to call BUSDMA.INIT at least
once, to initialize the memory refresh apparatus, before the memory on the external bus can be expected to
hold data.

(BUS.RESET) -- acts like a power-up: resets the BusMaster and asserts the Reset signal on the external
bus, thereby causing every device there to reset itself as at power-up. BUSDMA.INIT will
then have to be called again if the dma controller or memory refresh apparatus is needed.

(BUS.INPUT i/oaddress) => 8bitvalue -- input a byte from an external-bus i/o address, returning it as a
small nonnegative integer.

(BUS.OUTPUT i/oaddress 8bitvalue) -- output a byte (the least significant 8 bits of the integer argument)
to an external-bus i/o address

(BUS.READ memoryaddress) => 8bitvalue -- read a byte from external-bus memory, returning it as a
small nonnegative integer.

(BUS.READHL memaddrhi memaddrlo) => 8bitvalue -- read a byte from external-bus memory,
returning it as a small nonnegative integer. memaddrlo is the less significant 16 bits of the
memory address; memaddrhi is the more significant bits of the address.

(BUS.WRITE memoryaddress 8bitvalue) -- write a byte (the least significant 8 bits of the integer argument)
to external-bus memory

(BUS.WRITEHL memaddrhi memaddrlo 8bitvalue) -- write a byte (the least significant 8 bits of the
integer argument) to external-bus memory. memaddrlo is the less significant 16 bits of the
memory address; memaddrhi is the more significant bits of the address.

Microcoded block tranfersto/from the external bus -- the BUSBLT functions

These functions transfer data between an array in Interlisp-D virtual memory and a consecutive
region in the memory on the external bus.

Note that BUSDMA.INIT has to be called at least once, to initialize the memory refresh apparatus,
before the memory on the external bus can be expected to hold data.

(BUSBLT.BYTES array startingindex busaddress nelements toexternalmemory?) -- transfer every byte of
nelements elements of the array in Interlisp-D memory, starting with the startingindex’th
element, to or from consecutive byte addresses on the external bus, starting at busaddress.
array must be an array of either BYTEs, WORDs (= SMALLPOSPs), or FIXPs. If the array
is of WORDs or FIXPs then the more significant byte of each Interlisp-D word is transferred
to the lower address on the external bus.



3

(BUSBLT.RIGHTBYTES array startingindex busaddress nelements toexternalmemory?) -- transfer the
less significant byte of each word of nelements elements of the array in Interlisp-D memory,
starting with the startingindex’th element, to or from consecutive byte addresses on the
external bus, starting at busaddress. array must be an array of either WORDs (=
SMALLPOSPs) or FIXPs. (Note that array cannot be of BYTEs.) On transfers to
Interlisp-D virtual memory, the more significant byte of each word is zeroed.

(BUSBLT.NYBBLES array startingindex busaddress nelements) -- transfer every 4-bit nybble of
nelements elements of the array in Interlisp-D memory, starting with the startingindex’th
element, to consecutive byte addresses on the external bus, starting at busaddress. Each 4-bit
nybble of Interlisp-D virtual memory corresponds to a byte in the external bus memory: the
Interlisp-D nybble is right-aligned in the external-bus byte, with the left 4 bits of the
external-bus byte unspecified. The byte resulting from the more significant nybble of each
Interlisp-D word is transferred to the lower byte address on the external bus. array must be
an array of either BYTEs, WORDs (= SMALLPOSPs) or FIXPs. NOTE that only the
transfer from Interlisp-D memory to external-bus memory is implemented at this writing.

A read form of BUSBLT.NYBBLES is expected to be added later. Also BUSBLT.SWAPBYTES,
which will differ from BUSBLT.BYTES only in that the more significant byte of the 1108 word will
correspond to the higher address on the external bus.

Dma -- overviewof direct memoryaccess on the external bus

The BusMaster includes, in addition to peek and poke apparatus, a 3-channel DMA controller and
memory refresh circuitry.

Memory refresh circuitry is necessary for dynamic RAM (such as that used in the PC) to keep its data.
As in the IBM PC, the BusMaster’s memory refresh circuitry is integrated with its dma controller and timer,
and uses the fourth dma channel #0. Memory refresh is initiated during the global initialization of the dma
controller. These operations would be done automatically on an IBM PC.

Direct memory access (dma) refers to a process whereby an i/o device can transfer data to or from
main memory without direct intervention by the central processor. That is, although the central processor
must help in setting up the dma operation and in tidying up after it, many bytes of data can be transferred in a
single dma operation without the central processor having to be involved as each byte is transferred. This
involves having dedicated hardware (in this case the BusMaster’s dma controller) with memory-address and
transfer-count registers and control circuitry.

