
1

Intermezzo Release Notes

Input/Output

•�TYPE attribute of files extended to include arbitrary file types

The TYPE attribute of files has been extended to include arbitrary
file types. Formerly, the value of this attribute was either TEXT or
BINARY. Now, other values are permitted for those
devices/hosts that understand more specific TYPEs. The new
values can be passed to OPENSTREAM and SETFILEINFO, and
retrieved via GETFILEINFO. For example, when creating an
Interpress file, Lisp calls OPENSTREAM with a PARAMETERS
argument that includes (TYPE INTERPRESS).

Devices that do not ‘‘understand’’ arbitrary values for TYPE treat
unknown types as BINARY. Thus, GETFILEINFO may return the
more general value BINARY instead of the original type that you
passed to SETFILEINFO or OPENSTREAM. The following
devices recognize general types: CORE, the Dorado DSK, NS File
Servers. Currently, no non-Xerox servers support other than the
default types.

The variable FILING.TYPES is used to associate symbolic types
with numbers for Xerox products that actually store the TYPE
attribute as a number (such as NS file servers). For example,
suppose there existed an NS file type MAZEFILE with numeric
value 5678. You could add the element (MAZEFILE 5678) to
FILING.TYPES and then use MAZEFILE as a value for the TYPE
attribute to SETFILEINFO or OPENSTREAM. Other devices are,
of course, free to store TYPE attributes in whatever manner they
wish, be it numeric or symbolic.

•�File operations to files protected against owner produces
"PROTECTION VIOLATION" error instead of hanging

If Interlisp is prevented from executing a file operation because of
file protection, it tries to connect to the appropriate directory. If a
password is needed to connect to the directory, the user is
prompted to supply a password. However, if the file is even
protected against the person connected to the directory, then
Interlisp used to just hang forever. Now, Interlisp detects this
condition, and generates a "PROTECTION VIOLATION" error
instead of hanging.

•�Directory enumeration to VMS/DEI works when device name
but not host name is given

Previously, the "device" information in a directory specification
was not passed to the remote server correctly if the host name
was defaulted to the connected host. This meant that
(DIRECTORY ’{HOST}DEVICE:<DIR>*) worked but (CNDIR
’{HOST}) (DIRECTORY ’DEVICE:<DIR>*) wouldn’t.



2

•�Directory enumeration to TOPS-20 hosts fixed in sysout

In the Harmony release, there were some bugs with directory
enumeration to TOPS-20 file servers. This could be fixed by the
patch file TOPS20FTPPATCH. This fix has been incorporated
into the Intermezzo release sysout.

•�Directory enumeration to UNIX file servers accepts wider range
of directory specifications

The following directory commands to the UNIX file server {UN}
are equivalent:

DIR {UN}</user/jones/>*

DIR {UN}<user/jones>*

DIR {UN}/user/jones/*

The file names printed will all have the same structure:
{UN}<user/jones>xxx.

•�New command NDIR; prints multi-column directory listings

NDIR, formerly only an EXEC command, now works at the top
level. "NDIR FileGroup" prints the file group in a multi-column
format.

•�OPENFILE, DELFILE, etc. accept strings as filenames

Most of the file manipulation functions accept strings as file
names. However, some functions (READ, PRINT, CLOSEF) still
interpret string arguments as the string to read or write
characters to.

•�The {NULL} device returns a new stream with each OPEN

Previously, all streams opened to the {NULL} device were the
same stream, which caused conflicts if one process wanted to
use a null stream for input while another wanted to use a null
stream for output. Now, the {NULL} device returns a new stream
with each OPEN.

•�{NODIRCORE} files now contain the same file attributes as
other files

•�Sending output to a re-opened {NODIRCORE} file no longer
causes an infinite loop

•�UNPACKFILENAME accepts UNIX file pathnames

UNPACKFILENAME treats a UNIX file pathname between slashes
as a directory specification. For example,

_(UNPACKFILENAME ’/a/rosie/rosie2.4/ELLIE.MAY;3)

(DIRECTORY a/rosie/rosie2.4 NAME ELLIE EXTENSION MAY
VERSION 3).

•�Interlisp-D can now access all 19 partitions on an 1132

Previously, Interlisp was only able to access the first five
partitions on an 1132, using the devices {DSK1} through
{DSK5}. It is now possible to access all of the partitions on
19-partition 1132’s using the devices {DSK1} through {DSK19}.

•�After disk full error on 1132, can delete files and continue



3

Previously, after a disk full error on an 1132, deleting some files
and trying to resume the interrupted operation would cause a
"Hard disk error." Now, when a disk full error is received from
the Dorado local disk, deletion of files will return the disk to a
useable state.

Printing

•�Can specify printer, file name using "Hardcopy" background
menu command

The "Hardcopy" command in the background right-button menu
prompts the user for a region on the screen, and send the bitmap
image to the first printer on DEFAULTPRINTINGHOST.
Sometimes, the user wants to save the image in a Press or
Interpress-format file, or to send it to a non-default printer.
Previously, the only way to do this was to explicitly call the
function HARDCOPYW. Now, the "Hardcopy" menu command
has a submenu that allows the user to easily specify this
information.

