
0.1 TTYIN - A DISPLAY TYPEIN EDITOR

TTYIN is an Interlisp function for reading input from the terminal. It features altmode completion,
spelling correction, help facility, and fancy editing, and can also serve as a glori�ed free text input
function. This document is divided into two major sections: how to use TTYIN from the user’s point of
view, and from the programmer’s.

TTYIN exists in implementations for Interlisp- 10 and Interlisp- D. The two are substantially compatible,
but the capabilities of the two systems di�er (Interlisp- D has a more powerful display and allows greater
access to the system primitives needed to control it e�ectively; it also has a mouse, greatly reducing the
need for keyboard- oriented editing commands). Descriptions of both are included in this document for
completeness, but Interlisp- D users may �nd large sections irrelevant.

0.1.1 Entering Input With TTYIN

There are two major ways of using TTYIN: (1) set to , so the LISPX executive
uses it to obtain input, and (2) call from within a program to gather text input. Mostly the same
rules apply to both; places where it makes a di�erence are mentioned below.

The following characters may be used to edit your input, independent of what kind of terminal you are
on. The more TTYIN knows about your terminal, of course, the nicer some of these will behave. Some
functions are performed by one of several characters; any character that you happen to have assigned
as an interrupt character will, of couse, not be read by TTYIN. There is a (somewhat inelegant) way of
changing which characters perform which functions, described under later on.

^A, BS, DELETE
Deletes a character. At the start of the second or subsequent lines of your input, deletes the
last character of the previous line.

^W Deletes a ‘‘word’’. Generally this means back to the last space or parenthesis.

^Q (^U for Tops20 users)
Deletes the current line, or if the current line is blank, deletes the previous line.

^R Refreshes the current line. Two in a row refreshes the whole bu�er (when doing multi- line
input).

ESCAPE Tries to complete the current word from the spelling list provided to , if any. In the case
of ambiguity, completes as far as is uniquely determined, or rings the bell. For input,
the spelling list may be (see discussion of , page X.XX).

Interlisp- 10 only: If no spelling list was provided, but the word begins with a ‘‘<’’,tries directory
name completion (or �lename completion if there is already a matching ‘‘>’’in the current
word).

? If typed in the middle of a word will supply alternative completions from the argument
to (if any). (page X.XX) must be true to enable this feature.

^F Sumex, Tops20 only: Invokes for �lename completion on the current ‘‘word’’.

0.1

LISPXREADFN TTYIN
TTYIN

TTYINREADMACROS

TTYIN
LISPX

USERWORDS TTYINCOMPLETEFLG

TTYIN ?ACTIVATEFLG

GTJFN

SPLST

Mouse Commands [Interlisp-D Only]

^Y Escapes to a Lisp userexec, from which you may return by the command . However, when
in READ mode and the bu�er is non- empty, ^Y is treated as Lisp’s unquote macro instead, so
you have to use edit- ^Y (below) to invoke the userexec.

<middle- blank> in Interlisp- D, LF in Interlisp- 10
Retrieves characters from the previous non- empty bu�er when it is able to; e.g., when typed at
the beginning of the line this command restores the previous line you typed at TTYIN; when
typed in the middle of a line �lls in the remaining text from the old line; when typed following
^Q or ^W restores what those commands erased.

; If typed as the �rst character of the line means the line is a comment; it is ignored, and TTYIN
loops back for more input.

^X Goes to the end of your input (or end of expression if there is an excess right parenthesis) and
returns if parentheses are balanced, beeps if not. Currently implemented in Interlisp- D only.

During most kinds of input, TTYIN is in ‘‘auto�ll’’ mode: if a space is typed near the right margin, a
carriage return is simulated to start a new line. In fact, on cursor- addressable displays, lines are always
broken, if possible, so that no word straddles the end of the line. The ‘‘pseudo-carriage return’’ ending
the line is still read as a space, however; i.e., the program keeps track of whether a line ends in a carriage
return or is merely broken at some convenient point. You won’t get carriage returns in your strings unless
you explicitly type them.

0.1.2 Mouse Commands [Interlisp-D Only]

The mouse buttons are interpreted as follows during TTYIN input:

Moves the caret to where the cursor is pointing. As you hold down , the caret moves
around with the cursor; after you let up, any typein will be inserted at the new position.

Like , but moves only to word boundaries.

Deletes text from the caret to the cursor, either forward or backward. While you hold down
, the text to be deleted is complemented; when you let up, the text actually goes away.

If you let up outside the scope of the text, nothing is killed (this is how to ‘‘cancel’’ the
command). This is roughly the same as - with no initial selection (below).

If you hold down and/or while pressing the mouse buttons, you instead get secondary
selection, move selection or delete selection. You make a selection by bugging (to select a character)
or (to select a word), and optionally extend the selection either left or right using . While
you are doing this, the caret does not move, but your selected text is highlighted in a manner indicating
what is about to happen. When you have made your selection (all mouse buttons up now), lift up on

and/or and the action you have selected will occur, which is:

The selected text as typein at the caret. The text is highlighted with a broken underline during
selection.

