
Harmony Release Message
=======================

contents:

Input/Output
Printing
Fonts
1108 Local File System
1108 Floppy
RS232
NS File Servers
NS Print Servers
Ethernet Protocols

Window System
Tedit
Dedit
Break Package
Inspector
CHAT
TTYIN

Stack & Interpreter
History and Exec
File Package
Compiler
Masterscope
DWIM & CLISP
Performance Tools

Storage & Data Types
Arithmetic
Processes

1108 Microcode
Library Packages
Miscellaneous

Appendices:

A: Hardcopy Facilities <<<IDhardcopy.tedit>>>
B: Attached Windows <<<AttachedWindow.tedit>>>
C: 1100 & 1108 CPE Parallel Port <<<Printerport.tedit>>>
D: NS Protocol Support <<<EtherNS.tedit>>>

Input/Output
============

* Advance Warning: Changes to OPENFILE; multiple streams per file

At some point in the future, the Interlisp-D i/o system will change so that
each call to OPENFILE returns a distinct stream. This differs from the
current behavior, inherited from Interlisp-10, that there can only be one
stream open on any file, and that a second OPENFILE (assuming both are for
INPUT) will return the same "opening". This change is required in order to
deal rationally with files in a multiprocessing environment.

This change will of necessity produce the following incompatibilities:

1) OPENFILE will return a STREAM, not a full file name. To make this less
confusing, STREAMs will have a print format that reveals the underlying

2

file’s actual name, and the functions UNPACKFILENAME and FILENAMEFIELD, when
given a STREAM, will operate on the stream’s name.

2) A greater penalty will ensue for passing as the FILE argument to i/o
operations anything other than the object returned from OPENFILE. Passing
the file’s name will be significantly slower than passing the stream (even
when passing the "full" file name), and in the case where there is more than
one stream open on the file it might even act on the wrong one.

Advice for planning for this change:

Users are encouraged to write code which binds a variable to the result of
OPENFILE and passes that variable to all i/o operations; such code will
likely continue to work. Similar code that will work less well, if at all,
is that which binds a variable to the result of an INFILEP and passes that
to OPENFILE and all i/o operations; such code works well now, but implicitly
assumes that INFILEP and OPENFILE return the same thing, an invalid
assumption in this future world. (Code that passes incomplete file names to
i/o operations is incurring a substantial performance penalty even now, and
should have been changed long ago to use the result of the OPENFILE.)

To see more directly the effects of passing around STREAMs instead of file
names, replace your calls to OPENFILE with calls to OPENSTREAM. OPENSTREAM
is called in exactly the same way, but returns a STREAM. Streams can be
passed to READ, PRINT, CLOSEF, etc just as the file’s full name can be
currently, but using them is more efficient. The function FULLNAME, when
applied to a stream, returns its full file name.

* New function OPENSTRINGSTREAM: access strings like files (243)

Interlisp-D inherited a feature from Interlisp-10 such that if a string was
given as the file argument to an input function (READ, READC, etc.), that
the function would interpret the string as the contents of a file and read
the characters of the string. However, this never was a very clean design,
and it interferes with the desire to use strings as file names. The
following function has been created to handle i/o operations from/to strings
more cleanly:

(OPENSTRINGSTREAM STR ACCESS)
Returns a stream that can be used to access the characters of the string
STR. ACCESS may be either INPUT, OUTPUT, or BOTH; NIL defaults to INPUT.
The stream returned may be used exactly like a file opened with the same
access, except that output operations may not extend past the end of the
original string. Also, string streams do not appear in the value of
(OPENP).

* Incompatible Change: GETFILEPTR, SETFILEPTR do not work with strings in
the Harmony release

In previous releases, the functions GETFILEPTR and SETFILEPTR could be used
with strings. As of the Harmony release, this feature has been disabled,
and calling these functions on strings will cause an error. The only way to
use GETFILEPTR or SETFILEPTR with a string is to create a string stream with
OPENSTRINGSTREAM.

* Advance Warning: (READ <string>) will no longer read string characters in
future release

In the current release, (READ <string>) continues to work as before.
However, in some future release, this feature will be decommissioned, and
OPENSTRINGSTREAM will be the ONLY way to treat a string as a file. Users
who depend on the old feature are encouraged to change their code now.

* New function COPYCHARS for copying with EOL convention (151 1967)

3

Many parts of the system have been changed to automatically convert between
different EOL conventions. COPYFILE, MAKEFILE, and Tedit have been so
modified, but we can’t claim that every possible case has been taken care
of. For user programs, the following function is available to do this
conversion automatically:

(COPYCHARS SRCFIL DSTFIL START END)
This is like COPYBYTES, except that it performs the proper conversion if the
EOL conventions of SRCFIL and DSTFIL are not the same. START and END are
interpreted as byte specifications in SRCFIL. The number of bytes actually
output to DSTFIL might be more or less than the number of bytes specified by
START and END, depending on what the EOL conventions are. In the case where
the EOL conventions happen to be the same, COPYCHARS simply calls COPYBYTES

* 1100/1108 Parallel Port functions (2503)

The 1100 has a parallel port connector with 8 bidirectional data lines, 8
unidirectional output lines, and 5 unidirectional input lines. The 1108
with Extended Processor Option (CPE) has a similar parallel port connector:
the differences are (1) it has 6 unidirectional input lines vs. 5, (2) the
power lines of the connector are 5 volts vs. 12, and (3) the pin layouts are
different. A cable adapter is available to map the 1108’s parallel port’s
pin layout into that of the 1100, or vice versa. The Interlisp functions
WRITEPRINTERPORT and READPRINTERPORT are available for accessing the
parallel port. For more information, see Appendix C (1100 & 1108 CPE
Parallel Port).

* "The infamous PEEKC bug" has been fixed: can backspace over PEEKC-ed chars
(826)

This was a longstanding bug in the Interlisp-D keyboard reader such that
following (PEEKC T), the user couldn’t backspace over the character that was
peeked. This affected a number of functions, such as ASKUSER, FILES? and
COMPILE, which peek at the first character of the user’s typein.

* Directory enumeration faster with multiple properties. (113)

The directory enumeration code has been redone so that remote files do not
have to be looked-up repeatedly when accessing multiple properties of files
(size, author, etc). This improves the performance of DIR and the file
browser.

* DIRECTORY pattern interpretation improved (1021 1087)

DIRECTORY and FILDIR have been modified to provide a consistent meaning for
omitted fields in the file name pattern. Unspecified fields in the pattern
default to *, except when the preceding field delimiter is included, in
which case the field is explicitly null. Null version is interpreted as
"highest". Thus:

DIR * = DIR *.* = DIR *.*;*
enumerates everything.

DIR *. = DIR *.;*
enumerates all versions of files with null extension.

DIR *.;
enumerates highest version of files with null extension.

DIR *.*;
enumerates highest version of everything.

Note: Some hosts/devices are not capable of supporting "highest version" in
enumeration. Such hosts instead enumerate ALL versions.

* WHENCLOSE operations called when streams are closed (2045 514 1185)

Previously, the WHENCLOSE operations of a file, if any, were only invoked if
CLOSEF was called with the file’s name, not if called with the stream.

4

* COPYFILE now uses FTP protocol whenever possible (1302)

Previously, COPYFILE used the Leaf protocol when copying from a file server
that also implemented Leaf. Using the FTP protocol for such file transfers
is much more efficient for some servers.

* COPYFILE infers file type when source file has none (561)

COPYFILE always tries to create the new file with the same file type as the
original file. If the original file’s file type is unknown, COPYFILE now
infers the type (file is BINARY if any of its 8-bit bytes have their high
bit on). Previously, COPYFILE used the value of DEFAULTFILETYPE (initially
TEXT), which was often the wrong thing to do, for example, when copying DCOM
files.

* COPYFILE to protected directory succeeds after password given (458)

Previously, COPYFILE to a protected directory caused a "FILE WON’T OPEN"
error even after asking for and receiving the correct password. This
problem occurred only for "sequential" files written to a PupFtp server, not
for ordinary MAKEFILEs.

* COPYFILE to {CORE} or {DSK} copies file creation date (1144 1145)

Previously, when copying a file to {CORE} or {DSK}, COPYFILE would ignore
the old file’s creation date and instead assign the current date and time as
the new file’s creation date. (COPYFILE to a remote file server has always
copied the creation date correctly.)

* Defining a user interrupt char no longer turns off previously defined user
interrupts (2068)

* INTERRUPTCHAR user interrupts always "soft", no longer do CLEARBUF and
FLASHWINDOW (615)

In Interlisp-D, user interrupts set with INTERRUPTCHAR are always "soft",
but are also "immediate", i.e., executing the interrupt does not disturb the
process that is running or unwind the stack, but will happen at the next
(interruptable) moment. Interrupts no longer clear the input buffer and
flash the screen; users that want that behavior should explicitly call
CLEARBUF and FLASHWINDOW as appropriate.

* Control-C no longer calls RAID

Control-C no longer calls RAID. For users who like to be able to use this
low-level interrupt (more useful on 1100 than on 1108), it can be reenabled
by executing (INTERRUPTCHAR 3 ’RAID).

* Shift-BS *NOT* equivalent to control-W (2011)

The key Shift-BS has been changed so it is no longer equivalent to control-W
in the initial Interlisp loadup. Users can change this by the appropriate
call to KEYACTION, e.g. (KEYACTION ’BS ’((8 23 NOLOCKSHIFT))) will restore
the previous behavior.

* UNPACKFILENAME works with strange file names: A.B.C (144)

This is useful when accessing file servers which do not conform to
Interlisp’s file name conventions, such as NS file servers and UNIX-based
file servers.

* OPENFILE <Unix Leaf Server File> does not return filename with version ;0
(2281)

5

In some versions of the Unix leaf server code, for files without version
numbers OPENFILE returns a filename with version zero. If this file name is
then passed to OPENFILE again, it fails. Now, Interlisp explicitely looks
for that situation, and strips off the version number entirely.

* Known Bug: Unix FTP server returns file names like "FOO;1." (2384)

Some versions of the Unix Ftp Server have a bug that causes DIR to print the
names of extensionless files as, say, "FOO;1." (with a period AFTER the
version number).

* 1100/1132 {DSK} device supports file types (629)

Files created by Interlisp on the 1100/1132 local file system now have TYPE
information saved, where TYPE = TEXT or BINARY. Files written outside of
Interlisp have TYPE = NIL.

* Expanded documentation for RENAMEFILE (2264)

(RENAMEFILE OLDFILE NEWFILE)
Renames OLDFILE to be NEWFILE. Causes an error, FILE NOT FOUND if OLDFILE
does not exist. Returns the full name of the new file, if successful, else
NIL if the rename cannot be performed. In the general case (e.g., when
OLDFILE and NEWFILE are on different devices), RENAMEFILE works by copying
OLDFILE to NEWFILE and then deleting OLDFILE.

* Documentation correction: METASHIFT arg has to be T (227)

The reference manual is incorrect when it says that the FLG argument to
METASHIFT can be any non-NIL value. To work correctly, FLG must be T:
(METASHIFT T). Other non-NIL values are passed as the ACTIONS argument to
KEYACTION. The reason for this is that if someone has set Blank-bottom to
some random behavior, then (RESETFORM (METASHIFT T) --) will correctly
restore that random behavior.

* (CLOSEF <display-stream>) is a no-op (192)

* GETECHOMODE checks its argument type (2017)

GETECHOMODE will now generate an "ILLEGAL TERMINAL TABLE" error if it is
passed an argument that is not a legal terminal table. Previously, it would
not check its argument, and cause a more serious error if it was not a
terminal table.

* GETRAISE causes error if given bad terminal table argument, instead of
calling RAID (751)

Printing
========

* Hardcopy functions cleaned up, documented

In previous releases, the functions and variables used to send files to
various printers have been redesigned repeatedly. We have been trying to
design a simple interface that would "do the right thing" for most users,
but would also allow users to get around the defaults when necessary. It
was also important to provide facilities so users could define their own
printers, and hook them into the normal hardcopy functions.

In the Harmony release, the hardcopy facilities have been simplified
considerably. Files and bitmaps can be sent to the printer using the
functions SEND.FILE.TO.PRINTER and HARDCOPYW. The variable
DEFAULTPRINTINGHOST contains information about the available printers, and
the variables PRINTERTYPES and PRINTFILETYPES contain the the information

6

necessary to print a file on any given printer. For full documentation, see
Appendix A (Hardcopy Facilities).

* Image streams allow printing arbitrary text and graphics on Press or
Interpress printers (2291)

Previously, the only documented way of printing text and graphics on Press
or Interpress printers was to use one of the supported tools, such as Tedit.
While these tools are sufficient for many needs, there was a need for
functions that users could call from their programs to print arbitrary text
and graphics. As part of a long-range effort to provide a simple,
device-independent interface to the various graphics display routines,
"image streams" were created.

An image stream is an output stream which "knows" how to process graphic
commands. It can be passed as the FILE/STREAM argument to the ordinary
character-output functions (PRINT, etc.) and to the graphic functions as
well (DSPXPOSITION, DRAWCIRCLE, etc.). Some image streams, such as display
and local-printer streams, may simply execute the appropriate operations to
cause the desired image to appear immediately on the output medium. Other
image streams (PRESS, INTERPRESS, etc.) interpret the graphic commands by
saving information in a file of the appropriate format. If this file is on
the {LPT} device, it will automatically be transmitted to a printer device
when it is closed by CLOSEF. Non-LPT files can be transmitted later by
explicit calls to LISTFILES and SEND.FILE.TO.PRINTER.

Image streams are created by the following function:

(OPENIMAGESTREAM FILE IMAGETYPE OPTIONS)
Opens and returns an output stream of type IMAGETYPE on a destination
specified by FILE. IMAGETYPE can currently be either PRESS, INTERPRESS, or
DISPLAY. Eventually, other image types will be implemented for other
devices. FILE can name a file either on a normal storage device or on a
printer device. In the latter case, the file is sent to the printer when
the stream is closed.