If the "Hardcopy" command is selected, it works exactly as
before. However, the command now has a submenu, indicated
by a gray triangle on the right edge of the "Hardcopy" menu item.
If the mouse is moved off of the right of the menu item, another
pop-up menu will apear giving the choices "To a file" or "To a
printer." If the user selects the item "To a file," he will be
prompted to supply a file name, and the format of the file (Press,
Interpress, etc.), and the specified region will be stored in the file.

If the user selects "To a printer," he will be prompted to select a
printer from the list of known printers, or to type the name of
another printer. If the printer selected is not the first printer on
DEFAULTPRINTINGHOST, the user will be asked whether to
move or add the printer to the beginning of this list, so that future
printing will go to the new printer.

•�New "Hardcopy" menu command in default window
right-button menu

The command "Hardcopy" has been added to the default
right-button window menu. This is similar to the background
menu "Hardcopy" command, in that the user can print to a file or
specify a printer by using a submenu. However, instead of
printing a portion of the screen, it prints the contents of the
specified window. In addition, if the window has a windowprop
HARDCOPYFN, it is called with two arguments, the window and
an image stream to print to, and the HARDCOPYFN must do the
printing. In this way, special windows can be set up that know
how to print their contents in a particular way. If the window
does not have a HARDCOPYFN, the bitmap image of the window
(including the border and title) are printed on the file or printer.

•�Star-compatible Interpress filetype used when creating,
detecting Interpress files on NS file servers



4

Files on NS file servers have an associated numerical file type.
Interlisp does not normally use these file types, although the user
can read and set them (using the FILETYPE file attribute).
However, this causes problems when accessing files from the
Star workstation, which does use the filetypes. Specifically, Star
didn’t recognize Interpress files generated from Interlisp,
because they didn’t have the right filetype (4361). Therefore,
Interlisp now creates Interpress files with the standard Interpress
filetype. This filetype is also used in INTERPRESSFILEP to
quickly detect whether a file is an Interpress file: if the filetype is
correct, Interlisp won’t try parsing the file to see if it is a valid
Interpress file.

•�New function BITMAPIMAGESIZE returns size of bitmap in a
given stream’s units

(BITMAPIMAGESIZE Bitmap Dimension Stream)

Returns the size that Stream will be when BITBLTed to Stream, in
Stream’s units. Dimension can be either WIDTH, HEIGHT, or NIL,
in which case the dotted pair (width . height) will be returned.

•�(OPENIMAGESTREAM xx ’DISPLAY) returns an imagestream
instead of a window

•�LISTFILES only creates one process to list multiple files

•�(EMPRESS <press file>) will not print three copies of file

Previously, under some circumstances EMPRESS of a
Press-format file would cause three copies of the file to be
printed, when one copy was specified. This has been fixed.

Fonts

•�Printing old documents doesn’t give "ILLEGAL ARG NNN"
error

In the Harmony release, TEdit could produce files containing
fonts with a "face" of NNN instead of MRR. The patch file
FontNNNPatch was distributed to fix this bug. The Intermezzo
release has been fixed so that it will not generate bad font faces.
In addition, in order to allow the user to read old files, NNN is
accepted as a font face.

•�(FONTSAVAILABLE <family> ’* <face> <rotation> ’PRESS T)
can return fonts with size=0

For some Press font families/faces, the font widths for different
sizes are consistently scaled versions of the smallest font in the
family/face. Therefore, instead of storing data about all of the
sizes in the FONTS.WIDTHS file, only the widths for the font of
size=1 are stored, and the other widths are calculated by scaling
these widths up. This is signified in the press FONTS.WIDTHS
file by a font with size=0. Therefore, if FONTSAVAILABLE is
called with CHECKFILESTOO?=T, and it finds such a "relative"
font, it returns a font spec list with size of 0. For example,



5

_(FONTSAVAILABLE ’GACHA ’* ’* 0 ’PRESS T)

((GACHA 0 (BOLD ITALIC REGULAR) 0 PRESS)
(GACHA 0 (BOLD REGULAR REGULAR) 0 PRESS)
(GACHA 0 (MEDIUM ITALIC REGULAR) 0 PRESS)
(GACHA 0 (MEDIUM REGULAR REGULAR) 0 PRESS))

This indicates that press files can be created with GACHA files of
any size with faces BIR, BRR, MIR, and MRR. Of course, this
doesn’t guarantee that these fonts are available on your printer.

1108 Local File System

•� Incompatible Change: Local file system format changed; many
local file system functions renamed

The 1108 low-level disk format has been changed. To upgrade
from Harmony to Intermezzo, do the following: (1) within
Harmony, copy any valuable local disk files to floppy or file
server; (2) purge the local file directory from the old sysout using
DFSPURGEDIRECTORY; (3) erase the local file volume using the
Installation Utility floppy (see the 1108 Users Guide ); and (4) use
CREATEDSKDIRECTORY to recreate any local file directories on
local disk logical volumes.

