
Using the Interlisp-D RS232 Facility

File: <lispusers>RS232.tty
Created: Jan 10, 1983
Revised: Feb 21, 1983, and August 18, 1983, by JonL White

Basic RS232 Facililty Support Functions

Through a special circuit board plugged into the parallel port of a
Dolphin, serial RS232 communications may be interfaced using the following
basic functions. As characters arrive in at the interface port, they are
stored in a ring buffer (and the output functions will buffer their data in
a
ring buffer until it is full, or until explicit request is made to force it
out). Since there is no microcode support for buffering the characters as
they
come in, there are some limitations using this facility -- primarily that
the
user has to call one of the functions which will update the input ring
buffer
at intervals frequent enough to insure getting all the characters.

RS232INIT: before using the RS232 facility, it is necessary to install
certain parameters in the INS8250 chip on the abovementioned board; the
four arguments to this function correspond to the desired Baud rate
(150, 300, 600, . . . 9600 are supported), the number of bits per

serial
character (i.e., 7 or 8), whether or not to use the 8th bit as a parity
bit (and if so, whether parity is to be odd or even), and the number of
"stop" bits (except in unusual cases, 1 the default value, is used

here).
CAUTION: the value of RS232INIT as a global variable is used by these
driver functions; do not reset it at any time.

A global variable, RS232XON\XOFF?, if non-NIL, causes the driver
functions to look for ^S on the incoming side, and to "gag" the output
transmitter until a subsequent ^Q has been received; it will probably
cause undue trouble to set this flag to true if the corresponding host
doesn’t also obey the XON-XOFF protocols. This value is, of course,
temporarily turned off by the FTP protocols, which transmit and receive
random bytes.

RS232CLEARBUFFER: one argument, typically one of (IN OUTPUT BOTH)
the corresponding ring buffer is cleared (and the data lost); also,

return
will be delayed until any character currently being sent out by the

INS8250
chip has been fully transmitted (this way, not only is the ring buffer
empty, but so is the one-character buffer in the INS8250).

RS232FORCEOUTPUT: no arguments. Ensures that all data in the output
ring buffer is actually transmitted "on the lines". One use of this
function is to ensure that all data are out -- it won’t return until
this is true [but also see RS23BACKGROUND below].

RS232BACKGROUND: one argument, "state"
The "state" argument must be among {OFF, INPUT, OUTPUT, BOTH, ON};

except
for input of OFF, this turns on a background low-level process which

will
service the UART at least once every 16 milliseconds and/or flush out

the
output buffer. A "state" of OFF shuts this background activity off. A
"state" of INPUT causes only the input buffer to be serviced; OUTPUT

for
only the output buffer, and either ON or BOTH for both buffers. A

period



of 16 milliseconds for the input service time should give the
appearance i

of asynchronous buffering, without dropping any characters, when used
at

speeds of less than about 600 baud.

RS232PEEKBYTE: no arguments. Returns the next character sitting in the
input ring buffer, if any; the hardware port is checked to see if any
input characters are waiting, and if so they are put into the ring

buffer
first. Calling this function is a good way to insure that characters
are moved, in a timely fashion, from the chip to the input ring buffer.

RS232READBYTE: two optional arguments. This is the basic input function,
which will return a fixp of up to 8-bits in length. If no character is
available, it will return NIL; but if the first argument is a fixp,

then
it will wait up to that many time units before returning (possibly

getting
an incoming character in the meantime); if the first argument is any
other non-NIL value, the it will wait (possibly forever) until some
byte comes in to be returned. The second argument determines the
length of a "time unit"; default is milliseconds, but alternatives are
SECONDS and TICKS (which is the internal Dolphin clock unit -- see the
documentation of DURATION). As with RS232PEEKBYTE, any call to this
function will update the input ring buffer as its first action.

RS232READWORD: arguments as in RS232READBYTE. If two bytes can
be read in the alloted time, they are composed into a "word"; the
first byte comprises the high-order 8 bits of a 16-bit word, and the
second byte comprises the low-order 8 bits.

