Conmon Li sp Special Forns

author: Jon L Wiite

files: [Eris]<Lisp>...Library> -- CM.SPECI ALFORVMS
docunent ati on: CM.SPECI ALFORMS. tedit/ press

created: 13-Jan-84 by JonL

nodi fied: 5-Cct-84, 14-Nov-84, and 18-Dec-84 by JonL

Macros are provided for the following Common Lisp constructs
(so-called "special forms"): LET, LET*, PROG*, PSETQ PROGV, LIST*, DEFUN,
CATCH, THROW
*CATCH, *THROW and UNW NDPROTECT. Additionally, for efficiency in the
interpreter, there are functional definitions for CATCH THRON and LI ST*.
In so far as possible, the syntax of these constructs follows that described
in the reference manual "Common Lisp: The Language", published in 1984 by
Digital Press.

LET is an alternative to LAVBDA, which puts the bindings "up front" |ike
PROG does; e.qg.
(LET ((X (MJNBLE))
(Y (GRUMBLE)))
(DO. FI RST. THI NG
(DO. LAST. THI NG))
expands into
((LAVBDA (X'Y)
(DO. FI RST. THI NG
(DO. LAST. THI NG))
(MUMBLE)
(GRUMBLE))
LET* is simlar, but the bindings happen sequentially rather than in
parallel. E. g.
(LET* ((X (MJUMBLE))
(Y (GRUMBLE)))
(DQO. FI RST. THI NG
(DO. LAST. THI NG))
expands into

((LAMBDA (X)
(LAVBDA (Y)
(DO. FI RST. THI NG)
(DO. LAST. THI NG))
GRUMVBLE))
(MUVBLE))

PROG is the sinmlar extension to PROG nanely the bindings happen
"sequentially" rather than in parallel. Likewise, PSETQ is a "parallel
SETQ', using the Common Lisp syntax which permts numerous assignnents to
appear in one "call" to PSETQ
(PSETQ A (MUMBLE X)
B A

will assign to A the value of (MUMBLE X) and assign to B the value which A
has before the call to PSETQ

PROGV provides a nmeans for |anbda-binding a list of variables:
(PROGV <var-list> <val-list>

... <body>...)
is |ike PROGN except that the first two itens in the "arglist" are eval uated
to obtain a list of variable names and a list of values; then the variables
are bound (as SPECVARS) to the corresponding values, and the forns in the
body executed, with the value of the |ast one being the return value of the
PROGVY. This functions exists primarily as an aid in witing Lisp-like
interpreters in Lisp.

LIST* is simlar to LIST except that the last argunent is the final CDR of
the resultant list rather than the |ast el enent:

(LIST'"A'B'Q -> (AB O

(LIST- "TA'B’'C -> (AB. Q

DEFUN is, at first glance, an alternative syntax for DEFI NEQ
(DEFUN FOO (X Y 2) ...) <==> (DEFINEQ (FOO (X Y 2) ...
(DEFUN BAR N ...) <==> (DEFI NEQ (BAR (LAMBDA N ...)))
Conmon Lisp doesn’t quite permit the notions of NLAMBDAs, but for
conpatibility with the various Lisp dialects fromwhich it sprang (e.g.,
MacLi sp), the follow ng extensions to DEFUN have been i npl enented
(DEFUN BAZ FEXPR (L) ...) <==> (DEFINEQ (BAZ (NLAMBDA L ...))

Al so the fornms

(DEFUN BLEH MACRO (L) ...)

(DEFUN (BLEH MACRO (L) ...)
are sonewhat equivalent to nakeing a MACRO definition for BLEH, the
differences are that (1) it is a "conputed" macro, and all the code body is
defined under a new internal nanme, and (2) the argument passed to the code
body via the |lanbda variable [in this exanple, L] will have the nanme of the
macro cons’'d onto the front of what would be passed to Interlisp’s conputed
macro. The reason for this variation is that MacLisp’'s macros receive as
argunent the pointer to the cons cell that the nacro expander is working on,
rather than just the cdr of that cell. One additional non-standard format
is inmplemented al so:

(DEFUN (MUMBLE GRUMBLE) (<lanbda-list> ...) <codebody> ...)
will put the functional definition under a new internal nane, and put a
pointer to that definition as the GRUMBLE property of the |itatom MUVBLE.
[When conpiling such a form MacLisp (and others) also conpile the "new,
internal"” name; but Interlisp may not be able to express this in a fil epkg
COVS wi t hout nore devel opnent.]

CATCH provides a return point for a non-lexically initiated exit fromits
scope. For exanple

(CATCH ' SOVETAG <formto-eval >)
sets up a dynam ¢ scoping for the "tag" SOVETAG and if at any tinme during
the execution of <formto-eval> there is a call

(THROW * SOVETAG <val >)
then the CATCH will be exited with <val> as its value; but if no such THROW
is executed, then the normal return value of <formto-eval> will be the
val ue of the CATCH. Both CATCH and THROW "eval uate their argunents", but
CATCH does so in a way that the first argument, the tag, is available during
the eval uation of the second argunent. *CATCH and *THROW are provi ded as
macros for conpatiblity with MacLisp and Franz.

UNW NDPROTECT is very simlar to RESETLST/ RESETSAVE - -

(UNW NDPROTECT <formto-eval> ... <cleanup code> ...)
will evaluate <formto-eval > and upon exit will execute all the renaining
forns in the list -- the so-called "cleanup code". "Exiting" also nmeans an
aborting due to RESET (or HARDRESET) or any error. Unfortunately, the

Interlisp RETFROM and RETTO do not currently execute the resetsave forns
under a resetlst when retfroniing a frame higher in the stack than the one
with the resetlst init; this has the effect that a THRONto a frame higher
than an UNW NDPROTECT will currently not actually do its cleanup forns.

CAVEAT: Common Lisp is lexically scoped; but Interlisp doesn't provide a
mechani sm capable of fully inplemeting the Iexical scoping inherent in
PROGV, CATCH, and UNW NDPROTECT. So one nust be prepared for the sort of
limtations on such coding that is encountered with ERSETQ in Interlisp.

