0.1 TTYIN - A DISPLAY TYPEIN EDITOR

TTYIN is an Interlisp function for reading input from the terminal. It features altmode completion,
spelling correction, help facility, and fancy editing, and can aso serve as a gloried free text input
function. This document is divided into two major sections: how to use TTYIN from the user's point of
view, and from the programmer’s.

TTYIN exists in implementations for Interlisp- 10 and Interlisp- D. The two are substantially compatible,
but the capabilities of the two systems di er (Interlisp- D has a more powerful display and allows greater
access to the system primitives needed to control it eectively; it also has a mouse, greatly reducing the
need for keyboard- oriented editing commands). Descriptions of both are included in this document for
completeness, but Interlisp- D users may nd large sections irrelevant.

011 Entering Input With TTYIN

There are two major ways of using TTYIN: (1) set LI SPXREADFN to TTYI N, so the LISPX executive
uses it to obtain input, and (2) call TTYI N from within a program to gather text input. Mostly the same
rules apply to both; places where it makes a di erence are mentioned below.

The following characters may be used to edit your input, independent of what kind of terminal you are
on. The more TTYIN knows about your terminal, of course, the nicer some of these will behave. Some
functions are performed by one of several characters, any character that you happen to have assigned
as an interrupt character will, of couse, not be read by TTYIN. There is a (somewhat inelegant) way of
changing which characters perform which functions, described under TTYl NREADMACROS later on.

"A, BS, DELETE
Deletes a character. At the start of the second or subsequent lines of your input, deletes the
last character of the previous line.

"W Deletes a “*'word’. Generaly this means back to the last space or parenthesis.

AQ (MU for Tops20 users)
Deletes the current line, or if the current line is blank, deletes the previous line.

"R Refreshes the current line. Two in a row refreshes the whole buer (when doing multi- line
input).

ESCAPE Tries to complete the current word from the spelling list provided to TTYI N, if any. In the case
of ambiguity, completes as far as is uniquely determined, or rings the bell. For LI SPX input,
the spelling list may be USERWORDS (see discussion of TTYl NCOWPLETEFLG, page X.XX).

Interlisp- 10 only: If no spelling list was provided, but the word begins with a‘‘<"’ tries directory
name completion (or lename completion if there is aready a matching ‘‘>'"in the current
word).

? If typed in the middle of a word will supply alternative completions from the spLST argument
to TTYI N (if any). ?ACTI VATEFLG (page X.XX) must be true to enable this feature.

F Sumex, Tops20 only: Invokes GTJFN for lename completion on the current ‘“‘word’’.

0.1

Mouse Commands[Interlisp-D Only]

Y Escapes to a Lisp userexec, from which you may return by the command OK. However, when
in READ mode and the buer isnon-empty, Y istreated as Lisp's unquote macro instead, so
you have to use edit-Y (below) to invoke the userexec.

<middle- blank> in Interlisp- D, LF in Interlisp- 10
Retrieves characters from the previous non-empty buer when it is able to; e.g., when typed at
the beginning of the line this command restores the previous line you typed a TTYIN; when
typed in the middle of aline lls in the remaining text from the old line; when typed following
AQ or "W restores what those commands erased.

; If typed asthe rst character of the line means the line is a comment; it isignored, and TTYIN
loops back for more input.

X Goes to the end of your input (or end of expression if there is an excess right parenthesis) and
returns if parentheses are balanced, beeps if not. Currently implemented in Interlisp- D only.

During most kinds of input, TTYIN isin “‘autoll’’ mode: if a space is typed near the right margin, a
carriage return is simulated to start a new line. In fact, on cursor- addressable displays, lines are aways
broken, if possible, so that no word straddles the end of the line. The ‘‘pseudo-carriage return’” ending
the line is still read as a space, however; i.e., the program keeps track of whether aline ends in a carriage
return or is merely broken at some convenient point. You won't get carriage returns in your strings unless
you explicitly type them.

012 Mouse Commands|Interlisp-D Only]

The mouse buttons are interpreted as follows during TTYIN input:

LEFT Moves the caret to where the cursor is pointing. As you hold down LEFT, the caret moves
around with the cursor; after you let up, any typein will be inserted at the new position.

M DDLE Like LEFT, but moves only to word boundaries.

RI GHT Deletes text from the caret to the cursor, either forward or backward. While you hold down
Rl GHT, the text to be deleted is complemented; when you let up, the text actually goes away.
If you let up outside the scope of the text, nothing is killed (this is how to ‘‘cancel’’ the
command). This isroughly the same as CTRL-RI GHT with no initial selection (below).

If you hold down CTRL and/or SHI FT while pressing the mouse buttons, you instead get secondary
selection, move selection or delete selection. You make a selection by bugging LEFT (to select a character)
or M DDLE (to select a word), and optionally extend the selection either left or right using Rl GHT. While
you are doing this, the caret does not move, but your selected text is highlighted in a manner indicating
what is about to happen. When you have made your selection (al mouse buttons up now), lift up on
CTRL and/or SHI FT and the action you have selected will occur, which is:

SHI FT The selected text as typein at the caret. The text is highlighted with a broken underline during
selection.

