Using the Interlisp-D RS232 Facility

File: <l ispusers>RS232.tty
Creat ed: Jan 10, 1983
Revi sed: Feb 21, 1983, and August 18, 1983, by JonL Wite

Basi ¢ RS232 Facililty Support Functions

Through a special circuit board plugged into the parallel port of a
Dol phi n, serial RS232 conmuni cations may be interfaced using the follow ng
basi ¢ functions. As characters arrive in at the interface port, they are

stored in a ring buffer (and the output functions will buffer their data in
a
ring buffer until it is full, or until explicit request is nmade to force it

out). Since there is no microcode support for buffering the characters as
t hey

come in, there are sone limtations using this facility -- primarily that
t he

user has to call one of the functions which will update the input ring
buf f er

at intervals frequent enough to insure getting all the characters.

RS232I NI T: before using the RS232 facility, it is necessary to instal
certain paranmeters in the INS8250 chip on the abovenenti oned board; the
four arguments to this function correspond to the desired Baud rate

.(350, 300, 600, . . . 9600 are supported), the nunber of bits per
seria
character (i.e., 7 or 8), whether or not to use the 8th bit as a parity
bit (and if so, whether parity is to be odd or even), and the nunber of
X ;stop" bits (except in unusual cases, 1 the default value, is used
ere).
CAUTION: the value of RS232INIT as a global variable is used by these
driver functions; do not reset it at any tinme.

A gl obal variable, RS232XON\\ XOFF?, if non-NL, causes the driver
functions to ook for ~S on the incomng side, and to "gag" the output
transmitter until a subsequent ~Q has been received; it will probably
cause undue trouble to set this flag to true if the correspondi ng host
doesn’t al so obey the XON XOFF protocols. This value is, of course
tenporarily turned off by the FTP protocols, which transnmt and receive
random byt es.

RS232CLEARBUFFER: one argunent, typically one of (I N QUTPUT BOTH)
the corresponding ring buffer is cleared (and the data lost); also,
return
will be delayed until any character currently being sent out by the
| NS8250
chip has been fully transmtted (this way, not only is the ring buffer
enpty, but so is the one-character buffer in the |1NS8250).

RS232FORCEQUTPUT: no argunments. Ensures that all data in the output
ring buffer is actually transmitted "on the lines". ©One use of this
function is to ensure that all data are out -- it won't return unti
this is true [but also see RS23BACKGROUND bel ow] .

RS232BACKGRCOUND: one argunent, "state"
The "state" argunent nust be anong {OFF, | NPUT, QOUTPUT, BOTH, ON};
except
for input of OFF, this turns on a background |ow Il evel process which

wil |
service the UART at |east once every 16 milliseconds and/or flush out
t he
output buffer. A "state" of OFF shuts this background activity off. A
"state" of INPUT causes only the input buffer to be serviced; OUTPUT
for

~only the output buffer, and either ON or BOTH for both buffers. A
peri od

of 16 mlliseconds for the input service tine should give the
appear ance i

of asynchronous buffering, wthout dropping any characters, when used
at

speeds of |ess than about 600 baud.

RS232PEEKBYTE: no argunments. Returns the next character sitting in the
input ring buffer, if any; the hardware port is checked to see if any
i nput characters are waiting, and if so they are put into the ring
buf f er
first. Calling this function is a good way to insure that characters
are noved, in a tinmely fashion, fromthe chip to the input ring buffer

RS232READBYTE: two optional argunents. This is the basic input function,
which will return a fixp of up to 8-bits in length. |If no character is
available, it will return NIL; but if the first argument is a fixp

t hen
it will wait up to that many tine units before returning (possibly
getting
an inconing character in the nmeantine); if the first argunment is any
other non-NIL value, the it will wait (possibly forever) until sone
byte conmes in to be returned. The second argunent determ nes the

length of a "tinme unit"; default is nmilliseconds, but alternatives are
SECONDS and TICKS (which is the internal Dol phin clock unit -- see the
docunentation of DURATION). As with RS232PEEKBYTE, any call to this
function will update the input ring buffer as its first action.

