
1 THE TEDIT TEXT EDITOR

TEdit is a window- based, modeless text editor, capable of handling fonts and some rudimentary formatting.
Text is selected with the mouse, and all editor operations act on the current selection.

There are two ways to start TEdit: With an explicit call to the function , or from the background
menu. At top level, you can call

where is the thing you want to edit, and is an optional argument specifying the window
you want to do the editing in. To start a fresh editing window, specify a of . Otherwise,
may be the name of an existing �le, a string to be edited, or an arbitrary [-able] Lisp object.

The text is displayed in an editing window, and may be edited there (see below). There will be a
one- line-high prompting window across the top of the editing window; it is used to ask for �le names,
search strings, and the like.

The option in the background menu opens an empty editing window; you may either type in the
text you want, or use the menu option (below) to bring in a �le.

1.1 Selecting Text

TEdit works by operating on ‘‘selected’’ pieces of text. Selected text is highlighted in some way, and
may have a caret �ashing at one end. Insertions go where the caret is; deletion and other operations are
applied to the currently selected text.

Text is selected using the mouse. There are two regions within an edit window: The area containing text,
and a ‘‘line bar’’ just inside the left edge of the window. While the mouse is inside the text region, the
cursor is the normal up- and- left pointing arrow. When the cursor moves into the line bar, it changes to
an up- and- right pointing arrow. Which region the mouse is in determines what kind of selection happens:

The mouse button always selects the smallest things. In the text region, it selects the character
you’re pointing at; in the line bar, it selects the single line you’re pointing at.

The mouse button selects larger things. In the text region, it selects the word the cursor is over,
and in the line bar it selects the paragraph the cursor is next to.

The button always extends a selection. The current selection is extended to include the
character/word/line/paragraph you are now pointing at. For example, if the existing selection was
a whole-word selection, the extended selection will also consist of whole words.

There are special ways of selecting text which carry an implicit command with them:

If you hold the key down while selecting text, the text will be shown white- on-black. When you
release the key, the selected text will be deleted. You can abort a -selection: Hold down a
mouse button, and release the key. Then release the mouse button.

Holding the key down while making a selection causes it to be a ‘‘copy-source’’ selection. A copy
source is marked with a dashed underline. Whatever is selected as a copy source when the key

1

TEDIT

(TEDIT)

NIL
MKSTRING

TEdit
Put

LEFT

MIDDLE

RIGHT

CTRL
CTRL CTRL

CTRL

SHIFT
SHIFT

TEXT WINDO W

TEXT WINDO W
TEXT TEXT

Editing Operations

is released will be copied to where the caret is. This even works to copy text from one edit window to
another. You can abort a copy: Hold down a mouse button, and release the key. Then release
the mouse button.

Holding the and keys down while making a selection causes it to be a ‘‘move’’ selection,
which is marked by making it veverse video. Whatever is selected as a ‘‘move’’ source when the
and keys are released will be moved to where the caret is. This even works to move text from
one edit window to another. You can abort a move: Hold down a mouse button, and release the
and keys. Then release the mouse button. If the variable
is non- , extending a selection will display the selection as white- on-black. The next time something
is typed (or if text is copied or moved there), the inverted text will be deleted �rst. This provides an easy
way of replacing text.

1.2 Editing Operations

Inserting text: Except for command characters, whatever is typed on the keyboard gets inserted where the
caret is. The key and control- A both act as a backspace, deleting the character just before the caret.
Control- W is the backspace- word command.

Deleting Text: Hitting the key causes the currently- selected text to be deleted. Alternatively, you
can use the -selection method described above.

Copying Text: Use -selection, as described above.

Moving Text: Use - -selection.

Undoing an edit operation: The top blank key is the key (the key on the 1108). It will
undo the most recent edit command. is itself undo- able, so you can never back up more than a
single command.

Redoing an edit operation: The key is the key (the forward- arrow key on the 1108). It will
redo the most recent edit command on the current selection. For example, if you insert some text, then
select elsewhere, hitting will insert a copy of the text in the new place also. If the last command
was a delete, will delete the currently- selected text; if it was a font change, the same change will
be applied to the current selection.

The command menu: You can get command menus by moving into the edit window’s title region
and hitting the or mouse buttons. gets the usual menu of window commands.

gets a menu of editor commands:

Causes an updated version of the �le to be written. Tedit will ask you for a �le
name, o�ering the existing name (if any) as the default. When the �le name is
o�ered, you may type ^E to abort the operation.

Lets you read in a new �le to edit,
You’ll be asked for a �le name in the prompt window. Instead of a �le name, you
may type ^E to abort the operation.

Lets you copy the contents of a �le into the edit window, inserting it where the caret
is. Tedit will ask you for a �le name in its prompt window. Instead of a �le name,
you may type ^E to abort the operation.

2

SHIFT

CTRL SHIFT
CTRL

SHIFT
CTRL

SHIFT TEDIT.EXTEND.PENDING.DELETE
NIL

BS

DEL
CTRL

SHIFT

CTRL SHIFT

Undo KEYBOARD
Undo

ESC Redo

ESC
Redo

RIGHT MIDDLE RIGHT
MIDDLE

Put

Get without saving the one you were working on.

Include

Causes the editor to stop without updating the �le you’re editing. If you haven’t
saved your changes, you’ll be asked to con�rm this.

Asks for a search string, then hunts from the caret toward the end of document for a
match. Selects the �rst match found; if there is none, nothing happens. The search
is case-sensitive; i.e. ‘‘Foo’’ will not be found with the search string ‘‘FOO’’. If you
need to include special characters (e.g. CR) in the search string, quote them with

.

Asks for a search string and a replacement string. Within the current selection, all
instances of the search string are replaced by the replacement string. If you wish,
TEdit will ask you to con�rm each replacement before actually doing it. If you need
to include special characters (e.g. CR) in the search or replacement strings, quote
them with .

Changes the character looks of the selected characters: The font, character size, and
face (bold, italic, etc.). Three menus will pop up in sequence: One to select the font
name, one to select the face, and one to select the size. You may select an option
in each menu. If, for example, you want to leave the character size alone, just click
the mouse outside the size menu. In general, any aspect of the character looks that
you don’t change will remain the same.

Prints the document to your default press or InterPress printer, with 1 inch margins
all around. The variable controls which kind of printer
TEdit will send to.

Creates a Press or InterPress �le of the document, with 1 inch margins all around.
The �le format is also controlled by .

Opens a large menu that has three parts: A TEdit operations section, a character-
looks menu, and a paragraph looks (formatting) menu. This expanded menu
has �ll- in blanks for some �elds (like what the command should hunt for),
and has on-o�- neutral buttons to control character properties like boldness. This is
described below.

1.3 Tedit Expanded Menu

Selecting the item ‘‘Expanded menu’’ from TEdit’s title-bar menu creates a small free- form menu on top
of your editing window. The expanded menu contains selectable menu buttons and places for you to
type text (e.g., what to search for when you do a FIND).

From the main expanded menu, you can open three other sub-menus for more specialized operations:
Setting character looks, setting paragraph formatting, and laying out pages for hardcopy.