CTRL Delete the selected text. The text is complemented during selection.

CTRL-SHI FT
Combines the above: delete the selected text and insert it at the caret. This is how you move

0.2

text about.

You can cancel a selection in progress by pressing LEFT or M DDLE as if to select, and moving outside
the range of the text.

The most recent text deleted by mouse command can be inserted at the caret by typing <middlie- blank>
(the same key that retrieves the previous buer when issued at the end of a line).

0.1.3 Display Editing Commands

On edit-key terminals (Datamedia): In Interlisp- 10, TTYIN reads from the terminal in binary mode,
allowing many more editing commands via the edit key, in the style of TVEDIT commands. Note that
due to Tenex's unfortunate way of handling typeahead, it is not possible to type ahead edit commands
before TTYIN has started (i.e., before its prompt appears), because the edit bit will be thrown away. Also,
since ESCAPE has numerous other meanings in Lisp and even in TTYIN (for completion), ESCAPE is
not used as a substitute for the edit key.

In Interlisp- D: Users will probably have little use for most of these commands, as cursor positioning can
often be done more conveniently, and certainly more obviously, with the mouse. Nevertheless, some
commands, such as the case changing commands, can be useful. The <bottom- blank> key can be used
as an edit (meta) key in Chorus and subsequent releases if you perform (TTYI NVETA T). This cdls
(METASH FT T) to enable the meta key, redenes the middle and top blank keys, and informs TTYIN
that you want to use them. Alternatively, you can use the EDI TPREFI XCHAR (by default on <top-blank>)
as described in the next paragraph.

On edit-keyless display terminals (Heath): If you want to type any of these commands, you need to prex
them with the ‘‘edit prex’’ character. Set the variable EDI TPREFI XCHAR to the character code of the
desired prex char. Type the edit prex twice to give an ‘‘edit-ESCAPE’’ command. Some users of the
TENEX TVEDIT program like to make ESCAPE (33Q) be the edit prex, but this makes it somewhat
awkward to ever use escape completion.

On edit-keyless hardcopy terminals: You probably want to ignore this section, since you won't be able
to see what's going on when you issure edit commands, there is no attempt made to echo anything
reasonable.

In the descriptions below, ‘‘current word’ means the word the cursor is under, or if under a space, the
previous word. Currently parentheses are treated as spaces, which is usualy what you want, but can
occasionally cause confusion in the word deletion commands. The notation [CHAR] means edit-CHAR ,
if you have an edit key, or <editprexchar> cHAR if you don't; $ = escape. Most commands can be
preceded by numbers or escape (means innity), only the rst of which requires the edit key (or the edit
prex). Some commands also accept negative arguments, but some only look at the magnitude of the
arg. Most of these commands are taken from the display editors TVEDIT and/or E, and are conned to
work within one line of text unless otherwise noted.

Cursor Movement Commands:

[delete], [be], [<]
Back up one (or n) characters.

[space], [>]
Move forward one (or n) characters.

0.3

[l
[If]
[d
DI
[tab]
["L]

[{]and [}]

[[] (edit-1

Display Editing Commands

Moves up one (or n) lines.

Moves down one (or n) lines.

Move back one (or n) words.

Move ahead one (or n) words.

Moves to end of ling; with an argument moves to nth end of line; [$tab] goes to end of buer.

Moves to start of line (or nth previous, or start of bu er).

Go to start and end of buer, respectively (like [$'L] and [$tab]).

eft- bracket)
Moves to beginning of the current list, where cursor is currently under an element of that list
or its closing paren. (See aso the auto- parenthesis- matching feature below under ‘‘Flags’.)

[1] (edit-right- bracket)

[SX]

[Bx]

Moves to end of current list.
Skips ahead to next (or nth) occurrence of character x, or rings the bell.

Backward search, i.e, short for [-§] or [-nS].

Buer Modi cation Commands:

[2X]

[A] or [R]

[K]

[1]

[cr]

(O]

[T]

Zaps characters from cursor to next (or nth) occurrence of x. There isno unzap command yet.

Repeat the last S, B or Z command, regardiess of any intervening input (note this di ers from
Tvedit's A command).

Kills the character under the cursor, or n chars starting at the cursor.

Begin inserting. Exit insert with any edit command. Characters you type will be inserted, rather
than overwriting the existing text. If EMACSFLG (page X.XX) is true (default in Interlisp- D),
you are aways in insert mode, and this command is a noop.

Inserting <cr> behaves dlightly di erent from in tvedit. The sequence [l<cr>] behaves as in
TVEDIT; it inserts a blank line ahead of the cursor. <cr>typed any other time while in insert
mode actualy inserts a <cr>, behaving somewhat like TVEDIT's [B]. [$l] is the same as [I<cr>].

