EVALSERVER. TTY 21- Feb-83 23:06: 55 Page

The EVAL Server -- A PUP Network Inter-Conmmunications Facility for

Interlisp-D
File: <Li spuser s>Eval Server. press
Revi sed: Feb 21, 1983, by JonL Wite

The file EVALSERVER DCOM contains routines to facilitate
comuni cation, over the EtherNet, between two or nore D nmachines
running Interlisp-D. 1In sinple usage, one or nore D machines
(Dol phi n, Dorado, or Dandelion) are started up with "servers"
running, and a "client” of the service nmerely requests (via the
ethernet) that a server EVALuate sonme form and return the results.

A user may direct his "renote" evaluation request to a specific
server, or may broadcast it on his directly-connected network; in
the latter case, at nost one of the servers will be given the
go-ahead to performthe service, but there are plans for future
extensions to pernmt results frommany servers for a broadcast
request. (Likely a request for service will be coupled with a
function to be applied to any results that come back).

These routines work nbst conveniently when the nultiple process
nmechani smis enabl ed (see <Li spusers>Proc.press), but function
quite adequately without it; additional hints will be given at the
end of this note for those who cannot have the process mechani sm
enabl ed, but who would like to have two Interlisp-D s talking to
each ot her.

Starting up the "server" side

The function cal
(EVALSERVER <durati on. m nutes> <clientslst> <gaggedclientslst>)
will initiate a background process naned "Eval Server. Li stening"
(of course, this will be a "foreground" process, if the nmultiple
process nechani smisn’'t enabl ed). Al'l argunments are optional, and
have the foll owi ng neani ng:
<duration.mnutes> -- if non-null, will run the service for
only the nunber of mnutes specified; otherwise it will run
indefinitely.
<clientslst> - - a list of ether host names (or nunbers) whom
the server is willing to service: if Tis onthis list, it
will service any request addressed to this specific host
(called, "flirtatious" node), if NIL is on the list, it wll
service any request broadcast on the connected network (called,

"prom scuous" node). Default for this list, NIL, is converted
into the union of "flirtatious" and "prom scuous" nodes.
<gaggedclientslst> -- a list of hosts for whom service will not

be perforned; NIL on this list neans no service for broadcast
requests; T on this list means no service for "nysel f" (i.e.
attenpts by sonme process running concurrently on the server
host to send a "renote" eval uation request to the sanme host,
will be rejected).
In any case, the global variables Eval ServerdientHosts and
Eval Server GaggedHosts will be dynanmically consulted for the sane
information; this is so that you may tailor the client screening
process while the server is running. The "gags" always have
precedence over the "hosts" |ists.



EVALSERVER. TTY 21- Feb-83 23:06: 55 Page

VWile the server is running, a call to
( EVALSERVER. ABORT <transaction> <guiltyparty> <errorfl g>)
will stop a currently running process, such as one that is in a
| oop, or that is "poaching" nore tine off the server than is
desireabl e; see bel ow under EVALSERVER STATUS for a definition
of the identification terns.
<transaction> may be either an integer, the "identification"
nunber of sone service, or a cons of the id nunber and the
host; the "cons" formmay be required if there are two or nore
services, from separate requesting hosts, with co-incidentally
the sane id nunber.
<gui ltyparty> permts recording why a service was stopped; it is
optional, and the default recording is "Aborted Locally by
Error/Quit".
<errorflg>is optional, and if non-NIL, will cause an ERROR to
occur if there is no transaction as specified by <transaction>
or of the transaction seens to be wedged.

VWile the server is running, a cal
( EVALSERVER. STATUS <wher ependi ngfl g> <i d>)
will return a list of information associated with the state of
currently-runni ng services, already-conpleted services, and
requests still in the input queue. A "service" is identified by a
cons of a transaction nunber and a host number; the transaction
nunber is in fact the packet id in the PUP used to conmunicate
over the EtherNet (a similar idea will eventually be used when the
server is inplemented in NS protocols).
<wher ependi ngfl g> -- selects one or nore of the informtion
lists to be output, as follows:
DONE (or COVPLETED or FI NI SHED) adds in the remants of the
list of conpleted services (which list is pruned down from
time to tinme by the "cl eanup" process nentioned above. A
gl obal variabl e, \ES. PURGEI NTERVAL. SECS, controls the
frequency of the "cleanup" actions, and al so the nmaxi mum
time for which old conpleted service records are kept);
RUNNI NG (or CURRENT) adds in the data for currently executing
eval uati ons requests;
I NPUT (or INPUTQUEUE) adds in the data for PUP's still waiting
for service
T acts like the union of DONE and RUNNI NG
ALL acts like a union of all three of DONE, RUNNI NG and
I NPUT;
NI L, and no argunent, default to same as ALL.
<id> -- if non-null, then only records with that
identification nunber will be included in the result.
Simlarly, a cal
( EVALSERVER. STATUS. W NDOW <opt i onal - r egi on>)
will put up a wi ndow which continuously nmonitors and displ ays
t he above infornmation. The mi ddl e npbuse button is active in this
status window to delete the various itens; deleting a RUNNI NG or
I NPUT request is the same as calling EVALSERVER ABORT on it.