RS232READLINE: three optional arguments. A sequence of characters
is read, until an End-of-Line character is received; all the characters
except the EOL are returned as a string. The first two optional

arugments
are interpreted exactly as the two optional arguments to RS232READBYTE;
that is, if the expected EOL is not seen "in time", then NIL is

returned.
However, if the third argument is supplied, it must be a string

pointer,
and it will be re-used to return the characters accumulated so far,
even if there is a timeout; note that the "characters accumulated so
far" are merely sitting in a local "RS232READLINE" buffer, so
succesive calls will reuse that buffer. One other caveat: up to 8
character times are dallied after receiving the EOL, to see if it
is followed by a line-feed, and if so, the line-feed is flushed.

RS232READSTRING: six arguments, most optional.
(#chars.limit? stopcode? noblocksflg wait? timerUnits oldstrbuffer)

This function will take input bytes from the RS232 port until one of
three

conditions obtains. (1) the total number of characters taken in by
this

call is equal to "#chars.limit?" [NIL means no limit]; (2) a character
is

read with character code equal to the argument "stopcode?" [NIL means
no

limiting charcter]; or (3) an interval of time greater than that
specified

by "wait?" has passed with no bytes available at the port. If "wait?"
is

non-null, it must be an integer, and "timerUnits" specifies the
units

(see section 14.6 of new manual "Timers and Duratin Functions). i
If "noblocksflg" is non-null, then RS232READSTRING will consume all

the CPU cycles without offering to yield to other processes [including
the



MOUSE process]; this mode is important to very-time-critical
applications.

If "oldstrbuffer" is supplied, it must be a string and the result
characters are smashed into it [so that no consing is done].

RS232WRITEBYTE: one argument required, one optional. An 8-bit byte is
sent

out; actually, if the second arg is NIL, it will just be stored in the
output ring buffer, and will be forced out if the buffer starts to get
full. Additionally, the ringbuffer will be forced out if the second
argument is non-NIL (or whenever there is an explicit call to the

function
RS232FORCEOUTPUT, or from time to time when RS232BACKGROUND has

specified
background output from the buffer -- see documentation above.).

RS232WRITECHARS: one argument required, one optional. First argument
is

either a litatom or string, and all the characters therein are
"written";

second argument is interpreted the same as with RS232WRITEBYTE.

RS232SENDBREAK: one optional argument. The out-of-band BREAK signal is
transmitted for a period of 0.25 seconds; if the optional argument is
non-NIL, then the period is extended to 3.5 seconds.

RS232MODEMCONTROL: one argument, "signalslst". A NoSpread function which
sets the modem control lines to be "on", for the signals in the list
"signalslst". Returns the former setting of the lines. If

"signalslst"
is not supplied [which is not the same as supplying NIL], then the

control
lines are merely returned. The entries in "signalslst" are litatom

names
for standard modem control lines. Current signal names usable are DTR
and RTS.

RS232MODIFYMODEMCONTROL: two arguments "signalsonlst" and
"signalsofflst"

Changes only those modem control lines specified in the union of the
two

arguments; those in "signalsonlst" are set to be on, and those in
"signalsofflst" are set off. Returns the former state just as
(RS232MODEMCONTROL) does.

RS232MODEMSTATUSP: one argument, "booleanform"
Returns non-null iff the reading of the modem status lines is

consistent
with the form "booleanform" [modem status signals currently supported

are
CTS, DSR, RI, and RLSD]. "booleanform" may be any AND/OR/NOT

combination
over the signal names. Example: (RS232MODEMSTATUSP ’(AND CTS (NOT

RLSD))).

RS232MODEMHANGUP: no arguments
Takes whatever steps appropriate to cause the modem to "hang up"

[mostly,
this means turning the DTR signal down for about 3 seconds, or until

the
DSR signal has gone down].

The {RS232} device is created by RS232INIT; one can obtain a stream
interface to the RS232 port by calling (GETSTREAM ’{RS232} <direction>).
However, in most cases, this stream approach will not work unless the



asynchronous buffering mentioned above is successful -- the time taken by
general I/O operations is unpredictable and often quite large.