Delete the selected text. The text is complemented during selection.

-
Combines the above: delete the selected text and insert it at the caret. This is how you move

0.2

OK

LEFT LEFT

MIDDLE LEFT

RIGHT
RIGHT

CTRL RIGHT

CTRL SHIFT
LEFT

MIDDLE RIGHT

CTRL SHIFT

SHIFT

CTRL

CTRL SHIFT

text about.

You can cancel a selection in progress by pressing or as if to select, and moving outside
the range of the text.

The most recent text deleted by mouse command can be inserted at the caret by typing <middle- blank>
(the same key that retrieves the previous bu�er when issued at the end of a line).

0.1.3 Display Editing Commands

On edit- key terminals (Datamedia): In Interlisp- 10, TTYIN reads from the terminal in binary mode,
allowing many more editing commands via the edit key, in the style of TVEDIT commands. Note that
due to Tenex’s unfortunate way of handling typeahead, it is not possible to type ahead edit commands
before TTYIN has started (i.e., before its prompt appears), because the edit bit will be thrown away. Also,
since ESCAPE has numerous other meanings in Lisp and even in TTYIN (for completion), ESCAPE is
not used as a substitute for the edit key.

In Interlisp- D: Users will probably have little use for most of these commands, as cursor positioning can
often be done more conveniently, and certainly more obviously, with the mouse. Nevertheless, some
commands, such as the case changing commands, can be useful. The <bottom- blank> key can be used
as an edit (meta) key in Chorus and subsequent releases if you perform . This calls

to enable the meta key, rede�nes the middle and top blank keys, and informs TTYIN
that you want to use them. Alternatively, you can use the (by default on <top-blank>)
as described in the next paragraph.

On edit- keyless display terminals (Heath): If you want to type any of these commands, you need to pre�x
them with the ‘‘edit pre�x’’ character. Set the variable to the character code of the
desired pre�x char. Type the edit pre�x twice to give an ‘‘edit-ESCAPE’’ command. Some users of the
TENEX TVEDIT program like to make ESCAPE (33Q) be the edit pre�x, but this makes it somewhat
awkward to ever use escape completion.

On edit- keyless hardcopy terminals: You probably want to ignore this section, since you won’t be able
to see what’s going on when you issure edit commands; there is no attempt made to echo anything
reasonable.

In the descriptions below, ‘‘current word’’ means the word the cursor is under, or if under a space, the
previous word. Currently parentheses are treated as spaces, which is usually what you want, but can
occasionally cause confusion in the word deletion commands. The notation [] means edit- ,
if you have an edit key, or <editpre�xchar> if you don’t; $ = escape. Most commands can be
preceded by numbers or escape (means in�nity), only the �rst of which requires the edit key (or the edit
pre�x). Some commands also accept negative arguments, but some only look at the magnitude of the
arg. Most of these commands are taken from the display editors TVEDIT and/or E, and are con�ned to
work within one line of text unless otherwise noted.

Cursor Movement Commands:

[delete], [bs], [<]
Back up one (or n) characters.

[space], [>]
Move forward one (or n) characters.

0.3

LEFT MIDDLE

(TTYINMETA T)
(METASHIFT T)

EDITPREFIXCHAR

EDITPREFIXCHAR

CHAR CHAR

CHAR

Display Editing Commands

[^] Moves up one (or n) lines.

[lf] Moves down one (or n) lines.

[(] Move back one (or n) words.

[)] Move ahead one (or n) words.

[tab] Moves to end of line; with an argument moves to nth end of line; [$tab] goes to end of bu�er.

[^L] Moves to start of line (or nth previous, or start of bu�er).

[{] and [}]
Go to start and end of bu�er, respectively (like [$^L] and [$tab]).

[[] (edit- left-bracket)
Moves to beginning of the current list, where cursor is currently under an element of that list
or its closing paren. (See also the auto- parenthesis- matching feature below under ‘‘Flags’’.)

[]] (edit- right- bracket)
Moves to end of current list.

[Sx] Skips ahead to next (or nth) occurrence of character x, or rings the bell.

[Bx] Backward search, i.e., short for [-S] or [-nS].

Bu�er Modi�cation Commands:

[Zx] Zaps characters from cursor to next (or nth) occurrence of x. There is no unzap command yet.

[A] or [R]
Repeat the last S, B or Z command, regardless of any intervening input (note this di�ers from
Tvedit’s A command).

[K] Kills the character under the cursor, or n chars starting at the cursor.

[I] Begin inserting. Exit insert with any edit command. Characters you type will be inserted, rather
than overwriting the existing text. If (page X.XX) is true (default in Interlisp- D),
you are always in insert mode, and this command is a noop.

Inserting <cr> behaves slightly di�erent from in tvedit. The sequence [I<cr>] behaves as in
TVEDIT; it inserts a blank line ahead of the cursor. <cr> typed any other time while in insert
mode actually inserts a <cr>, behaving somewhat like TVEDIT’s [B]. [$I] is the same as [I<cr>].