It is not possible to access the files on a local file directory
created in Harmony from an Intermezzo sysout, and vice-versa.
However, it will not damage the integrity of the local file volume if
it is tried accidentally.

•� Incompatible Change: Many local file system functions
renamed, changed

A number of the user functions for the local file system have been
renamed, as follows:

DFSCREATEDIRECTORY ==> CREATEDSKDIRECTORY

DFSPURGEDIRECTORY ==> PURGEDSKDIRECTORY

VOLUMEDISPLAY ==> DSKDISPLAY

SCAVENGEVOLUME ==> SCAVENGEDSKDIRECTORY

(Note: The local file system scavenger has been put into the
standard system, so the separate library package
DlionFSScavenge is no longer necessary.)

The function VOLUMETYPE has been removed, and its
functionality is available in somewhat different form using the
new function LISPDIRECTORYP.

The new function (VOLUMESIZE <volume name> <recompute>) is
analogous to DISKFREEPAGES, except it returns the TOTAL size
of the volume.

For more information, see the 1108 Users Guide .

•�Interlisp on 1108 will not write beyond end of virtual memory
file



6

In previous releases, there was no protection against Interlisp
trying to read or write beyond the end of the virtual memory file.
Therefore, the virtual memory file was required to be at least
16200 pages long (so that Interlisp would reach the end of its
virtual memory limits before it reached the end of the file), or to
be the last logical volume on the disk.

This has been fixed so that Interlisp will not read or write beyond
the end of the logical volume.

•�File enumeration fixed when local file volume is not given; DIR
{DSK}FOO* works

Previously, there was a bug such that if the logical volume were
not given, directory enumeration of ‘‘partial filenames’’ wouldn’t
work correctly. This caused DIR {DSK}<LISPFILES>FOO* to
work correctly, but DIR {DSK}FOO* to always return NIL. This
has been fixed.

•�Directory enumeration on 1108 local file system sorts files
alphabetically and by version number

•�Directory can expand; no limit on maximum number of files

Previously, the 1108 local file system had a fixed directory size,
enough to accommodate 500-700 files. The directory can now
expand, to accommodate as many files as there is room to store
on the local file system volume.

•�COPYFILE to local file system preserves file type information

NS File Servers

•�Using Services 8.0 NS file servers doesn’t create strange
subdirectories

Under some circumstances, a file operation that created a
subdirectory on an NS file server would create a strange
subdirectory of the form {NS:}<Drawer>Drawer!3>dir5>file. This
has been fixed.

Window System

•�New function SHRINKBITMAP for reducing bitmaps

(SHRINKBITMAP Bitmap WidthFactor HeightFactor
DestinationBitmap)

Returns a copy of Bitmap that has been shrunken by WidthFactor
and HeightFactor in the width and height, respectively. If
WidthFactor is NIL, it defaults to 4; HeightFactor defaults to 1. If
DestinationBitmap is not provided, a bitmap that is
1/WidthFactor by 1/HeightFactor the size of Bitmap is created



7

and returned. WidthFactor and HeightFactor must be positive
integers.

•�Menu items shaded with SHADEITEM will be reshaded on
redisplay

•�Reshaping the typescript window will not lose the caret

Previously, if a long typescript window with the caret near the top
was shaped smaller, the caret would disappear. This has been
fixed in this release.

•�Typing control-E while shaping window will not leave garbage
on screen

TEdit

• �Incompatible Change: TEdit changed to use new, incompatible
file format

The Intermezzo release of TEdit uses an incompatible file format,
which makes TEdit files smaller and faster to load. Therefore,
TEdit files written in Intermezzo will NOT be readable in Harmony.
TEdit will continue to read old-format files at least through the
Jazz release of Interlisp.

•� Incompatible Change: The meaning of the CHLIM field of the
SELECTION datatype has changed

The meaning of the CHLIM field of the SELECTION datatype HAS
CHANGED. It is now one higher than the character number of
the last character in the selection. The CH# field and DCH field
retain their old meanings. Now, it is possible to derive any one of
those fields from the other two. People whose code depends on
the correct value of CHLIM must change their code.

•� Incompatible Change: Only "registered" image objects can be
read

The mechanism for printing and reading image objects has been
changed. In order to read an image object, it must be
"registered" in a database in memory. Unknown image objects
are "encapsulated" without being interpreted. This makes it
possible to GET a TEdit document even if all of the image objects
in the document are not defined. For more details, see the
documentation for Image Objects .

