
Introducing Objects into Documents

stored on: {phylum}<lispcore>library>Imageobj.TEdit
last changed: July 16, 1984
by: R. Burton J. Sybalsky

The following proposal arose out of discussions between John Sybalsky, Ron
Kaplan and Richard Burton about putting objects into Tedit and integrating
shift selection among various types of windows.

The goals are:

1) define an object interface for Tedit that allows objects to exist in a
document and be editted with their own editor. (Currently for formatting,
Tedit will view an object as a large character and not try to "flow" text
around it. Maybe later.)

2) provide a facility in which objects could be shift selected (hereafter
referred to as "copy selected" as in Star) between windows in which the
source window (where the object was coming from) does not have to know what
sort of window the destination window is and the destination does not have
to know where the insertion came from. As a simple example, we want to be
able to copy select from a Grapher window into a Tedit window. More
complicated, we want copy select from a Dedit window into a Tedit window to
preserve structure (if desired) while copy select into a typescript window
to treat it as type-in.

Image Objects
To do this, we provide a new datatype, IMAGEOBJ, which contains the data

and the procedures necessary to manipulate an object that is to be part of a
document. Additionally, there is a new datatype, IMAGEFNS, which is a
vector of the procedures necessary to define the behavior of a type of
IMAGEOBJ. Having the operations grouped in a separate datatype allows
multiple instances of the same type of image object to share their procedure
vectors. The data and procedure fields of an IMAGEOBJ have a uniform
interface through the function IMAGEOBJPROP. IMAGEOBJs are created with the
function IMAGEOBJCREATE. IMAGEFNS are created with the function
IMAGEFNSCREATE.

(IMAGEFNSCREATE DISPLAYFN IMAGEBOXFN PUTFN GETFN COPYFN BUTTONEVENTINFN
COPYBUTTONEVENTINFN WHENMOVEDFN WHENINSERTEDFN WHENDELETEDFN WHENCOPIEDFN
WHENOPERATEDONFN PREPRINTFN)

Returns an IMAGEFNS which contains the functions necessary to define the
behavior of an IMAGEOBJ. The arguments are as follows:

DISPLAYFN - fn of {imageObj imageStream} called to display the object at
the current position on imageStream - type of stream indicates whether
device is DISPLAY, PRESS or INTERPRESS.

IMAGEBOXFN - fn of {imageObj imageStream currentX rightMargin} should
return the size of the object as a list whose 1st and 2nd elements are the
width and height of the object image and whose 3rd and 4th elements are the
position of the left edge and baseline of the image relative to the current
position. For characters, the 3rd element would be the descent and 4th
element would be 0 since we don’t support left kerning. We will also want
to support 5th and 6th elements which are the amounts to move the current
position in the X and Y directions after the object is displayed. The
RECORD IMAGEBOX is provided with fields (XSIZE YSIZE YDESC XKERN). The
IMAGEBOXFN looks at the type of the stream to determine the output device if
the size changes from device to device. (For example, a bitmap object may
specify a scale factor that is ignored when it is displayed on the screen.)
{note: this does not address, for example, the laying out of annotations as
inline text, footnotes or between line text.) The currentX and RightMargin
fields allow an object to take account of its environment when deciding how
big it is. If these are not available, they will be NIL.



2

TEDIT NOTE: TEdit only calls this function during line
formatting, then caches the imagebox as (IMAGEOBJPROP obj
’BOUNDBOX). This avoids the need to call IMAGEBOXFN when
incomplete X & margin info is available.

PUTFN - fn of {imageObj fileStream} called to save the object on a file.
Prints characters or whatever on fileStream that when read by GETFN (see
below) will regenerate the Tedit object. (Tedit takes care of writing out
the name of the GETFN.)

GETFN - fn of {fileStream TextStream} called when the object is
encountered on the file during input. It should read the stuff that was put
out by the PUTFN and return an IMAGEOBJ. {note: we may want to have a
library of image object types that is searched when a GETFN is encountered
that is undefined which would load the information necessary to handle that
type of object.)

COPYFN - fn of {imageObj} should return a copy of imageObj. The COPYFN is
called during a copy-select operation.)