[cr] When the bu�er is empty is the same as <lf>, i.e. restores bu�er’s previous contents. Otherwise
is just like a <cr> (except that it also terminates an insert). Thus, [<cr><cr>] will repeat the
previous input (as will <lf><cr> without the edit key).

[O] Does ‘‘Open line’’, inserting a crlf after the cursor, i.e., it breaks the line but leaves the cursor
where it is.

[T] Transposes the characters before and after the cursor. When typed at the end of a line,
transposes the previous two characters. Refuses to handle funny cases, such as tabs.

0.4

EMACSFLG

[G] Grabs the contents of the previous line from the cursor position onward. [nG] grabs the nth
previous line.

[L] Lowercases current word, or n words on line. [$L] lowercases the rest of the line, or if given
at the end of line lowercases the entire line.

[U] Uppercases analogously.

[C] Capitalize. If you give it an argument, only the �rst word is capitalized; the rest are just
lowercased.

[^Q] Deletes the current line. [$^Q] deletes from the current cursor position to the end of the bu�er.
No other arguments are handled.

[^W] Deletes the current word, or the previous word if sitting on a space.

[D] and [D<cr>]
Are the same as [^W] and [^Q], for approximate compatibility with TVEDIT.

[J] ‘‘Justify’’ this line. This will break it if it is too long, or move words up from the next line
if too short. Will not join to an empty line, or one starting with a tab (both of which are
interpreted as paragraph breaks). Any new line breaks it introduces are considered spaces, not
carriage returns. [nJ] justi�es n lines.

The linelength is de�ned as , ignoring any prompt characters at the margin. If
is negative, it is interpreted as relative to the right margin.

is initially �8 in Interlisp- D, 72 in Interlisp- 10.

[$F] ‘‘Finishes’’ the input, regardless of where the cursor is. Speci�cally, it goes to the end of the
input and enters a <cr>, ^Z or ‘‘]’’,depending on whether normal, or input is
happening. Note that a ‘‘]’’won’t necessarily end a , but it seems likely to in most cases
where you would be inclined to use this command, and makes for more predictable behavior.

Miscellaneous Commands:

[P] Interlisp- D: Prettyprint bu�er. Clears the bu�er and reprints it using prettyprint. If there are
not enough right parentheses, it will supply more; if there are too many, any excess remains
unprettyprinted at the end of the bu�er. May refuse to do anything if there is an unclosed
string or other error trying to read the bu�er.

[N] Refresh line. Same as ^R. [$N] refreshes the whole bu�er; [nN] refreshes n lines. Cursor
movement in TTYIN depends on TTYIN being the only source of output to the screen; if you
do a ^T, or a system message appears, or line noise occurs, you may need to refresh the line
for best results. In Interlisp- 10, if for some reason your terminal falls out of binary mode (e.g.
can happen when returning to a Lisp running in a lower fork), Edit- <anything> is unreadable,
so you’d have to type ^R instead.

[^Y] Gets userexec. Thus, this is like regular ^Y, except when doing a READ (when ^Y is a read
macro and hence does not invoke this function).

[$^Y] Gets a userexec, but �rst unreads the contents of the bu�er from the cursor onward. Thus if
you typed at TTYIN something destined for the Lisp executive, you can do [^L$^Y] and give
it to Lisp.

0.5

TTYJUSTLENGTH
TTYJUSTLENGTH TTYJUSTLENGTH

REPEAT READ
READ

Using TTYIN for Lisp Input

[_] Adds the current word to the spelling list . With zero arg, removes word. See
(page X.XX).

Note to Datamedia, Heath users: In addition to simple cursor movement commands and insert/delete,
TTYIN uses the display’s cursor- addressing capability to optimize cursor movements longer than a few
characters, e.g. [tab] to go to the end of the line. In order to be able to address the cursor, TTYIN
has to know where it is to begin with. Lisp keeps track of the current print position within the line,
but does not keep track of the line on the screen (in fact, it knows precious little about displays, much
like Tenex). Thus, TTYIN establishes where it is by forcing the cursor to appear on the last line of the
screen. Ordinarily this is the case anyway (except possibly on startup), but if the cursor happens to be
only halfway down the screen at the time, there is a possibly unsettling leap of the cursor when TTYIN
starts.

0.1.4 Using TTYIN for Lisp Input

When TTYIN is loaded, or a sysout containing TTYIN is started up, the function is called.
If the terminal is a display, it sets to be ; if the terminal is non- display,

will set the variable back to . will also set it back to .

There are two principal di�erences between and : (1) parenthesis balancing. The input
does not activate on an exactly balancing right paren/bracket unless the input started with a paren/bracket,
e.g., ‘‘ ’’ will all be on one line, terminated by <cr>; and (2) read macros.

In Interlisp- 10, TTYIN does not use a read table (TTYIN behaves as though using the default initial
Lisp terminal input readtable), so read macros and rede�nition of syntax characters are not supported;
however, ‘‘ ’ ’’ () and ‘‘^Y’’ () are built in, and a simple implementation of ? and ?= is
supplied. Also, the facility described below can supply some of the functionality of
immediate read macros in the editor.