FILE = NIL is equivalent to FILE = {LPT}. Names for printer files are of
the form {LPT}PRINTERNAME.TYPE, where PRINTERNAME, TYPE, or both may be
omitted. PRINTERNAME is the name of the particular printer to which the
file will be transmitted on closing; it defaults to the first printer on
DEFAULTPRINTINGHOST that can print IMAGETYPE files. The TYPE extension
supplies the IMAGETYPE when it is defaulted (see below). OPENIMAGESTREAM
will generate an error if the specified printer does not accept the kind of
file specified by IMAGETYPE.

If IMAGETYPE is NIL, the image type is inferred from the extension field of
FILE and the EXTENSIONS properties in the list PRINTFILETYPES. Thus, a PRESS
extension denotes a Press-format stream, while IP, IPR, and INTERPRESS
indicate Interpress format. If FILE is a printer file with no extension (of
the form {LPT}PRINTERNAME), then IMAGETYPE will be the type that the
indicated printer can print. If FILE has no extension but is not on the
printer device {LPT}, then IMAGETYPE will default to the type accepted by
the first printer on DEFAULTPRINTINGHOST.

Example: Assuming that IP: is an Interpress printer, P is a Press printer,
and DEFAULTPRINTINGHOST is (IP: P):

(OPENIMAGESTREAM)
returns an Interpress image stream on printer IP:

(OPENIMAGESTREAM NIL ’PRESS)
returns a Press stream on P

(OPENIMAGESTREAM ’{LPT}.INTERPRESS)
returns an Interpress stream on IP:

7

(OPENIMAGESTREAM ’{CORE}FOO.PRESS)
returns a Press stream on the file {CORE}FOO.PRESS

If IMAGETYPE is DISPLAY, then the user is prompted for a window to open.
The file name in this case will be used as the title of the window.

OPTIONS is a list in property list format that may be used to specify
certain attributes of the image stream; not all attributes are meaningful or
interpreted by all types of streams. Among the properties are:

REGION -- value is the region on the page (in stream scale units, 0,0 being
the lower-left corner of the page) that text will fill up. It establishes
the initial values for DSPLEFTMARGIN, DSPRIGHTMARGIN, DSPBOTTOMMARGIN (the
point at which carriage returns cause page advancement) and DSPTOPMARGIN
(where the stream is positioned at the beginning of a new page).

FONTS -- value is a list of fonts that are expected to be used in the
stream. Some streams (e.g. Interpress) are more efficient if the expected
fonts are called out in advance, but this is not necessary. The first font
in this list will be the initial font of the stream, otherwise the
DEFAULTFONT for that image type will be used.

HEADING -- the heading to be placed automatically on each page, NIL means no
heading.

Other functions that are part of the device-independent graphics interface:

(IMAGESTREAMP X IMAGETYPE)
Returns X (possibly coerced to a stream) if it is an output image stream of
type IMAGETYPE (or of any type if IMAGETYPE=NIL), otherwise NIL.

(IMAGESTREAMTYPE STREAM)
Returns the image type of STREAM.

(DSPSCALE SCALE STREAM)
Returns the scale of the image stream STREAM, a number indicating how many
units in the streams coordinate system correspond to one screen point. For
example, DSPSCALE returns 1 for display streams, and 35.27778 for Press and
Interpress streams (the number of micas per screen point). In order to be
device-independent, user graphics programs must either not specify position
values absolutely, or must multiply absolute screen-point quantities by the
DSPSCALE of the destination stream. (The SCALE argument to DSPSCALE is
currently ignored; in future releases it will enable the scale of the stream
to be changed under user control, so that the necessary multiplication will
be done internal to the stream interface).

Note: Not all graphics operations can be properly executed for all image
types. Currently, only display streams support BITBLT, FILLCIRCLE, and the
dashing argument to DRAWCURVE. This functionality is still being developed,
but even in the long run some operations may be beyond the physical or
logical capabilities of some devices or image file formats. In these cases,
the stream will approximate the specified image as best it can.

* Can preview hardcopy on display using MAKEHARDCOPYSTREAM

The fonts used in the printers are not exactly the same as the display
fonts, because low-resolution screen fonts don’t look good when printed on
high-resolution printers. In particular, the character widths are not the
same (even when scaled to take account of the printer resolution). Because
of this, it is difficult to format text on the display so that it is EXACTLY
where you want it, since it will be slightly different when printed. In
order to allow users to "preview" hardcopy without actually printing it, the
following functions are useful:

(MAKEHARDCOPYSTREAM DISPLAYSTREAM IMAGETYPE)

8

Changes the display stream so that measurements of character widths are
consistent with the hardcopy device IMAGETYPE (PRESS, INTERPRESS, etc.).
This is useful for seeing on the screen how an image will look when it is
hardcopied. Caveat: This doesn’t work for TEdit windows.

(UNMAKEHARDCOPYSTREAM DISPLAYSTREAM)
Changes a "hardcopy display stream" back into a regular display stream.

Note: When printing to a "hardcopy display stream", the text will not look
as good as it will when printed. In particular, the characters may look
crunched together. However, it accurately displays the relative positions
of the letters, for formatting purposes.

* Can print bitmaps on PRESS printers (1206)

Bitmaps can be printed on press printers using HARDCOPYW, or by inserting
bitmaps into Tedit documents. If the bitmap is too large for the press
printer to handle (for example, if you try to print a complete screen
image), it is clipped.

* HARDCOPYW sends bitmaps to both PRESS and FULLPRESS printers (1912)

HARDCOPYW now goes through FULLPRESSBITMAP when going to a full press
printer. The function PRESSBITMAP uses the CLIPPINGREGION argument for
clipping, while FULLPRESSBITMAP recognizes the SCALEFACTOR argument.

* LISTFILES automatically detects and prints formatted Tedit files (1147 225)

* HARDCOPYW not a no-op if DEFAULTPRINTERTYPE=NIL (1084)

* Better error message printed if DEFAULTPRINTINGHOST is NIL (1408)

Previously, attempting a hardcopy operation with DEFAULTPRINTINGHOST=NIL
would produce an obscure low-level error.

* HARDCOPYW has new arg: PRINTERTYPE (456)

By default, HARDCOPYW will create an Interpress file if there are any
Interpress printers on DEFAULTPRINTINGHOST. This default can be changed by
passing PRESS as the PRINTERTYPE argument to HARDCOPYW.

* HARDCOPY in the background menu does not reposition the cursor (319)

Fonts
=====

* Incompatible Change: New font directory variables. (155)

Previously, Interlisp used a confusing group of variables (FONTDIRECTORIES,
NSFONTDIRECTORIES, NSFONTWIDTHSDIRECTORIES, STARFONTDIRECTORIES,
FONTWIDTHSFILES) to determine where to search for font bitmap files and font
widths files. These variables have been removed, and a new,
rationally-named, set has been introduced:

DISPLAYFONTDIRECTORIES
Value is a list of directories searched to find font bitmap files for
display fonts.

DISPLAYFONTEXTENSIONS
Value is a list of file extensions used when searching
DISPLAYFONTDIRECTORIES for display fonts. Currently, Interlisp can read
"STRIKE" and "AC" display font file formats. Eventually, all Interlisp
display fonts will be distributed with the extension .DISPLAYFONT.
Therefore, this variable should be initialized to (DISPLAYFONT STRIKE AC).
Note that the extension on the file is used to locate the file, but once the

9

file is found Interlisp looks inside it to determine what format it is and
how to read it. The function (FONTFILEFORMAT FILE LEAVEOPEN) returns the
format of a font file (AC, STRIKE, etc.).

INTERPRESSFONTDIRECTORIES
Value is a list of directories searched to find font widths files for
Interpress fonts. These files must have the extension "WD".

PRESSFONTWIDTHSFILES
Value is a list of files (not directories) searched to find font widths
files for press fonts. Press font widths are packed into large
"FONTS.WIDTHS" files.

All of these variables must be set before Interlisp can auto-load font
files. These variables should be initialized in the site-specific INIT
file.

* Incompatible Change: FONTDESCRIPTOR datatype changed; Cannot load fonts
dumped with UGLYVARS in Carol (2183)

Between the Carol and Harmony releases, the system datatype FONTDESCRIPTOR
was changed, to add a few more fields. Normally, changes to system
datatypes do not affect users very much: they just have to recompile old
files which use the datatypes. However, in the case that users saved Carol
display fonts on files using the UGLYVARS file package command, more care is
required to update these files to Harmony.

The problem is that datatype objects put on files with UGLYVARS contain the
definition of the datatype. If a Carol file was loaded into Harmony which
redefined a system datatype such as FONTDESCRIPTOR, Interlisp would almost
certainly crash. In order to prevent people accidently redefining the
FONTDESCRIPTOR datatype, the file package has been changed so that trying to
change a datatype declaration while reading in an UGLYVARS object causes an
error.

If users have created display fonts in Carol that they wish to use in
Harmony, the upgrade procedure is the following: (1) While running the
Carol release, load the lispusers package EDITFONT.DCOM. (2) Use the
function (WRITESTRIKEFONTFILE <fontdescriptor> <filename>) to save each font
descriptor as a "strike" format file. Note that strike files do not contain
information about the font family, size, etc, so give the strike files
descriptive names: e.g., GREEK10B.STRIKE. (3) While running the Harmony
release, load EDITFONT.DCOM (note: the same package has been tested to work
with both Carol and Harmony). (4) Use the function (READSTRIKEFONTFILE
<family> <size> <face> <file>) to read in the strike file, and create a
fontdescriptor with the specified family name, face, etc.

Note: It is recommended that user-created display fonts be stored as strike
fonts, rather than stored as font descriptors on lisp files. If the files
are named similarly to strike files distributed with Interlisp, and put on
the same directories, they can be used like any other font.

* Fontclasses are first-class data objects (1416 1552)

Fontclasses have been introduced as a first-class data object which contains
a set of related fonts for different devices. The font functions accept
fontclasses, from which they extract the appropriate font for their device.
The normal font class variables (DEFAULTFONT, CLISPFONT, etc.) are
initialized to fontclass objects. Fontclasses are created and manipulated
with the following functions:

(FONTCLASS NAME FONTLIST CREATEFORDEVICES)
Returns a new fontclass object with the name NAME and the device font
components specified by FONTLIST, which should be a list of the form
(<displayfont> <pressfont> <interpressfont> <otherfont1> <otherfont2> ...).
<otherfontN> should be a list of the form (<devicename>). Each of

10

the fonts in FONTLIST may be either a font descriptor, or a "font
specification list" that FONTCREATE would accept. CREATEFORDEVICES is a
list of the devices for which the fonts should be automatically created.
Otherwise, the fonts are not actually created until they are accessed.
Note: if a display font is specified in FONTLIST, it is always created.

(FONTCLASSCOMPONENT FONTCLASS DEVICE FONT NOERRORFLG)
Returns the font component of the fonctclass for the device DEVICE (DISPLAY,
PRESS, INTERPRESS, etc.). If FONT is non-NIL, the specified component is
replaced. If NOERRORFLG is non-NIL, FONTCLASSCOMPONENT return NIL if the
component is unspecified in the fontclass, rather than causing an error.

Note: Because font classes are no longer represented by lists, old code
which accesses the components of a font class with CAR, CADR, etc. will not
work, and must be changed.

* Font functions take font in many forms

The font functions have been extended to take fonts specified in a variety
of different ways. CHANGEFONT, DSPFONT, FONTCREATE, etc. can be applied to
fontclasses, font descriptors, and "font lists" such as ’(GACHA 10). The
printout command ".FONT" has also been extended to accept fonts specified in
any of these forms.

* FONTCREATE accepts streams for DEVICE argument

The function FONTCREATE has been extended so that the DEVICE argument can be
an image stream, not just an image type. If a stream is given, the result
will be a font appropriate for that stream.

* New FONTPROP properties: SCALE, SPEC, DEVICESPEC

The function FONTPROP has also been extended to recognize the new properties
SCALE, SPEC, and DEVICESPEC. The value of the SCALE property is the units
per screen-point in which the font is measured. For example, this is
35.27778 (the number of micas per screen point) for Press and Interpress
fonts, which are measured in terms of micas. The value of the SPEC property
is the full specification of the font as it is known to Interlisp, a
family-size-face-rotation-device quintuple. The value of the DEVICESPEC
property is the same as the value of the SPEC property, unless the system
has had to coerce the font to another name to find the most appropriate
rendering on a specific printing device.

* New font function: FONTSAVAILABLE (2274)

This function allows programs to determine what fonts are available for
different devices.

(FONTSAVAILABLE FAMILY SIZE FACE ROTATION DEVICE CHECKFILESTOO?)
Returns a list of fonts that match the given specification. FAMILY, SIZE,
FACE and DEVICE are the same as for FONTCREATE. Additionally, any of them
can be the wildcard atom "*", in which case all values of that field are
matched. In systems with several font directories, wildcard searches may
take a while.

If CHECKFILESTOO? is NIL, only fonts already loaded into virtual memory will
be considered. If CHECKFILESTOO? is non-NIL, the font directories for the
specified device will be searched. When checking font files, the ROTATION
is ignored.

Note: The search is conditional on the status of the server which holds the
font. Thus a file server crash may prevent FONTCREATE from finding a file
that an earlier FONTSAVAILABLE returned.

Each element of the list returned will be of the form (Family Size Face
Rotation Device). For example:

11

(FONTSAVAILABLE ’MODERN 10 ’MRR 0 ’DISPLAY)

will return ((MODERN 10 (MEDIUM REGULAR REGULAR) 0 DISPLAY)) if Modern10 for
the display is in virtual memory; NIL otherwise.

(FONTSAVAILABLE ’* 14 ’* ’* ’INTERPRESS T)

will return a list of all the size 14 interpress fonts available either
loaded into virtual memory or in the font directories.

* SEE starts printing in correct font (84)

Previously, if the default font of the exec window was changed, then SEE of
an Interlisp source file would start out printing in that font (until the
next font change). Now, SEE resets the font at the beginning of printing an
Interlisp source file.