BUTTONEVENTINFN - fn of {imageObj windowStream Selection relX relY window
TextStream Button}. The user has pressed a button inside the object. The
BUTTONEVENTINFN should decide whether or not to do handle the button, track
the cursor and respond to the button presses to bring about whatever edit
(or selection but see COPYBUTTONEVENTINFN below) protocols the object wished
to support. If BUTTONEVENTINFN returns NIL, TEdit will treat the button
press as a selection at its level. Note that when it is first called, a
button will be down. It is envisioned that Tedit itself could be used
recursively to edit text that was within an object. Also the
BUTTONEVENTINFN should support the button down protocol to descent inside of
any composite objects with it. It is also envisioned that the
BUTTONEVENTINFN will relinquish control (i.e. RETURN) when the cursor leaves
its object’s region although there may be cases where it would not. In any
case, standard useful functions for cursor tracking and editting in the
Tedit tradition will be made available to lessen the task of building
BUTTONEVENTINFNs.)

TEDIT NOTE: When this function gets called, the window’s
clipping region and offsets have been changed so that the lower
left corner of the object’s image is at (0,0), and only the
object’s image can be changed. The Selection is available for
changing to fit your needs; the mouse button went down at
(relX,relY) within the object’s image. You can affect how TEdit
treats the selection by returning one of several values: Return
NIL and TEdit will forget that you selected an object; return
the atom DON’T and TEdit won’t permit the selection; return the
atom CHANGED, and TEdit will update the screen. Use this latter
to signal TEdit that the object has changed size or should have
side effects on other parts of the screen image.

COPYBUTTONEVENTINFN - fn of {imageObj windowStream}. The user has
buttoned inside an object and a copy key is held down. (In initial
implementations, the copy keys will be the shift keys. This is probably
something that should be settable (in the terminal table?).) Many of the
comments about BUTTONEVENTINFN apply here also. Also see the discussion
below about copy-selecting objects below.

WHENINSERTEDFN -

WHENMOVEDFN -

WHENDELETEDFN -

WHENCOPIEDFN - fns of {imageObj TargetWindowStream SourceTextStream
TargetTextStream}. Provide hooks by which the object can get notified when
Tedit performs an operation on the whole object. The different operations
are: INSERT, MOVE, DELETE, COPY. {Also need a hook for delete undone which
may be the same as insert.} WHENCOPIEDFN will get called in addition to
(and after) the COPYFN above. These functions allow objects to have side
effects. For example, annotations in a documentation maintains a window



3

which has summary of all annotations in the document. These functions
allows that summary to be updated as the annotation is operated on by Tedit.

WHENOPERATEDONFN - fn of {imageObj windowStream howOperatedOn Selection
TextStream}. Provides a hook for miscellaneous edit operations. For now
the values of howOperatedOn are SELECTED and DESELECTED, HIGHLIGHTED and
UNHILIGHTED. This is different from the BUTTONEVENTINFN because it will be
called when the user is extending a selection through the object i.e. the
object is being treated in toto as a character from Tedit. HIGHLIGHTED and
UNHIGHLIGHTED refer to the selection being highlighted on the screen, and to
having the highlighting turned off. These are called when the selection is
inside the object, so it may handle it.

TEDIT NOTE: As with the BUTTONEVENTINFN, the offset and
clipping region for the display are set so the object’s image is
at (0,0), and only that image area can be modified.

PREPRINTFN - fn of {imageObj} called to convert the object into something
that can be printed for inclusion in documents. It should return an object
that the receiving window can print (using either PRIN1 or PRIN2 - its
choice) to obtain a character representation of the object. If PREPRINTFN
is NIL, the OBJECTDATUM itself is used. Tedit would use this function when
the user indicates that he wants the characters from an object rather than
the object itself (presumably using PRIN1 case). (Interface to this
"unstructure" operation is not yet determined.)

(IMAGEFNSP X) - Returns X if X is an IMAGEFNS, NIL otherwise.

(IMAGEOBJCREATE OBJECTDATUM IMAGEFNS)

Returns an IMAGEOBJ which contains the object datum OBJECTDATUM and the
operations vector IMAGEFNS. OBJECTDATUM can be arbitrary data.