In Interlisp- D, read macros are (mostly) supported. Immediate read macros take e�ect only if typed at
the end of the input (it’s not clear what their semantics should be elsewhere).

0.1.5 Useful Macros

There are two useful edit macros that allow you to use TTYIN as a character editor: (1) loads the
current expression into the ttyin bu�er to be edited (this is good for editing comments and strings). Input
is terminated in the usual way (by typing a balancing right parenthesis at the end of the input, typing <cr>
at the end of an already balanced expression, or ^X anywhere inside the balanced expression). Typing
^E or clearing the bu�er aborts . (2) is like but prettyprints the expression into the bu�er,
and uses its own window. The variable controls what prompt, if any, uses; see
prompt argument description in next section (the initial setting is no prompt). is not yet implemented
in Interlisp- 10.

The macro loads the current expression into the bu�er, preceded by , to be used as input however
desired; as a trivial example, to evaluate the current expression, followed by a <cr> to activate the
bu�er will perform roughly what the edit macro does. Of course, you can edit the to something
else to make it an edit command.

is also de�ned at the executive level as a programmer’s assistant command that loads the bu�er with

0.6

USERWORDS
TTYINCOMPLETEFLG

SETREADFN
LISPXREADFN TTYINREAD

SETREADFN READ (SETREADFN ’READ) READ

TTYINREAD READ

USE (FOO) FOR (FIE)

QUOTE EVAL
TTYINREADMACROS

ED

ED EE ED
TTYINEDITPROMPT EE

EE

BUF E
BUF

EVAL E

BUF

the the indicated event, to be edited as desired.

is a programmer’s assistant command like EV [EDITV] that performs an on the value of the
variable.

And �nally, if the event is considered ‘‘short’’ enough, the programmer’s assistant command will load
the bu�er with the event’s input, rather than calling the editor. If you really wanted the Interlisp editor
for your �x, you could either say , or type ^U (or whatever on tops20) once you
got TTYIN’s version to force you into the editor.

0.1.6 Programming With TTYIN

[Function]
TTYIN prints , then waits for input. The value returned in the normal
case is a list of all atoms on the line, with comma and parens returned as individual
atoms; may be used to get a di�erent kind of value back.

is an atom or string (anything else is converted to a string). If , the value of ,
initially , will be used. If is , no prompt will be given. may also be a dotted
pair , giving the prompt for the �rst and subsequent (or over�ow) lines, each
prompt being a string/atom or to denote absence of prompt. Note that rebinding
gives a convenient way to a�ect all the ‘‘ordinary’’ prompts in some program module.

is a spelling list, i.e., a list of atoms or dotted pairs . If supplied, it is used
to check and correct user responses, and to provide completion if the user types ESCAPE. If is one
of the Lisp system spelling lists (e.g., or), words that are escape- completed get
moved to the front, just as if a had found them. Autocompletion is also performed when user
types a break character (cr, space, paren, etc), unless one of the ‘‘no�xspell’’ options below is selected;
i.e., if the word just typed would uniquely complete by ESCAPE, TTYIN behaves as though ESCAPE
had been typed.

, if non- , determines what happens when the user types ? or HELP. If = , program
prints back in suitable form. If is any other atom, or a string containing no spaces, it
performs . Anything else is printed as is. If is , ? and HELP are
treated as any other atoms the user types. [is a user- supplied function, initially a noop;
systems with a suitable HASH package, for example, have de�ned it to display a piece of text from a
hash�le associated with the key HELP.]

is an atom or list of atoms chosen from among the following:

Uses for HELP and Escape completion, but does not attempt any
ing. Mainly useful if is incomplete and the caller wants to

handle corrections in a more �exible way than a straight .

Does spelling correction, but requires con�rmation.

Requires con�rmation on spelling correction, but also does autocompletion on <cr>
(i.e. if what user has typed so far uniquely identi�es a member of , completes
it). This allows you to have the bene�ts of autocompletion and still allow new
words to be typed.

0.7

VALUEOF

TV ED

FIX

FIX - TTY:

(TTYIN)

NIL DEFAULTPROMPT
"** " T

(.)
NIL DEFAULTPROMPT

(.)

USERWORDS SPELLINGS3
FIXSPELL

NIL T

(DISPLAYHELP) NIL
DISPLAYHELP

NOFIXSPELL
FIXSPELL

FIXSPELL

MUSTAPPROVE

CRCOMPLETE

EVENT

PR OMPT SPLST HELP OPTIONS ECHOTOFILE TABS UNREADBUF RDTBL

PR OMPT

OPTIONS

PR OMPT

PR OMPT PR OMPT

PR OMPT 1 PR OMPT 2

SPLST SYNONYM R OOT

SPLST

HELP HELP

SPLST HELP

HELP HELP

OPTIONS

SPLST

SPLST

SPLST

Programming With TTYIN

(only if =) Interprets Escape to mean directory name completion
[Interlisp- 10 only].

Like , but does username completion. This is identical to
under Tenex [Interlisp- 10 only].

(only if =) Interprets Escape to mean �lename completion, i.e. does a
[Sumex and Tops20 only].