RS232READWORD: argunents as in RS232READBYTE. |If two bytes can
be read in the alloted time, they are conposed into a "word"; the
first byte conprises the high-order 8 bits of a 16-bit word, and the
second byte conprises the loworder 8 bits

RS232READLI NE: three optional argunments. A sequence of characters
is read, until an End-of-Line character is received; all the characters
except the EOL are returned as a string. The first two optional
arugment s
are interpreted exactly as the two optional arguments to RS232READBYTE;
that is, iIf the expected EOL is not seen "in tine", then NIL is

r et urned.
However, if the third argunent is supplied, it must be a string

poi nter,
and it will be re-used to return the characters accumul ated so far,
even if there is a timeout; note that the "characters accunul ated so
far" are nerely sitting in a |local "RS232READLI NE" buffer, so
succesive calls will reuse that buffer. One other caveat: up to 8

character tines are dallied after receiving the EQOL, to see if it
is followed by a line-feed, and if so, the line-feed is flushed.

RS232READSTRI NG si x argunents, nobst optional
(#chars.linmt? stopcode? noblocksflg wait? timerUnits ol dstrbuffer)

This function will take input bytes fromthe RS232 port until one of
three

conditions obtains. (1) the total nunber of characters taken in by
this
. call is equal to "#chars.linmt?" [NL nmeans no lint]; (2) a character
is

read with character code equal to the argunment "stopcode?" [N L means
no

limting charcter]; or (3) an interval of time greater than that
speci fied

_ by "wait?" has passed with no bytes available at the port. If "wait?"
is

non-null, it nust be an integer, and "timerUnits" specifies the
units

(see section 14.6 of new nmanual "Tiners and Duratin Functions). i
I f "nobl ocksflg" is non-null, then RS232READSTRI NG wi |l consume al
the CPU cycles without offering to yield to other processes [including
t he

MOUSE process]; this nmode is inportant to very-tine-critica
applications.

If "oldstrbuffer” is supplied, it must be a string and the result

characters are snmashed into it [so that no consing is done].

RS232WRI TEBYTE: one argunent required, one optional. An 8-bit byte is

sent

out; actually, if the second arg is NIL, it will just be stored in the

output ring buffer, and will be forced out if the buffer starts to get

full. Additionally, the ringbuffer will be forced out if the second

argunment is non-NIL (or whenever there is an explicit call to the
function

RS232FORCEQUTPUT, or fromtime to time when RS232BACKGROUND has

speci fi ed

background output fromthe buffer -- see docunentation above.).
- RS232WRI TECHARS: one argunent required, one optional. First argunent
is

either alitatomor string, and all the characters therein are
"witten";
second argument is interpreted the sane as with RS232WRI TEBYTE

RS232SENDBREAK: one optional argunent. The out-of-band BREAK signal is

transmitted for a period of 0.25 seconds; if the optional argunent is
non-NI L, then the period is extended to 3.5 seconds.

RS232MODEMCONTROL: one argunent, "signalslst". A NoSpread function which

sets the nodem control lines to be "on", for the signals in the |ist
"signal sl st". Returns the forner setting of the lines. If
"signal sl st"

is not supplied [which is not the same as supplying N L], then the
control

lines are nmerely returned. The entries in "signalslst" are litatom
nanmes

for standard nodem control |ines. Current signal names usable are DIR

and RTS.

RS232MODI FYMODEMCONTROL: two argunents "signal sonl st" and
"signal sof flst"

Changes only those nodem control lines specified in the union of the
t wo

argunents; those in "signalsonlst" are set to be on, and those in

"signal sofflst" are set off. Returns the forner state just as

(RS232MODEMCONTROL) does.

RS232MODEMSTATUSP: one argunent, "bool eanf or ni

Returns non-null iff the reading of the nodem status lines is
consi st ent

with the form "bool eanform' [nmodem status signals currently supported
are

CTS, DSR, RI, and RLSD]. "bool eanfornf may be any AND/ OR/ NOT
conbi nati on

over the signal nanes. Exanmple: (RS232MODEMSTATUSP ' (AND CTS (NOT
RLSD))).

RS232MODEMHANGUP: no ar gunent s
Takes whatever steps appropriate to cause the nbdem to "hang up"
[most |y,
this nmeans turning the DITR signal down for about 3 seconds, or unti
t he
DSR si gnal has gone down].