1.3.1 Using TEdit-style Menus

The expanded menu is itself a TEdit window, so the usual editing operations work� with one change.
Some parts of the menu can’t be selected or operated on; they’re protected. The places you can select
are: menu buttons, the margin ruler (see below), and between pairs of curly braces, so: {}. Menu buttons

3

Quit

Find

^V

Substitute

^V

Looks

Hardcopy
DEFAULTPRINTINGHOST

Press File
DEFAULTPRINTINGHOST

Expanded Menu
i.e.,

Find

TEdit The Main Expanded Menu

appear in bold; every menu button which needs to ask for text has a pair of {} associated with it, e.g.,
the line

server: copies:

has two buttons on it. The ‘‘ ’’ button needs no further arguments, while the ‘‘ ’’ button
can take two arguments: the name of the server to print to and the number of copies to print. When a
button requires arguments, you need to �ll them in before hitting the button.

To get rid of an expanded menu, just close it using the right mouse button command menu.

1.3.2 TEdit The Main Expanded Menu

The TEdit operation menu looks like this:

for
server: copies:

The , , , and buttons all require a text argument, which must be typed in
before you hit the corresponding menu button. requires two arguments, the second being
the search string, and the �rst being the replacement. The button takes two optional text
arguments. If you specify a server name, the hardcopy will be sent there. If you leave the brackets empty,
TEdit uses as usual. You may also specify how many copies of the document
you want; if you don’t put anything in the ‘‘copies’’ �eld, you get one copy.

The , , , , and buttons need no additional arguments.
stops the current editing session; causes the entire document to be selected. This is useful for

making global substitutions or changes to character looks.

The three menu buttons , , and give you access to the three
specialized menus.

1.3.3 TEdit The Character Looks Menu

The Character Looks Menu looks like this:

Props:

other font:
Size: distance:

Generally speaking, you select the text you want to change, set the entries in this menu up as you want
the text to appear, then make the change by hitting the button.

If you have a piece of text whose looks you want to copy, select the text and hit the button.
The menu will be �lled in to match that text’s looks. You can then it elsewhere, perhaps after
modifying things slightly.

4

Quit Hardcopy {} {}

Quit Hardcopy

Quit ParaLooks CharLooks PageLayout All
Get {} Put {} Include {}
Find {} Substitute {} {}
Hardcopy {} {}

Get Put Include Find
Substitute

Hardcopy

DEFAULTPRINTINGHOST

Quit ParaLooks CharLooks PageLayout All
Quit All

ParaLooks CharLooks PageLayout

Character Looks Menu: APPLY SHOW
Bold Italic Underline StrikeThru Overbar

TimesRoman Helvetica Gacha
Modern Classic Terminal Other {}

{} Normal Superscript Subscript {}

APPLY

SHOW
APPLY

The second line of the menu is a list of character properties which can be modi�ed independently. Each
of the menu buttons has three states: If the button appears white- on-black, that property will be turned
on; If the button appears with a diagonal line, that property will be turned o�; If the button appears
black-on-white, that property will be left alone.

Why is it useful to leave a property alone? Suppose you have a paragraph in Times Roman with some
bold and some italic in it. If you want to change the font to Helvetica without changing the boldness
or italicness, you can do so. The third line of the menu is a list of font- family names. You can select
among them: selecting one family deselects any others. You can also select no family by mouse buttoning
between two of the families. If you with no font family selected, the text will be left in whatever
font family it was.

The choice in the font- family selection lets you add new fonts to the menu. To pick a family that
isn’t o�ered in the menu, �rst type the name between the brackets after (rm other font

Then pick as the font family. Then next time you the menu, the new font family will be
applied to the text you’ve selected, and the family name will be added to the menu.

The last line of the menu lets you set the font’s size, and specify any superscripting or subscripting. Fill
in the ‘‘Size:’’ �eld with a number, and ing will change all the selected characters to that size.
Leave it empty, and the characters will retain their existing sizes.

For character o�sets, you have three choices: Normal characters lie on the baseline; Superscript characters
lie above the baseline by the distance you specify (2 points by default); Subscript characters lie below the
baseline by the distance you specify (2 points by default). As with font family names, you may mouse
in the space between options to neutralize the choice. ing with a neutral choice leaves characters
with the super- and subscripting they had, if any.

1.4 The TEdit Paragraph Formatting Menu

The Paragraph Looks Menu looks like this:

type:
Line leading: Paragraph leading:
New Page:
Tab Type: Default Tab Size:

Below this menu is a solid black rectangle, used for setting indentations, and a ruler, used for setting tab
stops.

As with the Character Looks Menu, you select the text you want to change, set the entries in this menu
up as you want the text to appear, then make the change by hitting the button.

If you have a paragraph whose looks you want to copy, select the text and hit the button. The menu
will be �lled in to match that text’s looks. You can then it elsewhere, perhaps after modifying
things slightly.

The second line of the menu is for specifying how the paragraph margins are to be justi�ed. A Left
justi�ed paragraph has a ragged right margin, but is justi�ed �ush with the left margin. A Right justi�ed
paragraph has a ragged left margin, but is justi�ed �ush on the right. A Centered paragraph is centered

5

APPLY

Other

Other APPLY

APPLY

APPLY

Paragraph Looks Menu: APPLY SHOW
Left Right Centered Justified Page Heading {}

{} {}
Before After
Left Right Centered Decimal {}

APPLY

SHOW
APPLY

The TEdit Paragraph Formatting Menu

between the two margins. A Justi�ed paragraph is set �ush with both the left and right margins.

On that line, you may also declare this paragraph to be a page heading (see the Page Layout Menu
section), and say what kind of heading it is. The button is an On-O�- Neutral button;
depending on its setting, it will make the paragraph be a page heading, make it stop being a page heading,
or leave it alone.

The space between lines in a paragraph is called ‘‘line leading’’. You can specify it, in units of printer’s
points. You can also leave space in front of a paragraph (without using extra carriage returns) by
specifying ‘‘paragraph leading,’’ also in units of printer’s points.

You may ask that a new page (or column, if you’re using multiple columns to the page) be started either
before or after this paragraph. These are controlled by the and buttons, respectively.
These are also 3-state buttons, and can be used to set and reset the new-page property or leave it alone.
Generally,

You set paragraph margins using the margin ruler on the bottom. There are three margin values: The
left margin for the paragraph’s �rst line, the left margin for the rest of the paragraph, and the paragraph’s
right margin. The margin ruler is has three sensitive areas, one for each margin value. Margins are
measured in printer’s picas (6 to the inch), with a grain of 1/2 pica. There are 12 points to the pica.
Plans exist for allowing di�erent units (and granularity) in the ruler.

The �rst- line left margin is controlled by the top half of the ruler, left end. To move it, push a mouse
button near the left edge, and hold it. Moving the mouse pulls the margin along with it; the margin ruler
always shows the current values of the margins. If you push the mouse button over the margin,
it becomes neutral; i.e., ing the paragraph menu won’t change the �rst- line left margins of any
paragraphs. The rest-of-paragraph left margin is controlled by the bottom half of the ruler, left end. You
move it (and neutralize it) the same way.