Typically a single dma operation transfers a predetermined number of bytes of data from the i/o
device to sequential addresses in main memory, or similarly with the data going from memory to the i/o
device. The dma circuitry has to allow for the operation to terminate prematurely; the BusMaster allows the
operation to be terminated prematurely either by the program or by the i/o device (though not all i/o devices
are smart enough).

The BusMaster will also allow dma to take place to or from a "circular buffer" in memory. This is
referred to in this document by the not-obviously-appropriate name "Autoinitialization Mode". The name
comes from the fact that, in Autoinitialization Mode, the dma controller does not terminate the dma operation
when the transfer count runs out, but rather re-initializes the address and counter registers to their initial
values, thus "wrapping around" the "circular buffer". In this case the BusMaster will let the dma go on
forever: the i/o device or the program has to terminate it.

The direct memory access discussed here takes place entirely on the external bus. There is no direct
memory access possible between i/o devices on the external bus and the 1108’s memory. A similar effect can
be got by using dma between the i/o device and the memory on the external bus, together with block transfers
between the external bus memory and the 1108’s memory (discussed in their own section above).

As on the IBM PC, the dma controller and its support hardware are actually controlled via peeks and
pokes. However, the BUSMASTER package includes a set of BUSDMA functions that implement a



4

higher-level view of the dma controller. This view of the dma controller is basically a simplified version of that
in the specifications for the Intel 8237-5A, on which the system is based.

Dma -- detailed discussion of the dma process

Typical dma operations using the BusMaster are quite easy to program -- you are only dealing with
one i/o device and in only one way. Even planning the use of one particular i/o device is not too bad if you’re
not going to be exotic. Unfortunately, i/o devices differ in major & minor ways, the BusMaster is designed to
fit well with most of them, and this discussion has to enable you to plan the use of (almost) any i/o device in
(almost) any way reasonable. So please be tolerant. My hope is that after you read through to the Summary
section below, you should have at most a few questions, which can likely be answered by skimming around.
(If you are planning exotic things, you may need to read the specifications for the the Intel 8237-5A dma
controller chip, on which the Busmaster is based, and the Technical Notes section below.)

The dma controller and memory refresh circuitry have to be initialized before any dma can take place
and before the memory in the PC expansion chassis can hold data reliably. This is done with the
BUSDMA.INIT function (though under some circumstances you may also need the BUS.RESET function
discussed above). BUSDMA.INIT can be called again at any time, with the side effect of disabling (masking)
all three dma channels.

The dma controller has three separate dma channels, numbered 1 to 3. (There is actually also a fourth
channel, numbered 0, dedicated to the memory refresh apparatus.) Each i/o device that does dma has to
know or be told its dma channel number, as does the software controlling the device. Usually a device’s
interface card has switches or jumpers which determine which dma channel it will use.

Only one device can be using any one dma channel at a time. Thus there can be at most three i/o
devices doing dma at any time. The three dma channels are controlled separately.

We think in terms of dma "operations". A "single dma operation" is: the program gets the i/o device
and its channel set up for the operation; many bytes are transferred one at a time at the instigation of the i/o
device but under the control of the channel; the transfer is terminated somehow by either the channel, the i/o
device, and/or the program; finally the program tidies up the i/o device & the channel. Also, during the time
when individual bytes are being transferred by the i/o device and the channel, the program might intervene to
temporarily "suspend" and then "resume" the dma operation. It is important to notice that the dma controller
itself does not actually distinguish between "suspended" and "terminated": if the program resumes the
operation then it was "suspended"; if it sets up a new operation then the old one was "terminated"!

The setup of the i/o device depends on the device. Setting up the dma channel basically involves
setting up address, transfer-count, and mode registers. It would be premature to discuss the setup further
here, as we have not yet motivated the issues. Rather we will discuss everything else, including the function of
the channel’s registers, then discuss setup again in the Summary section.

During the extended "dma operation", individual byte transfers are requested by the i/o device
involved. If more than one device requests dma at the same time, the dma controller services the
lower-numbered channel first. The direction of the transfer (to or from memory) has to have been set up the
same in both the i/o device and the dma channel.

The memory address to/from which the transfer will take place is determined entirely by the dma
channel. Normally it uses successively increasing byte addresses in memory, but it is possible to use
successively decreasing addresses, and in "Autoinitialization Mode", the channel will wrap the addresses
around a circular buffer (wrapping in either direction). For exactly how addresses are generated, see the
discussion of the page, current-address, and base-address registers below in the Register Model section.