* EDITCHAR, etc. now work with character # 256 (the dummy char) (77)

1108 Local File System
======================

* Incompatible Change: Local file system format changed; MUST reformat 1108
disks

The 1108 low-level disk format has been changed. To use the Harmony
release, do the following: (1) copy any valuable local disk files to floppy
or file server; (2) repartition the whole 1108 disk using the Harmony
Installation Utility floppy (see the 1108 Users guide). Note that this
erases ALL information on the disk; and (3) use DFSCREATEDIRECTORY to
recreate any Lisp directories on local disk logical volumes.

Important Warning: Because of the change in disk format, you cannot run a
Carol sysout on a Harmony-partitioned 1108, nor a Harmony sysout on a
Carol-partitioned 1108. Attempting to do so may destroy information on the
local disk.

* Incompatible Change: Access logical volume FOO by {DSK}<FOO>, instead of
{FOO}

There is now a single local hard disk file device, {DSK}. Each logical
volume with a Lisp directory on it now counts as a separate directory of the
device {DSK}. (In Carol, each logical volume with a Lisp directory counted
as a separate device.)

* Incompatible Change: Many local file system functions renamed

The user functions for the local file system have been redesigned. A number
of functions have been renamed, and others have been added or deleted. The
following functions have been renamed:

MKDIR ==> DFSCREATEDIRECTORY

MAKEPILOT ==> DFSPURGEDIRECTORY

DFSVOLUMES ==> VOLUMES

For more information, see the 1108 Users Guide.

* (DISKPARTITION) returns the name of virtual memory logical volume (390)

When Interlisp is running on an 1108, the function DISKPARTITION returns the
name of the 1108 logical volume containing the currently-running Interlisp

12

virtual memory. This is analogous to the behavior of this function on 1100
or 1132s. The function CURRENTVOLUME has been removed.

* SCAVENGEVOLUME now preserves filenames (1789)

Note: SCAVENGEVOLUME is no longer included in the standard Interlisp-D
system. It is available by loading the library package
DlionFSScavenge.DCOM.

* Running local file system functions on non-1108s will fail gracefully (1049
1727 1761)

Previously, calling local file system functions from Interlisp running on a
non-1108 would cause strange low-level errors. Now, all of these functions
check whether Interlisp is running on an 1108, and generate an appropriate
error message if not. One exception: VOLUMEDISPLAY simply returns NIL if
not on an 1108, so this function can be called from init files that are run
on different machines.

* Local file system does not allocate large files all at once (2372)

Previously, COPYFILE of a large file from an NS file server to the local
file system would fail, because the local file system would try allocating
the entire file first, and the connection would time out.

* Local disk renames files from core device {DSK} to {PSEUDO-DSK} (1663)

If a core device {DSK} exists when the local file system wants to create a
device DSK for the local file system, a new device {PSEUDO-DSK} is created,
any files are copied over, and the core device {DSK} is deleted. A warning
message is also printed. If there are no files on the core device DSK, it
is simply deleted with no warning message.

* 1108 Local disk coerces HOST/DEVICE names to upper case (808)

When returning full file names, the 1108 local file system coerces the
"host/device" name to upper case: {dsk} -> {DSK}.

* The VOLUMEDISPLAY window can be reshaped (1044)

* Known Bug: Local file system does not preserve file type information.
(2701)

1108 Floppy
===========

* Known bug: Should format new floppies before doing SYSOUT[{FLOPPY}] (823)

There have been some cases where SYSOUT[{FLOPPY}] produced an incomplete
sysout, when floppies that had never been formated before were used.
Workaround: do (FLOPPY.FORMAT NIL NIL T) on new floppies first.

* Floppy state flushed over LOGOUT (1461)

Previously, if a floppy was left in a drive during LOGOUT and a new floppy
was inserted before Interlisp was restarted, it was possible that Interlisp
would use the old floppy directory information, which could destroy
information on the new floppy. Now, floppy directory information is
refetched the first time the floppy is used after Interlisp is restarted.

* Trying to access FLOPPY on non-1108 no longer hangs (1515)

Trying to access the floppy drive when running Interlisp on a machine other
than the 1108 will now print "Floppy: No floppy drive on this machine"
before generating the system error "FILE WON’T OPEN". Other operations,

13

such as DIR {FLOPPY}* will not generate an error, but instead make {FLOPPY}
look like it has an empty directory so that file searches work correctly
when {FLOPPY} is on the search path.

* COPYFILE of SYSOUT from non-Interlisp floppies works correctly (1965)

Previously, COPYFILE would not copy a sysout file from floppies correctly,
if the sysout was not originally put there by Interlisp.

* (OUTFILEP ’{FLOPPY}xxx) works, instead of returning NIL (1108)

* New messages when creating multi-floppy file (1579)

When copying a sysout or other large file to floppies (with FLOPPY.MODE =
SYSOUT or HUGEPILOT), a message is printed at the start saying how many
floppies will be required. Between floppies, the message now says "Insert
Floppy #n", rather than "Insert next floppy".

* (INFILEP ’{FLOPPY}xxx) returns NIL if no floppy in the drive (2255 2367)

Used to cause an error.

* Floppy file versions on different floppy directories incremented correctly
(2389)

Previously, the floppy system ignored floppy file directories when computing
the next version number for a new file. For example, it would create the
file {FLOPPY}<BAR>NAME.;2 if there was a file {FLOPPY}<FOO>NAME.;1.

* FLOPPY.MODE no longer changed to SYSOUT after a sysout (207)

(SYSOUT ’{FLOPPY}) will automatically change the floppy mode to SYSOUT
during the sysout. However, after the sysout is completed, it is changed
back to what it was before the sysout.

* FLOPPY now supports file types (628)

* Floppy error msgs are printed in the typescript window, rather than the
prompt window (1495 1575)

* (COPYFILE xx ’{FLOPPY}) in PILOT mode gives error message (996)

Previously, copying to {FLOPPY} giving a null file name could damage the
information on the floppy. Now it just gives an error message.

* Bad error msg "ARG NOT LP: NIL" changed (217)

This obscure error message occurred when trying to read a Pilot floppy file
when FLOPPY.MODE was set to SYSOUT. The appropriate work around was to
execute (FLOPPY.MODE ’PILOT), and trying again.

* FLOPPY.COMPACT accepts "No" as answer to confirmation (1446)

* Floppy errors are now regular file system errors (8)

* Sysout to write-protected floppy prints reasonable error message (452)

RS232
=====

* 1108 optional RS232C port is supported; provides more reliable
communication

The Harmony release supports the optional RS232C port on the 1108. This
port is buffered independently of Lisp operations, so there is little, if

14

any, chance of dropping characters. Use of this port requires the E30
hardware option.

* RS232 documentation totally revised; new functions

The RS232 documentation has been totally revised so it doesn’t focus on the
implementation on the Xerox 1100. A few of the minor additions explained in
the new documentation:

The function RS232SHUTDOWN is a "cleaner" way of doing (CLOSEF ’{RS232})

The function RS232INPUTSTRING inserts characters into the input ring buffer.
This permits a way to simulate the reception of characters through the
actual UART

The function RS232FORCEOUTPUT has a new argument which specifies whether the
function should return before all the characters are transmitted (the
default).

RS232DEVICEERRORFN is a new global variable used when handling hardware
errors

The RS232LOGIN facility is now documented. This provides a way for
automating the login procedure when connecting to various hosts.

* Incompatible Change: Global variable RS232XON\XOFF? replaced by function
RS232XON\XOFF?

The interface to the XON/XOFF protocol has been changed: rather than
setting the global variable RS232XON\XOFF?, the new function (RS232XON\XOFF?
ON?) should be used to set and unset this state. In future release of the
I/O processor code, enabling/disabling XON/XOFF processing by the RS232C
port will require a functional interface to what is now merely a global
variable.

* RS232 no longer breaks over LOGOUT/restart (1320 1393 2007)

* RS232CHAT command ~LocalEcho works as specified (1652)

NS File Servers
===============

* Many NS filing reliability problems fixed (115 2010)

The NS filing system has been reworked, and made much more robust. In
particular, a number of problems associated with open files timing out have
been solved.

* NS filing directory operations automatic (218 219 86)

NS file servers support a true hierarchical file system, where
subdirectories are just another kind of file. In previous releases of
Interlisp-D, users had to explicitly create subdirectories using the
function NSCREATEDIRECTORY. In Harmony, subdirectories are created
automatically as needed: A call to OPENFILE to create a file in a
non-existent subdirectory automatically creates the subdirectory; CONN to a
non-existent subdirectory asks the user whether to create the directory.
The function NSCREATEDIRECTORY has thus been removed. Note: Requires
Services Release 8.0.

* DIR fully enumerates NS files in subdirectories (1504 2440)

In previous releases, DIR enumerated a directory only to the first level; it
did not recursively enumerate the contents of subdirectories. In Harmony,
DIR can enumerate a directory to arbitrary depth; the exact depth is

15

controlled by the variable FILING.ENUMERATION.DEPTH, which is a small
positive integer or T. The default value is T, meaning infinite depth: the
entire directory is enumerated, and subdirectory "files" do not appear at
all. Also, the special function NSDIRECTORY is no longer needed, and has
been removed: DIRECTORY works with NS file servers exactly as with other
devices. Note: Requires Services Release 8.0. Earlier versions of Services
will continue to behave as if FILING.ENUMERATION.DEPTH = 1.

* NS file operations prompt for password (605 722 2296 742)

When the user attempts an NS file server operation, Interlisp passes the
current username and password (as given to the function LOGIN) to the NS
file server. If these are not accepted, Interlisp prompts the user to enter
the correct name and password. If the current username and password are
correct, the user is not prompted at all.

Note: The user can abort an NS password prompt by typing control-E. The
result of the file operation will be as if the NS file server did not exist.

* SETFILEINFO, GETFILEINFO can access the TYPE attribute of NS files (1708)

GETFILEINFO and SETFILEINFO now accept the TYPE and FILE.TYPE attributes for
NS files. TYPE is the standard Lisp file type, with values TEXT and BINARY.
FILE.TYPE is the (server-dependent) numeric value of the file’s FILE.TYPE
property, which a 16-bit number for NS file servers. Using the FILE.TYPE
attribute, you can change the file type to other non-lisp file types.

* GETFILEPTR works with NS files (2058 2276)

SETFILEPTR of an NS file causes an error, since NS file servers do not
currently support random access. However, GETFILEPTR now returns the
correct character position for open files on NS file servers.

Note: SETFILEPTR works in the special case where the file is open for
input, and the file pointer is being set forward. In this case, the
intervening characters are automatically read.

* (FULLNAME <file> ’NEW) and OUTFILEP now work for NS file servers. (608)

Used to return NIL.

NS Print Servers
================

* Can generate hardcopy of full screen on Xerox 8044 printer (1163)

Use the HARDCOPYW function or the HARDCOPY command in the Background menu.

* Multiple concurrent transmissions to NS printers now permitted (240 1078)

Multiple concurrent NSPRINTs or HARDCOPYWs no longer confuse each other. No
more breaks with "not an open NS socket".

* ROTATATION argument to HARDCOPYW works to 8044 printers (1616)

Previously, the rotation argument was not supported when sending bitmaps to
the 8044 printer. Now, this is supported for ROTATION = a multiple of 90
degrees.

* Can print to NS printers with A4 paper: variable NSPRINT.DEFAULT.MEDIUM
(2023)

The variable NSPRINT.DEFAULT.MEDIUM can be used to set the default NS
printer medium. NIL (the default) means to use the printer’s default; T
means to use the first medium reported available by the printer; any other

16

value must be a Courier value of type MEDIUM. The format of this type is a
list (PAPER (KNOWN.SIZE <TYPE>)) or (PAPER (OTHER.SIZE (<WIDTH> <LENGTH>))).
The paper type <TYPE> is one of the atoms US.LETTER, US.LEGAL, A0 through
A10, ISO.B0 through ISO.B10, and JIS.B0 through JIS.B10.

For European users who use A4 paper exclusively, it should be sufficient to
set NSPRINT.DEFAULT.MEDIUM to (PAPER (KNOWN.SIZE "A4")).

Note: When using different paper sizes, it may be necessary to reset the
variable DEFAULTPAGEREGION, the region on the page used for printing
(measured in micas from the lower-left corner).

Ethernet Protocols
==================

* SPP, Courier, Clearinghouse reimplemented: low-level incompatibilities
(2440)

As part of the improvements to NS Filing and Printing, the underlying
implementations of SPP, Courier and Clearinghouse have been substantially
rewritten, in several places incompatibly. Users who program applications
that use SPP, Courier or Clearinghouse directly should read Appendix D (NS
Protocol Support).

* "SPP Retransmit Queue out of order" errors fixed (14 1664)

The SPP retransmit strategy has been completely revised, so this
intermittent problem should disappear.

* SETTIME now broadcasts for both PUP and NS time servers. (1283)

SETTIME used to just try for a PUP time server.

* Superfluous "not responding" messages after NS operations removed (592 721)

Also, the function CLOSE.NSFILING.CONNECTIONS has been removed.

* GETPUPSTRING applied to a blank pup now returns the null string instead of
erroring (772)

* 1108s can "hear" their own Ethernet transmissions (182)

The 1108 hardware is not capable of receiving the Ethernet packets it
transmits. In previous releases, this meant that if an 1108 sent a packet
addressed to itself, it would never receive it. In Harmony, the 1108
low-level Ethernet software takes care of this by faking receipt of such a
packet. The implication of this is that programmers writing Lisp-based
Ethernet servers can now test them out by running user and server code on
the same machine.

* Interlisp no longer hangs on an 1100 running 3MHz ethernet microcode
without a 3MHz ethernet card (485)

Window System
=============

* The ATTACHEDWINDOW package has been added to the standard Interlisp
loadup. (1767)

The ATTACHEDWINDOW library package has been added to the standard
Interlisp-D window system. Many system tools (inspector, break package,
etc.) now use attached windows for managing sets of windows. A number of
changes have been made to the attached window facility:

17

New "attached prompt windows" provide a uniform way to access a small prompt
window attached to another window.