The global variable RS232XON\XOFF? controls whether or not these
driver
functions will participate in an XON/XOFF protocol; when non-NIL, the
any incoming XOFF character (the ^S of ascii) will cause the output
functions
to "hang" until a releasing XON character has come in (the ^Q of ascii).
Also the global variable RS232XOFF? will reflect whether or not the the
port is currently in the "hanging" state.

The hardware will detect the usual error conditions (dropped
characters,
parity errors when so initialized, and framing errors) in addition to
detecting
a BREAK being sent. When a BREAK has been detected, the software will set
the
global variable RS232BREAKSEEN? to non-NIL; it will also check the value of
RS232BREAKFN, and if non-NIL, will apply it to NIL. Similarly, if there is
any error condition which causes a character to be dropped, the software
will
apply the value of RS232LOSTCHARFN to a litatom describing the reason for
the
lossage; the default value for RS232LOSTCHARFN is \RS232DING, which will
"flash" the display screen a couple of times, and put the value of
\RS232.DROPPEDCHARACTER.CODE into the ring buffer [initially this is set to
(CHARCODE #^G)]. RS232LOSTCHARFN must, at all times, be a runnable
function.

RS232CHAT Facility

The function RS232CHAT, with four optional arguments, initiates a full-
duplex transmission throught the RS232 port. The first argument is coerced
into a stream for printing the received characters (default is to use the
window in the value of \RS232CHATWINDOW, which if null, will interactively
ask
the user to lay out a region for such window); second argument, if
non-null,
is a user-programmable interface for filtering the characters which arrive
from the remote correspondent -- it must be the output of the function
MAKEBINHOOK [as of August 18, 1983, this facility isn’t quite ready -- it’s
primary application will be to provide a flexible means for emulation of
the
various semi-smart terminals like the Heath-19 etc.]; third argument, if
not
null, specifies that local echoing of the typed-in characters is to be
done,
with T meaning to use the same stream as the first argument, and any other
value being coerced into a stream to use for local echoing; fourth argument
is whether or not to use the XON\XOFF protocol.

While in "chat" mode, character interrupts are shut off, the keyboard
is
rather plainly interpreted, and characters typed in on it are sent to the
correspondent. Ordinarily, a host will send a CR/LF for "newline", but
some
send only one; the menu selection lets you pick one or the other if this
is
the case (especially useful with UNIX systems). Similarly, you can specify
that the RETURN key (or, EOL key) send either just CR or both CR/LF. If
local
echoing is being performed, and it the local echo stream is the same as the
main RS232CHAT window, then the locally-generated characters will be
enclosed
in square-brackets, as a means of distinguishing local echo from remote



output.

Caveat: Output to the the Dolphin display takes a non-trivial amount of
time (e.g., just going through the character printout routines, and
"painting"
a character onto the screen bit-map requires over a millisecond; scrolling
a modest-sized window may take well over 30 milliseconds). Without
additional
microcode support, to maintain the input ring buffer asynchronously, it is
questionable whether rates above 2400 baud will be acceptable for
RS232CHAT,
and there may be ocasional problems above 1200 baud). At "slower" speeds,
that is, at less than about 600 baud, the use of RS232BACKGROUND may
alleviate
these problems. However, RS232CHAT will pay attention to the DSPSCROLL
setting
of the chat window, and will do "roll" mode rather than "wrap" mode
provided
that it can do so without dropping characters ["roll" describes the "scroll
up"
action when typeout reaches the bottom of the window]. If the XON/XOFF
protocol is being used, or if the background process mentioned above is in
operation, then likely there will be no problem is using "roll" mode.