If response is not on, or does not correct to, , interacts with user until an
acceptable response is entered. A blank line (returning) is always accepted.
Note that if you are willing to accept responses that are not on , you probably
should specify one of the options , or ,
lest the user’s new response get ed away without their approval.

Line is read as a string, rather than list of atoms. Good for free text.

Does not convert lower case letters to upper case.

For use principally with the arg (below). Does not compute a value,
but returns if user typed anything, if just a blank line.

For multi- line input. Repeatedly prompts until user types ^Z (as in Tenex sndmsg).
Returns one long list; with option returns a single string of everything
typed, with carriage returns (EOL) included in the string.

Implies , , and . Additionally, input may be terminated
with ^V, in which case the global �ag will be set true (it is set to
on any other termination). This �ag may be utilized in any way the caller desires.

Only the �rst word on the line is treated as belonging to , the remainder of
the line being arbitrary text; i.e., ‘‘command format’’. If other options are supplied,

still applies to the �rst word typed. Basically, it always returns
, where is whatever the other options dictate

for the remainder. E.g. returns or ,
depending on whether there was further input; returns

. When used with , is only in e�ect for
the �rst line typed; furthermore, if the �rst line consists solely of a command, the

is ignored, i.e., the entire input is taken to be just the command.

Parens, brackets, and quotes are treated a la , rather than being returned as
individual atoms. Control characters may be input via the ^Vx notation. Input
is terminated roughly along the lines of conventions: a balancing or over-
balancing right paren/bracket will activate the input, or <cr> when no parenthesis
remains unbalanced. overrides all other options (except).

Like , but implies that TTYIN should behave even more like , i.e., do
, not be errorset- protected, etc.

Interlisp- D only: The prompt argument is treated as usual, except that TTYIN
assumes that the prompt for the �rst line has already been printed by the caller;
the prompt for the �rst line is thus used only when redisplaying the line.

0.8

DIRECTORY NIL

USER DIRECTORY DIRECTORY

FILE NIL
GTJFN

FIX
NIL

NOXFISPELL MUSTAPPROVE CRCOMPLETE
FIXSPELL

STRING

NORAISE

NOVALUE
T NIL

REPEAT
STRING

TEXT REPEAT NORAISE NOVALUE
CTRLVFLG NIL

COMMAND

COMMAND (
.)

COMMAND NOVALUE () (. T)
COMMAND STRING (

. " ") REPEAT COMMAND

REPEAT

READ READ

READ

READ NORAISE

LISPXREAD READ READ
NORAISE

NOPROMPT

SPLST

SPLST

SPLST

SPLST

ECHOTOFILE

SPLST

CMD

REST- OF-INPUT REST- OF-INPUT

CMD CMD

CMD

REST- OF-INPUT

if speci�ed, user’s input is copied to this �le, i.e., TTYIN can be used as a simple text- to-�le
routine if is used. If is a list, copies to all �les in the list. is not included
on the �le.

is a special addition for tabular input. It is a list of tabstops (numbers). When user types a tab,
TTYIN automatically spaces over to the next tabstop (thus the �rst tabstop is actually the second ‘‘column’’
of input). Also treats specially the characters * and ‘‘; they echo normally, and then automatically tab
over.

allows the caller to ’’preload‘‘ the TTYIN bu�er with a line of input. is a list,
the elements of which are unread into the bu�er (i.e., ’’the outer parentheses are stripped o�‘‘) to be
edited further as desired; a simple <cr> (or ^Z for input) will thus cause the bu�er’s contents to
be returned unchanged. If doing input, the ’’ names‘‘ of the input list are used, i.e., quotes
and %’s will appear as needed; otherwise the bu�er will look as though had been ’ed.

is treated somewhat like , so that if it contains a pseudo- carriage return (the value
of), the input line terminates there.

Input can also be unread from a �le, using the format: =
, where and are �le byte pointers. This makes TTYIN

a miniature text �le editor.

[Interlisp- D only] is the read table to use for ing the input when one of the options is
given. A lot of character interpretations are hardwired into TTYIN, so currently the only e�ect this has
is in the actual , and in deciding whether a character typed at the end of the input is an immediate
read macro, for purposes of termination.

If the global variable is , or option is given, TTYIN permits type- ahead;
otherwise it clears the bu�er before prompting the user.

0.1.7 EE Interface

The following may be useful as a way of outsiders to call TTYIN as an editor. These functions are
currently only in Interlisp- D.

[Function]
This is the body of . Switches the tty to , clears it, prettyprints ,
a list of expressions, into it, and leaves you in TTYIN to edit it as Lisp input.
Returns a new list of expressions.

If is non- , it is a function of two arguments, and , which
is called instead of to print the expressions to the window (actually
a scratch �le). Note that is a list, so normally the outer parentheses should
not be printed. =T is shorthand for ‘‘unpretty’’; use instead of

.

[Variable]
If is true, closes the window on exit.

[Variable]
If the arg to is , it uses the value of ,
creating it if it does not yet exist.