Likewise for the right margin, which is controlled by the right end of the margin ruler. There are a
couple of di�erences here. First, you can set the right margin to 0, which will create a ‘‘�oating’’ right
margin (one that follows the right edge of the edit window or of the printed page). This is signalled by
a margin ruler that is as wide as the window, but shows a value of 0 at its right end.

Since the editing window may be narrower than the document, you can also set the right margin beyond
the edge of the window, by pulling it with the mouse, and pulling past the window edge. A right margin
you can’t see is represented by a double wavy line at the right edge.

To make a margin ‘‘neutral’’, so that ing it won’t change that margin setting, move the margin
with the right mouse button. The margin will become gray, to indicate that it is neutralized.

You can also set tab stops using the margin ruler. The space below the ruler markings is sensitive to all
three mouse buttons, and is used to represent tab stops.

To set a tab, you �rst need to choose what kind of tab you want, using the line starting with ‘‘Tab
Type:.’’ Make your choice of tab type the same way you’d choose a font family. Left tabs are regular
typewriter type tabs; Right tabs take the succeeding text and push it so it is �ush- right against the tab
stop location; Centered tabs cause the succeeding text to be centered about the tab stop; Decimal tabs
(not implemented) cause the succeeding text to have its decimal point lined up on the tab stop. Tab stops
are shown in the margin ruler as small arrows with suggestive tails.

To create a new tab stop, use the middle mouse button. In the region below the ruler markings (and the

6

Page Heading

Before After

RIGHT
APPLY

APPLY

numbers!), point to where you want the tab to be, and press the middle mouse button. The tab should
appear; as long as you hold the button down, the tab will follow the mouse around, so you can adjust its
location. To move a tab stop, point at it and press the left mouse button. As long as you hold it down,
the tab stop will follow the mouse. To delete a tab stop, point at it and press the right mouse button.

1.5 The TEdit Page Layout Menu

The Paragraph Looks Menu looks like this:

For page:

Page numbers:
Alignment:

Margins: Left: Right: Top: Bottom:
Columns: Col width: Space between cols:

There are three kinds of pages in a document: The �rst page, all other left-hand (even, or verso) pages,
and all other right- hand (odd, or recto) pages. For each class of page, you may specify separate layout
and headings.

Specify which class of page you are setting up on the second line of the menu, by choosing one of the
options , or . If you want the entire document laid out
uniformly, you need only set up (and APPLY) parameters for the �rst page.

If you want to modify an existing page layout, choose the page class you want to modify and hit the
button. The menu will be �lled in from the existing layout speci�cations.

When you have the menu set up as you want the layout to be, hit the button, and your speci�cations
will be saved as part of the document. There will be no noticible change in the document� page layout
only happens when a document is hardcopied.

SETTING UP PAGE NUMBERS: A given class of pages may or may not have page numbers. Set this
by choosing one of the buttons or on the ‘‘Page Numbers’’ line. If you decide to have page
numbers, you must specify where you want them. The and �ll- in blanks let you do this. Specify the
page number’s location as distances from the lower, left corner of the paper; the distances are measured
in picas (6 to the inch).

Next, you must specify how to align the page number with the location you speci�ed. If you specify

7

APPLY SHOW
First(&Default) Other Left Other Right

No Yes X: {} y: {}
Left Centered Right

{} {} {} {}
{} {} {}

Page Headings:
Heading Type: {} X: {} Y: {}
Heading Type: {} X: {} Y: {}
Heading Type: {} X: {} Y: {}
Heading Type: {} X: {} Y: {}

Character Looks for Page Numbers
[just like character looks menu from here on]

First(&Default) Other Left Other Right

SHOW

APPLY

Yes No
X Y

Left

The TEdit Page Layout Menu

alignment, the left edge of the page number will print at the location you gave; alignment
centers the page number at the spot you speci�ed; alignment puts the right edgge of the page
number at the location you speci�ed. Suppose you want to have page numbers lined up against the page’s
margin, toward the outside edge of each page. Then you would specify alignment for recto pages
and alignment for verso pages.

SETTING UP PAGE HEADINGS: You may have up to four kinds of page headings/footings on any
page. (This limit will be relaxed in the future). For each type, specify a name (which must be a

), and a location for the left end of the topmost line of text in the heading.

Within text, headings appear as separate paragraphs. Use the ‘‘Paragraph Looks’’ menu to declare that a
paragraph is to be a page heading. You will have to �ll in the ‘‘heading type’’ �eld with the same name
you used in the ‘‘Heading Type’’ �eld in this menu.

SETTING CHARACTER LOOKS FOR PAGE NUMBERS: The page layout menu has a special section
for setting the character looks used to print page numbers. Set the looks just as you would set regular
character looks; the settings you give will take e�ect when you the page layout menu.

8

Centered
Right

Right
Left

LITATOM

APPLY

2 TEDIT FUNCTIONAL INTERFACE

The top- level entry to TEdit is:

[Function]
may be a (litatom) �le name, an open , a string, or an arbitrary

[-able] Lisp object. The text is displayed in an editing window, and may
be edited there. If is other than a �le name, a , or a string,
will call on it, and let you edit the result.

If is , you will be prompted to create a window. If is
non- , will use it as the window to edit in. If has a title,
will preserve it; otherwise, will provide a descriptive title for the window.

will normally spawn a new process to run the edit, so you can edit in parallel
with other work; indeed, it is possible to have several editing windows active on the
screen. You can have the editing done in your process� and have TEdit return the
result of the edit� by calling with set to .

is a prop- list-like collection of properties which control the editing session.
The following options are possible:

The default character looks (font, size, etc.) to be used in the edit
window. This can be a , or a property list of
character looks properties such as would accept, or
a data structure describing the character looks.

A function (or list of functions) to call when the user s. If
any of the functions is or returns , the user will not be asked
to con�rm the � even if he’ll potentially lose something. If
any of the functions returns , the is aborted before the
user is asked for con�rmation.

A function to be called each time thru the character- read loop.

A function to be called for each character typed in.

A function to be called each time a mouse selection is made in this
edit window.

If you want characters displayed other than TEdit’s default way, set
this to a Terminal table with the correct settings.

If you want command characters which are local to this edit session,
set this to a Read table with the appropriate settings.

If you want word breaks to happen other than the default way, set
this to a Read table with the appropriate settings.

If the value of this property is non- , then the edit window will
be read- only, i.e., you can only shift- select in it.

9

(TEDIT)
STREAM

MKSTRING
STREAM TEDIT

MKSTRING

NIL
NIL TEDIT TEDIT

TEDIT

TEDIT

TEDIT T

FONT
FONTDESCRIPTOR

TEDIT.LOOKS
CHARLOOKS

QUITFN Quit
T T

Quit
DON’T Quit

LOOPFN

CHARFN

SELFN

TERMTABLE

READTABLE

BOUNDTABLE

READONLY NIL

TEXT WINDO W DONTSP AWN PR OPS
TEXT

TEXT

WINDO W WINDO W
WINDO W

DONTSP AWN

PR OPS

TEDIT FUNCTIONAL INTERFACE

If the value of this property is non- , then the �le being edited
will be cached locally instead of being read as needed from the
remote server.