When the buer isempty isthe same as <If>,i.e. restores buer's previous contents. Otherwise
is just like a <cr> (except that it also terminates an insert). Thus, [<cr><cr>]will repeat the
previous input (as will <If><cr>without the edit key).

Does ‘‘Open line'’, inserting a crif after the cursor, i.e, it breaks the line but leaves the cursor
where it is.

Transposes the characters before and after the cursor. When typed at the end of a line,
transposes the previous two characters. Refuses to handle funny cases, such as tabs.

04

[C]

[L]

[U]

[C]

[*Ql

["W]

Grabs the contents of the previous line from the cursor position onward. [nG] grabs the nth
previous line.

Lowercases current word, or n words on line. [$L] lowercases the rest of the line, or if given
at the end of line lowercases the entire line.

Uppercases anaogoudly.

Capitalize. If you give it an argument, only the rst word is capitalized; the rest are just
lowercased.

Deletes the current line. [$°Q] deletes from the current cursor position to the end of the bu er.
No other arguments are handled.

Deletes the current word, or the previous word if sitting on a space.

[D] and [D<cr>]

[J

[3F]

Are the same as [*W] and [*Q], for approximate compatibility with TVEDIT.

“Justify’” this line. This will break it if it is too long, or move words up from the next line
if too short. Will not join to an empty line, or one starting with a tab (both of which are
interpreted as paragraph breaks). Any new line bresks it introduces are considered spaces, not
carriage returns. [nJ] justies n lines.

The linelength isdened as TTYJUSTLENGTH, ignoring any prompt characters at the margin. If
TTYJUSTLENGTH is negative, it isinterpreted asrelative to the right margin. TTYJUSTLENGTH
isinitially 8 in Interlisp- D, 72 in Interlisp- 10.

““Finishes’ the input, regardiess of where the cursor is. Speci caly, it goes to the end of the
input and enters a <cr>, °Z or ‘‘]"’,depending on whether normal, REPEAT or READ input is
happening. Note that a ‘‘]"’won’t necessarily end a READ, but it seems likely to in most cases
where you would be inclined to use this command, and makes for more predictable behavior.

Miscellaneous Commands:;

[Pl

[N]

[*Y]

[$"Y]

Interlisp- D: Prettyprint buer. Clears the buer and reprints it using prettyprint. If there are
not enough right parentheses, it will supply more; if there are too many, any excess remains
unprettyprinted at the end of the buer. May refuse to do anything if there is an unclosed
string or other error trying to read the buer.

Refresh line. Same as *R. [$N] refreshes the whole buer; [nN] refreshes n lines. Cursor
movement in TTYIN depends on TTYIN being the only source of output to the screen; if you
do a ~T, or a system message appears, or line noise occurs, you may need to refresh the line
for best results. In Interlisp- 10, if for some reason your termina falls out of binary mode (e.g.
can happen when returning to a Lisp running in a lower fork), Edit-<anything> is unreadable,
so you'd have to type *R instead.

Gets userexec. Thus, this is like regular MY, except when doing a READ (when MY is a read
macro and hence does not invoke this function).

Gets a userexec, but rst unreads the contents of the buer from the cursor onward. Thus if
you typed at TTYIN something destined for the Lisp executive, you can do ["L$*Y] and give
it to Lisp.

0.5

Using TTYIN for Lisp Input

L] Adds the current word to the spelling list USERWORDS. With zero arg, removes word. See
TTY!I NCOWPLETEFLG (page X.XX).

Note to Datamedia, Heath users: In addition to smple cursor movement commands and insert/delete,
TTYIN uses the display’s cursor- addressing capability to optimize cursor movements longer than a few
characters, eg. [tab] to go to the end of the line. In order to be able to address the cursor, TTYIN
has to know where it is to begin with. Lisp keeps track of the current print position within the line,
but does not keep track of the line on the screen (in fact, it knows precious little about displays, much
like Tenex). Thus, TTYIN establishes where it is by forcing the cursor to appear on the last line of the
screen. Ordinarily this is the case anyway (except possibly on startup), but if the cursor happens to be
only halfway down the screen at the time, there is a possibly unsettling leap of the cursor when TTYIN
starts.

0.14 Using TTYIN for Lisp Input

When TTYIN isloaded, or a sysout containing TTYIN is started up, the function SETREADFN is called.
If the termina is a display, it sets LI SPXREADFN to be TTYI NREAD; if the terminal is non-display,
SETREADFN will set the variable back to READ. (SETREADFN ' READ) will also set it back to READ.

There are two principal di erences between TTYI NREAD and READ: (1) parenthesis balancing. The input
does not activate on an exactly balancing right paren/bracket unless the input started with a paren/bracket,
eg., "USE (FOO) FOR (FIE) " will al be on one line, terminated by <cr>; and (2) read macros.