•�Can systematically substitute one set of character looks for
another with TEDIT.SUBLOOKS

(TEDIT.SUBLOOKS Stream OldLooksList NewLooksList)
[Function]

This function can be used to systematically substitute one set of
character looks for another throughout a given document. This
can be used to change all instances of a given font to another
font. Stream is the textstream which is to be changed.
OldLooksList and NewLooksList are both property lists of



8

properties and values, in the form of the NewLooks argument to
TEDIT.LOOKS. OldLooksList identifies the characters that are
going to be changed, and NewLooksList tells how the selected
characters will be changed. For example,

(TEDIT.SUBLOOKS <Stream>
’(FAMILY MODERN WEIGHT BOLD SLOPE ITALIC)
’(FAMILY CLASSIC WEIGHT MEDIUM))

will find all the Modern-Bold-Italic characters in the specified
textstream, regardless of their size, expansion, etc. All such
characters will have their family changed to CLASSIC, and their
weight changed to MEDIUM. All other properties of the looks
would be left unchanged.

Known Problem: Currently, TEDIT.SUBLOOKS does not update
the display. Therefore, it is necessary to "redisplay" the TEdit
window to see the changes.

•�Paragraph formatting can include "special positioning"

TEdit paragraph formatting can include "special positioning"
information, which specifies that a given paragraph should start
at a given X,Y position on the paper. This can be used to exdent
paragraphs into the left margin of the page.

The paragraph-looks menu includes the new fields:

Special Locn: X {}picas, Y {}picas

Including a value in the X or Y fields turns special positioning on
for the paragraph. Setting them to zero removes any special
positioning.

Special positioning can be specified in a call to
TEDIT.PARALOOKS by unsing the property list names SPECIALX
and SPECIALY as part of the NewLooks argument.

NB: Special positioning is ignored for a paragraph that is part of
a page heading.

•�Functional interface to page layout: TEDIT.PAGEFORMAT

(TEDIT.PAGEFORMAT Stream Format) [Function]

This function sets the page format specifications for the given
text stream. Format is either a format specification for a single
page, which will be used for all pages in the document, or a
"compound specification," which gives individual pages
specifications for the first page, all other right (recto) pages, and
all left (verso) pages. To create a "single page" format
specification, use the function TEDIT.SINGLE.PAGEFORMAT
(described below). To create a compound specification,
generate three single format specifications, and combine them
into one with the function TEDIT.COMPOUND.PAGEFORMAT
(described below).

(TEDIT.SINGLE.PAGEFORMAT Page#s? Pg#X Pg#Y
Pg#Font Pg#Alignment Top Bottom Left Right #Cols
ColWidth InterColSpace Units) [Function]

Creates and returns a PAGEREGION object describing the page
format specified by the arguments:



9

Page#s?: T if you want page numbers on this kind of page, else
NIL.

Pg#X: The horizontal location of the page number, measured
from the left edge of the paper. Negative values are measured
from the paper’s right edge.

Pg#Y: The vertical location of the base line for the page
numbers, measured from the bottom of the paper. Negative
values are measured from the top of the paper.

Pg#Font: The font to be used to display the page numbers.
This can be any specification that is acceptable to
TEDIT.LOOKS.

Pg#Alignment: An atom that tells how the page number is to be
aligned on the location specified by Pg#X and Pg#Y. LEFT
means the location is the lower, left corner of the page number.
RIGHT means the location is the lower, right corner. CENTERED
means the page number will be centered around the Pg#X you
specified.

Top: The top margin of the page�the distance from the top of
the paper to the top of the first line of body text.

Bottom: The bottom margin�the distance from the bottom of the
last line of body text to the bottom of the paper.

Left: The left margin�the distance from the left edge of the
paper to the left edge of the first text column.

Right: The right margin�the distance from the right edge of the
rightmost text column to the right edge of the paper.

#Cols: Number of columns (default 1)

ColWidth: The column width (default is to evenly divide the
available space among the #Cols columns)

InterColSpace: The space between the right edge of one column
and the left edge of the next column. Defaults to evenly divide
the space left after the columns are set up. If there is more than
one column, on or the other of ColWidth and InterColSpace must
be specified.

Units: The units used in setting the values you specified. May be
one of the atoms PICAS, IN, INCHES, CM, POINTS. Default is
PICAS.

(TEDIT.COMPOUND.PAGEFORMAT FirstSpec
VersoSpec RectoSpec) [Function]

Creates and returns a "compound specification," which gives
individual pages specifications for the first page, all other right
(recto) pages, and all left (verso) pages. FirstSpec, VersoSpec,
and RectoSpec should be PAGEREGION objects created by
TEDIT.SINGLE.PAGEFORMAT.

•�New function TEDIT.RAW.INCLUDE for quickly including
characters from unformatted files

(TEDIT.RAW.INCLUDE Stream InFile Start End) [Function]



10

This is the same as TEDIT.INCLUDE, except that the specified
characters from InFile are included without checking to see if the
InFile is a TEdit file or a Bravo file. This is much faster, if you can
guarantee that the source is plain unformatted text.

•�Abbreviation facility extended: hooks for calling arbitrary
functions, abbreviations are upper-cased

The TEdit abbreviation expansion facility has been extended: If
an abbreviation’s expansion is a LITATOM, it is applied as a
function to the text stream and the abbreviation string, and must
return a string/charcode value that is the expansion. If the
abbreviation’s expansion is a list, it is evaluated and the result
used. Also, if the abbreviation expander doesn’t find an
abbreviation as typed, it converts it to upper-case and tries again.