Attached windows can be closed without closing the main window

BURY now buries all attached windows correctly

New function (DETACHALLWINDOWS MAINWINDOW) detaches and closes all windows
attached to MAINWINDOW.

ATTACHMENU opens menu window immediately; new arg NOOPENFLG

New function MAINWINDOW for getting the mainwindow from an attached window

For complete documentation of the attached window facility, see Appendix B
(Attached Windows).

* Can move icons with LEFT button, expand with MIDDLE button (1746 121)

Buttoning the LEFT button on an icon allows you to move it. Pressing the
MIDDLE button expands it.

* Changes to WFROMDS reduce empty tty windows (1848)

WFROMDS has a new arg, DONTCREATE. If DONTCREATE is non-NIL, WFROMDS will
never create a window, and return NIL if DISPLAYSTREAM does not have an
associated window.

TTYDISPLAYSTREAM calls WFROMDS with DONTCREATE = T, so it will not create a
window unnecessarily. Also, if WFROMDS does create a window, it calls
CREATEW with NOOPENFLG = T. These changes fix many of the empty tty windows
that used to appear.

* Many changes to caret behavior (544 1164)

There is now only one caret visible at any one time (except for TEdit which
maintains its own caret). This fixes problems with carets being left on the
screen and with windows being created just to take the caret down. The
caret in the current process is always visible; if it is hidden by another
window, its window is brought to the top. The function CARET has been
changed, and the function CARETRATE, which changes the caret rate of the
current process has been added:

(CARET NEWCARET)
Sets the shape that blinks at the location of the next output to the current
process. NEWCARET is either (1) NIL - no changes, returns a CURSOR
representing the current caret, (2) OFF - turns the caret off, (3) a CURSOR
which gives the new caret shape or (4) T - resets the caret to the default
which is the value of the variable DEFAULTCARET. DEFAULTCARET can be set to
change the initial caret for new processes. The hotspot of NEWCARET
indicates which point in the new caret bitmap should be located at the
current output position. The previous caret is returned. Note: it is now
permissible for the caret bitmap to be larger than cursor bitmap dimensions
(16x16).

(CARETRATE ONRATE OFFRATE)
Sets the rate at which the caret for the current process will flash. The
caret will be visible for ONRATE milliseconds, then not visible for OFFRATE
milliseconds. If OFFRATE=NIL, the value of ONRATE is used. If ONRATE is
T, both the "on" and "off" times are set to the value of the variable
DEFAULTCARETRATE (initially 333). The previous value of CARETRATE is
returned. If the caret is off, CARETRATE return NIL.

* Caret flashing doesn’t bring window to top during buttoning or
shift-selecting (681)

18

The caret code has been changed so that it doesn’t bring the flashing
caret’s window to the top if the user is buttoning or has a shift key down.
This prevents the destination window (which has the tty and caret flashing)
from interfering with the window one is trying to select text to copy from.

* Cursor reset correctly after going through scroll bar (378)

Previously, slowly dragging the mouse out of the left of a Tedit window
would change the cursor to a right-facing arrow (in the left margin), change
it to the scrolling cursor (in the scroll bar), and "restore" it to the
right-facing arrow upon leaving the scoll bar. The window system now
restores the cursor correctly to the value of DEFAULTCURSOR upon leaving a
window.

* New Background menu when Copy-key pressed; allows copy-inserting a SNAP
(1808)

Various system utilities (TEdit, DEdit, TTYIN) allow information to be
"copy-inserted" at the current cursor position by selecting it with the
"copy" key held down. (Normally the shift keys are the "copy" key, this
action can be changed in the key action table.) It is now possible to
"copy-insert" the bitmap of a snap into a Tedit document. If the right
mouse button is pressed in the background with the copy key held down, a
menu with the single item "SNAP" appears. If this item is selected, the
user is prompted to select a region, and a bitmap containing the bits in
that region of the screen is inserted into the current tty process, if that
process is able to accept image objects (like Tedit).

This is implemented by the new variables BackgroundCopyMenu and
BackgroundCopyMenuCommands, which are interpreted similar to BackgroundMenu
and BackgroundMenuCommands. If the right mouse button is pressed in the
background when the copy key is down, the menu stored in the variable
BackgroundCopyMenu is envoked. If this is NIL, a new menu is created from
the menu commands in BackgroundCopyMenuCommands.

* RESHAPEBYREPAINTFN uses new strategy to determine window contents after
reshape (1613)

Previously, RESHAPEBYREPAINTFN (the default reshaping function) always
copied the old image to the lower-left corner of the new window, adding any
new image to the top and left. This produced unintuitive results in the
case where the lower left corner was grabbed and moved out. The new
behavior will display the part of the object in the direction of the
expansion (if the opposite side is not moved) and only display white space
beyond the extent if the extent is fully visible.

This change required that a fourth argument be passed to the RESHAPEFN of a
window: OLDSCREENREGION, the region that the window occupied before being
reshaped. This allows RESHAPEBYREPAINTFN to determine which edges of the
window have been moved. Note: in some situations, RESHAPEBYREPAINTFN may
call a window’s REPAINTFN as many as four times on different window regions.

* New Background Button Event Functions (637 682)

The variables BACKGROUNDBUTTONEVENTFN, BACKGROUNDCURSORINFN,
BACKGROUNDCURSOROUTFN and BACKGROUNDCURSORMOVEDFN provide a way of taking
action when there is cursor action when the cursor is in the background. If
set to the name of a function, that function will be called, respectively,
whenever the cursor is in the background and a button changes, when the
cursor moves into the background from a window, when the cursor moved out of
the background into a window, and when the cursor moves from one place in
the background to another. These are analogous to the window properties
BUTTONEVENTFN, CURSORINFN, CURSOROUTFN, and CURSORMOVEDFN .

19

* New BURYW behavior -- faster algorithm (741)

BURYW has been changed to take down the windows overlapping the window to be
buried, then reopening them in the right order.

* 1108 background border preserved over LOGOUT/restart (876 2277 106)

The backgound border (around the screen) on the 1108 can be changed with the
function CHANGEBACKGROUNDBORDER. During LOGOUT, the border is changed back
to the default shade. Now, the border is restored to its new pattern after
LOGOUT/restart on an 1108.

* Fixed: Caret didn’t flash on 1108 after LOGOUT/restart (511)

Sometimes, the caret would not flash after doing LOGOUT and restarting
Interlisp on an 1108. This could be fixed by typing (CARET), so it was not
a major problem, but it was annoying.

* If MENU is called with RELEASECONTROLFLG=T, the menu window is brought to
the top. (241)

Previously, a "released" menu could be hidden by other windows. Now, the
released menu will stay visible until it is closed or an item is selected.

* Moving an off-screen window onto the screen redisplays its contents (1945)

* DRAWCURVE works correctly in INVERT mode if BRUSH=1 (1978)

DRAWCURVE, DRAWCIRCLE, and DRAWELLIPSE to the display will work if the brush
argument is 1, and the "operation" of the displaystream is INVERT. For
brushes larger than 1, these functions will still use the ERASE operation.

DRAWCURVE to other image streams generally only supports the PAINT
operation.

* New window property: NOSCROLLBARS (1053)

If a window’s NOSCROLLBARS property is non-NIL, scroll bars will not be
brought up for the window, even if it has both EXTENT and SCROLLFN
properties. This allows the creation of windows that can scroll ONLY under
program control.

* New window property: WINDOWTITLESHADE sets shade used in window title bar.
(1054 1148 1354)

If a window’s WINDOWTITLESHADE property is non-NIL, it should be a texture
which is used as the "backgound texture" for the title bar on the top of the
window. If this property is NIL, then the value of the variable
WINDOWTITLESHADE is used, initially black. Note that black is always used
as the background of the title printed in the title bar, so that the letters
can be read -- the remaining space is painted with the "title shade".

* Textures can be BITMAPs up to 16 by 16 bits (449)

TEXTUREP, BITBLT, DSPTEXTURE, DSPFILL, etc. accept bitmaps up to 16 bits
wide by 16 bits high as textures. When a region is being filled with a
bitmap texture, the texture is treated as if it were 16 bits wide (if less,
the rest is filled with white space).

* New functions INVERTW, FLASHWINDOW (1153)

(INVERTW WIN SHADE)
Inverts the window WIN, by XOR-ing it with the shade SHADE. If SHADE=NIL,
the default is to XOR with the shade BLACK, which simply inverts the bits.

(FLASHWINDOW WIN? N FLASHINTERVAL SHADE)

20

Flashes the window WIN?, by inverting it twice. N is the number of times to
flash the window (default is once). FLASHINTERVAL is the number of
milliseconds to wait with the window inverted (default is 200). SHADE is
interpreted as in INVERTW.

If WIN? is NIL, the whole screen is flashed. In this case, the SHADE
argument is ignored (can only invert the screen).

* New function DECODE.WINDOW.ARG: coerces window specs to window (775)

(DECODE.WINDOW.ARG WHERESPEC WIDTH HEIGHT TITLE BORDER NOOPENFLG)
This is a useful function for creating windows. WHERESPEC can be a WINDOW,
a REGION, a POSITION, or NIL. If WHERESPEC is a WINDOW, it is returned. In
all other cases, CREATEW is called with the arguments TITLE, BORDER, and
NOOPENFLG. The REGION argument to CREATEW is determined from WHERESPEC as
follows:

If WHERESPEC is a REGION, it is adjusted to be on the screen, then passed to
CREATEW. If WIDTH and HEIGHT are not numbers, CREATEW is given NIL as a
REGION argument.

If WIDTH and HEIGHT are numbers and WHERESPEC is a POSITION, the region
whose lower left corner is WHERESPEC, whose width is WIDTH and whose height
is HEIGHT is adjusted to be on the screen, then passed to CREATEW.

If WIDTH and HEIGHT are numbers and WHERESPEC is not a POSITION, then
GETBOXREGION is called to prompt the user for the position of a region that
is WIDTH by HEIGHT.

If WIDTH and HEIGHT are used, they are used as interior dimensions for the
window.

* New function MAKEWITHINREGION: moves region within another region (775)

(MAKEWITHINREGION REGION LIMITREGION)
Changes (destructively modifies) the left and bottom of the region REGION so
that it is within the region LIMITREGION, if possible. If the dimensions of
REGION are larger than LIMITREGION, REGION is moved to the lower left of
LIMITREGION. If LIMITREGION is NIL, the value of the variable WHOLEDISPLAY
(the screen region) is used. MAKEWITHINREGION returns REGION.

* INSIDEP now accepts a window as its REGION arg (1151)

If the REGION arg to INSIDEP is a window, the window’s interior (its
clipping region) is used.

* REGIONP now true for regions whose components are floating point numbers.
(893)

Previously, only integers were allowed as components of a region.

* EXPANDBITMAP works without the color package loaded (674)

EXPANDBITMAP uses the function \FAST4BIT, which was previously only defined
in the color library package. \FAST4BIT has been added to the standard
Interlisp loadup.

* READBITMAP, PRINTBITMAP have new argument: FILE (538)

(READBITMAP FILE)
(PRINTBITMAP BITMAP FILE)
These functions can now be used to read and print bitmaps to arbitrary
files, without changing the primary input/output stream.

* CURSORINFN and CURSOROUTFN window properties extended (242)

21

The CURSORINFN and CURSOROUTFN window properties can now be lists of
functions as well as single functions. All functions on the list are
called.

* Scrollbar provides better indication when contents are above the window
(698)

Previously, there were some cases where the scrollbar would not hit the
bottom unless the bottom of the extent was a small distance above the top of
the window.

* EDITBM does not reposition the cursor to the center of the screen (769)

* control-D during EDITSHADE now closes the window (854)

* (BITMAPHEIGHT <texture>) now gives an error for non-bitmap textures (1315)

* If CHANGEOFFSETFLG menu property is non-NIL, popup menus come up in
correct position (1641)

Previously, they would come up one pixel above and to the right of where
they were last time (relative to the cursor).

* Scrolling works correctly after changing window border size (1763)

* If LEFT button down, GETREGION calls NEWREGIONFN with MOVINGPOINT = NIL
(1578)

Previously, if GETREGION was called when one of the mouse buttons is already
down (LEFT), the first call to NEWREGIONFN did not have MOVINGPOINT = NIL

* EXPANDW no longer fails if called on expanded window (1588)

* (DSPCREATE <bad-arg>) signals "ILLEGAL ARG" error, instead of going into
RAID (302)

* DRAWCURVE no longer generates an error if dashing is non-NIL (1614)

* ADDMENU/DELETEMENU do not modify the menu for subsequent use (522)

Tedit
=====

* New Tedit page formatting facilities

Tedit now includes facilities for specifying the page layout to be used when
a document is formatted and printed. The user can now control page
formatting such as page numbers, headings, multiple columns, etc.

* Tedit has separate menus for Para looks, Char looks, and Page Looks (581)

This solves a number of problems. In particular, it is no longer necessary
to scroll a single long menu up and down to set and apply character and
paragraph looks.

* Control-E can be used to abort Get, Put, etc. commands (642)

After selecting the Tedit commands Get, Put, Include, etc. from the title
menu, the user is asked to type in a file name. The operation can be
aborted at this time simply by typing control-E.

* Can shrink an unsaved Tedit document (1535)

22

Previously, Tedit caused an error, when it tried to print the file name of
the document in the icon. Now, it detects this situation and creates an
empty icon.

* Tedit more careful about erasing caret images on the screen (933)

* EOFP works correctly for text streams (1582)

* Tedit hardcopy uses {DSK} to store large files, so larger files can be
printed (870)

* Tedit uses more compact representation for bitmaps (1801)

The format of bitmaps in Tedit files has been changed. This new format
should take up about half the space, and it can be read/written many times
as fast of the old format. It does not do any compression. The old
bitmap-reading functions have not been removed, so old bitmaps will be
converted as they are encountered.