(IMAGEOBJP X) - Returns X if X is an IMAGEOBJ, NIL otherwise.

(IMAGEOBJPROP IMAGEOBJECT PROPERTY {NEWVALUE})

Accesses and sets properties of an IMAGEOBJ. It can be used on the system
properties: OBJECTDATUM, DISPLAYFN, IMAGEBOXFN, PUTFN, GETFN, COPYFN,
BUTTONEVENTINFN, COPYBUTTONEVENTINFN, WHENOPERATEDONFN, and PREPRINTFN.
Additionally, it can be used to save arbitrary properties on an IMAGEOBJ.

Copy selecting between windows

The general idea behind copying between windows is that the source window
builds an image object of what the users has selected and calls a system
function. The system function finds the current tty window and calls a
function associated with it that knows how to insert image objects. The
simple case done now with BKSYSBUF to copy strings is done by having the
system function call BKSYSBUF on the PREPRINTFN of the image object if the
target window doesn’t have an insert function.

The following things will be added to the system to implement copy
selecting of things between windows.

A new window property COPYBUTTONEVENTFN will be called (if it exists) when
a button event occurs and a copy key is down. If no COPYBUTTONEVENTFN
exists, the BUTTONEVENTFN is called.

A new window property COPYINSERTFN will be called by COPYINSERT (see
below) when another window wants to insert something into this window as a
result of a copy select. Arguments are the thing to be inserted and this
window and the thing to be inserted. The thing to be inserted can be (1) a
STRINGP, (2) an IMAGEOBJ, or (3) a list of IMAGEOBJs and STRINGPs. As a
convention, COPYINSERTFNs should call BKSYSBUF if the object they are to
insert is a STRINGP. For Tedit windows, the COPYINSERTFN will be a function



4

that calls TEDIT.INSERT if given a string and calls TEDIT.INSERT.OBJECT if
given a Tedit object. (John, can the current copy select between TEdit
windows be changed to use this by having a case in the COPYINSERTFN that
handles PIECEs?)

A new function (COPYINSERT imageObject) will insert imageObject into the
window that currently has the TTY. It finds the window that has the tty
(say ttyWindow). If ttyWindow has a COPYINSERTFN, this is called, passing
it imageObject. If no COPYINSERTFN exists, if imageObject is an image
Object, the result of calling its PREPRINTFN on it is BKSYSBUFed; otherwise
imageObject is BKSYSBUFed. (The default BKSYSBUF will use PRINT2 with a
read table taken from the process associated with the ttyWindow. A window
which wishes to use PRIN1 or a different readtable can provide its own
COPYINSERTFN that does this.) Thus the COPYBUTTONEVENTFN for a window
should allow the user to select an object and then calls COPYINSERT on an
image object built (via IMAGEOBJCREATE) from the selected object and nine
functions that define its behavior.

Misc notes:

The layout and displaying function of TEdit will be made available for use
within image object displayfns. Thus, an annotation could call the TEdit
formatting routines to lay itself out within a box. {This actually also
needs to determine the size of the box which should depend on the margins.}

In the case of Dedit copy selecting a list into a TEdit window, the
displayfn could PRINTDEF the structure and possibly Dedit it after it was in
the Tedit document. In this case the structure would need to have some idea
of the width to be printed into (which should also be editable somehow).
Possibly the structure that Tedit builds could have an extra field for width
which it defaults upon creation but which could be changed. This case is
interesting because it represents a case where we might want Tedit to pass
information into the object (ie. how wide to print itself).

This does not address the problem of image objects that print as text.
For example, annotations might be printed in line in a smaller font or as
footnotes at the bottom of the page or as margin notes or between the lines
intermixed with the main text. This is a difficult problem that is
independent of the specification of this proposal.

Provided Image Object types

Menus. Supported by John Sybalsky.
Bitmaps - supported by Greg NuyensRichard Burton.
Annotations - supported by Richard Burton.

Future object types

Grapher graphs - supported by Ron Kaplan.
S-expressions - volunteers?