In Interlisp- 10, TTYIN does not use a read table (TTYIN behaves as though using the default initia
Lisp termina input readtable), so read macros and redenition of syntax characters are not supported;
however, ‘*’ ' (QUOTE) and ‘‘“Y" (EVAL) are built in, and a simple implementation of ? and ?= is
supplied. Also, the TTYI NREADMACRCS facility described below can supply some of the functionality of
immediate read macros in the editor.

In Interlisp- D, read macros are (mostly) supported. Immediate read macros take eect only if typed at
the end of the input (it's not clear what their semantics should be elsewhere).

0.15 Useful Macros

There are two useful edit macros that allow you to use TTYIN as a character editor: (1) ED loads the
current expression into the ttyin buer to be edited (this is good for editing comments and strings). Input
isterminated in the usual way (by typing a balancing right parenthesis at the end of the input, typing <cr>
at the end of an aready balanced expression, or “X anywhere inside the balanced expression). Typing
AE or clearing the buer aborts ED. (2) EE is like ED but prettyprints the expression into the buer,

and uses its own window. The variable TTYI NEDI TPROVPT controls what prompt, if any, EE uses; see
prompt argument description in next section (the initial setting is no prompt). EE is not yet implemented

in Interlisp- 10.

The macro BUF loads the current expression into the buer, preceded by E, to be used asinput however
desired; as a trivia example, to evaluate the current expression, BUF followed by a <cr>to activate the
buer will perfform roughly what the edit macro EVAL does. Of course, you can edit the E to something
else to make it an edit command.

BUF isaso dened at the executive level as a programmer’s assistant command that loads the buer with

0.6

the VALUECF the indicated event, to be edited as desired.

TV is a programmer’'s assistant command like EV [EDITV] that performs an ED on the vaue of the
variable.

And nally, if the event is considered ‘‘short’’ enough, the programmer’s assistant command FI X will load
the buer with the event's input, rather than calling the editor. If you really wanted the Interlisp editor
for your X, you could either say FI X EveNt - TTY:, or type "U (or whatever on tops20) once you
got TTYIN's version to force you into the editor.

0.16 ProgrammingWith TTYIN

(TTYIN PROWT SPLST HELP OPTIONS ECHOTOFILE TABS UNREADBUF RDTBL) [Function]
TTYIN prints PROWT , then waits for input. The value returned in the normal
caseisalist of al atoms on the line, with comma and parens returned as individual
atoms;, oPTIONS may be used to get a di erent kind of vaue back.

PROWT isan atom or string (anything else isconverted to astring). If NI L, the value of DEFAULTPROMPT ,
initially "** ", will be used. If PROWT is T, no prompt will be given. PROWT may aso be a dotted
pair (PROWT ; . PROWT ,), giving the prompt for the rst and subsequent (or over ow) lines, each
prompt being a string/atom or NI L to denote absence of prompt. Note that rebinding DEFAULTPROVPT
gives a convenient way to aect all the ‘‘ordinary’’ prompts in some program module.

SPLST is a spelling list, i.e, alist of atoms or dotted pairs (SYNONYM . RooT). If supplied, it is used
to check and correct user responses, and to provide completion if the user types ESCAPE. If SPLST is one
of the Lisp system spelling lists (e.g., USERWORDS or SPELLI NGS3), words that are escape- completed get
moved to the front, just asif a FI XSPELL had found them. Autocompletion is aso performed when user
types a break character (cr, space, paren, etc), unless one of the ‘‘noxspell”’ options below is selected;
i.e., if the word just typed would uniquely complete by ESCAPE, TTYIN behaves as though ESCAPE
had been typed.

HELP , if non-NI L, determines what happens when the user types ? or HELP. If HELP = T, program
prints back sPLST in suitable form. If HELP is any other atom, or a string containing no spaces, it
performs (DI SPLAYHELP HeLp). Anything else is printed asis. If HELP iSNIL, ? and HELP are
treated as any other atoms the user types. [DI SPLAYHELP is a user-supplied function, initially a noop;
systems with a suitable HASH package, for example, have dened it to display a piece of text from a
hash le associated with the key HELP.]

OPTIONS is an atom or list of atoms chosen from among the following:

NOFI XSPELL Uses spLsT for HELP and Escape completion, but does not attempt any
FI XSPELLing. Mainly useful if sPLST is incomplete and the caller wants to
handle corrections in a more exible way than a straight FI XSPELL.

MJSTAPPROVE Does spelling correction, but requires conrmation.

CRCOWPLETE Requires conrmation on spelling correction, but also does autocompletion on <cr>
(i.e. if what user has typed so far uniquely identi es a member of spLST , completes
it). This alows you to have the benets of autocompletion and till alow new
words to be typed.

0.7

DI RECTORY

USER

FI LE

Fl X

STRI NG

NCRAI SE

NOVALUE

REPEAT

TEXT

COMVAND

READ

LI SPXREAD

NCOPROVPT

ProgrammingWith TTYIN

(only if sPLsT= NI L) Interprets Escape to mean directory name completion
[Interlisp- 10 only].