0.9

NOVALUE

REPEAT
READ PRIN2

PRIN1
READBUF

HISTSTR0

HISTSTR1 (<value of
HISTSTR1> (.))

READ READ

READ

TYPEAHEADFLG T LISPXREAD

(TTYINEDIT)
EE

NIL
PRETTYPRINT

PRIN2
PRETTYPRINT

TTYINAUTOCLOSEFLG
TTYINAUTOCLOSEFLG TTYINEDIT

TTYINEDITWINDOW
TTYINEDIT NIL TTYINEDITWINDOW

ECHOTOFILE

ECHOTOFILE PR OMPT

TABS

UNREADBUF UNREADBUF

UNREADBUF

UNREADBUF

UNREADBUF

FILE STAR T END STAR T END

RDTBL

EXPRS WINDO W PRINTFN

WINDO W EXPRS

PRINTFN EXPRS FILE

EXPRS

PRINTFN

WINDO W

?= Handler

[Variable]
The default value for in ’s call to .

[Function]
Called under a . Switches the tty to (defaulted as in

) and clears it. The window’s position is left so that TTYIN will be
happy with it if you now call TTYIN yourself. Speci�cally, this means positioning
an integral number of lines from the bottom of the window, the way the top- level
tty window normally is.

[Function]
Returns, possibly creating, the scratch�le that TTYIN uses for prettyprinting its
input. The �le pointer is set to zero. Since TTYIN does use this �le, beware of
multiple simultaneous use of the �le.

0.1.8 ?= Handler

In Interlisp, the ?= read macro displays the arguments to the function currently ‘‘in progress’’ in the
typein. Since TTYIN wants you to be able to continue editing the bu�er after a ?=, it processes this
macro specially on its own, printing the arguments below your typein and then putting the cursor back
where it was when ?= was typed. For users who want special treatment of ?=, the following hook exists:

[Variable]
The value of this variable, if non- , is a user function of one argument that is
called when ?= is typed. The argument is the function that ?= thinks it is inside
of. The user function should return one of the following:

Normal ?= processing is performed.

Nothing is done. Presumably the user func tion has done something
privately, per haps diddled some other window, or called
(below).

a list
Treats as the argument list of the function in question, and performs
the normal ?= processing using it.

anything else
The value is printed in lieu of what ?= normally prints.

At the time that ?= is typed, nothing has been ‘‘read’’yet, so you don’t have the normal context you might
expect inside a conventional readmacro. If the user function wants to examine the typed- in arguments
being passed to the fn, however, it can perform , which bundles up everything
between the function and the typing of ?= into a list, which it returns (thus it parallels an arglist;
if ?= was typed immediately after the function name).

[Function]
Does the function/argument printing for ?=. is an argument list,
is a list of actual parameters (from the typein) to match up with args. is
a value of the function ; it defaults to .

0.10

TTYINPRINTFN
EE TTYINEDIT

(SET.TTYINEDIT.WINDOW)
RESETLST

TTYINEDIT

(TTYIN.SCRATCHFILE)

TTYIN?=FN
NIL

NIL

T
TTYIN.PRINTARGS

(ARGS .)

(TTYIN.READ?=ARGS)
NIL

(TTYIN.PRINTARGS)

ARGTYPE (ARGTYPE)

PRINTFN

WINDO W

WINDO W

STUFF

STUFF

FN AR GS ACTUALS AR GTYPE

AR GS A CTUALS

AR GTYPE

FN

0.1.9 Read Macros

When doing input in Interlisp- 10, no Lisp-style read macros are available (but the ’ and ^Y macros
are built in). Principally because of the usefulness of the editor read macros (set by),
and the desire for a way of changing the meanings of the display editing commands, the following exists
as a hack:

[Variable]
Value is a set of shorthand inputs useable during input. It is an alist of
entries . If the user types the indicated character (edit
bit is denoted by the 200Q bit in charcode), TTYIN behaves as though the synonym
character had been typed.

Special cases: 0 - the character is ignored; 200Q - pure Edit bit; means to read
another char and turn on its edit bit; 400Q - macro quote: read another char and
use its original meaning. For example, if you have macros ((33Q . 200Q) (30Q .
33Q)), then Escape (33Q) will behave as an edit pre�x, and ^X (30Q) will behave
like Escape. Note: currently, synonyms for edit commands are not well-supported,
working only when the command is typed with no argument.

Slightly more powerful macros also can be supplied; they are recognized when
a character is typed on an empty line, i.e., as the �rst thing after the prompt.
In this case, the entry is of the form

or , where is a
list that evaluates true. If is a list, it is ed; otherwise it is left
unevaluated. The result of this evaluation (or itself) is treated as follows:

The macro is ignored and the character reads normally, i.e., as though
had never existed.

An integer
A character code, treated as above. Special case: -1 is treated like 0, but
says that the display may have been altered in the evaluation of the macro,
so TTYIN should reset itself appropriately.

Anything else
This TTYIN input is terminated (with a crlf) and returns the value of
‘‘response’’ (turned into a list if necessary). This is the principal use of
this facility. The macro character thus stands for the (possibly computed)
reponse, terminated if necessary with a crlf. The original character is not
echoed.