The {RS232} device is created by RS232I NI T; one can obtain a stream
interface to the RS232 port by calling (GETSTREAM ' {RS232} <direction>).
However, in nost cases, this stream approach will not work unless the

asynchronous buffering nentioned above is successful -- the tine taken by
general 1/0O operations is unpredictable and often quite |arge

ari The gl obal variable RS232XO\\ XOFF? controls whether or not these
river

functions will participate in an XONV XOFF protocol; when non-NL, the
any incom ng XOFF character (the ~S of ascii) will cause the output
functions

to "hang" until a releasing XON character has conme in (the ~Q of ascii).
Al so the global variable RS232XOFF? will reflect whether or not the the
port is currently in the "hangi ng" state.

The hardware will detect the usual error conditions (dropped
characters,
parity errors when so initialized, and framng errors) in addition to
det ecting
a BREAK being sent. Wen a BREAK has been detected, the software wll set
t he
gl obal variabl e RS232BREAKSEEN? to non-NIL; it will also check the val ue of
RS232BREAKFN, and if non-NIL, will apply it to NIL. Simlarly, if there is
any error condition which causes a character to be dropped, the software
will
apply the value of RS232LOSTCHARFN to a litatom describing the reason for
t he

| ossage; the default value for RS232LOSTCHARFN is \RS232DI NG, which wil
"flash" the display screen a couple of times, and put the value of
\ RS232. DROPPEDCHARACTER. CODE into the ring buffer [initially this is set to
gCHARCODE #2Q]. RS232LOSTCHARFN nust, at all tines, be a runnable

uncti on.

RS232CHAT Facility

The function RS232CHAT, with four optional argunents, initiates a full-
dupl ex transm ssion throught the RS232 port. The first argunent is coerced
into a stream for printing the received characters (default is to use the
wi ndow in the value of \RS232CHATW NDOW which if null, will interactively
ask
the user to lay out a region for such wi ndow); second argunent, if
non-nul |,
is a user-programmable interface for filtering the characters which arrive

fromthe renote correspondent -- it nust be the output of the function
MAKEBI NHOOK [as of August 18, 1983, this facility isn't quite ready -- it's
primary application will be to provide a flexible nmeans for enul ation of

t he

various sem -smart ternminals like the Heath-19 etc.]; third argunent, if
not
null, specifies that |ocal echoing of the typed-in characters is to be
done,
with T nmeaning to use the same stream as the first argunent, and any ot her
val ue being coerced into a streamto use for |ocal echoing; fourth argunent
is whether or not to use the XOM XOFF protocol

While in "chat" node, character interrupts are shut off, the keyboard

is

rather plainly interpreted, and characters typed in on it are sent to the
correspondent. Odinarily, a host will send a CRILF for "newline", but
sone

send only one; the nenu selection lets you pick one or the other if this
is

the case (especially useful with UNI X systens). Sinilarly, you can specify
that the RETURN key (or, EOL key) send either just CR or both CR/LF. If
 oca

echoing is being perforned, and it the |ocal echo streamis the sanme as the
mai n RS232CHAT wi ndow, then the |ocally-generated characters will be

encl osed

in square-brackets, as a nmeans of distinguishing |local echo fromrenote

out put .

Caveat: Qutput to the the Dol phin display takes a non-trivial anmount of
time (e.g., just going through the character printout routines, and
"pai nting"
a character onto the screen bit-map requires over a nillisecond; scrolling
a nodest-sized wi ndow nay take well over 30 milliseconds). Wthout
addi ti ona
nm crocode support, to maintain the input ring buffer asynchronously, it is
qguesti onabl e whether rates above 2400 baud wll be acceptable for
RS232CHAT,
and there may be ocasional problens above 1200 baud). At "slower" speeds,
tF?t is, at less than about 600 baud, the use of RS232BACKGROUND may
alleviate
t hese problenms. However, RS232CHAT will pay attention to the DSPSCROLL

setting

of the chat window, and will do "roll" node rather than "w ap" nobde

provi ded

that it can do so without dropping characters ["roll" describes the "scrol
up"

action when typeout reaches the bottom of the window]. |If the XOV XOFF
protocol is being used, or if the background process mentioned above is in
operation, then likely there will be no problemis using "roll" node

Escape from "dupl ex" node is nade by typing the the character which is
found in the value of \RS232ESCAPE. CHARCODE, currently initialized to
(CHARACTER #B) [this happens to be m ddle-blank]. Typing "?" just after
thedescape character will give a small "hel p nessage; the commands to be
use
in this node are all one-letter:

B - send a BREAK (0.25 seconds)

- change the escape character

deactivate the XO\N\ XOFF protoco

call the function (HELP), with interrupts re-activated

call the function (RS232. PROVWT&LOAG N)

set the XONM XOFF protocol active

for quit and exit, presunmably back to LISPX

set the speed of the RS232 port; ? will display choices

<CR> - 'Return’ key sends <CR> to renpte host

<LF> - 'Return’ key sends <CR><LF> to renote host

AB - run a "break" or HELP | oop

R - call RAID

7 - truncate incomng characters to 7 bits (this is necessary when you
have opened an 8-bit connection ignoring the parity bit; you really
only want to see the lower 7 bits interpreted as a character to be
printed on the w ndow).

8 - undo the "7-bit" npde above (just in case you actually wanted to
see the eight bit -- typically the printout will be just the same

nwoorrTmm

as
as the 7-bit printout, but preceeded by a "#" when the eighth bit
is on in a character.)

Addi tional control nay be exercised with the pop-up nenu obtai ned by
pressing the middle nouse button with the cursor 1 n the RS232CHAT w ndow
whi |l e RS232CHAT is active; its comands are essentially self-docunmenting,
and are a super-set of the above-nmentioned conmands available from the
keyboard. In particular, it’'s possible to alter what RS232CHAT thinks is
the "NewLi ne" character; Interlisp-D's default is to choose CR but for
connections to some systens, LF is a much better choice

Two ot her commands pernmit "toggling" (that is, switching the state from
one

choice to an alternate, and vice-versa): -~Local Echo and ~Rol | Mode. The
latter

wi Il change the DSPSCROLL of \RS232CHATW NDOW the former will "toggle" the
use

of the local echo stream provided in the call to RS232CHAT (or will use

\ RS232CHATW NDOW i f no stream was provided).

The RS232CHAT wi ndow tries to play the "TTY-process passing" protocol
descri bed
in the recent docunentation for nultiple-process and TTY interactions.

A nunber of variables control certain characteristics; in addition
to \ RS232ESCAPE. CHARCODE nenti oned above, there are:

\ RS232PERM TTED. | NTERRUPTS -- a list of items such as returned by
| NTERRUPTCHAR (or such as would be input to RESET.|NTERRUPT), which

wil |
be "active" during RS232CHAT; initially this list is null
-\ RS232CHAT. I gnor eCharcodes -- a list of character codes that will be
i ghored
by the input side of RS232CHAT; initially this list contains only the
singl e code (CHARCODE NULL).
\ RS232CHAT. EOLsequence -- A string of characters to be sent out whenever
t he
RETURN key is typed on the keyboard; initially this just contains the
one

character CR, and is changeable by a nmenu command.
\ RS232CHAT. NEW.I NECHAR -- Normally set to LF, which will cause RS232CHAT

to work right for systenms which send both CRILF for newine as well
as for

those that send only LF (e.g., UNIX). However, sone hosts send only
CR!

and thus to get RS232CHAT to advance to a new line, CR nust be
recogni zed

as the "newline" character. This option is changeable by a nmenu
comand. Note

that this section isn't talking about the EOL character

\ RS232CHAT. Bel | Sequence -- Since the standard Interlisp-D action for
printing
a "bell" to a display stream takes too |long (nuch |longer than the
inter-

character tinme at 1200 baud), then unless the XO\W XOFF protocol is
active, this string of characters will be substituted for the
(CHARCCDE BELL). Initially, this is "~<bell>".

The following two functions are nost useful when trying to "chat" to a
host through an RS232 connection running at a speed higher than Interlisp-D
can support for display stream activities:

RS232LOG N: 6 arguments, nost optional. First is the nane of a host
machi ne with which the RS232 port is corresponding, second is the
desired usernane/login.id on that nachine, third is the password
needed there, and fourth is the "host systemtype"; the remaining two
argunents are concerned where to echo the activity caused by this
function, and are mainly of interest to other systemlevel functions.
If either "usernane"” or "password" is NL, the will be obtained via
PROVPTFORWORD from t he keyboard (this is so that you don’t have to have
passwords in code files); there is also an internal cache of the
I nformati on about host/usernane/password, just as is kept for |ogins
over the Ethernet. [see docunentation of PROVPTFORWORD]

When the Host’s system type is known, then a database of |ogin
protocols is consulted to figure out how to send (automatically and
blindly) the necessary characters to effect a login. At convenient
monments, the output fromthe host, which is accunulated in the RS232
line buffer, will be output for the user’'s perusal (the fifth argunent
is a streamfor this printout: NL defaults to the prinmary output,
NONE gags this type-out; wndow, files ets. all are acceptable here).
A primary reason for this function’s existence, besides the cacheing of
such information as login.id and password, is to permt loggin in at
speeds whi ch cannot support RS232CHAT (see docunentation bel ow).