Like DI RECTORY, but does username completion. This isidentical to DI RECTORY
under Tenex [Interlisp- 10 only].

(only if spLST = NI L) Interprets Escape to mean lename completion, i.e. does a
GTJFN [Sumex and Tops20 only].

If response is not on, or does not correct to, SPLST, interacts with user until an
acceptable response is entered. A blank line (returning NI L) is always accepted.
Note that if you are willing to accept responses that are not on SPLST , you probably
should specify one of the options NOXFI SPELL , MUSTAPPROVE or CRCOVPLETE,
lest the user's new response get FI XSPELL ed away without their approval.

Line isread as a string, rather than list of atoms. Good for free text.
Does not convert lower case letters to upper case.

For use principally with the ecHorori LE arg (below). Does not compute a value,
but returns T if user typed anything, NI L if just a blank line.

For multi- line input. Repeatedly prompts until user types *Z (asin Tenex sndmsg).
Returns one long list; with STRI NG option returns a single string of everything
typed, with carriage returns (EOL) included in the string.

Implies REPEAT, NORAI SE, and NOVALUE. Additionally, input may be terminated
with AV, in which case the global ag CTRLVFLG will be set true (it isset to NI L
on any other termination). This ag may be utilized in any way the caller desires.

Only the rst word on the line is treated as belonging to sPLST , the remainder of
the line being arbitrary text; i.e., ‘‘command format’’. If other options are supplied,
COMMAND till applies to the rst word typed. Basicadly, it aways returns (cwvD
REST- OF- I NPUT) , where REST- OF- I NPUT is whatever the other options dictate
for the remainder. E.g. COWVMAND NOVALUE returns (cvp) or (ew . T),
depending on whether there was further input; COMMAND STRI NG returns (ovD
" REST- OF- INPUT ") . When used with REPEAT, COMVAND is only in eect for
the rst line typed; furthermore, if the rst line consists solely of a command, the
REPEAT isignored, i.e., the entire input istaken to be just the command.

Parens, brackets, and quotes are treated a la READ, rather than being returned as
individual atoms. Control characters may be input via the "Vx notation. Input
is terminated roughly along the lines of READ conventions: a balancing or over-
balancing right paren/bracket will activate the input, or <cr>when no parenthesis
remains unbalanced. READ overrides al other options (except NORAI SE).

Like READ, but implies that TTYIN should behave even more like READ, i.e., do
NORAI SE, not be errorset- protected, etc.

Interlisp- D only: The prompt argument is treated as usual, except that TTYIN

assumes that the prompt for the rst line has aready been printed by the caller;
the prompt for the rst line isthus used only when redisplaying the line.

0.8

ECHOTOFI LE if speci ed, user’sinput iscopied to this le, i.e, TTYIN can be used as a simple text-to- le
routine if NOVALUE isused. If EcHOTOFILE isalist, copies to all les in the list. PROWT isnot included
on the le

TABS is a special addition for tabular input. It is a list of tabstops (numbers). When user types a tab,
TTYIN automatically spaces over to the next tabstop (thus the rst tabstop isactually the second ‘‘column’
of input). Also treats specially the characters * and ‘‘; they echo normally, and then automatically tab
over.

UNREADBUF allows the caller to ""preload'' the TTYIN buer with aline of input. UNREADBUF is a ligt,
the elements of which are unread into the buer (i.e, ''the outer parentheses are stripped o‘‘) to be
edited further as desired; a simple <cr> (or ~Z for REPEAT input) will thus cause the buer's contents to
be returned unchanged. If doing READ input, the "'PRI N2 names'* of the input list are used, i.e., quotes
and %’ swill appear as needed; otherwise the buer will look as though UNREADBUF had been PRI N1'ed.
UNREADBUF s treated somewhat like READBUF, so that if it contains a pseudo- carriage return (the value
of H STSTRO), the input line terminates there.

Input can also be unread from a le, using the Hl STSTR1 format: UNREADBUF = (<val ue of
HI STSTR1> (FILE START . END)), where START and END are le byte pointers. This makes TTYIN
a miniature text le editor.

ROTBL [Interlisp- D only] is the read table to use for READing the input when one of the READ options is
given. A lot of character interpretations are hardwired into TTYIN, so currently the only eect this has
isin the actual READ, and in deciding whether a character typed at the end of the input is an immediate
read macro, for purposes of termination.

If the global variable TYPEAHEADFLG is T, or option LI SPXREAD is given, TTYIN permits type-ahead;
otherwise it clears the buer before prompting the user.

0.1.7 EE Interface

The following may be useful as a way of outsiders to call TTYIN as an editor. These functions are
currently only in Interlisp- D.

(TTYINEDI T EXPRS WNDO W PRINTFN) [Function]
This is the body of EE. Switches the tty to wNDO W, clears it, prettyprints EXPRS ,
a list of expressions, into it, and leaves you in TTYIN to edit it as Lisp input.
Returns a new list of expressions.