Dedit
=====

* "BREAK" or "()" of top-level expression no longer causes stack overflow
(850 959)

* Process switch from DEDIT to TEDIT won’t cause it to ignore tabs (636)

* DEdit’s internal data structures revised to take 1/3 less space (678)

This should improve swapping performance over extended programming sessions.

* (DF <undefined function>) creates blank function template. (678 739 961)

If DF is called on a name with no function definition, the user is prompted
with "No FNS defn for <function name>. Do you wish to edit a dummy defn?".
If the user confirms (by clicking left-button), a "blank" definition is
displayed in the Dedit window. If any changes are made, on exit from the
editor, the definition will be installed as the name’s function definition.
Exiting the editor with the STOP command will prevent any changes to the
function definition.

If DF is called with a second arg of NEW, as in (DF <function name> NEW), a
blank definition will be edited whether the function already has a
definition or not.

* Inserting huge piece of code no longer causes bad screen extent. (400)

Previously, after inserting a huge piece of code into a function, Dedit
could lose track of the size of the function, so the user could not scroll
up enough to see the last part of the inserted code.

* DEDIT REPAINTFN redisplays selection highlighting (254)

* Comments print correctly when inserted or SWITCHed (431)

* Deleting first dotted-pair from list of pairs reprints correctly (816)

* Buttoning in the Dedit Edit Buffer switches the current process. (188)

Previously, you had to button in the main Dedit window.

* Dedit menu only comes to the top when Dedit is the TTY process. (678)

* "Shouldn’t Happen! DEDITDSPS tangled" errors reduced (849 995)

23

Previously, this could happen if you called the inspector from Dedit (by
EVAL-ing (INSPECT ...)), and called Dedit from the inspector window. This
particular symptom has been cured in the current Dedit. However, exiting
DEdit processes out of order can still cause this error.

* Dedit supports the COPY key on the 1108 keyboard (228)

Shift select supports both the COPY and the right shift keys.

* EditOps menu follows when the main Dedit window is moved (359)

* Edit buffer doesn’t attach to incorrect window (745)

Previously, after "TTYIn Form" of atom, the Dedit Typein window for DEDIT
sometimes would attach itself to the bottom of random windows on the screen.

* Dedit doesn’t reprint function on exit. (678)

Previously, in some situations Dedit would reprint the entire function after
exit, as a side effect of changing the edit date comment.

* !UNDO command is now undoable (366)

* Double deletes give better error message (1877)

Previously, if one deleted a deleted selection (in a serious of commands
with the control key down), Dedit would break with the error "Shouldnt: No
MapEntry". Now, Dedit detects this situation, prints out the error message
"Cant: Already deleted!", and doesn’t cause a break.

* CAP command capitalizes first letter of atom (945)

It used to do the same as RAISE, capitalizing all the letters of the item
selected.

* "?=" command in Dedit works for fns of no arguments (15)

Used to give "xxx not a function" error message.

Break Package
=============

* Editor called from display break package in broken process (162 1263)

Inspecting a function in the display frame window now calls the editor in
the broken process. Thus variables evaluated in the editor will be in the
broken process.

* Can now REVERT to any frame on the stack. (512 583 2074 20 1349)

Previously, there were restrictions on reverting to internal "DUMMY" frames,
because it could cause the system to crash or freeze. Now, REVERT has been
fixed so that it is safe to revert to any frame on the stack.

* Break windows are not opened on "STORAGE FULL" errors. (1309)

This is similar to the treatment of "ARRAYS FULL" errors. In either case,
allocating storage for a break window would cause the error to occur
repeatedly.

* Typing control-B in a break window no longer gives "Break within Break"
error (520)

24

* AUTOBACKTRACEFLG extended: can cause BT for NON-error breaks (734)

Previously, if AUTOBACKTRACEFLG was non-NIL, then the command BT would be
executed automatically on error breaks, but not on user breaks (calls to
functions broken by BREAK). It has been extended as follows: If
AUTOBACKTRACEFLG is NIL (the default), no backtrace is brought up. If its
value is T, then on error breaks the BT menu is brought up. If its value is
BT!, then on error breaks the BT! menu is brought up. If its value is
ALWAYS, then on any break the BT menu is brought up. If its value is
ALWAYS!, then on any break the BT! menu is brought up.

* ERRORTYPELST is now a SPECVAR (11)

It makes sense for users to change the global value of ERRORTYPELST, but
programs that rebind it clearly want changed behavior only in their own
stack context. It is only looked up under error conditions, so it shouldn’t
cause a performance problem.

* Break package more careful about aborting process on closing window (162)

Closing a break window now only aborts the associated process if it was in
tty wait and the closed window was the tty window. This should stop some
inadvertant aborts.

* Warning: Typed-in BT, BTV commands don’t start at top of stack (990)

When a stack frame name is selected in the backtrace menu, the variable
LASTPOS is set to the selected stack frame. This allows breaks commands
such as REVERT, ?=, etc. to use the selected frame. However, the value of
LASTPOS also indicates to the break commands BT, BTV, BTV!, etc. where to
start listing the stack.

Inspector
=========

* Using SET to set inspector values no longer creates many TTY windows (31)

Previously, the inspector SET command would create a new window for the user
to type a value every time it was used. Now, the default SET routine uses
an attached prompt window on top of the inspect window to receive the new
value.

* New inspect window commands: "IT_datum", "IT_selection" (142)

The values displayed in an inspect window can be accessed by commands on the
menu brought up by pressing the MIDDLE button in the title of the window.
The command "IT_datum" sets the variable IT to the object being inspected in
this window. The command "IT_selection" sets the variable IT to the current
property name or value selected in the inspect window.

* Variable INSPECTPRINTLEVEL used for printing inspector values (435)

When the inspector prints field values, PRINTLEVEL is reset to the value of
INSPECTPRINTLEVEL, initially (2 . 5).

* Inspector calls INSPECTCODE to inspect compiled code objects (640)

CHAT
====

* Chat does not turn off interrupt characters until AFTER creating the Chat
window (799)

25

This allows the user to abort the call to Chat by typing control-E while
specifying the Chat window region.

* Reshaping Chat window does not change terminal type (844)

Previously, reshaping a Chat window caused Chat to reassert the terminal
type specified when the connection was first opened. If the user in the
meantime had told the remote host that the terminal type was different, then
this would set it back.

* Chat grabs TTY as soon as it starts to reconnect (611)

Previously, the "reconnect" menu button didn’t switch the tty to the chat
process until the connection was reestablished.

* Chat ignores the padding character DEL (789)

* Chat display no longer off by 1 character after EMACS insert operation (349
1629 1261)

Newer versions of EMACS perform character insertion by an unusual sequence
that Chat was not emulating correctly.

* Chat in EMACS mode updates cursor position promptly (1256)

Previously there was a bug that deferred the cursor update following a
positioning command with the mouse until the next type-in occurred.

* Chat displays the EMACS mode state in the window title (1221)

When Chat EMACS-mode is on, "EMACS ON" is printed in the Chat window title.

TTYIN
=====

* Incompatible change: EDITPREFIXCHAR default is NIL (51)

The variable EDITPREFIXCHAR is now by default NIL, meaning there is
initially no TTYIN prefix meta-character defined. This change was made to
avoid confusing users who don’t use TTYIN editing commands. If you want to
be able to issue editing commands to TTYIN, you should either call
(TTYINMETA T) to enable bottom-blank (STOP on 1108’s) as a true meta key, or
set EDITPREFIXCHAR to the character code of your preferred meta prefix (it
used to be 193, for top-blank).

* TTYIN is enabled in break windows created by control-B during type-in (1929
1399 91)

* FIX command with TTYIN prettyprints history events (28)

The programmer’s assistant command FIX calls TTYIN to edit the text of the
history event. TTYIN now prettyprints the event for ease of editing.

* Typing control-E under TTYIN won’t cause "NON-NUMERIC ARG" error (16)

* Typein lines starting with ";" no longer erased (1512)

Previously, TTYIN interpreted a line starting with the character ";" as a
comment, and would ignore it, erasing the line from the screen. Although
";" is defined on LISPXHISTORYMACROS as a no-op anyway, TTYIN’s behavior was
inappropriate in cases where one was not typing to the Lisp exec.

The old behavior is still available for those desiring it: if the first
character on a line of typein is equal to the variable TTYINCOMMENTCHAR (a

26

character code or NIL), then the line is erased, and no input function will
see it. TTYINCOMMENTCHAR is initially NIL.

Stack & Interpreter
===================

* Known Bug: Must do (HARDRESET) after stack overflow, or else second stack
overflow gives fatal error (1927)

If a stack overflow occurs, rather than type "^" to escape from the break,
do a hardreset. Otherwise, the NEXT stack overflow may cause an
unrecoverable error. Either evaluate (HARDRESET) from the break window, or
type control-D from Teleraid.

* New function: EVALHOOK (1168 1769 777)

(EVALHOOK FORM EVALHOOKFN)
EVALHOOK evaluates the expression FORM, and returns its value. While
evaluating FORM, the function EVAL behaves in a special way. Whenever a
list other than FORM itself is to be evaluated, whether implicitly or via an
explicit call to EVAL, EVALHOOKFN is invoked (it should be a function), with
the form to be evaluated as its argument. EVALHOOKFN is then responsible
for evaluating the form; whatever is returned is assumed to be the result of
evaluating the form. During the execution of EVALHOOKFN, this special
evaluation is turned off. (Note that EVALHOOK does not effect the
evaluations of variables, only of lists).

Here is an example of a simple tracing routine that uses the EVALHOOK
feature:

_(DEFINEQ (PRINTHOOK (FORM)
(printout T "eval: " FORM T)
(EVALHOOK FORM (FUNCTION PRINTHOOK]

(PRINTHOOK)
_(EVALHOOK ’(LIST (CONS 1 2) (CONS 3 4)) ’PRINTHOOK)
eval: (CONS 1 2)
eval: (CONS 3 4)
((1 . 2) (3 . 4))

* Internal arithmetic functions changed to have the "right" frame name (1807
1886)

In compiled code, a call to a primitive arithmetic function, such as PLUS,
turns into a Lisp opcode, which normally executes entirely in microcode. In
exceptional cases, however, the microcode executes a call on an internal
arithmetic function, such as \SLOWPLUS2. Previously, if an error occurred
in such a function, the backtrace contained the internal function name,
rather than the name you would expect from looking at the source code.
This has been changed so that the frame names of internal arithmetic
functions are the appropriate user-level functions.

* EVALV has new argument RELFLG: release-stack-ptr flag (191)

Most of the stack evaluation functions (ENVEVAL, etc.) have a flag argument
which determines whether the stack pointer will be automatically released.
To be consistent, EVALV now has a RELFLG argument, even though it doesn’t
strictly need it (EVALV is guaranteed to return, unlike the other
functions).

* (APPLY*) now gives "UNDEFINED FUNCTION: NIL" error (1678)

History and Exec
================

27

* BREAK, TRACE, SEE, etc. recognize quoted arguments: new function
NLAMBDA.ARGS (1722 593)

A number of NLAMBDA functions now recognize if their argument is quoted.
For example, (BREAK ’FOO) will now break the function FOO, rather than the
function QUOTE. LISPX macros and commands which normally take their args
unquoted (DIR, CONN, etc.) also work with quoted arguments. For example,
typing DIR ’FOO* is now the same as DIR FOO*.

This change was accomplished by defining a new function (NLAMBDA.ARGS X).
This interprets its argument as a list of unevaluated nlambda arguments. If
any of the elements in this list are of the form (QUOTE ...), the enclosing
QUOTE is stripped off. Actually, NLAMBDA.ARGS stops processing the list
after the first non-quoted argument. Therefore, whereas (NLAMBDA.ARGS
’((QUOTE FOO) BAR)) -> (FOO BAR), (NLAMBDA.ARGS ’(FOO (QUOTE BAR))) -> (FOO
(QUOTE BAR)).

* Error correction of function name doesn’t lose args (337)

Previously, if one had an NLAMBDA nospread function FOO, one could type "FOO
ALPHA" to the exec and FOO would be run, with ALPHA as its argument. If
however, one mistyped FOO (as foo, FOOX,etc.) and the spelling corrector
sucessfully corrected it to FOO, the exec did not pass the arguments along.
This has been fixed.

* PRINTLEVEL UNDO-able from top level exec (141)

Typing PRINTLEVEL to the top-level exec will substitute a call to the
undoable function /PRINTLEVEL.

File Package
============

* Incompatible Change: Source/DCOM file location algorithm changed (100 671 509
1666)

Each Interlisp source and compiled code file contains the full filename of
the file, including the host and directory names, in a FILECREATED
expression. The compiled code file also contains the full file name of the
source file it was created from. Previously, the file package used this
information to locate the appropriate source file when "remaking" or
recompiling a file.

This has turned out to be a bad feature in distributed environments, where
users frequently move files from one place to another, or where files are
stored on removable media. For example, suppose you MAKEFILE to a floppy,
and then copy the file to a file server. If you load and edit the file from
a file server, and try to do MAKEFILE, it will break, trying to locate the
source file on a floppy, which is probably no longer loaded.

In the Harmony release, the file package searches for the source file on the
connected directory, and on the directory search path (on the variable
DIRECTORIES). If it is not found, the host/directory information from the
FILECREATED expression be used.

Warning: One situation where the new algorithm does the wrong thing is if
you explicitly LOADFROM a file that is not on your directory search path.
Future MAKEFILEs and CLEANUPs will search the connected directory and
DIRECTORIES to find the source file, rather than using the file that the
LOADFROM was done from. Even if the correct file is on the directory search
path, you could still create a bad file if there is another version of the
file in an earlier directory on the search path. In general, you should
either explicitly specify the SOURCEFILE argument to MAKEFILE to tell it

28

where to get the old source, or connect to the directory where the correct
source file is.