Tells what text should be selected initially. This can be a
(see below) describing the selected text, or a character

number, or a two-element list of �rst character number and number
of characters to select.

Describes the menu to be displayed when the mouse button
is pressed in the edit window’s title region. If it is a , that
menu will appear. If it is a list of menu items, a new menu will be
constructed.

A function to be called TEdit has quit. This can be used for
cleanup of side-e�ects by TEdit client programs.

A function to get called instead of bringing up the usual TEdit
command menu when the user - or -buttons in the
edit window’s title region.

The default paragraph looks to be used for paragraphs in this docu-
ment. This can be either a data struc ture, or a property list
of paragraph format ting information such as
would accept.

A function that is called whenever new caret looks are being set.

If this is non- , TEdit will not take control of the keyboard when
it is started. Instead, it will wait until you �rst button in the editing
window with the mouse.

A window that is to be used for unscheduled user interactions, in
place of the prompting window that TEdit usually provides. If this
is the atom , no window will be provided, and the main
prompt window will be used.

FILL THIS IN.

FILL THIS IN.

FILL THIS IN.

FILL THIS IN.

FILL THIS IN.

in lines.

10

CACHE NIL

SEL
SELECTION

MENU MIDDLE
MENU

AFTERQUITFN
after

TITLEMENUFN

LEFT MIDDLE

PARALOOKS
FMTSPEC

TEDIT.PARALOOKS

CARETLOOKSFN

LEAVETTY NIL

PROMPTWINDOW

DON’T

OVERFLOWFN

CLEARGET

CLEARPUT

NOEXTENT

NOTITLE

PROMTPWINDOWHEIGHT

No reason to use this. It’s the window used to back the TEdit
process’s TTYDISPLAYSTREAM. Normally, TEdit makes a closed
window that serves the purpose, which is as a path for copy-selected
items to get to the edit window.

Forces TEdit to bypass optimizations in its screen update.

A list of Lisp interrupts, in the same form as
which will be enabled while this TEdit is running.

Called both before and after the TEdit PUT command is performed,
with arguments and one of the atoms

or . When called before the PUT, this function may
return the atom , which aborts the PUT process. Generally,
this function is present for TEdit client systems to perform their
own cleanup.

Speci�es a sub- region of the window in which TEdit is to operate.
BEWARE: If this is used, the client system must control scrolling,
mouse interaction, and a variety of other things. This facility is not
fully debugged.

If this is non- , TEdit will keep track of text which is ‘‘new’’
during the session, and will record that fact as part of the �le at
PUT time. This is present for the use of the EDITMARKS package.

Any speci�ed will be appended to the front of whatever is the value
of ; respeci�ed properties will override anything in the
defaults. This provides client applications with a way to set default edit properties.

11

TTYWINDOW

SLOWUPDATE

INTERRUPTS TEDIT.INTERRUPTS

PUTFN

BEFORE AFTER
DON’T

REGION

TEDIT.TENTATIVE
NIL

TEDIT.DEFAULT.PROPS

TextStreamFullFileNmae

PR OPS

3 TEDIT FUNCTIONAL INTERFACE

The ‘‘Text Stream’’ Data Structure

TEdit keeps a which describes the current state of the text you’re editing. You can use most of
the usual stream operations on that stream: , , , and do the
usual things. inserts a character in the stream just in front of the next character you’d read if you

ned. You can get the stream by calling .

If you need to save the state of an edit, you can save this stream. Calling with the stream as the
argument will let you continue from where you left o�.

There is a datatype called which de�nes several �elds that are of interest within the stream:

The which describes the edit session.

The which describes the text at the �le pointer.

The ‘‘Text Object’’ Data Structure

TEdit keeps a variety of other information about each edit window, in a data structure called a .
Field of a text points to the associated , which contains these �elds of
interest:

The edit window which contains the text. If this is , there is no edit window for
this text.

The most recent selection made in this text.

A scratch , used by the mouse handler for the edit window, but otherwise
available for scratch use.

The current length of the edited text.

Points to the text which describes the text.

If this is non- , TEdit will halt after the next time through the keyboard polling
loop. No check will be made for unsaved changes. Unless it is , the value of

will be returned as the result of TEdit.

The ‘‘Selection’’ Data Structure

The selected text is described by an object of type , whose �elds are as follows:

The character number of the �rst character in the selection. The �rst character in
the text being edited is numbered 1.

The character number of the last character in the selection. Must be � .

The number of characters in the selection. If is zero, then no characters are
selected, and the Selection can be used only to describe a place to insert text.

12

STREAM
BIN SETFILEPTR GETFILEPTR GETEOFPTR

BOUT
BIN (TEXTSTREAM)

TEDIT

TEXTSTREAM

TEXTOBJ TEXTOBJ

PIECE PIECE

TEXTOBJ
TEXTOBJ STREAM TEXTOBJ

\WINDOW NIL

SEL

SCRATCHSEL SELECTION

TEXTLEN

STREAMHINT STREAM

EDITFINISHEDFLG
NIL

T
EDITFINISHEDFLG

SELECTION

CH#

CHLIM CH#

DCH DCH

EditWindow

TEXT

Tells whether the Selection is indicated in the edit window. If , it is; if , it’s
not.

The that describes the selected text. You can use this to get to the Stream
itself.

The X position (edit- window- relative) of the left edge of the �rst selected character.

The Y position of the bottom of the �rst selected character (not the character’s base
line, the bottom of its descent).

The X position of the right edge of the last character selected. If is zero (a
‘‘point’’ selection), = .

The bottom of the last character in the selection.

The width of the selection. If is zero, this will be also.

This is for a future object- oriented editing interface.

Tells which side of the selection the caret should appear on. It will be one of the
atoms and .

if this selection is currently valid, if it is obsolete or has never been set.

What kind of selection this is. One of the atoms , , , or .

A , which will be used to highlight the selecton.

How high the highlighting is to extend. A selection’s highlight starts at the bottom
of the lowest descender, and extends upward for pixels. To always get
highlighting a full line tall, set this to 16384.

if this selection should have a caret �ashing next to it, otherwise.

13

ONFLG T NIL

\TEXTOBJ TEXTOBJ

X0

Y0

XLIM DCH
XLIM X0

YLIM

DX DCH

SELOBJ

POINT
LEFT RIGHT

SET T NIL

SELKIND CHAR WORD LINE PARA

HOW TEXTURE

HOWHEIGHT
HOWHEIGHT

HASCARET T NIL

4 TEDIT INTERFACE FUNCTIONS

TEdit exports the following functions for use in custom interfaces:

[Function]
Creates a text describing , and returns it. If is speci�ed,
the text will be displayed there, and any changes to the text will be re�ected there
as they happen. You will also be able to scroll the window and select things there
as usual. may be an existing or text . If and

are given, then only the section of delimited is edited (if that portion
of the �le looks itself like a TEdit- structured �le, then TEdit will honor the font,
paragraph, and IMAGEOBJ information. Otherwise, it will be treated as a plain- text
�le). is the same as for .