•�New function TEDIT.GETPOINT; returns character number that
selection is inserting before

(TEDIT.GETPOINT Stream Sel) [Function]

Returns the character number that the next character typed
would be inserted in front of. If Sel is non-NIL, this is the
selection that the information is taken from. Otherwise, the info is
taken from the current selection of Stream.

•�Can change highlighting of a selection with TEDIT.SETSEL or
new function TEDIT.SET.SEL.LOOKS

A TEdit selection is highlighted differently depending on whether
it is shift-selected (dashed underline), pending-delete selected
(inverse letters), or selected normally (solid underline). The
following new function can be used to change the highlighting of
a selection:

(TEDIT.SET.SEL.LOOKS Sel Operation) [Function]

This function changes the highlighting for the selection Sel,
which should be a TEdit selection currently visible in a window.
Operation, which can be one of the atoms NORMAL, MOVE,
COPY, DELETE (to make the selection look like that kind of
selection), or the atom INVERTED (which just inverts the
selection while leaving the caret flashing).

Note that TEDIT.SET.SEL.LOOKS doesn’t change TEdit’s
internal state with respect to what type of selection has been
made. For example, if a word has been pending-delete selected
(inverse letters), and the highlighting has been changed to
NORMAL (solid underline), the next character typed to that TEdit
will STILL delete the selected word. Also, TEdit does not
remember the "selection looks," so redisplaying the edit window
will set them back to what they were originally.

An Operation argument has been added to TEDIT.SETSEL,
which is interpreted the same as with TEDIT.SET.SEL.LOOKS.

•�Repeatable MP 9318 with very large TEdit documents fixed

Previously, when editing a very large formatted TEdit documents
(on the order of 70 pages), TEdit would break with a MP 9318.
This has been fixed. Now, the maximum size of a TEdit document



11

is only limited by the amount of memory space in your virtual
memory.

•�Line-selection will not allow the user to select protected
characters

There was a bug in TEdit where protected characters (with
PROTECTED set ON in their character looks) could still be
selected by line-selecting. This has been fixed.

•�"Font not found" error now displays face information

If a font file cannot be found while formatting in TEdit, the
prompt window now displays not only the size and family
information of the font, but also the face information.

•�Several fields in the TEXTOBJ and SELECTION datatypes
changed to contain lists

The L1 and LN fields of a SELECTION, and the \WINDOW,
LINES, and CARET fields of a TEXTOBJ may contain lists, as well
as single objects

•�The function TEXTSTREAM now accepts a TEdit process as its
argument, and returns the corresponding textstream

•�Skipping to next >>xx<< field sets TEdit so typein has same
character looks as replaced text

•�TEDIT.OBJECT.CHANGED marks the document dirty, so that
TEDIT.FILECHANGEDP returns the right result

•�Leading and trailing spaces are removed from file names, if
typed accidentally

•�TEDIT.FORMATTEDFILEP now correctly finds most
demanding of CHARLOOKS, PARALOOKS, and IMAGEOBJ
within a document

•�Page formatting is cleared when GETing an unformatted
document in a page-formatted TEdit window

•�TEDIT.DELETE will delete the selection passed to it, instead of
the current selection

•�TEDIT.GETSEL now returns a COPY of the current selection,
so the user can change it without affecting TEdit

•�TEDIT.INCLUDE will copy paragraph formatting from the
"included" file

•�Calling TEDIT.SETFUNCTION with a function of NIL resets the
character’s syntax class to NONE

•�Bravo files with W or w in the final trailer are properly
converted to TEdit files

•�TEDIT.OBJECT.CHANGED will accept either a text stream or a
TEXTOBJ as its STREAM argument

Break Package



12

•�The break command ORIGINAL now works correctly

The command ORIGINAL in the break package will now work.
Previously, using the ORIGINAL command could cause an "ill
formed iterative statement" error from DWIM.

CHAT

•�Chat service to NS hosts supported

Chat can now be used to communicate with NS hosts using the
normal Chat interface. The only visible difference from
communicating with PUP hosts is that the NS Chat protocol
differentiates among a number of virtual terminal services.
Calling CHAT on an NS host will pop up a menu to allow you to
choose the terminal service you want to use:

Any

Remote System Administration

Remote System Executive

Interactive Terminal Service

The "Any" option in the menu will eventually allow using any
terminal service is available on the specified host, but no hosts
currently support it.

The "Remote System Administration" service lets you log onto
print servers and clearinghouse servers, and issue appropriate
commands.

The "Remote System Executive" service is currently only
supported by Tajo/Mesa workstations with appropriate software
loaded.

The "Interactive Terminal Service" is the TTY-based interface to
NS mail.

If you select an invalid service type, you’ll get an "ERROR
ServiceNotFound" message in the promptwindow. In a future
release, Interlisp will be able to discover which services a
particular host supports.