If PRINTFN isnon-NI L, it isa function of two arguments, ExPRS and FI LE, which
iscalled instead of PRETTYPRI NT to print the expressions to the window (actually
a scratch le). Note that EXPRS isalist, so normally the outer parentheses should
not be printed. PRINTFN =T is shorthand for ‘‘unpretty’’; use PRI N2 instead of
PRETTYPRI NT.

TTYI NAUTOCLOSEFLG [Variable]
If TTYI NAUTOCLOSEFLG istrue, TTYI NEDI T closes the window on exit.

TTYI NEDI TW NDOW [Variable]
If the wNDO w arg to TTYI NEDI T isNI L, it uses the value of TTYI NEDI TW NDOW,
creating it if it does not yet exist.

0.9

?= Handler

TTY! NPRI NTFN [Variable]
The default value for PRINTFN in EE'scal to TTYI NEDI T.

(SET. TTYI NEDI T. W NDOWN W NDO W) [Function]
Cdled under a RESETLST. Switches the tty to wnpo w (defaulted as in
TTYI NEDI T) and clears it. The window's position is left so that TTYIN will be
happy with it if you now cal TTYIN yourself. Speci cally, this means positioning
an integra number of lines from the bottom of the window, the way the top-level
tty window normally is.

(TTYI N. SCRATCHFI LE) [Function]
Returns, possibly creating, the scratchle that TTYIN uses for prettyprinting its
input. The le pointer is set to zero. Since TTYIN does use this le, beware of
multiple simultaneous use of the le.

0.1.8 ?= Handler

In Interlisp, the = read macro displays the arguments to the function currently ‘‘in progress’ in the
typein. Since TTYIN wants you to be able to continue editing the buer after a ?=, it processes this
macro specialy on its own, printing the arguments below your typein and then putting the cursor back
where it was when ?= was typed. For users who want special treatment of ?=, the following hook exists:

TTYI N?=FN [Variable]
The value of this variable, if non-NI L, is a user function of one argument that is
caled when ?= istyped. The argument isthe function that ?= thinks it isinside
of. The user function should return one of the following:

NI L Norma ?= processing is performed.

T Nothing is done. Presumably the user function has done something
privately, perhaps diddled some other window, or called TTYI N. PRI NTARGS
(below).

alist (ARGS . STUFF)
Treats STUFF as the argument list of the function in question, and performs
the normal ?= processing using it.

anything else
The vaue is printed in lieu of what ?= normally prints.

At the time that ?= istyped, nothing has been ‘‘read’’ yet, so you don't have the normal context you might
expect inside a conventional readmacro. |If the user function wants to examine the typed-in arguments
being passed to the fn, however, it can perform (TTYI N. READ?=ARGS) , which bundles up everything
between the function and the typing of ?= into a list, which it returns (thus it paralels an arglist; NI L
if = was typed immediately after the function name).

(TTYI N. PRI NTARGS FN ARGS ACTUALS ARGTYPE) [Function]
Does the function/argument printing for ?=. ARGS is an argument list, ACTUALS
isalist of actual parameters (from the typein) to match up with args. ARGTYPE is
a vaue of the function ARGTYPE; it defaults to (ARGTYPE FN) .

0.10

0.1.9 Read Macros

When doing READ input in Interlisp- 10, no Lisp-style read macros are available (but the ' and ~Y macros
are built in). Principally because of the usefulness of the editor read macros (set by SETTERMCHARS),
and the desire for a way of changing the meanings of the display editing commands, the following exists
as a hack:

TTYI NREADMACROS [Variable]
Vaue is a set of shorthand inputs usesble during READ input. It is an alist of
entries (CHAR CODE . SYNONYM). If the user types the indicated character (edit

bit is denoted by the 200Q hit in charcode), TTYIN behaves asthough the synonym
character had been typed.

Special cases. 0 - the character is ignored; 200Q - pure Edit bit; means to read
another char and turn on its edit bit; 400Q - macro quote: read another char and
use its original meaning. For example, if you have macros ((33Q . 200Q) (30Q .
33Q)), then Escape (33Q) will behave as an edit prex, and *X (30Q) will behave
like Escape. Note: currently, synonyms for edit commands are not well-supported,
working only when the command is typed with no argument.

Slightly more powerful macros also can be supplied; they are recognized when
a character is typed on an empty line, i.e, as the rst thing after the prompt.
In this case, the TTYlI NREADMACRCOS entry is of the foorm (cHAR cobE T .
RESPONSE) oOr (CHAR CODE CONDITION . RESPONSE), where CONDITION is a
list that evaluates true. If RESPONSE is a list, it is EVALed; otherwise it is left
unevaluated. The result of this evaluation (or RESPONSE itself) istreated asfollows:

NI L The macro is ignored and the character reads normally, i.e., as though
TTYI NREADMACROS had never existed.

An integer
A character code, treated as above. Special case: -1 is treated like O, but
says that the display may have been altered in the evaluation of the macro,
so TTYIN should reset itself appropriately.