Escape from "duplex" mode is made by typing the the character which is
found in the value of \RS232ESCAPE.CHARCODE, currently initialized to
(CHARACTER #B) [this happens to be middle-blank]. Typing "?" just after
the escape character will give a small "help message; the commands to be
used
in this mode are all one-letter:

B - send a BREAK (0.25 seconds)
E - change the escape character
F - deactivate the XON\XOFF protocol
H - call the function (HELP), with interrupts re-activated
L - call the function (RS232.PROMPT&LOGIN)
O - set the XON\XOFF protocol active
Q - for quit and exit, presumably back to LISPX
S - set the speed of the RS232 port; ? will display choices.
<CR> - ’Return’ key sends <CR> to remote host
<LF> - ’Return’ key sends <CR><LF> to remote host
^B - run a "break" or HELP loop
R - call RAID
7 - truncate incoming characters to 7 bits (this is necessary when you

have opened an 8-bit connection ignoring the parity bit; you really
only want to see the lower 7 bits interpreted as a character to be
printed on the window).

8 - undo the "7-bit" mode above (just in case you actually wanted to
see the eight bit -- typically the printout will be just the same

as
as the 7-bit printout, but preceeded by a "#" when the eighth bit
is on in a character.)

Additional control may be exercised with the pop-up menu obtained by
pressing the middle mouse button with the cursor in the RS232CHAT window
while RS232CHAT is active; its commands are essentially self-documenting,
and are a super-set of the above-mentioned commands available from the
keyboard. In particular, it’s possible to alter what RS232CHAT thinks is
the "NewLine" character; Interlisp-D’s default is to choose CR, but for
connections to some systems, LF is a much better choice.

Two other commands permit "toggling" (that is, switching the state from
one
choice to an alternate, and vice-versa): ~LocalEcho and ~RollMode. The
latter
will change the DSPSCROLL of \RS232CHATWINDOW; the former will "toggle" the
use
of the local echo stream provided in the call to RS232CHAT (or will use
\RS232CHATWINDOW if no stream was provided).



The RS232CHAT window tries to play the "TTY-process passing" protocol
described
in the recent documentation for multiple-process and TTY interactions.

A number of variables control certain characteristics; in addition
to \RS232ESCAPE.CHARCODE mentioned above, there are:

\RS232PERMITTED.INTERRUPTS -- a list of items such as returned by
INTERRUPTCHAR (or such as would be input to RESET.INTERRUPT), which

will
be "active" during RS232CHAT; initially this list is null.

\RS232CHAT.IgnoreCharcodes -- a list of character codes that will be
ignored

by the input side of RS232CHAT; initially this list contains only the
single code (CHARCODE NULL).

\RS232CHAT.EOLsequence -- A string of characters to be sent out whenever
the

RETURN key is typed on the keyboard; initially this just contains the
one

character CR, and is changeable by a menu command.
\RS232CHAT.NEWLINECHAR -- Normally set to LF, which will cause RS232CHAT

to work right for systems which send both CR/LF for newline as well
as for

those that send only LF (e.g., UNIX). However, some hosts send only
CR,

and thus to get RS232CHAT to advance to a new line, CR must be
recognized

as the "newline" character. This option is changeable by a menu
command. Note

that this section isn’t talking about the EOL character.
\RS232CHAT.BellSequence -- Since the standard Interlisp-D action for

printing
a "bell" to a display stream takes too long (much longer than the

inter-
character time at 1200 baud), then unless the XON\XOFF protocol is
active, this string of characters will be substituted for the
(CHARCODE BELL). Initially, this is "^<bell>".

The following two functions are most useful when trying to "chat" to a
host through an RS232 connection running at a speed higher than Interlisp-D
can support for display stream activities:

RS232LOGIN: 6 arguments, most optional. First is the name of a host
machine with which the RS232 port is corresponding, second is the
desired username/login.id on that machine, third is the password
needed there, and fourth is the "host system type"; the remaining two
arguments are concerned where to echo the activity caused by this
function, and are mainly of interest to other system-level functions.
If either "username" or "password" is NIL, the will be obtained via
PROMPTFORWORD from the keyboard (this is so that you don’t have to have
passwords in code files); there is also an internal cache of the
information about host/username/password, just as is kept for logins
over the Ethernet. [see documentation of PROMPTFORWORD]

When the Host’s system type is known, then a database of login
protocols is consulted to figure out how to send (automatically and
blindly) the necessary characters to effect a login. At convenient
moments, the output from the host, which is accumulated in the RS232
line buffer, will be output for the user’s perusal (the fifth argument
is a stream for this printout: NIL defaults to the primary output,
NONE gags this type-out; window, files ets. all are acceptable here).
A primary reason for this function’s existence, besides the cacheing of
such information as login.id and password, is to permit loggin in at
speeds which cannot support RS232CHAT (see documentation below).