* HPRINT, UGLYVARS, HORRIBLEVARS don’t redeclare datatypes (2251)

The file package commands UGLYVARS and HORRIBLEVARS call the function HPRINT
to print out loadable representations of arbitrary data structures. If a
data structure contains an instance of an Interlisp datatype, the datatype
declaration is also printed onto the file.

This has causes problems when a system datatype declaration dumped into a
file doesn’t match the current declaration. Redefining a system datatype
will almost definitely crash Interlisp. The Interlisp system datatypes do
not change very often, but there is always a possibility when loading in old
files created under an old Interlisp release.

To prevent accidental system crashes, HREAD has been changed so that loading
an HPRINTed structure will NOT redefine datatypes. Instead, it will cause
an error "attempt to read DATATYPE with different field specification than
currently defined". Continuing from this error will redefine the datatype.

* Incompatible change: User INIT files are now loaded normally, and appear
on FILELST (638 122 1822)

Previously, the user init files were SYSLOAD-ed, and their filecoms were not
saved. This was inconvenient when people wanted to modify their init files.
Now, they are loaded with LDFLG=NIL, so their filecoms are saved, and they
appear on FILELST. Note that the system "site" init file is still loaded
with SYSLOAD.

The function GREET has been changed as follows:

The system greet file (GREETFILENAME T) is loaded with the SYSLOAD
parameter. The user greet file (GREETFILENAME <username>) is loaded with
normal file package settings, but also under errorset protection and with
PRETTYHEADER set to NIL to suppress the "FILE CREATED" message.

Note: Users should try to make sure that their init file is "undoable". If
they use the file package command "P" to put expressions on the file to be
evaluated, they should use the "undoable" version, e.g. /SETSYNTAX rather
than SETSYNTAX, etc. This is so another user can come up, do a (GREET) and
have the first user’s initialization undone.

* MAKEFILE "remake" option asks whether to load DONTCOPY expressions (1881 83
2312)

When a MAKEFILE is performed with the "remake" option to copy definitions
from an old file, MAKEFILE checks to see if all of the necessary definitions
had been loaded from the old file. In the past, if you had only loaded the
compiled version of a file with (DECLARE: .. DONTCOPY ..) expressions,
MAKEFILE would automatically and quietly load the definitions from the old
file. In some circumstances this could be disastrous -- if the user had
circumvented the file package in some way, and loading the old definitions
overwrote new ones.

MAKEFILE now asks before performing these operations, e.g.

"Only the compiled version of FOO was loaded, do you want to LOADVARS the
(DECLARE: .. DONTCOPY ..) expressions from {DSK}<MYDIR>FOO.;3?"

* HASDEF with SOURCE=? calls WHEREIS database package if loaded (735)

According to the documentation, passing SOURCE=? to the file package type
functions should try (among other options) calling the function WHEREIS with
FILES=T, which will search the WHEREIS hashfile database if the WHEREIS
package is loaded. In the case of HASDEF called with SOURCE=?, WHEREIS was

29

being called with FILES=NIL, so the WHEREIS package was not being used.
This produced strange behavior in Dedit, such that evaluating (DF
<system-function>) would load and edit the function, but selecting the
function in a Dedit window and buttoning "Edit" would not.

* I.S.OPRS now works as a file package "type" for COPYDEF and UNSAVEDEF
(1734)

* (* * X ...) no longer signifies that X is a filevar (417 1620)

When a form such as (FNS * FOOFNS) appears in the filecoms of a file, this
means that the list of functions should be taken from the variable FOOFNS.
In this case, FOOFNS is known as a filevar.

Previously, there was a bug with comments of the form (* * this is a
comment), where the first word of the comment ("this") was interpreted as a
filevar. This had some strange consequences, such as the first words of
such comments appeared in (FILECOMSLST xxx ’VARS), and these atoms were set
to NOBIND if the file was loaded with LDFLG=SYSLOAD.

* Comments allowed in file package commands (1936)

The file package now allows comments to appear in most places in the
filecoms. For example:
(INITVARS (* this is a comment) (FOO 5)).

* Default setting of CLEANUPOPTIONS changed to (RC) (1817)

Previously, the default value of CLEANUPOPTIONS was (LIST RC), so CLEANUP
would list and recompile all files. If you wish to retain that behavior,
simply reset CLEANUPOPTIONS.

* (PF <function> <file>) prints message if file not found, or function not
found on file (1832)

Previously, PF just returned NIL if either the function was not found or the
file was not found.

* DC FOO can find file FOO.LSP (271)

Previously, the user had to type DC FOO.LSP to edit the coms of a file with
a non-NIL extension.

* ADDTOFILE prompt changed from "new file?" to "create new file XXX?" (1942
1234)

Compiler
========

* Incompatible change: Default RECOMPILEDEFAULT changed from EXPRS to
CHANGES (1670 1786)

Previously, the default value of RECOMPILEDEFAULT was EXPRS. This meant
that when recompiling a file, those functions currently defined by EXPRs
would be recompiled. Generally, this is a good indication of which
functions had been edited. However, a problem occurs if the user explicitly
calls COMPILE to compile a particular function. A later RECOMPILE or
CLEANUP would not recompile that function. By setting the default
RECOMPILEDEFAULT to CHANGES, RECOMPILE or CLEANUP will recompile those
functions which have been changed according to the FILECREATED expression in
the source file. Under some circumstances, this may cause functions to be
recompiled unnecessarily, but it is safer.

Benefits of RECOMPILEDEFAULT=CHANGES:

30

If you normally load a source file, edit a few functions, then MAKEFILE and
RECOMPILE, the effect of the change to RECOMPILEDEFAULT is that fewer
functions are recompiled (only the ones you changed, not all the functions
on the file).

If you normally load the compiled file, then LOADFROM the source, and are
running with DFNFLG = PROP, so that edited functions are not unsaved, then
the effect of the change is that the edited functions do get recompiled,
even though they are not defined by EXPRs.

Disadvantages of RECOMPILEDEFAULT=CHANGES:

If you go thru several rounds of the edit-makefile-recompile loop, then
possibly MORE functions are recompiled than necessary, since each RECOMPILE
will compile ALL the functions that have changed since you first LOADFROMed
the file, not just the ones changed since the last recompile.

When Masterscope advises you to UNSAVEDEF a set of functions containing
occurrences of records or macros that changed, the unsaving will have NO
effect on which functions later get recompiled. You need to set
RECOMPILEDEFAULT = EXPRS in order for this to work right.

* Incompatible change: Compiling with mode=ST or STF redefines functions,
even if DFNFLG=PROP (1673)

Previously, when the compiler "redefined" a function, it respected the value
of DFNFLG. If DFNFLG=PROP, the compiler put the new definition on the CODE
property instead of in the definition cell of the function.

The new behavior is that as functions are compiled, they really ARE "stored
and redefined"; the new compiled definition is placed in the definition
cell, even though DFNFLG=PROP.

The new behavior is less confusing, but if you are used to the old behavior,
be careful. If you run with DFNFLG=PROP to completely avoid inadvertantly
redefining something in your running system, you MUST use compile mode F,
not ST.

* Warning: Compiler modified, so don’t load Harmony-compiled files into old
sysouts. (1570)

A number of modifications have been made to the compiler, which might cause
backward incompatibility. In general, old compiled code will work in new
releases of Interlisp-D, but compiling in a NEW release and loading into an
OLD release is not guaranteed to work.

* STore-and-Forget option to COMPILE no longer leaves EXPRs on property list
(423)

* LOADTIMECONSTANT works in interpreted code (800 1176)

* Compiler prints warning if user code attempts to bind a variable
previously declared as a constant (277)

Masterscope
===========

* Masterscope CHECK command smarter about CONSTANTS, blocks (303)

The CHECK command now knows about CONSTANTS. Previously, constants were
treated like any other variable, and CHECK printed a warning if they were
used freely without being declared. Also, CHECK now omits the preamble "in
no block" (followed by a list of functions) when a file has no block
declarations.

31

* Show Paths browser properly updated when redisplayed (1110)

When a function in a SHOW PATHS browser graph is edited, the window "greys
out", to indicate that (possibly) some of the information has changed.
Previously, under some circumstances, when a greyed out browser window was
redisplayed, Masterscope would not reanalyze the functions that had changed.

* ". SHOW WHERE X CALLS Y" now finds lowest (not highest) level macro
containing call (1878)

* Masterscope HELP command removed (1872)

This used to print out a two-page summary of the Masterscope commands, which
was not very useful in finding out how to use Masterscope.

DWIM & CLISP
============

* Advance Warning: In future releases, (CLISPDEC ’MIXED) will be default
(2032)

In past releases of Interlisp, and in the Harmony release, the default clisp
declaration is FIXED, which means that all clisp constructs are translated
using integer arithmetic, unless the user explicitly changes the
declaration. Therefore, (A+B) translates into (IPLUS A B), and (for X from
A to B do ...) is translated using integer arithmetic to increment X and
compare it to B.

In Interlisp-D, mixed (generic) arithmetic is not appreciably slower than
integer arithmetic, so we are trying to convert the system to use generic
arithmetic as much as possible.

Therefore, starting with the next release, the default clisp declaration
will be MIXED, so generic arithmetic functions will be used when translating
clisp constructs. (A+B) will translate into (PLUS A B), and (for X from A
to B do ...) will be translated using PLUS and GREATERP. Of course, the
user can change this declaration using CLISPDEC.

We do not expect that this change will effect any programs: the only
conceivable problems could be in constructs like (for X from A to B do ...)
where the programmer COUNTED on floating A and B being converted to fixed
point before the loop.

* Macro-expansion now independent of DWIM (1212)

Previously, macro-expansion was handled by the MACROTRAN entry on
DWIMUSERFORMS. This meant that macros would only be interpreted if DWIM was
turned on. The macro-expansion machinery has been moved to a much ’higher’
level (closer to the source), before DWIMFLG is tested and a large amount of
otherwise unnecessary processing was done. This means that macro expansion
can continue even when users turn off DWIM.

* New variable DWIMINMACROSFLG controls whether args to macros are dwimified
(1074)

If the variable DWIMINMACROSFLG = T (the default), DWIM will recursively
dwimify the arguments to macros (i.e. macros will be treated like LAMBDA
functions). If DWIMINMACROSFLG = NIL, arguments to macros are not
dwimified.

To provide finer control over the interpretation of individual macros, DWIM
uses the INFO property of the macro name: If the INFO prop is or contains
the atom EVAL, the macro arguments are dwimified, even if

32

DWIMINMACROSFLG=NIL. If the INFO prop is or contains the atom NOEVAL, the
macro arguments are not dwimified, even if DWIMINMACROSFLG = T.

* DWIM no longer tries to interpret type-in as edit commands (1211 1439)

Previously, one of the actions DWIM took on unbound atom or undefined
function errors was: "if the atom is an edit command, envoke the editor on
the last thing edited, passing the atom as an edit command". DWIM is of
necessity ’heuristic’, attempting to second guess what the user meant.
However, this correction is one that, over time, has become wrong far more
often than right.

* Incompatible Change: DWIMIFYENGLISH, CLISPENG package totally de-supported
(1425)

The "feature" of translating English into Lisp documented in the 1978
Interlisp Reference Manual is no longer supported in Interlisp-D. The
lispusers package CLISPENG is no longer supported, either.

* DWIM tries upper-casing undefined functions and unbound atoms (2136)

* DWIM now gives warning on coercion from lower to upper case (454 395)

Previously, DWIM would upper-case atoms and functions without warning or
notification, which caused a great deal of confusion. Now, the default is
to print a warning "=XX" when coercing from "xx" to "XX". This feature is
controlled by the variable FIXSPELL.UPPERCASE.QUIET (initially NIL). If
non-NIL, no warning is given.

* CLISPIFY does not translate (fetch A.B of X) to X:A.B (1057)

In the case where a record field has a period in it, it is inappropriate for
CLISPIFY to translate a fetch or replace statement into the more concise
form X:A.B, since DWIM interprets "A.B" as the "data path" rather than the
field name.

* RUNONFLG initialized to NIL in the default environment (1669)

If the variable RUNONFLG = T, DWIM will attempt "run-on" spelling
corrections, breaking up unknown names. From experience, it seems that this
hurts more often then it helps. Therefore, the default has been changed so
this feature is initially disabled.

* FIXSPELL only moves words on "real" spelling lists (867)

When spelling-correcting words on the system spelling lists SPELLINGS1,
SPELLINGS2, etc, FIXSPELL moves words to the front of the list when a word
is successfully corrected. However, this is not necessarily the correct
behavior for user-supplied spelling lists, where it may be wrong to alter
the order of the list. If FIXSPELL is called with DONTMOVETOPFLG = non-NIL,
words are not moved in the spelling list. As an additional check, FIXSPELL
won’t move correct words to the front of a spelling list unless the spelling
list contains the special marker used to separate the temporary and
permanent sections of the system spelling lists (the value of SPELLSTR1).

* I.S.OPRS work even if CLISPFLG=NIL (1802)

Contrary to the documentation, some iterative statement operators would not
be translated correctly is CLISPFLG was NIL, because their definition
included forms such as $$VAL_T. These operators now work even if "_" is
disabled, either specially or because CLISPFLG is NIL.

Performance Tools

33

=================

* DOSTATS removed from standard Lisp loadup (1768)

Since the SPY package provides most of the functionality of DOSTATS, in
addition to being usable on Xerox 1108’s, the function DOSTATS has been
removed from the standard Interlisp system. The code for DOSTATS is
available by loading in the library files PCALLSTATS and APS (automatically
loaded by PCALLSTATS).

* DOSTATS now resets DFNFLG and compiler optimizations (802)

Previously, it was possible that DOSTATS would collect stats on the wrong
form if DFNFLG was set improperly. For example, if DFNFLG=PROP, the form
would be put on a property list, and stats would be collected for whatever
happened to be in the definition cell of STATSDUMMYFUNCTION. Also, DOSTATS
didn’t reset compiler optimizations, so that it might "optimize" forms like
(IQUOTIENT 1234567 -1) into a constant.