Given the , you can use a number of functions to change the text in an
edit window, under program control. The edit window gets updated as the text is
changed.

q
[Function]

Sets the selection in . If q is a , it is used as-is.
Otherwise, q is the �rst character in the selection, and is the number
of characters to select (zero is allowed, and gives just an insertion point).
tells which side of the selection the caret should come on. It must be one of the
atoms or .

If is non- , the selection will be a pending- delete selection� the
selected text will be deleted at the next type- in (or if text is copied or moved there).
Otherwise, the selection will be a normal selection.

Normally, the act of making a selection sets the ‘‘caret’’ looks� the looks for any
characters typed at the caret. This can be suppressed by passing in a non-

.

[Function]
Returns the which describes the current selection in the edit window
described by .

[Function]
Lets you turn the highlighting of the selection on and o�. If is ,
the selection in will be highlit in the edit window; if , any
highlighting will be turned o�. If is , it defaults to the current selection in

.

[Function]
Returns the currently- selected text as a string. If is non- , the text it describes
will be returned.

[Function]
Converts a text stream, , or edit window into another form, speci�ed by

. The possible values for are:

14

(OPENTEXTSTREAM)
STREAM

TEXTOBJ STREAM

TEDIT

STREAM

(TEDIT.SETSEL)

SELECTION

LEFT RIGHT

NIL

NIL

(TEDIT.GETSEL)
SELECTION

(TEDIT.SHOWSEL)
T

NIL
NIL

(TEDIT.SEL.AS.STRING)
NIL

(COERCETEXTOBJ)
TEXTOBJ

TEXT WINDO W STAR T END PR OPS
TEXT WINDO W

TEXT STAR T
END TEXT

PR OPS

STREAM CH orSEL LEN POINT PENDINGDEL? LEAVECARETL OOKS

STREAM CH orSEL
CH orSEL LEN

POINT

PENDINGDEL?

LEAVECARETL OOKS

STREAM

STREAM

STREAM ONFL G SEL
SEL ONFL G

SEL STREAM
SEL

STREAM

STREAM SEL
SEL

STREAM TYPE

TYPE TYPE

COERCETEXTOBJ will return a string (with any formatting and
font information stripped out).

COERCETEXTOBJ will return a �le containing the document’s text
(complete with formatting and font information).

COERCETEXTOBJ will return a stream from which you may BIN
or otherwise read the document

COERCETEXTOBJ will return list of two �les. The �rst contains
the text for the document, and the second contains the formatting
information. If these �les are concatenated, they make a complete,
legal TEdit �le.

q [Function]
Inserts the string into , as though it had been typed in. q
tells where to insert the text: If it’s , the text goes in where the caret is. If it’s a

, the text is inserted in front of the corresponding character (The �rst character
in the stream is numbered 1). If it’s a , the text is inserted accordingly.

If the argument is provided, it must be a font descriptor. The inserted text
will appear in that font.

Normally, TEdit scrolls the editing window so that each change is visible as it is
made. If you want the window left where it is instead, the argument
should be non- .

q [Function]
Deletes text from . If q is a , the text it describes
will be deleted; if q is a , it is the character number of the �rst
character to delete. In that case, must also be present; it is the number of
characters to be deleted.

[Function]
Performs the TEdit ‘‘Include’’ command, inserting the text from �le into

. If and are supplied, only the speci�ed portion of the �le
is included.

[Function]
Performs the TEdit ‘‘Put’’ command, saving the text from onto the �le

. If is not supplied, the user will be asked for a �le name.

q q [Function]
Searches for the next occurence of inside . If q is present,
the search starts there; otherwise, the search starts from the caret. If q is
present, the search will end at that character; otherwise, it ends at the end of the
text. If a match is found, returns the character number of the �rst
character in the matching text. If no match is found, it returns .

If is non- , the search pattern can contain wildcard characters:
‘‘#’’ matches any single character, ‘‘*’’ matches any sequence of characters, and
‘‘’’’ can be used to quote one of the wildcards. When wildcards are enabled,

15

STRINGP

FILE

STREAM

SPLIT

(TEDIT.INSERT)

NIL
FIXP

SELECTION

NIL

(TEDIT.DELETE)
SELECTION

FIXP

(TEDIT.INCLUDE)

(TEDIT.PUT)

(TEDIT.FIND)

TEDIT.FIND
NIL

NIL

STREAM TEXT CH orSEL LOOKS DONTSCR OLL
TEXT STREAM CH orSEL

LOOKS

DONTSCR OLL

STREAM CH orSEL LEN
STREAM CH orSEL
CH orSEL

LEN

TEXTOBJ FILE STAR T END
FILE

TEXTOBJ STAR T END

STREAM FILE
TEXTOBJ

FILE FILE

STREAM TEXT STAR T END WILDCARDS?
TEXT STREAM STAR T

END

WILDCARDS?

TEDIT INTERFACE FUNCTIONS

returns a list consisting of the character numbers of the �rst and last
characters in the matching text.

[Function]
Sends the text contained in to the printer. If a �le name is given in ,
the press �le will be left there for you to use. If is non- , the �le
will not be sent to the printer; use this if you only want to create a press �le for
later use.

If is non- , it is used as the title on the ‘‘break page’’ printed
before the text.

You can specify the print server where the hardcopy is to be sent, using the
argument; if it is , TEdit uses .

You may also specify printing options (number of copies, whether to print on both
sides of the paper, etc.) using . It is a ‘‘property list’’ in the form
accepted by (see page X.XX).

may aslo be an open image stream of type PRESS or INTERPRESS. If so,
the hardcopy output wil lbe appended to the already- open stream, and the stream
will be left open when TEdit is �nished.

q [Function]
Changes the character looks of selected characters, e.g., the font, character size,
etc. q can be a , an integer, or . If q is a

, the text it describes will be changed; if it is a , it is the character
number of the �rst character to changed. In that case, must also be present;
it is the number of characters to be changed. A q of will use the
current selection.

is a property- list-like description of the changes to be made. The
property names tell what to change, and the property values describe the change.
Any property which isn’t changed explicitly retains its old value. Thus, it is possible
to make a piece of text all bold without changing the fonts the text is in. The
possible list entries are as follows:

The name of the font family. All the selected text is changed to be
in that font.

The face for the new font. This may be in either of the two
forms acceptable to : a list such as

, or an atom such as .

The new weight for the font. This must be one of , ,
or . Specifying this the parameter.

The new slope for the font. This must be one of or
. Specifying this the parameter.

The new weight for the font. This must be one of ,
, or . Specifying this the parameter.

16

TEDIT.FIND

(TEDIT.HARDCOPY)

NIL

NIL

NIL DEFAULTPRINTINGHOST

SEND.FILE.TO.PRINTER

(TEDIT.LOOKS)

SELECTION NIL
SELECTION FIXP

NIL

FAMILY

FACE
FONTCREATE (BOLD ITALIC

REGULAR) MRR

WEIGHT LIGHT MEDIUM
BOLD disables FACE

SLOPE REGULAR
ITALIC disables FACE

EXPANSION CONDENSED
REGULAR EXPANDED disables FACE

STREAM FILE DONTSEND BREAKP AGETITLE SERVER PRINTOPTIONS

STREAM FILE
DONTSEND

BREAKP AGETITLE

SERVER

PRINTOPTIONS

FILE

STREAM NEWL OOKS SELOR CH LEN

SELOR CH SELOR CH

LEN
SELOR CH

NEWL OOKS

The new point size.