Interrupt characters, of course, cannot be read macros, as TTYIN never sees them, but any other
characters, even non- control chars, are allowed. The ability to return allows you to have conditional
macros that only apply in speci�ed situations (e.g., the macro might check the prompt or
other contextual variables). To use this speci�cally to do immediate editor read macros, do the following
for each edit command and character you want to invoke it with:

For example, will make linefeed do the

0.11

READ
SETTERMCHARS

TTYINREADMACROS
READ

(.)

TTYINREADMACROS (T .
) (.)

EVAL

NIL
TTYINREADMACROS

NIL
(LISPXID)

(ADDTOVAR TTYINREADMACROS (’CHARMACRO?)))

(ADDTOVAR TTYINREADMACROS (12Q CHARMACRO? NXP))

CHAR CODE SYNONYM

CHAR CODE

RESPONSE CHAR CODE CONDITION RESPONSE CONDITION

RESPONSE

RESPONSE

CHAR CODE EDITCOM

Assorted Flags

command. Note that this will only activate linefeed at the beginning of a line, not anywhere in the
line. There will probably be a user function to do this in the next release.

Note that putting on would also have the e�ect of returning
from the call so that the editor would do an . However, TTYIN would also return

outside the editor (probably resulting in a u.b.a. error, or convincing DWIM to enter the editor), and
also the clearing of the output bu�er (performed by ?) would not happen.

0.1.10 Assorted Flags

These �ags control aspects of TTYIN’s behavior. Some have already been mentioned. Their initial values
are all . In Interlisp- D, the �ags are all initially .

[Variable]
If true, TTYIN always permits typeahead; otherwise it clears the bu�er for any
but input.

[Variable]
If true, enables the feature whereby ? lists alternative completions from the current
spelling list.

[Variable]
A�ects display editing. When true, TTYIN tries to behave a little more like
EMACS (in very simple ways) than TVEDIT. Speci�cally, it has the following
e�ects currently: (1) all non- edit characters self-insert (i.e. behave as if you’re
always in Insert mode); (2) [D] is the EMACS delete to end of word command.

[Variable]
If true, then when ever you are typing Lisp input and type a right parenthesis/bracket,
TTYIN will brie�y move the cursor to the match ing parenthesis/bracket, assuming
it is still on the screen. The cursor stays there for about 1 second, or un til you
type another charac ter (i.e., if you type fast you’ll never notice it). This feature
was inspired by a similar EMACS feature, and turned out to be pretty easy to
imple ment.

[Variable]
Causes TTYIN to always physically backspace, even if you’re running on a non-
display (not a DM or Heath), rather than print \deletedtext\ (this assumes your
hardcopy terminal or glass tty is capable of backspacing). If TTYINBSFLG is LF,
then in addition to backspacing, TTYIN x’s out the deleted characters as it backs
up, and when you stop deleting, it outputs a linefeed to drop to a new, clean line
before resuming. To save paper, this linefeed operation is not done when only a
single character is deleted, on the grounds that you can probably �gure out what
you typed anyway.

[Variable]
An alist of special responses that will be handled by routines designated by the
programmer. See ‘‘Special Responses’’, below.

[Variable]
[Interlisp- D only] If true, non- inputs are errorset- protected (^E traps

0.12

NXP

(12Q T . NXP) TTYINREADMACROS
"NXP" READ NXP NXP

CHARMACRO

NIL T

TYPEAHEADFLG

LISPXREAD

?ACTIVATEFLG

EMACSFLG

SHOWPARENFLG

TTYINBSFLG

TTYINRESPONSES

TTYINERRORSETFLG
LISPXREAD

back to the prompt), otherwise errors propagate upwards. Initially .

[Variable]
[Tenex only] When true, performs mail checking, etc. before most inputs (except
EVALQT inputs, where it is assumed this has already been done, or inputs indented
by more than a few spaces). The package must be loaded for this.

[Variable]
If true, enables Escape completion from during READ inputs. Details
below.

(page X.XX) contains words you mentioned recently: functions you have de�ned or edited,
variables you have set or evaluated at the executive level, etc. This happens to be a very convenient list
for context- free escape completion; if you have recently edited a function, chances are good you may
want to edit it again (typing ‘‘EF xx$’’) or type a call to it. If there is no completion for the current
word from , the escape echoes as ‘‘$’’, i.e. nothing special happens; if there is more than
one possible completion, you get beeped. If typed when not inside a word, Escape completes to the
value of , i.e., the last thing you typed that the p.a. ‘‘noticed’’ (setting
to 0 disables this latter feature), except that Escape at the beginning of the line is left alone (it is a p.a.
command).

If you really wanted to enter an escape, you can, of course, just quote it with a ^V, like you can other
control chars.

You may explicitly add words to yourself that wouldn’t get there otherwise. To make this
convenient online the edit command [_] means ‘‘add the current atom to ’’ (you might think
of the command as ‘‘pointing out this atom’’). For example, you might be entering a function de�nition
and want to ‘‘point to’’ one or more of its arguments or prog variables. Giving an argument of zero to
this command will instead remove the indicated atom from .