Anything else
This TTYIN input is terminated (with a crlf) and returns the value of
“‘response’’ (turned into a list if necessary). This is the principal use of
this facility. The macro character thus stands for the (possibly computed)
reponse, terminated if necessary with a crlf. The origina character is not
echoed.

Interrupt characters, of course, cannot be read macros, as TTYIN never sees them, but any other
characters, even non- control chars, are alowed. The ability to return NI L alows you to have conditional
macros that only apply in speci ed situations (e.g., the macro might check the prompt (LI SPXI D) or
other contextual variables). To use this speci cally to do immediate editor read macros, do the following
for each edit command and character you want to invoke it with:

(ADDTOVAR TTYI NREADMACROS (CHAR CoDE * CHARMACRO? EDI Tcom)))

For example, (ADDTOVAR TTYI NREADMACROS (12Q CHARMACRO? NXP)) will make linefeed do the

011

Assorted Flags

NXP command. Note that this will only activate linefeed at the beginning of a line, not anywhere in the
line. There will probably be a user function to do this in the next release.

Note that putting (12Q T . NXP) on TTYlI NREADMACROS would aso have the eect of returning
"NXP" from the READ call so that the editor would do an NXP. However, TTYIN would aso return NXP
outside the editor (probably resulting in a u.b.a. error, or convincing DWIM to enter the editor), and
also the clearing of the output buer (performed by CHARMACRO?) would not happen.

0.1.10 Assorted Flags

These ags control aspects of TTYIN's behavior. Some have aready been mentioned. Their initial values
are all NI L. In Interlisp- D, the ags are dl initidly T.

TYPEAHEADFLG [Variable]
If true, TTYIN aways permits typeahead; otherwise it clears the buer for any
but LI SPXREAD input.

?ACT| VATEFLG [Variable]
If true, enables the feature whereby ? lists alternative completions from the current
spelling list.

EMACSFLG [Variable]

A ects display editing. When true, TTYIN tries to behave a little more like
EMACS (in very simple ways) than TVEDIT. Speci cally, it has the following
eects currently: (1) al non-edit characters self-insert (i.e. behave as if you're
always in Insert mode); (2) [D] isthe EMACS delete to end of word command.

SHOWPARENFLG [Variable]
If true, then whenever you are typing Lisp input and type aright parenthesis/bracket,
TTYIN will briey move the cursor to the matching parenthesis/bracket, assuming
it is dill on the screen. The cursor stays there for about 1 second, or until you
type another character (i.e., if you type fast you'll never notice it). This feature
was inspired by a similar EMACS feature, and turned out to be pretty easy to
imple ment.

TTYI NBSFLG [Variable]
Causes TTYIN to aways physically backspace, even if you're running on a non-
display (not a DM or Heath), rather than print \deletedtext\ (this assumes your
hardcopy termina or glass tty is capable of backspacing). If TTYINBSFLG isLF,
then in addition to backspacing, TTYIN x'sout the deleted characters as it backs
up, and when you stop deleting, it outputs a linefeed to drop to a new, clean line
before resuming. To save paper, this linefeed operation is not done when only a
single character is deleted, on the grounds that you can probably gure out what

you typed anyway.

TTY!I NRESPONSES [Variable]
An alist of specia responses that will be handled by routines designated by the
programmer. See ‘‘Special Responses’, below.

TTY! NERRORSETFLG [Variable]
[Interlisp- D only] If true, non- LI SPXREAD inputs are errorset- protected (“E traps

0.12

back to the prompt), otherwise errors propagate upwards. Initially NI L.

TTYI NMAI LFLG [Variable]
[Tenex only] When true, performs mail checking, etc. before most inputs (except
EVALQT inputs, where it isassumed this has aready been done, or inputs indented
by more than a few spaces). The MAI LWATCH package must be loaded for this.

TTYI NCOVPLETEFLG [Variable]

If true, enables Escape completion from USERWORDS during READ inputs. Details
below.

USERWORDS (page X.XX) contains words you mentioned recently: functions you have dened or edited,
variables you have set or evaluated at the executive level, etc. This happens to be a very convenient list
for context- free escape completion; if you have recently edited a function, chances are good you may
want to edit it again (typing ‘‘EF xx$') or type a cal to it. If there is no completion for the current
word from USERWORDS, the escape echoes as ‘‘$'’,i.e. nothing special happens; if there is more than
one possible completion, you get beeped. If typed when not inside a word, Escape completes to the
value of LASTWORD, i.e., the last thing you typed that the p.a. ‘‘noticed’’ (setting TTYI NCOVPLETEFLG
to O disables this latter feature), except that Escape at the beginning of the line is left aone (it isap.a
command).

If you really wanted to enter an escape, you can, of course, just quote it with a ~V, like you can other
control chars.