The value for this property must be one of the atoms or .
The text will be underscored or not, accordingly.

The value for this property must be one of the atoms or .
The text will be overscored or not, accordingly.

The value for this property must be one of the atoms or .
The text will be struck through with a single line or not, accordingly.

A distance, in points. The text will be raised above the nor-
mal baseline by that amount. This is mutually exclusive with

.

A distance, in points. The text will be raised above the nor-
mal baseline by that amount. This is mutually exclusive with

.

The value for this property must be one of the atoms or . If
it is , the text will be protected from mouse selection and from
deletion.

The value for this property must be one of the atoms or .
If a character has this property, the user can make a point selection
just after it, even if the character is also .

The value for this property must be one of the atoms or . If
a character has this property, the character will not appear on the
screen or on hardcopy.

q [Function]
Returns a P-list describing the character looks of the speci�ed character(s). This
P-list is suitable for passing to . q can be a ,
an integer, or . If q is a .

q [Function]
Changes the paragraph looks of selected paragraphs, e.g., the margins, line leading,
etc. q can be a , an integer, or . If q is a

, the text it describes will be changed; if it is a , it is the character
number of the �rst character to changed. In that case, must also be present;
it is the number of characters to be changed. A q of will use the
current selection. In all cases, operates on . If
any portion of a paragraph is included in the selection, the entire paragraph’s looks
will be changed.

is a property- list-like description of the changes to be made. The
property names tell what to change, and the property values describe the change.
Any property which isn’t changed explicitly retains its old value. Thus, it is possible
to make a paragraph indented without changing its tab stops. The possible list entries

17

SIZE

UNDERLINE ON OFF

OVERLINE ON OFF

STRIKEOUT ON OFF

SUPERSCRIPT

SUBSCRIPT

SUBSCRIPT

SUPERSCRIPT

PROTECTED ON OFF
ON

SELECTPOINT
ON OFF

PROTECTED

INVISIBLE ON OFF

(TEDIT.GET.LOOKS)

TEDIT.LOOKS SELECTION
NIL SELECTION

(TEDIT.PARALOOKS)

SELECTION NIL
SELECTION FIXP

NIL
TEDIT.PARALOOKS whole paragraphs

STREAM SELOR CH

SELOR CH
SELOR CH

STREAM NEWL OOKS SELOR CH LEN

SELOR CH SELOR CH

LEN
SELOR CH

NEWL OOKS

TEDIT INTERFACE FUNCTIONS

are as follows:

One of (for �ush- left, ragged- right), (for centered
lines), (for �ush- right, ragged- left), or (for
�ush- left and -right).

The left margin for the �rst line of the paragraph, in points.

The left margin for the rest of the paragraph, in points.

The right margin for all lines of the paragraph, in points. If this
value is 0, one gets a ‘‘�oating’’ right margin, which adjusts to the
width of the edit window or paper.

This is a pair, whose is a relative tab width and whose
is a list of absolute tab stops. A tab advances the cursor to the

next absolute tab stop to the right of the current position. Should
there be no absolute tab stop to the right of the cursor, the cursor is
advanced by the relative tab width. The relative tab width defaults
to .5 inches (= 36 pts). Each absolute tab stop is a pair with
the car being the position, and the being one of ,
or . This value indicates how the word following the tab
will be justi�ed with respect to the tab. For instance, indicates
that the left edge of the word following the tab will be at the tab
position indicated in the . For a tab, the right edge of
the word following the tab would have been located at the position
indicated in the . indicates that the word following the
tab will be centered at the position in the .

The space to be left before each line of the paragraph, in points.

Additional space to be left before the �rst line of the paragraph, in
points.

Additional space to be left after the last line of the paragraph, in
points.

[Function]
must be the text stream associated with a running TEdit.

causes the editing session to end. If is given, it is returned as TEdit’s result;
otherwise, TEdit will return the usual result. The user is not asked to con�rm his
desire to stop editing.

[Function]
must be the text stream, , or edit window associated with

a running TEdit. kills the TEdit process, and cleans up its data
structures. It does not cause TEdit to return a result.

18

QUAD LEFT CENTERED
RIGHT JUSTIFIED

1STLEFTMARGIN

LEFTMARGIN

RIGHTMARGIN

TABS CONS CAR
CDR

CONS
CDR LEFT RIGHT

CENTER
LEFT

CAR RIGHT

CAR CENTER
CAR

LINELEADING

PARALEADING

POSTPARALEADING

(TEDIT.QUIT)
TEDIT.QUIT

(TEDIT.KILL)
TEXTOBJ

TEDIT.KILL

STREAM VAL UE
STREAM

VAL UE

STREAM
STREAM

[Function]
Adds a menu to . This will update the menu’s image so that the newly-
added item will appear the next time the menu pops up. This is only guaranteed to
work right with pop- up menus which aren’t visible.

[Function]
Removes a menu from . This will update the menu’s image so that
the newly-added item will appear the next time the menu pops up. This is only
guaranteed to work right with pop- up menus which aren’t visible. may be
either the whole menu item, or just the indicator which appears in the menu’s image.

[Function]
Given a text stream, or a TEdit editing window, returns the associated .

[Function]
Given a or a TEdit editing window, returns the associated text stream.

[Function]
Queries or sets the value of editor properties, such as the ones passed to or

in their arguments. This can also be used to associate
user data with an editing session. If {VALUE} is omitted, the current value associated
with is returned; if is present, it becomes ’s
associated value.

[Function]
Tells whether a given text stream is plain text (result is) or must be stored as
a special TEdit- format �le (result is one of the atoms , ,
or , depending on the amount of formatting information that must be
stored).

[Function]
The looks of newly- typed characters are controlled by the looks that are ‘‘attached
to the caret’’. This function lets you set those looks for a given document.
is either a font descriptor or a . Any text inserted or typed in thereafter
will appear in that font (or with those looks).

[Function]
Returns if the text represented by the has been modi�ed since it was
last saved. If is non- , then the change indicator will be reset� i.e., TEdit
will then believe that the text is unchanged, and will not ask for con�rmation of the

and operations.

[Function]
Makes sure that the caret is visible in the editing window; if not, the document is
scrolled to place the caret on the top line of the window. This is normally controlled
by the existing selection for the given text stream. However, if is speci�ed, it is
used to decide the caret’s location.

[Function]
Makes a fresh copy of the text stream . If is non- ,
the new stream will not share structure with the old one� it can be edited without
a�ecting the original stream.