File Package

•�MOVETOFILE, DELFROMFILE, etc. now work with file package
commands like BITMAPS

Previously, the functions for manipulating filecoms only accepted
file package "type." It was not possible to use these functions
with file package "commands" which didn’t have a
corresponding type, such as BITMAPS. Functions such as



13

MOVETOFILE, DELFROMFILE, etc. now will accept file package
commands as legitimate "types."

•�ADDTOFILE much faster

ADDTOFILE (which adds the commands for a given object to the
file package commands for a specified file) was unreasonably
slow, because it was calling UPDATEFILES unnecessarily.
ADDTOFILE has been changed not to call UPDATEFILES, so it is
an extremely fast operation.

•�New copyright option: if COPYRIGHTFLG = DEFAULT, default
copyright used without waiting

If the value of the variable COPYRIGHTFLG is the atom
DEFAULT, the value of DEFAULTCOPYRIGHTOWNER is used for
putting copyright information in files that don’t have any other
copyright. The prompt "Copyright owner for file xx:" will still be
printed, but the default will be filled in immediately.

•�Bug fixed: no copyright will be printed if COPYRIGHTFLG=NIL

In the Harmony release, there was a bug such that if
COPYRIGHTFLG were NIL, the copyright message "(* Copyright
(c) by NIL. All rights reserved.)" would be put in the file. This has
been fixed.

•�SHOWDEF accepts a stream as its FILE argument; will not
close the file when finished

Compiler

•�Compiler will discard argument names if
DASSEM.SAVELOCALVARS returns NIL

Sometimes it is desirable to have the compiler discard the names
of the atoms used as local variables within a function. This
prevents free variable lookup from accessing these variables. It
also means that the atoms are not read in when the function is
read; this can be important for an application which uses a lot of
atoms (there is a fixed maximum number of atoms). A
LOCALVARS declaration within a function can be used to
discard the names of local variables internal to the function, but
there has never been a way of discarding the names of the
arguments to the function. This can now be done, by redefining
the function DASSEM.SAVELOCALVARS.

(DASSEM.SAVELOCALVARS <function-name>)

This function is called by the compiler to determine whether
local-var argument information for <function-name> should be
written on the compiled file for <function-name>. If it returns NIL,
the local-var argument information is NOT saved, and the
function is stored with arguments U, V, W, etc instead of the
originals.

Initially, DASSEM.SAVELOCALVARS is defined to return T.
(MOVD ’NILL ’DASSEM.SAVELOCALVARS) causes the compiler



14

to retain no local variable or argument names. Alternatively,
DASSEM.SAVELOCALVARS could be redefined as a more
complex predicate, to allow finer discrimination.

DWIM & CLISP

•� Incompatible Change: (CLISPDEC ’MIXED) is default CLISP
declaration

In past releases of Interlisp, and in the Harmony release, the
default clisp declaration is FIXED, which means that all CLISP
constructs are translated using integer arithmetic, unless the
user explicitly changes the declaration. Therefore, (A+B)
translates into (IPLUS A B), and (for X from A to B do ...) is
translated using integer arithmetic to increment X and compare it
to B.

In Interlisp-D, mixed (generic) arithmetic is as fast as integer
arithmetic, so we are trying to convert the system to use generic
arithmetic as much as possible.

Therefore, the default clisp declaration has been changed to
MIXED, so generic arithmetic functions will be used when
translating clisp constructs. (A+B) translates into (PLUS A B),
and (for X from A to B do ...) is translated using PLUS and
GREATERP. Of course, the user can change this declaration
using CLISPDEC.

This change shouldn’t effect any programs: the only conceivable
problems could be in constructs like (for X from A to B do ...)
where the programmer counted on the floating-point values A
and B being converted to fixed point before the loop.

Storage & Data Types

•�Virtual memory expanded to 32 megabytes

The maximum virtual memory space in Interlisp has been
expanded from 8 megabytes to 32 megabytes. The increase in
available space for user applications is even more striking, since
a significant percentage of the original 8MB was used by the
system code.

The available virtual memory space that can be used on a given
machine is determined by the size of the virtual memory "backing
file" on the local hard disk. Users who partitioned their 1108
local disks for previous releases, where the maximum size of the
virtual memory file was 16200 pages, will have to re-partition their
disks to create a virtual memory file greater than 8MB.

When the virtual memory expands to the point where the backing
file is almost full, a break will occur with the warning message



15

"Your virtual memory backing file is almost full. Save your work
& reload asap." When this happens, it is strongly suggested that
you save any important work and reload the sysout. If you
continue working past this point, the system will start slowing
down considerably, and it will eventually fall into Raid with MP
9308.

•�Some early 1108s cannot support >8MB of virtual memory; new
function 32MBADDRESSABLE

Some early versions of the 1108 hardware will not support more
than 8MB of virtual address space. Intermezzo will still run, but it
will crash when the virtual address space grows beyond 8MB.
The function (32MBADDRESSABLE) returns T if your hardware
supports the full 32MB address space.