You may explicitly add words to USERWORDS yourself that wouldn't get there otherwise. To make this
convenient online the edit command [] means ‘‘add the current atom to USERWORDS' (you might think
of the command as ‘‘pointing out this atom’’). For example, you might be entering a function de nition

and want to ‘‘point to'” one or more of its arguments or prog variables. Giving an argument of zero to
this command will instead remove the indicated atom from USERWORDS.

Note that this feature loses some of its value if the spelling list is too long, for then the completion takes
too long computationally and, more important, there are too many alternative completions for you to get
by with typing a few characters followed by escape. Lisp’'s maintenance of the spelling list USERWORDS
keeps the *‘temporary’’ section (which is where everything goes initialy unless you say otherwise) limited
to #USERWORDS atoms, initially 100. Words fall o the end if they haven't been used (they are ‘‘used’”
if FI XSPELL corrects to one, or you use <escape> to complete one).

0.1.11 Special Responses

There is a facility for handling ‘‘special responses’ during any non-READ TTYIN input. This action is
independent of the particular call to TTYIN, and exists to allow you to eectively ‘‘advise” TTYIN to
intercept certain commands. After the command is processed, control returns to the origina TTYIN call.
The facility is implemented via the list TTYI NRESPONSES.

TTY! NRESPONSES [Variable]
TTY! NRESPONSES is a list of elements, each of the form:

(COMWANDS RESPONSE- FORM OPTI ON)

COMVANDS is a single atom or list of commands to be recognized, RESPONSE-
FORM is EVALed (if alist), or APPLYed (if an atom) to the command and the rest

0.13

Display Types

of the line. Within this form one can reference the free variables COVMAND (the
command the user typed) and LI NE (the rest of the ling). If oPTIoN is the atom
LI NE, this means to pass the rest of line as a list; if it is STRI NG, this means to
pass it as a string; otherwise, the command is only valid if there is nothing else
on the line. If RESPONSE- FORM returns the atom | GNORE, it is not trested as a
special response (i.e. the input isreturned normally as the result of TTYIN).

In MYCIN, the COVWENT command is handled this way; any time the user types COMVENT as the rst
word of input, TTYIN passes the rest of the line to a mycin-dened function which prompts for the
text of the comment (recursively using TTYIN with the TEXT option). When control returns, TTYIN
goes back and prompts for the original input again. The TTYI NRESPONSES entry for this is (COMVENT
(GRIPE LINE) LIST); GRIPEisaMYCIN function of one argument (the one-line comment, or NI L
for extended comments).

Suggested use: global commands or options can be added to the toplevel value of TTYI NRESPONSES. For
more specialized commands, rebind TTYlI NRESPONSES to (APPEND NEVENTRIES — TTYI NRESPONSES)
inside any module where you want to do this sort of specia processing.

Special responses are not checked for during READ-style input.

0.1.12 Display Types

[This is not relevant in Interlisp- D]

TTYIN determines the type of display by calling DI SPLAYTERMP, which is initially dened to test the
value of the GTTYP jsys. It returns either NI L (for printing terminals) or a small number giving TTYIN's
internal code for the terminal type. The types TTYIN currently knows about:

0 = glasstty (capable of deleting chars by backspacing, but little else);
1 = Datamedia;
2 = Heath.

Only the Datamedia has full editing power. DI SPLAYTERMP has built into it the correct terminal types
for Sumex and Stanford campus 20's: Datamedia = 11 on tenex, 5 on tops20; Heath = 18 on Tenex,
25 on tops20. You can override those values by setting the variable DI SPLAYTYPES to be an dist
associating the GITYP value with one of these internal codes. For example, Sumex displays correspond to
DI SPLAYTYPES = ((11 . 1) (18 . 2)) [dthough this is actualy compiled into DI SPLAYTERWP
for speed]. Any display terminal other than Datamedia and Heath can probably safely be assigned to ‘0
for glass tty.

To add new terminal types, you have to choose a number for it, add new code to TTYIN for it and
recompile. The TTYIN code speci es what the capabilities of the terminal are, and how to do the primitive
operations: up, down, left, right, address cursor, erase screen, erase to end of line, insert character, etc.

For terminas lacking an Edit key (currently only Datamedias have it), set the variable EDI TPREFI XCHAR
to the ascii code of an Edit “‘prex’’ (i.e. anything typed preceded by the prex is considered to have the
edit bit on). If your EDI TPREFI XCHAR is 33Q (Escape), you can type areal Escape by typing 3 of them
(2 won't do, since that means ‘‘Edit-Escape’’, a legitimate argument to another command). You could
also dene an Escape synonym with TTYI NREADMACRGCS if you wanted (but currently it doesn’t work in

0.14

lename completion). Setting EDI TPREFI XCHAR for a termina that is not equipped to handle the full
range of editing functions (only the Heath and Datamedia are currently so equipped) is not guaranteed
to work, i.e. the display will not always be up to date; but if you can keep track of what you're doing,
together with an occasional “R to help out, go right ahead.

0.15

Display Types

0.16