19

(TEDIT.ADD.MENUITEM)

(TEDIT.REMOVE.MENUITEM)

(TEXTOBJ)
TEXTOBJ

(TEXTSTREAM)
TEXTOBJ

(TEXTPROP)
TEDIT

OPENTEXTSTREAM

(TEDIT.FORMATTEDFILEP)
NIL
CHARLOOKS PARALOOKS

IMAGEOBJ

(TEDIT.CARETLOOKS)

CHARLOOKS

(TEDIT.STREAMCHANGEDP)
T

NIL

Quit Get

(TEDIT.NORMALIZECARET)

(COPYTEXTSTREAM)
NIL

MENU ITEM
ITEM MENU

MENU ITEM
ITEM MENU

ITEM

STREAM/WINDO W

TEXTOBJ/WINDO W

TEXTOBJ/STREAM PR OPNAME VAL UE

PR OPS

PR OPNAME VAL UE PR OPNAME

STREAM

STREAM FONT

FONT

STREAM RESET?
STREAM

RESET?

STREAM SEL

SEL

STREAM CR OSSCOPY
STREAM CR OSSCOPY

TEDIT INTERFACE FUNCTIONS

[Function]
Returns a list of s that describe the text selected in the selection out of
the document . If is non- , the pieces will be copied.

, if given, is applied in turn to arguments (, ,
and), and the value it returns is used in place of the piece (or

its copy).

[Function]
Prints a message in the TEdit prompting window associated with the given .
If is non- , the window will be cleared �rst.

20

(TEDIT.SELECTED.PIECES)

PIECE
NIL

(TEDIT.PROMPTPRINT)

NIL

TEXTOBJ SEL CR OSSCOPY PIECEMAPFN FNAR G1 FNAR G2

SEL
TEXTOBJ CR OSSCOPY

PIECEMAPFN PIECE TEXTOBJ
FNAR G1 FNAR G2

TEXTOBJ MSG CLEAR?
TEXTOBJ

CLEAR?

5 USER-FUNCTION ‘‘HOOKS’’ IN TEDIT

TEdit provides a number of hooks where a user- supplied function can be called. To supply a function,
attach it to the edit window under the appropriate indicator, using . Every user- supplied
function is ed to the text which describes the text. Some of these functions can also be
supplied using the argument to or ; the descriptions below contain
the details.

[Window Property]
A function to be called whenever the user ends an editing session. This may do
anything; if it returns the atom , TEdit will not terminate. Any other result
permits TEdit to do its normal cleanup and termination. This can also be supplied
using the argument to or .

[Window Property]
A function to be called after the user ends an editing session. This may perform any
cleanup of side e�ects that you desire. This can also be supplied using the
argument to or .

[Window Property]
A function that gets called, for e�ect only, each time through TEdit’s main
command loop. This can also be supplied using the argument to or

.

[Window Property]
A function that gets called, for e�ect only, once for each character typed into TEdit.
The character code is passed to the function as its second argument. This can also
be supplied using the argument to or .

[Window Property]
A function that gets called, each time the user tries to select something with the
mouse: . It is called
once for each tentative selection (e.g., while the mouse button is still down, but gets
moved), and once� for e�ect only� for the �nal selection. The new
is passed as the function’s second argument, and an atom describing the kind of
selection (one of , , , (for an extended selection
that will be deleted on type- in), or) as the third. When the function is
being called with a candidate selection, will be the atom ; when
being called with the �nal selection, is the atom .

When the function is called with a candidate selection, it may veto that selection by
returning the atom . This can be used to limit selections to items of interest.
If a selection is vetoed, the old selection will remain highlighted; the e�ect is that of
the user being unable to move the selection from its old location.

This can also be supplied using the argument to or .

[Window Property]
Called just before TEdit scrolls the edit window.

21

WINDOWPROP
APPLY STREAM

TEDIT OPENTEXTSTREAM

TEDIT.QUITFN

DON’T

PROPS TEDIT OPENTEXTSTREAM

TEDIT.AFTERQUITFN

PROPS
TEDIT OPENTEXTSTREAM

TEDIT.CMD.LOOPFN

PROPS TEDIT
OPENTEXTSTREAM

TEDIT.CMD.CHARFN

PROPS TEDIT OPENTEXTSTREAM

TEDIT.CMD.SELFN

(SELFN)

SELECTION

NORMAL COPY MOVE PENDINGDEL
DELETE

TENTATIVE
FINAL

DON’T

PROPS TEDIT OPENTEXTSTREAM

TEDIT.PRESCROLLFN

PR OPS

TEXTOBJ SELECTION SELECTMODE FINAL?

FINAL?
FINAL?

USER-FUNCTION ‘‘HOOKS’’ IN TEDIT

[Window Property]
Called just after TEdit scrolls the edit window.

[TEdit Property]
Called when TEdit is about to move some text o�- screen, with the edit window and
the as arguments. This function may handle the text over�ow itself (say
by reshaping the window), or it may let TEdit take its normal course. If the function
handles the problem, it must return a non- result. If TEdit is to handle the
over�ow, the value returned must be .

[Window Property]
Called whenever the user presses the or mouse button in the edit
window’s title region. Can also be supplied using the argument to
or . Normally, this is the function ,
which brings up the usual TEdit command menu.

[TEdit Property]
Called whenever TEdit is about to set the caret looks for an edit window.
This function, called as may perform
whatever checking it likes, and then return either the atom , meaning that the
caret looks are not to be changed, , meaning that should be used
as the caret looks, or a new which will be used as the caret looks.

Note: if this function returns a new , it must be a smashed version
of .

TEdit also saves pointers to its data structures on each edit window. They are available for any user
function’s use.

[Window Property]
The which describes the current editing session.

[Window Property]
The text which describes the text of the document.

22

TEDIT.POSTSCROLLFN

OVERFLOWFN

TEXTOBJ

NIL
NIL

TEDIT.TITLEMENUFN
LEFT MIDDLE

PROPS TEDIT
OPENTEXTSTREAM TEDIT.DEFAULT.MENUFN

CARETLOOKSFN

(CARETLOOKSFN)
DON’T

NIL
CHARLOOKS

CHARLOOKS not

TEXTOBJ
TEXTOBJ

TEXTSTREAM
STREAM

NEWL OOKS TEXTOBJ

NEWL OOKS

NEWL OOKS

6 CHANGING THE TEDIT COMMAND MENU

You may replace the -button command menu with one of your own. When you press the
button inside an edit window’s title region, TEDIT calls the value of the window
property with the window as its argument. Normally, what gets called is , but
you may change it to anything you like.

brings up a menu of commands. If the edit window has a property
, that menu is used. If not, TEdit looks for the window property

(a list of menu items) and constructs a menu from that. Failing that, it uses .

This means that you can control the command menu by setting the appropriate window properties.
Alternatively, you may add your own menu buttons to the default menu, .

will add to the TEdit menu. Menu items should be in the form ,
where is what appears in the menu, and will be applied to the text stream, and can
perform any operation you desire.

Finally, you may menu items from the default menu, by doing

can be either a complete menu item, or just the text that appears in the menu; either will do the
job.