* Control-D out of DOSTATS stops statistics-gathering (124)

Previously, typing control-D during the execution of DOSTATS would stop the
computation, but wouldn’t stop the gathering of statistics. This was a
serious problem, because very quickly the disk would fill up and Interlisp
would fall into SWAT, losing everything. Now, exiting DOSTATS with
control-D automatically turns off statistics-gathering.

* TIMEALL now compiles form with optimizations ON (1780)

If TIMEALL is called with #TIMES>1, a dummy form is created, compiled and
executed #TIMES times, to provide more accurate measurement of small
computations. Previously, this compilation was done with optimizations off
if running multiple times. In the face of objections, this has been
changed: now TIMEALL compiles the dummy form with compiler optimizations
ON.

Warning: An important result of this change is that it is not meaningful to
use TIMEALL with very simple forms that are optimized out by the compiler.
For example, (TIMEALL ’(IPLUS 2 3) 1000) will time a compiled function which
simply returns the number 5, since (IPLUS 2 3) is optimized to the integer
5.

* BREAKDOWN overhead reduced (1353 1994)

The per-call overhead to BREAKDOWN has been substantially reduced, which
should give much more meaningful results.

Storage & Data Types
====================

* Incompatible Change: ARRAY default type is POINTER, FLOATP is stored
unboxed (1381 1061 1464)

If NIL is given as the TYPE argument to ARRAY, the default array type is
POINTER, not DOUBLEPOINTER. Anyone using the DOUBLEPOINTER mechanism should
change any instances of (ARRAY x) to (ARRAY x ’DOUBLEPOINTER).

Arrays of type FLOATP are now stored unboxed. This increases the space and
time efficiency of FLOATP arrays. Users who want to use boxed floating
point numbers should use an array of type POINTER instead of FLOATP.

34

* Advance Warning: CAR or CDR of non-list will cause error in future
releases; new variable CAR/CDRERR (768 685)

According to the Interlisp Reference Manual, the value of applying the
functions CAR and CDR to a non-list (other than NIL) is undefined. In
Interlisp-D, the actual action depended on the data type: (CAR <atom>)
returned NIL, (CDR <atom>) returned the atom’s property list, (CAR <anything
else>) returned the string "{car of non-list}", and (CDR <anything else>)
returned the string "{cdr of non-list}".

This has turned out to be a bad design. This design typically caused
obscure bugs in programs which CDR down a list, and stop on NIL. If the
tail of the list is not NIL, then the program loops endlessly, taking CDR of
"{cdr of non-list}". This problem also occurs with functions like (FMEMB A
B), which loop endlessly if B is not a list.

Because of these problems, the Interlisp maintainers decided that CAR and
CDR should cause an error on non-lists. Places in the system code which
used the old conventions have been cleaned up. In future releases, the
default will be changed so that CAR or CDR of non-NIL non-lists will cause
errors. This will also effect system functions, such as FMEMB, which use
CAR and CDR. User programs which depend on the old conventions will have to
be modified.

To root out functions in the system which rely on the old CAR/CDR
convention, the global variable CAR/CDRERR has been created.

If CAR/CDRRERR=NIL (the current default), then CAR and CDR act as they
always have, returning a string for non-lists. If CAR/CDRERR=T, then CAR
and CDR of a non-list (other than NIL) causes an error.

If CAR/CDRRERR=ONCE, then CAR and CDR of a string causes an error, but
CAR/CDR of anything else returns the string "{c...r of non-list}" as before.
This catches loops which repeatedly take CAR or CDR of an object, but it
allows one-time errors to pass undetected.

If CAR/CDRERR=CDR, then CAR of a non-list returns "{car of non-list}" as
before, but CDR of a non-list causes an error. This setting is based on the
observation that nearly all infinite loops involving non-lists occur from
taking CDRs, but a fair amount of careless code takes CAR of something it
has not tested to be a list

* MKATOM no longer loops forever when the atom hash table is full (866)

Previously, running out of atoms (the limit is currently ~32K) would cause
an infinite loop. Now, Interlisp will cause a storage full error when there
are about 7 "pages" of atom space left, and will call RAID (MP 9323 on an
1108) when there are no more atoms left.

* Hash arrays have been totally reimplemented; better performance, interface
(1096)

The hash array facility has been totally reimplemented, to improve
performance and provide a better interface to the overflow behavior. Old
programs using hash arrays will still work, but not as efficiently as if
they were recoded to take advantage of the new implementation.

In the old implementation, the hash array functions accepted a list whose
CAR was a hash array datum. If the hash array overflowed during some hash
array operation, the action taken (error, automatically enlarging the hash
array, etc.) was determined by the CDR of the hash array list.

In the new implementation, the "overflow method" is stored as part of the
hash array datatype. The hashing functions will operate correctly on
"old-style" hash arrays of the form (harrayp . overflow), but more slowly
than with "new-style" hash arrays that contain their overflow methods.

35

New functions:

(HASHARRAY MINKEYS OVERFLOW)
Creates a hash array containing at least MINKEYS hash keys, with overflow
method OVERFLOW (if NIL, the default overflow method is to expand the size
of the hasharray and rehash all the entries). The function HARRAY still
exists for backward compatibility, equivalent to (HASHARRAY MINKEYS ’ERROR).

(HARRAYPROP HARRAY PROP NEWVALUE)
Returns the property PROP of HARRAY; PROP can have the system-defined values
SIZE (returns the maximum occupancy of HARRAY), NUMKEYS (number of occupied
slots), or OVERFLOW (overflow method). In the case of OVERFLOW, a new
method may be specified as NEWVALUE.

(HASHARRAYP X)
Returns X if X is either an old- or new-style hash array (i.e a hash array
datum or a list whose car is a hash array datum). Otherwise returns NIL.

(HARRAYP X)
Returns X if it is a hash array datum, as returned by the function HARRAY or
HASHARRAY. Unlike HASHARRAYP, this returns NIL for lists whose CAR is a
hash array datum. HASHARRAYP should probably be used instead in most
circumstances.

* STORAGE changes: new arguments; prints free list info (63 1815)

The function STORAGE in Interlisp-D now takes two optional arguments for
filtering the amount of information presented:

(STORAGE TYPES PAGETHRESHOLD)

If TYPES is given, STORAGE only lists statistics for the specified types.
TYPES is an atom or list of types. If PAGETHRESHOLD is given, then STORAGE
only lists statistics for types that have at least PAGETHRESHOLD pages
allocated to them.

Note: These optional arguments are different from the optional arguments to
STORAGE in Interlisp-10.

STORAGE now prints out more information about the size of the entries on the
array free list, including a breakdown of the free block sizes. The block
sizes are broken down by the value of the variable STORAGE.ARRAYSIZES,
initially (4 10 100 1000 4000 NIL), which yields a printout of the form:

variable-datum free list:
le 4 11 items; 44 cells.
le 10 34 items; 240 cells.
le 100 39 items; 1619 cells.
le 1000 25 items; 7856 cells.
le 4000 2 items; 2449 cells.
others 0 items; 0 cells.

This information can be useful in determining if the variable-length data
space is fragmented. If most of the free space is composed of small items,
then the allocator may not be able to find room for large items, and will
extend the variable datum space. If this is extended too much, this could
cause an ARRAYS FULL error, even if there is lots of space left in little
chunks. This information is primarily of use to system programmers.

* New CASEARRAY arg for STRPOS (900)

STRPOS has been extended to take a new argument CASEARRAY. If non-NIL, this
should be a casearray like that given to FILEPOS. The casearray is used to
map the string characters before comparing them to the search string. See
the documentation for FILEPOS, CASEARRAY, etc. in the reference manual.

36

* New BACKWARDSFLG arg for STRPOS, STRPOSL (900)

If non-NIL, this argument specifies that the search should be done backwards
from the end of the string.

* Incompatible Change: LDIFFERENCE always returns copy of list: resolves
Interlisp-D/10 difference (318)

Previously, if (LDIFFERENCE FOO BAR) was EQUAL to FOO (ie, FOO and BAR
shared no elements), Interlisp-D would return a result which is EQ to FOO,
while Interlisp-10 would return a copy of FOO. Interlisp-D has been changed
to make it compatible with the Interlisp-10 behavior.

* Interpreted REPLACE of a data with a BITS field now correct. (1502)

Previously, the interpreted version of REPLACEFIELD would do the wrong thing
if called to replace a datatype declared with a BITS field. This only
affected interpreted calls to REPLACE and not compiled calls.

* (CREATE ... SMASHING ...) translates into more efficient form (1343)

The translation of (CREATE ... SMASHING ...) forms has been changed for
RECORD and TYPERECORD records, to produce forms that execute more
efficiently when compiled.

* The atoms NIL and T now can have property lists (915 916 924)

* (APPEND ’(A . B)) now runs correctly when compiled (1411)

Previously, (APPEND ’(A . B)) returned (A . B) when interpreted, (A)
compiled. Now, it returns (A . B) always.

* ELT, SETA error changed from "ILLEGAL ARG" to "ARG NOT ARRAY" (36)

Arithmetic
==========

* Advance Warning: Overflow default will be changed from (OVERFLOW 0) to
(OVERFLOW T) (2617)

In Interlisp-D, the action taken on arithmetic overflow is globally
determined by the function OVERFLOW (described below). Currently, the
default setting is (OVERFLOW 0), which signifies that arithmetic overflow
and division by zero will not cause an error. In a future release, this
default will be changed to (OVERFLOW T) so arithmetic overflow and division
by zero will cause an error. Users are encouraged to run their programs
with (OVERFLOW T), and to change any code which depend on overflow not
causing an error.

(OVERFLOW FLG)
Sets a flag that determines the system response to arithmetic overflow and
division by zero; returns the previous setting.

For integer arithmetic: If FLG=T, an error occurs on integer overflow or
division by zero. If FLG=NIL, the largest integer is returned as the result
of the overflowed computation. If FLG=0, the result is returned modulo 2^32
(the default action). If FLG=NIL or 0, integer division by zero returns
zero.

For floating point arithmetic: If FLG=T, an error occurs on floating
overflow or floating division by zero. If FLG=NIL or 0, the largest
floating point number is returned as the result of the overflowed
computation or floating division by zero.

37

* Advance Warning: (ZEROP X) = (EQ X 0); will be equivalent to (EQP X 0)
(317)

In the Interlisp Reference Manual, (ZEROP X) is defined to be equivalent to
(EQ X 0). Some users have complained that this is inconsistent with other
lisp dialects, and that (ZEROP 0.0) should not return NIL. In a future
release, (ZEROP X) will be equivalent to (EQP X 0). Users who depend on
(ZEROP 0.0) returning NIL should change their code to use (EQ X 0).

* FPLUS, FTIMES call microcode when interpreted (56)

Previously, the functions FPLUS and FTIMES, when called from the
interpreter, didn’t go thru the microcoded opcodes but always executed the
lisp macrocode.

* Internal function FTIMES2 no longer defined (56)

In an old version of the compiler, the function FTIMES was compiled into a
call to the function FTIMES2, which has been removed. Some programs
compiled in 1982 apparently need recompilation before they will run; if you
get UNDEFINED FUNCTION, FTIMES2, you should recompile the offending
function.

* (EXPT 3 -1) returns .333333333 instead of 0 (1581)

The manual states that (EXPT X Y) returns an integer if and only if X is an
integer and Y is a non-negative integer.

Processes
=========

* New process property: BEFOREEXIT used to prevent LOGOUT (249)

If the process property BEFOREEXIT is the atom DON’T, it will not be
interrupted by a LOGOUT. If LOGOUT is attempted before the process
finishes, a message will appear saying that Interlisp is waiting for the
process to finish. If you want the LOGOUT to proceed without waiting, you
must use the process status window (from the background menu) to delete the
process.

* New process property: RESTARTFORM (566)

If the process property RESTARTFORM is non-NIL, it is the form used if the
process is restarted (instead of the original form given to ADD.PROCESS).
Of course, the process must also have a non-nil RESTARTABLE prop for this to
have any effect.

* Changes to DISMISS: new arg NOBLOCK (2208)

(DISMISS MSECSWAIT TIMER NOBLOCK)
If MSECSWAIT and TIMER are both NIL, this is equivalent to (BLOCK). If
NOBLOCK is T, DISMISS will not allow other processes to run, but will
busy-wait until the amount of time given has elapsed.

* Control-T does not cause a long DISMISS to return (2130)

* WAIT.FOR.TTY spawns mouse if called under the mouse process (289)

* ADD.PROCESS property arguments interpreted correctly (194)

Previously, some combinations of arguments to ADD.PROCESS would be
interpreted incorrectly. For example, (ADD.PROCESS <form> ’SUSPEND T) would
create a (non-suspended) process with the name SUSPEND.

38

* PROCESSPROP can remove last user-defined property from a process (101)

Previously, only the last property value, not both the name and value, would
get removed from the list.

* RESTART.PROCESS does not hang (193)

Previously, if RESTART.PROCESS was called on a process which has been
created with SUSPEND=T and never started, this would cause Interlisp to hang
(hard reset required).

1108 Microcode
==============

* 1108 microcode available in 4K & 12K versions (1790 293)

The 1108 hardware is now available with either of two processor boards: the
standard board with a 4K microstore, or the Extended Processor Option (CPE)
board with a 12K microstore. This does not change the installation or
operation of Interlisp --- the Interlisp sysout contains microcode for both
the microstore options, and the appropriate one is automatically loaded when
Interlisp is started. To provide a visual indication of which size
microstore is installed, the 1108 MP display will show 1109 when the 12K
microcode is running (instead of 1108).

The 12K microcode contains a number of operations in microcode which were
formally implemented in Lisp, so there is a performance improvement. For
example, DRAWLINE, BIN, and MAKENUMBER are implemented in the 12K microcode.
In the future, any announcements of 1108 microcode changes apply to BOTH
microcodes, unless explicitly stated otherwise.