Dma on a particular channel can be suspended and resumed by "masking" and "unmasking" the
channel. A masked channel refuses to honor any dma transfer requests. If there is a dma transfer request still
pending when the channel becomes unmasked, the channel will service the request then. Obviously, data can
be lost by keeping the dma channel masked too long while its i/o device is requesting transfers.

It remains to discuss how a dma operation is terminated. This is potentially rather complicated.



5

Dma transfers will cease under either of three conditions: the i/o device ceases to request dma
transfers; the dma channel masks itself because its transfer counter runs out; or the dma channel is masked by
the program.

In either case, the dma channel itself does not distinguish between "suspended" and "terminated". I
will try to say what it does do:

At any given point, a dma channel is asking itself "Am I masked?". If so, that’s all.
But if it is not masked, it then asks "Am I receiving a request for a dma transfer?". If not, that’s all.
But if it is receiving a request for a dma transfer, then it gets the transfer done, and then increments or

decrements its current-address register, and decrements its current-transfer-count register. If its
current-transfer-count register does not go to zero, then that’s all.

But if its current-transfer-count register does go to zero, then the channel asserts the external-bus
signal named TC, and also sets its "TC bit" in the dma controller’s status register. (The TC signal is also
referred to as EOP, and is available for the i/o device to sense if it wants.) The channel then asks itself "Am I
in Autoinitialization Mode?". If it is not in Autoinitialization mode, then it masks itself; if it is in
Autoinitialization mode, then it reinitializes its current-address and current-transfer-count registers from the
corresponding base registers, but does not mask itself.

In any case, the dma channel does not "terminate the dma operation" really: it may mask itself, and it
may emit the TC signal and set its TC bit, and the program or the i/o device may act on these things. But all
the channel cares about this, until it is acted on by the program, is that if it masked itself, then it stays masked
until the program unmasks it (possibly after changing its other registers!).

The i/o device might cease to request dma transfers for any of several reasons, including: it has its
own transfer count register, which has run out; it has detected an error condition and chosen to stop transfer;
it has detected the TC signal from its dma channel on the external bus; it has detected some other termination
condition; or it has been disabled by the program. Any particular i/o device may well not support all these
choices. The dma channel cannot tell directly that the device has ceased requesting dma transfers; it simply
responds to them if & as they arise. Typically the program determines that the i/o device considers the dma
operation done.

The program might mask the channel temporarily, for some kind of housekeeping reason, or it may
do so as part of terminating the dma operation. It can have any sort of reason for doing this. The dma
channel does not care: if the program chooses to reset some of the channel’s parameters while it is masked,
that’s fine; otherwise when the channel becomes unmasked, it will keep on from where it was. Changing a
dma channel’s parameters while it is unmasked is risky and to be avoided.

Direct memoryaccess -- register model of the BusMaster dma controller

In our model of the dma controller, there are no global registers, and each channel has a set of seven
registers:

Page register--
Supplies the more significant bits of the external-bus memory addresses generated by the channel.

The contents of this register are simply concatenated onto the left of the contents of the current-address
register when an address is generated.

Unfortunately, incrementing or decrementing a channel’s current-address register does not affect its
page registers. (This implies that any dma operation must take place entirely within one (64KB-aligned)
64KB page, since the current-address registers are 16 bits wide. Further, a dma buffer that seems to overlap a
64KB-page boundary will really wrap around within the 64KB-page it starts in.

The page registers are set up by the program, but cannot be read by it.

Current-address register--
Holds the less significant bits of the external-bus memory addresses generated by the channel, that is,

the 16-bit address-within-page. The channel generates addresses by concatenating its page register onto the
left of its current-address register.



6

After each byte transfer, the channel increments or decrements the current-address register by one.
The direction depends on a bit in the channel’s mode register. Unfortunately, this increment or decrement
does not affect the page register (as discussed above).

The current-address register is set up by the program, incremented or decremented by the channel,
and, in "Autoinitialization Mode", reloaded by the channel from its base-address register when its
current-transfer-count register runs down. The current-address register can be read by the program, so that
the program can keep its access to the external-bus memory synchronizeed with dma on the external bus.

Base-address register--
In Autoinitialization Mode, holds the starting address of the circular buffer. That is, in

Autoinitialization Mode, when a channel’s current-transfer-count register runs down, the channel reinitializes
its current-address register from its base-address register.

The base-address register is loaded automatically whenever the program sets up the current-address
register. There is no BUSDMA function for reading the base-address register.