•�Maximum number of litatoms doubled to 64K

In Interlisp, there is a fixed limit on the number of different
litatoms that can be created in a given sysout. Previously, the
limit was 32768 atoms. This has now been doubled to 65536
atoms. It is still possible to run out of atoms, so users building
applications that generate a lot of atoms might still want to
consider using another data representation, such as strings.

•�Storage management changed to improve system
performance; "hunking" used for small arrays

The storage management code within Interlisp has been
extensively revised, to incorporate a number of changes to
improve system performance.

First, there are no longer fixed areas in the virtual memory
assigned to allocating fixed and variable-length data. Previously,
one could run out of variable-length space (array space) even if
there was still room in the fixed-length space (main data space,
MDS). Now, both spaces expand as necessary until all of the
virtual memory is filled.

Second, the scheme called "hunking" has been introduced for
allocating small variable-length objects. In this scheme, small
arrays are allocated and managed like fixed-length data objects.
Specifically, all the arrays of size 5, 6, 7, etc. are managed like
fixed-length objects, instead of being allocated from the main
array space. This means that the main array space is not
fragmented by small arrays. A large percentage of the arrays
used by the system are small, so this improves the perfoamcne of
the large array allocation.

These changes are invisible to the casual user, except that
system performance is improved: more work can be done before
storage problems appear, and the system speed doesn’t degrade
over time as quickly. Of course, there always limits; the most
inconvenient ones have just been pushed back.

One visible change: the STORAGE printout has been changed
slightly. The "Data Spaces Summary" now looks like:

Allocated Remaining
Pages Pages

Datatypes (incl. LISPT etc.) 2192 \



16

ArrayBLocks (variable) 3644 -- 52644
ArrayBlocks (chunked) 2056 /
Litatoms 744 1304
Litatom Pnames (from bootstrap) 131 0

This shows that both variable and fixed-length data types are
allocated out of the same virtual memory space, and that small
array blocks are treated separately (hunked) from large array
blocks.

Arithmetic

•�New matrix multiplication functions, with microcode support on
the 1108 CPE

A number of functions for manipulating 2-dimensional matricies
have been added. Interlisp currently only supports
one-dimensional arrays, so a matrix is represented by packaing
the rows into an array.

The following functions for manipulating matrices are available:

(SETELT ARRAY ROW COLUMN EltsPerRow VALUE) [Function]

Sets the matrix element at (ROW, COLUMN) to be VALUE.
EltsPerRow is the number of elements per row of ARRAY. ROW
and COLUMN are indexed from 1.

(GETELT ARRAY ROW COLUMN EltsPerRow) [Function]

Returns the value of the (ROW, COLUMN) element of ARRAY.
The arguments are treated as in SETELT.

(MATMULT A B Result K M N) [Function]

Multiplies A by B, placing the result in Result. A is a K row by M
column matrix, B is M by N, and Result is K by N. This function
does NOT use the matrix-multiplication microcode.

(MATMULT133 A B Result) [Function]

Multiplies A by B, placing the result in Result. A is a 1 by 3
vector, B is a 3 by 3 matrix, and Result is a 1 by 3 vector (hence
the "133" suffix�it refers to the values of K, M, and N in
MATMULT.) This runs in microcode on the 1108 CPE, and in
macrocode on other machines.

(MATMULT331 A B Result) [Function]

As above; A is 3 by 3, and B and Result are 3 by 1 matrices.

(MATMULT333 A B Result) [Function]

A, B, and Result are all 3 by 3 matrices.

(MATMULT144 A B Result) [Function]



17

A and Result are 1 by 4 vectors, and B is 4 by 4.

(MATMULT441 A B Result) [Function]

B and Result are 1 by 4 vectors, and A is 4 by 4.

(MATMULT444 A B Result) [Function]

A, B and Result are all 4 by 4 matrices.

The library package MATRIXUSE contains a number of functions
useful for using matrix multiplication.

•� Incompatible Change: (ZEROP X) = (EQP X 0)

In the Interlisp Reference Manual , (ZEROP X) is defined to be
equivalent to (EQ X 0). This has been changed so that (ZEROP
X) is equivalent to (EQP X 0). Users who depend on (ZEROP 0.0)
returning NIL should change their code to use (EQ X 0).

•�Arithmetic functions accept negative zero; fixes obscure bugs

The IEEE standard number format defines the number "negative
zero." On rare occasions, Interlisp code can generate this
number. Previously, the arithmetic code would cause strange
errors when dealing with negative zero. This has been fixed so
that the arithemetic code will treat negative zero the same as
positive zero.

•�1132 will cause an error on integer overflow if (OVERFLOW T)
is set

Previously, even if (OVERFLOW T) was set, integer overflow
would not cause an error on the 1132. Instead, it would act as if
(OVERFLOW 0) was set (it would return the result modulo 2^32.

•�Accuracy of ANTILOG improved

The accuracy of ANTILOG has been improved. This also
improves functions such as EXPT which call ANTILOG.