A trace facility may be enabl ed/ di sabled by a function call
( EVALSERVER. TRACE <fl g> <regi on>)

wher e
<flg> if non-null, enables traceing; disables if null.
<region> if non-null, should be a "region" and nmarks a region

for the trace window, if null, the user is pronpted to "nouse"



EVALSERVER. TTY 21- Feb-83 23:06: 55 Page

a region.
Both the left and midle nmouse buttons are "active" in the trace
wi ndow. LEFT toggles a "flg" which turns traceing on or off, and
M DDLE does a quick clear of the trace w ndow.

The Cient: Using a renmote Eval Server

The basic use of EVAL at a renote host is invoked by:

(REMOTEVAL <fornme <serverhost> <nultiple.responses?>)
The S-expression <fornk is shipped via the ether net to the host
<serverhost>, where it is EVALuated by an Eval Server and shi pped
back |f <serverhost>is NIL or 0, then the request is not directed
to a partricular server, but is nmerely broadcast on the network; if
any server is willing to service such a request, then it wll
"handshake" with the requestor and do so. |If the renote eval uation
causes an error, then that error will be "brought back" |ocally,
and an error will result which will incorporate the renote nmessage
(of course, the stack and environment of the renote host is not
"brought back"). A current linmtationis that the PRINA form of <fornp,
and that of the result, nmust fit within one PUP -- about 530 bytes.

The argurment <nultiple.responses?> can currently be only either 0

or 1 (NIL defaults to 1); if 0, then the REMOTEVAL function w ||

not wait around for the result fromthe renote host, but wll

return as soon as there has been an acknow edgement that the

service is being performed; its value in this case will be the
identifier nunber use for that transaction. This is especially

useful when invoking a lengthy task which is done primarily for
"effect" rather than val ue. Also it may be useful e when "broadcasti ng"
sonme evaluation which will later directly send a note back to the
initiator; thus there is no need to go through the several "handshake"
packets, and general "broadcast" time-consuning protocols.

Al so,
(REMOTEAPPLY <fun> <arglist> <serverhost> <multipl e.responses?>)
i nvokes a simlar rempte use of APPLY (as opposed to EVAL)

Per haps one may want to see how sone server is progressing on its
t asks:

(REMOTEVAL ' ( EVALSERVER. STATUS ' ALL) <server>)
will get the list docunented above. I f one decides to cancel sone
request, then

( REMOTEABORT <transacti on> <server host >)
provi des a convenient entry into the EVALSERVER ABCRT function at
the renote host. <transaction> is either an id nunber, or a cons,
as described above for EVALSERVER ABORT; however, if only the id
nunber is given, it is cons’d with the |ocal host nunber before
sendi ng to the server.

If a lengthy computation is initiated on a server which is not
running nultiple processes, it would be a good idea for it to check
the input queue fromtine to tinme, say by (EVALSERVER STATUS
"INPUT), and explicity call (EVALSERVER 1)when there are waiting
requests; for it nmay be that one of these waiting requests is an
abort for the current process. Consi der the exanpl e bel ow, where



EVALSERVER. TTY 21- Feb-83 23:06: 55 Page

each tine through the PROG | oop (which is being sent for renmpte
eval uation) there is a check for possible inputs, and a short call
to EVALSERVER fromthat code itself, to insure that subsequent
calls will have a chance to run.

74_( REMOTEVAL
' (PROG ((CNT 0))
LP (DI SM SS 10000)
(add CNT 1)
(AND ( EVALSERVER STATUS ( QUOTE | NPUT))
( EVALSERVER 1))
(GO LP))
' PLAZA
0)
55

75_( REMOTEVAL °’ ( EVALSERVER. STATUS ' ALL) ' PLAZA)
((Conpl et ed. Transacti ons:
((ID#. A i ent Host: 54 Bui ckoSaur us)
(HowsSt op. #Seconds: COVPLETED 127)))
(Currentl yRunni ng. Transact i ons:
((I1D#.dientHost: 56 Bui ckoSaurus)
(Process: RUNNING))
((ID#.dientHost: 55 Bui ckoSaurus)
(Process: RUNNING))))

77_( REMOTEABORT 55 ' PLAZA)
ABCRTED

Note that the transaction id for this "lengthy" process was
returned by the call to REMOTEVAL, since we requested no waiting
around for the result (third arg of 0). Then when the renote
EVALSERVER. STATUS was done, both that transaction, and the one
actual ly causing the eval server status to be read, show up as ID s
55 and 56. A subsequent rempte abort for nunber 55 will stop it,

and | eave a record that it was renotely aborted. O course, this
is not necessary if the EVALSERVER is running under the
PROCESSWORLD.

Sone | npl enentation Details:

The sem -wel | - known socket nunber 668 is used for receiving eva
service requests.