23

MIDDLE MIDDLE
TEDIT.TITLMENUFN

TEDIT.DEFAULT.MENUFN

TEDIT.DEFAULT.MENUFN
TEDIT.MENU TEDIT.MENU.COMMANDS

TEDIT.DEFAULT.MENU

TEDIT.DEFAULT.MENU

(TEDIT.ADD.MENUITEM TEDIT.DEFAULT.MENU)

((QUOTE))

remove

(TEDIT.REMOVE.MENUITEM TEDIT.DEFAULT.MENU)

ITEM

ITEM NAME FUNCTION
NAME FUNCTION

ITEM

ITEM

7 VARIABLES WHICH CONTROL TEDIT

There are a number of global variables which control TEdit, or which contain state information for editing
sessions in progress:

[Variable]
If this is non- , extending a selection makes it into a pending- delete selection.
See the selection section.

[Variable]
A . This is the font for displaying TEdit documents which don’t
specify their own font information.

[Variable]
A paragraph- looks description. This contains the default looks for a paragraph.

[Variable]
A . This is the most recent regular selection made in TEdit window.

[Variable]
A . This is the most recent -selection made in TEdit window.

[Variable]
A . This is the most recent - -selection made in TEdit
window.

[Variable]
A read table, this is used to translate typed- in characters into TEdit commands. See
the section on TEdit readtables. This can be overridden using the
property argument to .

[Variable]
The read table which controls TEdit’s concept of word boundaries. The syntax classes
in this table aslo determine which characters TEdit thinks are white space (which
gets deleted by control- W along with the preceding word). This can be overridden
using the property argument to .

[Variable]
A default set of PROPS arguments for TEDIT or OPENTEXTSTREAM. Any PROPS
the user speci�es are APPENDed to a copy of the default. The e�ect is that any
user speci�cations override the defaults.

24

TEDIT.EXTEND.PENDING.DELETE
NIL

TEDIT.DEFAULT.FONT
FONTDESCRIPTOR

TEDIT.DEFAULT.FMTSPEC

TEDIT.SELECTION
SELECTION any

TEDIT.SHIFTEDSELECTION
SELECTION SHIFT any

TEDIT.MOVESELECTION
SELECTION CTRL SHIFT any

TEDIT.READTABLE

READTABLE
TEDIT

TEDIT.WORDBOUND.READTABLE

BOUNDTABLE TEDIT

TEDIT.DEFAULT.PROPS

8 TEDIT’S TERMINAL TABLE AND READTABLES

When TEdit reads a character from the keyboard, the �rst thing it does is check to see if it’s a command
character. TEdit �rst looks at its default readtable, , or at the readtable supplied as
the property.

Failing that, TEdit then looks to the system terminal table. Characters with terminal sytax-classes
, , or act as follows:

acts as a character- backspace.

acts like control- W (in fact, this is how control- W is implemented.)

acts like .

Since the system terminal table is used to implement these functions, you can assign them to other keys
at will.

Failing that, TEdit inserts the character at the current insertion point in the document.

The TEdit default readtable is named , and it is global. You can use the functions
and to read it and make changes:

[Function]
Sets the readtable syntax of the character whose charcode is to be

in the read- table . The possible syntax classes are listed below.

[Function]
Returns the TEdit syntax class of the character whose charcode is ,
according to the read- table . The possible syntax classes are listed below. An
illegal syntax will be returned as .

The allowable syntax classes are:

Typing this character acts like backspace

Typing this character acts like control- W

Typing this character acts like

Typing this character causes

Typing this character acts like

Typing this character calls a speci�ed function (see below)

Typing this character simply inserts it in the document. also has this e�ect.

You can also cause a keystroke to invoke a function for you. To do so, use the function

[Function]
Sets up the TEdit readtable so that typing the character with charcode

will to the text and the for the document

25

TEDIT.READTABLE
READTABLE

CHARDELETE WORDDELETE LINEDELETE

CHARDELETE

WORDDELETE

LINEDELETE DEL

TEDIT.READTABLE
TEDIT.SETSYNTAX TEDIT.GETSYNTAX

(TEDIT.SETSYNTAX)

(TEDIT.GETSYNTAX)

NIL

CHARDELETE

WORDDELETE

DELETE DEL

UNDO Undo

REDO ESC

FN

NONE NIL

(TEDIT.SETFUNCTION)

APPLY STREAM TEXTOBJ

CHAR CODE CLASS TABLE
CHAR CODE

CLASS TABLE

CHAR CODE TABLE
CHAR CODE

TABLE

CHAR CODE FN TABLE
TABLE

CHAR CODE FN

TEDIT’S TERMINAL TABLE AND READTABLES

being edited. The function may have arbitrary side-e�ects.

The abbreviation feature described below is implemented using this function- call facility.

Finally, TEdit uses the read table to decide where word boundaries
are. Whenever two adjacent characters have di�erent syntax classes, there is a word boundary between
them. The state of this table can be controlled by the functions

[Function]
Returns the syntax class (a small integer) for a given character. may be either
a character or a charcode; defaults to .

[Function]
Sets the syntax class for a character. Again, is either a character or
a charcode; defaults to ; may
be either a small integer as returned by , or one of the atoms

, , or . Those represent the syntax classes in the
default .

The initial assigns every character to one of the above classes, along
pretty obvious lines. For purposes of control- W, whitespace between the caret and the word being deleted
is also removed.

This, too, can be over- ridden for a speci�c edit session using the property in the call to
TEdit.

26

TEDIT.WORDBOUND.READTABLE

(TEDIT.WORDGET)

TEDIT.WORDBOUND.READTABLE

(TEDIT.WORDSET)

TEDIT.WORDBOUND.READTABLE
TEDIT.WORDGET

WHITESPACE TEXT PUNCTUATION
TEDIT.WORDBOUND.READTABLE

TEDIT.WORDBOUND.READTABLE

BOUNDTABLE

CHAR TABLE
CHAR

TABLE

CHAR CLASS TABLE
CHAR

TABLE CLASS

9 THE TEDIT ABBREVIATION FACILITY

The list is a list of ‘‘abbreviations known to TEdit.’’ Each element of the list is a
dotted pair of two strings. The �rst is the abbreviation (case does matter), and the second is what the
abbreviation expands to. To expand an abbreviation, select it and type control- X. It will be replaced by
its expansion.

You can also expand single-character abbreviations while typing. Hitting control- X when no characters
are underlined (i.e., after you have typed something) will expand the abbreviation to the
left of the caret.

Here is a list of the default abbreviations and their expansions:

The bullet (�)

The M-dash (�)

The �gure dash (�)

Open double- quotes (‘‘) which can be matched by two normal quotes (’’)

27

TEDIT.ABBREVS

single-character

b

m

n

"

10 THE TEDIT IMAGEOBJ INTERFACE

q [Function]
Inserts the into the document at the place speci�ed
by q .

[Function]
Noti�es TEdit that the has changed and the display should
be updated. This is called by object editing functions after they have updated the
object’s internal information.

��"�GACHA��"�z8

28

(TEDIT.INSERT.OBJECT)
IMAGEOBJ

(TEDIT.OBJECT.CHANGED)
IMAGEOBJ

STREAM OBJECT SELorCH
OBJECT STREAM

SELorCH

STREAM OBJECT
OBJECT