Current-transfer-count register--
Controls the length of the dma operation (or, in Autoinitialization Mode, the length of the circular

buffer). That is, after each data transfer, the channel decrements its current-transfer-count register, and if it
goes to zero, then a TC signal is asserted to the external bus and the channel is masked (if not
Autoinitialization Mode) or the current address & transfer-count registers are reinitialized from the base ones
(if Autoinitialization Mode).

Note that the current-transfer-count register contains the number of byte transfers remaining to be
done, as an unsigned 16-bit number. Note also that while a current-transfer-count register value of zero,
viewed as after a dma transfer, means "done", the same zero value viewed as before a dma transfer, means
64K. Thus the maximum transfer (or circular buffer size) is 64K bytes.

(You may also need to know that the hardware register keeps its values one less that what we’ve
described here, modulo 64K. The BUSDMA functions maintain the translation.)

The current-transfer-count register is set up by the program, decremented by the channel, and, in
Autoinitialization Mode, reloaded by the channel from its base-transfer-count register when it runs down.
The current-transfer-count register can be read by the program, so that the program can synchronize its
external-bus memory accesses with the external-bus dma.

Base-transfer-count register--
In Autoinitialization Mode, holds the initial value of the current-transfer-count register. That is, in

Autoinitialization Mode, when a channel’s current-transfer-count register runs down, the channel reinitializes
it from its base-transfer-count register.

The base-transfer-count register is loaded automatically whenever the program sets up the
current-transfer-count register. There is no BUSDMA function for reading the base-transfer-count register.

Mode register--
Contains some control bits. The mode register is set up by the program, but cannot be read by it.
writememory? -- determines whether dma transfers are from the i/o device to memory, or vice versa.
autoinit? -- governs Autoinitialization Mode. If false, the current-transfer-count register should be set

up with the length of the transfer, and when it runs down the channel masks itself. If true, the
current-transfer-count register should be set up with the length of the circular buffer in external-bus memory,
and, when it runs down, the channel reloads the current-address and current-transfer-count registers from the
base-address and base-transfer-count registers, thus wrapping around the circular buffer.

decaddr? -- determines whether the current-address register is to be incremented or decremented after
each byte transferred.

Mask bit--
While a channel’s mask bit is set (the channel is said to be "masked"), dma on the channel is

suspended in that the channel will ignore requests for dma transfers from the i/o device.
Note that if an i/o device requests a dma transfer while its channel is masked, and is still asserting that

request when the channel becomes unmasked, the channel will service the request at that time. Thus data can
be lost while a channel is masked only if the channel is kept masked for a significant time relative to the speed
of the i/o device.



7

All channels’ mask bits are set when the dma controller is (re)initialized, including at power-up. They
can be set or cleared by the program. A channel sets its mask bit when the current-transfer-counter runs
down, except in Autoinitialization Mode. The program cannot read the mask bits.

TC bit--
Whether the channel’s current-transfer-count register has run down since the last time either the dma

controller was (re)initialized, including at power-up or BUSDMA.READTCBIT was explicitly used to reset
this bit.

Direct memoryaccess -- the BUSDMA functions

See the Register Model section above for explanations of the arguments of these functions and of the
registers referred to by them.

These functions do not check their arguments except as specifically noted.

(BUSDMA.INIT) -- (re)initialize the dma controller and memory refresh circuitry. Masks channels 1, 2
and 3, and clears their TC bits.

(BUSDMA.SETMODE channel writememory? autoinit? decaddr?) -- set the mode register for the
channel.

(BUSDMA.SETPAGE channel highbitsofaddress) -- write to the page register for the channel. Checks
that channel is in the range 1-3.

(BUSDMA.SETADDRESS channel low16bitsofaddress) -- write to both the base & current address
registers for the channel. The channel must be masked when this function is called -- this is
the caller’s responsibility.

(BUSDMA.READADDRESS channel) => low16bitsofaddress -- read the current address register for
the channel. The channel must be masked when this function is called -- this is the caller’s
responsibility.

(BUSDMA.SETCOUNTER channel nbytes) -- write to both the base & current transfer-count registers
for the channel. Checks that nbytes is in the range 1-65536. The channel must be masked
when this function is called -- this is the caller’s responsibility.

(BUSDMA.READCOUNTER channel) => nbytes -- read the current transfer-count register for the
channel. Note that the value 65536 is returned as (the functionally indistinguishable value)
zero. The channel must be masked when this function is called -- this is the caller’s
responsibility.

(BUSDMA.MASK channel) -- set the mask bit for the channel, disabling dma on the channel.

(BUSDMA.UNMASK channel) -- clear the mask bit for the channel, enabling dma on the channel.