Processes

•�Mouse process is restarted before password window created
during system restart

Previously, in certain rare circumstances it was possible for a
window to pop up to prompt for a password (in order to re-open
files) before the mouse process was restarted. Without the
mouse process alive, it wasn’t possible to "button" the window to
type in the password.

1108 Microcode



18

•�Intermezzo initial microcode is incompatible with Harmony;
new MP code 9099

As part of the process of loading and starting an Interlisp sysout,
special "initial microcode" stored on the 1108 local disk is used.
This microcode is stored on the local disk when the
"SystemTools" volume is initialized using the Installation Utility
floppy.

The initial microcode for the Harmony release and the Intermezzo
release are incompatible. This means that you cannot start a
Harmony sysout on a machine with Intermezzo initial microcode,
and vice versa. In order to help users recognize this situation,
Intermezzo sysouts will halt with MP code 9099 if the initial
microcode is incompatible.

Note that this doesn’t work when loading a Harmony sysout on an
1108 with Intermezzo initial microcode (the new MP code is only
defined in Intermezzo). A common symptom of using the wrong
initial microcode is a flashing MP 0201, although other breaks are
possible.

•�New Maintenance panal codes: 9327, 9328, 9329

9327, 9328: Bad array block. The array allocator found a bad
array block in its free list. Generally means some unsafe code
trashed one or more locations in array space.

9329: The garbage collector attempted to reclaim an array block,
but the block’s header was trashed. You can continue from this
error with ^N from TeleRaid, but it is symptomatic of array
trashing, and you should save your state as soon as possible and
restart in a good sysout.

Library Packages

•�FLOATARRAY: MAPELT2 bug with array plus and difference
has been fixed

Previously, on the 1108 CPE, the function MAPELT2 returned the
wrong results when applying FTIMES and FDIFFERENCE to two
arrays. This was due to a microcode bug that has been fixed.

•�GRAPHER: Control over line drawing; grapher image objects

Hooks have been added to allow the user to specify properties of
the link between any two nodes in a graph. This allows graph
links to drawn with different widths, or with dashing.

Grapher image objects are supported. They can be constructed
programmatically, or by copy-selecting a graph. Grapher image
objects can be inserted into TEdit documents.

Incompatibility: SHOWGRAPH with ALLOWEDIT=T and
EDITGRAPH used to move nodes when a shift key was held
down. This conflicts with the common system idiom of using
shift-selection as a copy indicator. Thus, this edit feature has
been changed so that the CTRL key is the move specifier.



19

For more information on these changes, see the GRAPHER
library package documentation.

•�SPACEWINDOW: Display reorganized for 32MB Interlisp

The SPACEWINDOW display has been reorganized to display
information useful with the new memory management
organization. Now, the display contains four lines: 8MBData,
Data, Atoms, and Vmem, each of which contains a bar showing
the percentage of storage allocated. "Atoms" displays the
percentage of atoms that have been allocated. "Vmem" displays
the percentage of the virtual memory backup file that has been
used. "Data" displays the percentage of virtual memory space
that has been allocated to either fixed or variable length data.
"8MBData" displays the the amount of virtual memory space that
has been allocated, relative to 8MB.

•�VTCHAT: Package allows Chat to emulate VT-100 terminal

The Lispusers package VTCHAT provides a VT100-emulating
version of Chat. It loads the subfile VT100KP, which contains
routines for emulating the VT100’s right keypad with a
mouse-sensitive window.

Miscellaneous

•�PROMPTFORWORD will not timeout when
URGENCY.OPTION=TTY

PROMPTFORWORD is called with URGENCY.OPTION=TTY
when a process wants to grab the tty immediately for a prompt.
TEdit uses this option to prompt for a file name when retieving or
storing a file. In the Harmony release, PROMPTFORWORD with
URGENCY.OPTION=TTY would timeout after about 15 seconds,
which is clearly wrong. This has been changed so that
PROMPTFORWORD will wait forever if
URGENCY.OPTION=TTY.

•�LET, LET*, PROG*, LIST* moved from CMLSPECIALFORMS
into standard Interlisp sysout

The functions/macros LET, LET*, PROG*, and LIST* have been
removed from the library package CMLSPECIALFORMS, and
included in the standard Interlisp system.

LET, LET*, and PROG* have only macro definitions. LET is
essentially a PROG that can’t contain GO’s or RETURN’s, and
whose last form is the returned value. LET* and PROG* differ
from LET and PROG only in that the binding of the bound
variables is done "sequentially." Thus

(LET* ((A (LIST 5))
(B (LIST A A)))

(EQ A (CADR B)))

would evaluate to true; whereas the same form with LET might
even find A an unbound variable when evaluating (LIST A A).



20

LIST*, which has both a macro definition and a function
definition, is like an iterated CONS;

(LIST* A B C) => (CONS A (CONS B C))

Note that LIST could be defined in terms of LIST*:

(LIST A B ... Y Z) == (LIST* A B ... Y Z NIL)