Note that this feature loses some of its value if the spelling list is too long, for then the completion takes
too long computationally and, more important, there are too many alternative completions for you to get
by with typing a few characters followed by escape. Lisp’s maintenance of the spelling list
keeps the ‘‘temporary’’ section (which is where everything goes initially unless you say otherwise) limited
to atoms, initially 100. Words fall o� the end if they haven’t been used (they are ‘‘used’’
if corrects to one, or you use <escape> to complete one).

0.1.11 Special Responses

There is a facility for handling ‘‘special responses’’ during any non- TTYIN input. This action is
independent of the particular call to TTYIN, and exists to allow you to e�ectively ‘‘advise’’ TTYIN to
intercept certain commands. After the command is processed, control returns to the original TTYIN call.
The facility is implemented via the list .

[Variable]
is a list of elements, each of the form:

is a single atom or list of commands to be recognized;
is ed (if a list), or ed (if an atom) to the command and the rest

0.13

NIL

TTYINMAILFLG

MAILWATCH

TTYINCOMPLETEFLG
USERWORDS

USERWORDS

USERWORDS

LASTWORD TTYINCOMPLETEFLG

USERWORDS
USERWORDS

USERWORDS

USERWORDS

#USERWORDS
FIXSPELL

READ

TTYINRESPONSES

TTYINRESPONSES
TTYINRESPONSES

()

EVAL APPLY

COMMANDS RESPONSE- FORM OPTION

COMMANDS RESPONSE-

FORM

Display Types

of the line. Within this form one can reference the free variables (the
command the user typed) and (the rest of the line). If is the atom

, this means to pass the rest of line as a list; if it is , this means to
pass it as a string; otherwise, the command is only valid if there is nothing else
on the line. If returns the atom , it is not treated as a
special response (i.e. the input is returned normally as the result of TTYIN).

In MYCIN, the command is handled this way; any time the user types as the �rst
word of input, TTYIN passes the rest of the line to a mycin- de�ned function which prompts for the
text of the comment (recursively using TTYIN with the option). When control returns, TTYIN
goes back and prompts for the original input again. The entry for this is

; is a MYCIN function of one argument (the one- line comment, or
for extended comments).

Suggested use: global commands or options can be added to the toplevel value of . For
more specialized commands, rebind to
inside any module where you want to do this sort of special processing.

Special responses are not checked for during -style input.

0.1.12 Display Types

[This is not relevant in Interlisp- D]

TTYIN determines the type of display by calling , which is initially de�ned to test the
value of the jsys. It returns either (for printing terminals) or a small number giving TTYIN’s
internal code for the terminal type. The types TTYIN currently knows about:

0 = glass tty (capable of deleting chars by backspacing, but little else);

1 = Datamedia;

2 = Heath.

Only the Datamedia has full editing power. has built into it the correct terminal types
for Sumex and Stanford campus 20’s: Datamedia = 11 on tenex, 5 on tops20; Heath = 18 on Tenex,
25 on tops20. You can override those values by setting the variable to be an alist
associating the value with one of these internal codes. For example, Sumex displays correspond to

= [although this is actually compiled into
for speed]. Any display terminal other than Datamedia and Heath can probably safely be assigned to ‘‘0’’
for glass tty.

To add new terminal types, you have to choose a number for it, add new code to TTYIN for it and
recompile. The TTYIN code speci�es what the capabilities of the terminal are, and how to do the primitive
operations: up, down, left, right, address cursor, erase screen, erase to end of line, insert character, etc.

For terminals lacking an Edit key (currently only Datamedias have it), set the variable
to the ascii code of an Edit ‘‘pre�x’’ (i.e. anything typed preceded by the pre�x is considered to have the
edit bit on). If your is 33Q (Escape), you can type a real Escape by typing 3 of them
(2 won’t do, since that means ‘‘Edit-Escape’’, a legitimate argument to another command). You could
also de�ne an Escape synonym with if you wanted (but currently it doesn’t work in

0.14

COMMAND
LINE

LINE STRING

IGNORE

COMMENT COMMENT

TEXT
TTYINRESPONSES (COMMENT

(GRIPE LINE) LIST) GRIPE NIL

TTYINRESPONSES
TTYINRESPONSES (APPEND TTYINRESPONSES)

READ

DISPLAYTERMP
GTTYP NIL

DISPLAYTERMP

DISPLAYTYPES
GTTYP

DISPLAYTYPES ((11 . 1) (18 . 2)) DISPLAYTERMP

EDITPREFIXCHAR

EDITPREFIXCHAR

TTYINREADMACROS

OPTION

RESPONSE- FORM

NEWENTRIES

�lename completion). Setting for a terminal that is not equipped to handle the full
range of editing functions (only the Heath and Datamedia are currently so equipped) is not guaranteed
to work, i.e. the display will not always be up to date; but if you can keep track of what you’re doing,
together with an occasional ^R to help out, go right ahead.

0.15

EDITPREFIXCHAR

Display Types

0.16