(BUSDMA.READTCBIT channel clearthebit?) => the channel’s TC bit, as T or NIL. Also clears the
bit if requested.

Direct memoryaccess -- summaryof simple use

Generally each channel can be dealt with separately.

Planning--



8

Determine what channel the device will use. Determine what conditions will terminate the dma
operations, and how the device, the program, and the dma controller will find out about them. Determine
where the buffer(s) will be, to the extent that they are not dynamically allocated.

If you are using circular buffering, or other exotic stuff, you’ll know it by this point.

Global initialization--
Call BUS.RESET whenever you want to simulate a power-down, power-up cycle for the BusMaster,

the expansion chassis, and the devices on the expansion chassis bus.
Call BUSDMA.INIT. This has to be done at least once before doing dma on the external bus or

expecting the memory on the external bus to keep data. It can be called redundantly, but has the side effect of
masking channels 1-3. Since there is no way to read the mask bits, if you have multiple, logically independent
i/o devices using dma on the system, you will have to coordinate BUSDMA initialization in your own
software. This may be fixed later.

A dma operation--
If the channel is not masked (which it is after BUSDMA.INIT), call BUSDMA.MASK. Then call

BUSDMA.SETMODE, BUSDMA.SETPAGE, BUSDMA.SETADDRESS, and BUSDMA.SETCOUNTER
in any order. (If your mode settings or page number for the channel are constant, you don’t have to set them
each time, though it’s cheap.) While the channel is masked is a safe time to set up the i/o device.

Now call BUSDMA.UNMASK, then, when ready, start the i/o device. (It could be started while the
channel is masked if data wouldn’t be lost, but this way always works.)

The dma operation is now hopefully "in progress". You will need to test things during this time,
especially since we don’t have interrupts. If you are going to use BUSDMA.READADDRESS or
BUSDMA.READCOUNTER, or otherwise need to suspend dma on the channel temporarily for some
reason, call BUSDMA.MASK to suspend, then call BUSDMA.UNMASK to resume.

To stop the dma channel call BUSDMA.MASK.

Direct memoryaccess -- technical notes

(1) The current- and base- transfer-count registers are kept in the hardware as the number of transfers
remaining less one, and the channel checks after each byte transfer for the current-transfer-count having been
decremented from zero to -1. BUSDMA.SETCOUNTER and BUSDMA.READCOUNTER perform the
translation to the model described above.

(2) The i/o addresses of the devices described herein are the same as on the IBM PC. They can be
discovered by inspecting the Interlisp-D source code in this BUSMASTER library package.

(3) The main point of this section is to tell technically advanced readers how the BUSDMA model of
the dma process relates to the Truth about the BusMaster and the Intel 8237-5A dma controller chip. This for
those who have read the specifications for the Intel 8237-5A dma controller chip or looked at the BusMaster
or IBM PC schematics. A side benefit, perhaps, is to give hints for those who are thinking about using an
exotic device through the BusMaster.

This section is not intended to be intelligible to a casual reader.

BusMaster functionality that is hidden by the BUSDMA functions-- the Interrupt and Interrupt
Mask bits, Parity Error, and in general all the BusMaster status and control register bits (except Reset via
BUS.RESET).

Note that interrupts from the external-bus i/o devices to the 1108 are supported by BusMaster, but
the 1108 microcode will at present blow up if presented with such an interrupt.

See also Technical Note (1) above.

Intel 8237-5A functionality that does not apply in the hardware context of the BusMaster-- Channel 0
is dedicated to memory refresh. And therefore block memory-to-memory transfer and block memory
initialization are impossible. I/o devices cannot assert the TC signal to the dma controller. Command
register: the timing variations may or may not be physically possible, I don’t know; DREQ & DACK sense are
of course fixed. Mode register: "cascade" mode is of course not possible.

Note that the page registers are not on the 8237-5A.



9

Intel 8237-5A functionality that is hidden because it is either impossible in the BusMaster hardware
context or only useful with very exotic hardware (I don’t know which)-- Mode register: "block" mode,
"demand" mode. Command register: rotating priority.

Intel 8237-5A functionality that is hidden in BUSDMA because it was judged not useful in context--
Read & write the request bits, read temporary register, clear mask register, read base-address register, read
base-transfer-count register. Command register bits: disable controller. Mode register bits: the "verify"
transfer type.

Intel 8237-5A functionality that is partially hidden in BUSDMA-- Master clear is imbedded in
BUSDMA.INIT. Read & clear status register TC bits is presented, somewhat modified, in
BUSDMA.READTCBIT. Clear byte select flipflop is hidden in the four functions BUSDMA. READ/SET
ADDRESS/COUNTER.