* 1108 microcode fixes (1790 1473 1723 2088 2266)

A number of obscure microcode bugs, which could cause intermittent system
failures, have been fixed.

* Pressing 1108 STOP key in RAID will not crash Interlisp (1482)

In some circumstances, pressing the STOP key when the 1108 was in RAID
caused an unrecoverable error, whereas typing control-D would succeed. This
was due to a microcode bug.

Library Packages
================

* BUSEXTENDER, BUSMASTER: new, prototype packages for using high-speed
parallel port on 1108 CPE board (2290)

The extended 1108 CPE board includes a high-speed parallel port. Currently,
hardware for using this parallel port is in development. BUSEXTENDER and
BUSMASTER are the prototype versions of the software used for controlling
this port. They are being made available to the user community to provide
advance information to potential future users.

BUSEXTENDER contains the low-level Interlisp functions used to access the
parallel port.

BUSMASTER is an application which uses BUSEXTENDER and special hardware
(currently under development) to communicate to IBM PC- or
Multibus-compatible peripheral devices.

* CMLARRAY: the CMLARRAYS file package command now works as advertised (1039)

39

* CMLARRAY: INITIALCONTENTS property works correctly (1224)

* COLOR: LOGOUT no longer crashes if color display on (256)

* COLOR: (COLORDISPLAY T) no longer breaks with "Illegal arg - NOBIND" (526)

* FILEBROWSER: Totally rewritten; many improvements (836 746 2106)

The most significant changes are:

The Info command has been removed, and the info window has been merged with
the browser window. There is a menu of file properties under the main
window; this selects the information to be fetched when the Update command
is buttoned.

The Rename command now takes a default destination directory when called.

The Copy command now works when you’re only copying a single file.

The See command pops up a scrollable window containing the listing of the
file. (The old version’s window didn’t scroll). This window is reused for
the next See command if it has been closed.

The file browser has its own prompt window, and no longer pops up
superfluous windows.

If you close or shrink a file browser window and there are unexpunged
deleted files, an "FB close options" menu will appear, asking whether or not
to expunge deleted files before shrinking or closing the window.

The file browser window shrinks to a distinctive "file drawer" icon, which
includes the current file browser pattern.

It uses a "nicer" font for the list of files.

Multiple file browsers can "do things" at the same time

Shift-selecting out of a file browser window will shift-select the full name
of the file selected. Only one file can be shift-selected at a time.

Can supply new pattern to the filebrowser by middle-buttoning the UPDATE
command, and selecting the "New Pattern" option from the menu that pops up.

The file browser window can scroll horizontally, so the user can see all of
the properties listed. Above the browser window is a list of colume labels,
which scroll horizontally as the browser window does.

* FTPSERVER: Enumerating files on a remote machine running FTPSERVER now
works correctly (1658)

* FTPSERVER: COPYFILE to remote 1108 won’t cause MP 9318 error (2163)

COPYFILE to a remote 1108 running FTPSERVER would sometimes cause a serious
error. FTPSERVER has been fixed so this will not happen.

* GRAPHER: Extensively revised; new function HARDCOPYGRAPH; node formatting
extended (1392 2034)

GRAPHER has been extensively revised, so that it uses much less memory space
per node. Whereas the old Grapher created a bitmap per node, the new one
doesn’t. The price is that scrolling may take a little longer. To
REDISPLAYW a very large graph takes twice as long as it used to (if you
don’t like this, set CACHE/NODE/LABEL/BITMAPS/FLG to T). Also, the
GRAPHRECORD was changed to use half as many cons cells. This version will
not run in Carol or older <lispcore> systems if the user depends on
nodefonts being defaulted to the DEFAULTFONT font class.

40

(HARDCOPYGRAPH GRAPH/WINDOW FILE IMAGETYPE TRANS)
Produces a file from a formated graph (e.g., like SHOWGRAPH, only for
files). If GRAPH/WINDOW is a window, HARDCOPYGRAPH will operate on the
GRAPH property of the window. If the device field of the file name is LPT,
the file will automatically get sent to the appropriate printer. IMAGETYPE
is either PRESS or INTERPRESS, and defaults to INTERPRESS. TRANS is a
position in screen points of the lower left corner of the graph from the
lower left corner of the piece of paper.

(DISPLAYGRAPH GRAPH STREAM CLIP/REG TRANS)
Put the specified graph on STREAM (which can be any image stream) with
coordinates translated to TRANS. Some streams might also implement CLIP/REG
as a clipping region. This is primarily an efficiency hack for the display.

GRAPHER now allows nodes to be "boxed" with borders of arbitrary shades and
widths. Borders work for regular labels and bitmap labels, but not for
imageobject labels. The old graphnode field BOXNODEFLG has been renamed
NODEBORDER. It takes the following values:

NIL no border, as before
T black border, 1 pixel wide, as before
0 no border
1,2,3... black border of the given width
-1,-2... white border of the given width
(w s) where w is a fixp and s is a texture or a shade; yields a

border w wide filled with the given shade s.

A new graphnode field, NODELABELSHADE, contains the background shade of the
node. This allows GRAPHER to remember when a node is inverted. When a node
is displayed, the label area for the node is first painted as specified by
NODELABELSHADE, then the label is printed in INVERT mode. This does not
apply to labels that are bitmaps or image objects. The legal values for the
field are: NIL (same as WHITESHADE), T (same as BLACKSHADE), a texture, or a
bitmap.

(RESET/NODE/BORDER <node> <border> <stream>)
(RESET/NODE/LABELSHADE <node> <shade> <stream>)
These functions reset the appropriate fields in the node. If <stream> is a
displaystream or a window, the old node will be erased and the new node will
be displayed. Both functions take the atom INVERT as a special value for
<border> and <shade>. It reads the node’s current border or shade,
calculates what would be needed to invert it, and does so.

LAYOUTGRAPH previously used a 1-pixel black box to mark certain nodes in
order to indicate where it had snapped links. That is still the default
action. However, the appearance of marked nodes can be controlled by adding
(MARK) to the FORMAT argument of LAYOUTGRAPH. The tail of (MARK)
is a property list. If the property list is NIL, marking is suppressed
altogether. If a BORDER property is specified, the value will be used as
the NODEBORDER of marked nodes. If a LABELSHADE property is specified, its
value will be used on the marked nodes. Of course, you can specify both a
BORDER and NODELABEL property.

LAYOUTGRAPH will read, but not change, the fields NODEBORDER and
NODELABELSHADE of the nodes given it (except for the marked nodes, of
course). Thus, if one is planning on installing black borders around the
nodes after the nodes have been layed out, its a good idea to give
LAYOUTGRAPH nodes that have white borders. This will cause the nodes to be
layed out far enough apart that when you blacken the borders later, the
labels of adjacent nodes will not be overwritten.

When a graphnode is created by the record package, the default values are
now taken from the value of the following variables:
DEFAULT.GRAPH.NODEBORDER, DEFAULT.GRAPH.NODELABELSHADE, and
DEFAULT.GRAPH.NODEFONT. GRAPHER initializes these to NIL. To get the

41

benefits of this new feature, the user will have to recompile functions that
create graphnodes

FLIPNODE now inverts a region that is 1 pixel bigger all around than the
node’s region. This makes it possible to see black borders after the node
has been flipped.

LAYOUTGRAPH takes a new format token. Adding REVERSE/DAUGHTERS to the list
of format items will reflect horizontal graphs vertically, and vertical
graphs horizontally.

* LOGOCLOCK process restarts after HARDRESET (237)

* SAMEDIR: MIGRATIONS modified: can now have list of directories (238)

* SINGLEFILEINDEX: Printing process prevents LOGOUT until finished (249)

SINGLEFILEINDEX now spawns its process with the process property
BEFOREEXIT=DON’T, so that it will not be interrupted by a LOGOUT. If LOGOUT
is executed before the process finishes, a message will appear saying that
Interlisp is waiting for the process to finish. If you want the LOGOUT to
proceed without waiting, you must use the process status window (from the
background menu) to delete the process.

* SINGLEFILEINDEX: new variable \SINGLEFILEINDEX.DONTSPAWN (294 1850)

If the global variable \SINGLEFILEINDEX.DONTSPAWN = NIL, SINGLEFILEINDEX
will spawn a process to process and print the file. If the variable is
non-NIL, the processing is done in the current process. When
SINGLEFILEINDEX is loaded, \SINGLEFILEINDEX.DONTSPAWN is initialized to NIL
if it is not already set.

* SPY: "recursive merging" reworked, new functions (2305 1968)

The SPY merge algorithm sometimes produced incorrect results when viewing
recursive calls, like functions showing up at 200%. This has been fixed.

The macro WITH.SPY has been added, identical to the inconsistently-named
WITH-SPY.

(SPY.LEGEND) creates a window documenting the meaning of the different SPY
node types.

(SPY.BUTTON) creates a button which, when touched once turns on SPY, touched
again, turns it off and calls (SPY.TREE 10). This is useful for watching
what’s going on in the system without typing a lot.

* SYSEDIT: EXPORTS.ALL (loaded by SYSEDIT) does not reset DIRECTORIES (857)

EXPORTS.ALL contains definitions for system records, and is used to edit
system code. Previously, when this file was loaded, it would reset the
variables DIRECTORIES and LISPUSERSDIRECTORIES to point to the directories
used by the Interlisp-D maintainance group.

* WHEREIS: Several changes to help users create and maintain their own
databases (126 1625)

Previously, the WHEREIS package interpreted the value of the variable
WHEREIS.HASH as the full file name of the single hash file database to
search. Now, WHEREIS.HASH is interpreted as a list of hash file names, to
be searched in order. This allows the user to keep a number of separate
WHEREIS databases for different projects. Also, instead of accepting the
hash file filenames as fully-qualified filenames, they are found by
searching the directories on DIRECTORIES. WHEREIS.HASH is initialized to
NIL.

42

The function WHEREISNOTICE has also been extended, to help users create and
maintain WHEREIS databases:

(WHEREISNOTICE FILEGROUP NEWFLG DATABASEFILE)
Inserts the information about all of the functions on the files in FILEGROUP
into the WHEREIS data base contained on DATABASEFILE. If DATABASEFILE is
NIL, the first entry on WHEREIS.HASH is used.

FILEGROUP may be simply a list of files, in which case each file thereon is
handled directly; but it may also be a pattern to be given as a filegroup
argument to DIRECTORY, so &, $, etc. may be used.

If NEWFLG is NIL, the information from the files in FILEGROUP is added to
the database DATABASEFILE. If NEWFLG is non-NIL, a new version of
DATABASEFILE will be created containing the database for the functions
specified in FILEGROUP. If NEWFLG is a number, the hash file will be
created with NEWFLG entries. Otherwise, it will be created to allow 20000
entries.

Miscellaneous
=============

* New variable MAKESYSNAME for identifying Interlisp-D releases

In the Harmony release sysout, the variable MAKESYSNAME is set to the atom
HARMONY. In future releases, this variable will be set to the current
release name.

* For Harmony Release, (LISPVERSION) = 37376

Previously, the built-in version number was not consistently changed for
different releases of Interlisp-D. In future releases, the Interlisp
version number will be incremented, and announced in the release message.

* PROMPTFORWORD revised; doesn’t grab TTY; argument renamed (891 553 1842)

PROMPTFORWORD no longer grabs the tty stream by default. Like READ, if it
is called in a process that is not the tty process, it waits for the user to
click the mouse in its window, then grabs the tty.

The PROMPTFORWORD argument TIMELIMIT.secs has been renamed URGENCY.OPTION,
which is interpreted as follows: If NIL, PROMPTFORWORD quietly wait for
input, as READ does; if a number, this is the number of seconds to wait for
the user to respond; if T, this means to wait forever, but periodically
flash the window to alert the user; if TTY, then PROMPTFORWORD grabs the TTY
immediately. When URGENCY.OPTION=TTY, the cursor is temporarily changed to
a different shape to indicate the urgent nature of the request.

The last argument to PROMPTFORWORD, OLDSTRING, has been deleted.

Typing control-W now has the normal behavior (delete last word), rather than
being a synonym of control-Q (delete all type-in).

PROMPTFORWORD only calls RINGBELLS once to attract the attention of the
user.

* Time-zone variables to control date printout: \TimeZoneComp, \BeginDST,
\EndDST (1077)

These variables are normally set automatically if you have a properly
functioning time server on your net. For standalone machines, or old
sysouts, you may need to set them by hand (in your init file) if you are not
in the Pacific time zone. \TimeZoneComp is the number of hours west of
Greenwich (negative if east); \BeginDST is the day of the year on or before
which Daylight Savings Time takes effect (i.e., the Sunday on or immediately

43

preceding this day); \EndDST is the day on or before which Daylight Savings
Time ends. Days are numbered with 1 being January 1, and counting the days
as for a leap year. In the USA where Daylight Savings Time is observed,
\BeginDST = 121 and \EndDST = 305. In a region where Daylight Savings Time
is not observed at all, set \BeginDST to 367.

* (TIMEREXPIRED? X Y) documentation wrong (1226)

If X and Y are variables whose values are timers, (TIMEREXPIRED X Y) is true
if X is set to an EARLIER time than Y. The Reference Manual was wrong: it
said that it returned true if X was later than Y.

* IDATE was wrong in March of leap year -- fixed (153)

* GREET now asks for init file in typescript window (231)

In GREET, if the system can’t find the file {DSK}INIT.LISP, the user is
asked to type the name of the site initialization file. Previously, this
prompt was printed in the prompt window. Now, the prompt is printed in the
top level typescript window.

* New function NORMALCOMMENTS for setting NORMALCOMMENTSFLG (2035 2046)

The interface for setting the "remote comment" facility has changed. The
recommended way to enable and disable this facility is to call the new
function NORMALCOMMENTS, rather than setting the variable NORMALCOMMENTSFLG.

(NORMALCOMMENTS NIL) enables the "remote comment" facility, and
(NORMALCOMMENTS T) disables it (the default).