RS232.PROMPT&LOGIN: one argument. Prompts the user (via PROMPTFORWORD)
to

type in the necessary information, in the PROMPTWINDOW, to call and use
RS232LOGIN; the argument is handed to RS232LOGIN as its fifth argument



(the "Type-out stream" argument).

RS232 "FTP" Facility

Two functions exist for interfacing to a new protocol for doing file
transfers over an RS232 connection; the primary version of this new
protocol
was developed in the micro/home computer world, where there was a need to
transfrer files between a "home" computer and some major, RS232 accessible
host. Since the RS232 connection was most often made through a telephone
modem, this protocol has come to be known as MODEM; unfortunately, since
CP/M
was the predominant operating system on these "home" computers, the
protocol
does not provide a totally secure way of knowing how long a file really is;
furthermore, the packet size is fixed at 128 bytes, and some systems have
input buffers for which this is frequently too large. [But I have some
variants
on this protocol which solve these problems, and I intend to certify their
implementation in Interlisp and suggest them to the other MODEM users].
Nevertheless, the protocol does have packetizing, checksumming, and
timeouts;
so there is only a very small probability that a file so transmitted will
have
undetected errors.

RS232GETFILE: three required arguments, and one optional. First argument
is the name of a file to store the file being transmitted *from* the
correspondent; second arg is either TEXT or BINARY (ASCII permissible
in place of TEXT), indicating the file type (in the Interlisp-D sense);
third argument is the protocol being used (currently, only MODEM is
acceptable here); fourth argument, when given is just transmitted first
(typically, this would be the series of characters you would type at

the
remote executive to cause the desired file to be run).

RS232PUTFILE: arguments the same as for RS232GETFILE, except that the
direction of transmission is from the existing file on the Dolphin *to*
the correspondent.

Examples: (assuming connection to a TOPS-20 host)

(RS232GETFILE ’{DSK}MUMBLE ’TEXT ’MODEM
"MODEM SA <LISPUSERS>MUMBLE

")

(RS232PUTFILE ’{DSK}RUN.DCOM ’BINARY ’MODEM
"MODEM RB <JONL>RUN.DCOM

")

Both ends of the MODEM protocol have "synchronizing" features, so
a typical scenario of usage would be to use RS232CHAT to login to
the host, and then simply put the MODEM program in its wait state,
by typing whatever arguments it needs, and finally exiting from
RS232CHAT and calling RS232GETFILE (or RS232PUTFILE) directly,
without the fourth argument. The fourth-argument facility is
provided so that one may use RS232FTP at speeds greater than would
be available for RS232CHAT; login could thus be achieved through
use of the function RS232.PROMPT&LOGIN.

The global variable RS232FTPTRACEFLG, if non-null, causes a trace
of activity to be printed out on the file/stream specified by the global
variable RS232TRACEFILE; it the value is PEEK, then only a "+" will
be printed for successful transit of packets, and "-" for unsuccessful
ones;
any other non-null value causes a more verbose output.



Several implementations of the MODEM protocol for other machines are
available:
one for the IBM/PC is available on floppy disk through XSIS (and is also on
[MAXC]<XEOS>IBMFTP.ASC). Several files are available also on [MAXC]<XEOS>
for
VAX/VMS users: XMODEM.FOR and QIO.DCK are an implementation in FORTRAN;
TOXMOD.FOR and FMXMOD.FOR are helpful for dealing with the structure of
files
in VMS’s record management system.