RS232. PROVWT&LOA N: one argunent. Pronpts the user (via PROVPTFORWORD)
to
type in the necessary information, in the PROWTWNDOW to call and use
RS232LOA N; the argunment is handed to RS232LOGA N as its fifth argunent

(the "Type-out streant argunent).

RS232 "FTP" Facility

Two functions exist for interfacing to a new protocol for doing file
transfers over an RS232 connection; the primary version of this new
pr ot ocol
was devel oped in the nicro/hone conputer world, where there was a need to
transfrer files between a "home" computer and some major, RS232 accessible
host. Since the RS232 connection was nost often nade through a tel ephone
nn?enl this protocol has come to be known as MODEM unfortunately, since
CP/ M
was thelpredoninant operating system on these "hone" conputers, the
pr ot oco
does not provide a totally secure way of knowing how long a file really is;
furthernmore, the packet size is fixed at 128 bytes, and sone systens have

i nput buffers for which this is frequently too |arge. [But | have sone
variants
on this protocol which solve these problens, and | intend to certify their

i nplenmentation in Interlisp and suggest themto the other MODEM users].
Nevert hel ess, the protocol does have packeti zing, checksunm ng, and

ti meouts;

so there is only a very snmall probability that a file so transmtted wll
have

undetected errors.

RS232GETFI LE: three required argunents, and one optional. First argunment
is the nane of a file to store the file being transmtted *fronf the
correspondent; second arg is either TEXT or BINARY (ASCI| permnissible
in place of TEXT), indicating the file type (in the Interlisp-D sense);
third argument is the protocol being used (currently, only MODEM is
acceptable here); fourth argunent, when given is just transmitted first

X (typtcally, this would be the series of characters you would type at
t he
renote executive to cause the desired file to be run).

RS232PUTFI LE: argunents the sanme as for RS232CGETFILE, except that the
direction of transmission is fromthe existing file on the Dol phin *to*
the correspondent.

Exanpl es: (assuming connection to a TOPS-20 host)

(RS232CETFI LE ' {DSK} MUMBLE ' TEXT ' MODEM
"MODEM SA <LI SPUSERS>MUMBLE

")

(RS232PUTFI LE ' { DSK} RUN. DCOM ' Bl NARY ' MODEM
"MODEM RB <JONL>RUN. DCOM

")

Both ends of the MODEM protocol have "synchronizing" features, so
a typical scenario of usage would be to use RS232CHAT to login to
the host, and then sinply put the MODEM programin its wait state,
by typi ng whatever argunents it needs, and finally exiting from
RS232CHAT and cal | i ng RS232CGETFI LE (or RS232PUTFI LE) directly,

wi t hout the fourth argunent. The fourth-argunent facility is
provided so that one may use RS232FTP at speeds greater than would
be available for RS232CHAT; login could thus be achieved through
use of the function RS232. PROWT&LOG N

The gl obal variabl e RS232FTPTRACEFLG, if non-null, causes a trace
of activity to be printed out on the file/stream specified by the gl obal
vari abl e RS232TRACEFI LE; it the value is PEEK, then only a "+" will
be printed for successful transit of packets, and "-" for unsuccessfu
ones;

any ot her non-null value causes a nore verbose output.

Several inplementations of the MODEM protocol for other nachines are

avai |l abl e:

one for the IBMPC is available on floppy disk through XSIS (and is also on
[MAXC] <XECS>| BMFTP. ASC) . Several files are available also on [MAXC] <XECS>
for

VAX/ VM5 users: XMODEM FOR and Q O. DCK are an inplenentation in FORTRAN
TOXMOD. FOR and FMXMOD. FOR are hel pful for dealing with the structure of
files

in VM5's record nanagenent system

