-- LSCurveImpl.mesa -- Last edited by Michael Plass November 29, 1982 9:52 am -- Michael Plass and Maureen Stone Oct-81 DIRECTORY Cubic, Complex, LinearSystem, LSCurve, PiecewiseCubic, Real USING [RealException], Seq, Vector; LSCurveImpl: CEDAR PROGRAM IMPORTS Complex, Cubic, LinearSystem, PiecewiseCubic, Real, Vector EXPORTS LSCurve = BEGIN OPEN Seq; RealProc: TYPE = PROCEDURE[i:NAT] RETURNS [REAL]; PointNumber: TYPE = NAT; Patch: TYPE = LSCurve.Patch; PatchSequence: TYPE = LSCurve.PatchSequence; PatchSequenceRec: TYPE = LSCurve.PatchSequenceRec; SplineBasis: TYPE = LSCurve.SplineBasis; SplineBasisRec: TYPE = LSCurve.SplineBasisRec; SplineFunction: TYPE = LSCurve.SplineFunction; Handle: TYPE = LSCurve.Handle; StateRec: TYPE = LSCurve.StateRec; Create: PUBLIC PROCEDURE [sa: Seq.ComplexSequence] RETURNS [h: Handle] = BEGIN h ← SamplesToHandle[sa]; h.weight ← NEW[RealSequenceRec[h.z.length]]; FOR i:NAT IN [0..h.z.length) DO h.weight[i] ← 1.0 ENDLOOP; h.t ← NEW[RealSequenceRec[h.z.length]]; h.oldt ← NEW[RealSequenceRec[h.z.length]]; h.oldoldt ← NEW[RealSequenceRec[h.z.length]]; END; XYat: PUBLIC PROCEDURE [h: Handle, t: REAL] RETURNS [f: Complex.Vec] = BEGIN patchNumber: NAT ← 0; ValidateCache[h]; f.x ← PiecewiseCubic.Eval[h.patchCache.x,t]; f.y ← PiecewiseCubic.Eval[h.patchCache.y,t]; END; SamplesToHandle: PROCEDURE [s: Seq.ComplexSequence] RETURNS [h: Handle] = {h ← NEW[StateRec]; BEGIN OPEN h↑; z ← s; l ← 0; n ← s.length-1; END}; CountTrues: PROCEDURE [b: BooleanSequence] RETURNS [count:NAT] = BEGIN count ← 0; FOR i:NAT IN [0..b.length) DO IF b[i] THEN count ← count + 1 ENDLOOP; END; EvalBasis: PUBLIC PROCEDURE [h: Handle, i: NAT, t: REAL] RETURNS [z: Complex.Vec] = INLINE {OPEN h.splineBasis[i]; RETURN [[PiecewiseCubic.Eval[x,t],PiecewiseCubic.Eval[y,t]]]}; SolveCurve: PUBLIC PROCEDURE [h: Handle] = BEGIN OPEN h,LinearSystem; nFree: NAT ← CountTrues[free]; b: ColumnN ← NEW[VecSeq[nFree]]; c: ColumnN ← NIL; A: MatrixN ← NEW[MatrixSeq[nFree]]; FOR i: NAT IN [0..nFree) DO A[i] ← NEW[VecSeq[nFree]]; FOR j: NAT IN [0..nFree) DO A[i][j] ← 0 ENDLOOP; b[i] ← 0; ENDLOOP; FOR k:NAT IN [l..n] DO tk:REAL = t[k]; row: NAT ← 0; FOR i:NAT IN [0..a.length) DO IF free[i] THEN BEGIN gi:Complex.Vec ← EvalBasis[h,i,tk]; IF gi#[0,0] THEN BEGIN column: NAT ← 0; FOR j:NAT IN [0..a.length) DO gj: Complex.Vec ← EvalBasis[h,j,tk]; IF free[j] THEN A[row][column] ← A[row][column] + weight[k]*Vector.Dot[gi,gj] ELSE b[row] ← b[row] - weight[k]*a[j]*Vector.Dot[gi,gj]; IF free[j] THEN column ← column + 1; ENDLOOP; END; b[row] ← b[row] + weight[k]*Vector.Dot[z[k],gi]; row ← row + 1; END ENDLOOP; ENDLOOP; c ← SolveN[A,b,nFree! Real.RealException => CHECKED {CONTINUE}]; IF c#NIL THEN BEGIN row: NAT ← 0; FOR i:NAT IN [0..a.length) DO IF free[i] THEN a[i] ← c[row]; IF free[i] THEN row ← row + 1; ENDLOOP; patchCacheValid ← FALSE; END; END; ArcLengthInitialTValues: PUBLIC PROCEDURE [h: Handle] = BEGIN OPEN h; arcLen: REAL ← 0; t[0] ← 0; FOR i:NAT IN [1..z.length) DO arcLen ← arcLen + Complex.Abs[Complex.Sub[z[i],z[i-1]]]; t[i] ← arcLen; ENDLOOP; FOR i:NAT IN [0..z.length) DO t[i] ← t[i]/arcLen ENDLOOP; END; UnitInitialTValues: PUBLIC PROCEDURE [h: Handle] = BEGIN OPEN h; IF z.length < 2 THEN RETURN; FOR i:NAT IN [0..z.length) DO t[i] ← i*1.0/(z.length-1); ENDLOOP; END; AngleInitialTValues: PUBLIC PROCEDURE [h: Handle] = BEGIN OPEN h; twopi: REAL = 2*3.1415926; m: Complex.Vec ← [0,0]; FOR i:NAT IN [0..z.length) DO m ← Complex.Add[m,z[i]]; ENDLOOP; m ← Vector.Div[m,z.length]; FOR i:NAT IN [0..z.length) DO t[i] ← Complex.Arg[Complex.Sub[z[i],m]]/twopi; WHILE t[i] < 0 DO t[i] ← t[i] + 1 ENDLOOP; WHILE t[i] > 1 DO t[i] ← t[i] - 1 ENDLOOP; ENDLOOP; END; AdjustTValues: PUBLIC PROCEDURE [h: Handle] RETURNS [maxChange: REAL] = BEGIN OPEN h; delta: REAL; {newt: RealSequence ← oldoldt; oldoldt ← oldt; oldt ← t; t ← newt}; ValidateCache[h]; maxChange ← 0; FOR i: NAT IN [l..n] DO delta ← Adjustment[z[i],patchCache,oldt[i]]; IF ABS[delta] > maxChange THEN maxChange ← ABS[delta]; t[i] ← oldt[i]+delta; IF closedCurve THEN BEGIN WHILE t[i] < 0 DO t[i] ← t[i] + 1 ENDLOOP; WHILE t[i] > 1 DO t[i] ← t[i] - 1 ENDLOOP; END ENDLOOP; IF initialEndFree THEN BEGIN t0: REAL ← t[l]; FOR i: NAT IN [l..n] DO t[i] ← t[i] - t0; ENDLOOP; END; IF finalEndFree THEN BEGIN interval: REAL ← t[n]; FOR i: NAT IN [l..n] DO t[i] ← t[i]/interval; ENDLOOP; END; END; Adjustment: PROCEDURE [z: Complex.Vec, f: SplineFunction, t: REAL] RETURNS [delta:REAL] = BEGIN -- epsilon: REAL ← 1.0/8388608; x,dx,ddx,dddx: REAL; y,dy,ddy,dddy: REAL; lo,hi: REAL; derivSqrDist: REAL; derivDerivSqrDist: REAL; [x,dx,ddx,dddx,lo,hi] ← PiecewiseCubic.EvalAll[f.x, t]; [y,dy,ddy,dddy,lo,hi] ← PiecewiseCubic.EvalAll[f.y, t]; derivSqrDist ← (x-z.x)*dx + (y-z.y)*dy; derivDerivSqrDist ← dx*dx + dy*dy + (x-z.x)*ddx + (y-z.y)*ddy; delta ← IF derivDerivSqrDist<=0 THEN 0 ELSE -derivSqrDist/derivDerivSqrDist; -- IF t+delta>hi THEN delta ← hi+epsilon-t; -- IF t+delta<lo THEN delta ← lo-epsilon-t; END; Sqr: PROC [x:REAL] RETURNS [REAL] = INLINE{RETURN[x*x]}; AccelTValues: PUBLIC PROCEDURE [h: Handle] RETURNS [r, maxChange: REAL] = BEGIN OPEN h; sqrOldDelta, deltaDotOldDelta: REAL ← 0; r ← 0; maxChange ← AdjustTValues[h]; SolveCurve[h]; maxChange ← AdjustTValues[h]; FOR i: NAT IN [l..n] DO sqrOldDelta ← sqrOldDelta + Sqr[oldt[i]-oldoldt[i]]; deltaDotOldDelta ← deltaDotOldDelta + (t[i]-oldt[i])*(oldt[i]-oldoldt[i]); ENDLOOP; IF sqrOldDelta=0 THEN RETURN; r ← deltaDotOldDelta/sqrOldDelta; IF ABS[r]>=1 THEN RETURN; maxChange ← 0; FOR i: NAT IN [l..n] DO delta: REAL ← (t[i] - oldt[i])/(1-r); t[i] ← oldt[i] + delta; IF ABS[delta] > maxChange THEN maxChange ← ABS[delta]; ENDLOOP; END; PatchesOf: PUBLIC PROCEDURE [h: Handle] RETURNS [x, y: PatchSequence, knots: RealSequence] = BEGIN i,nPatches: NAT ← 0; CountPatches: PiecewiseCubic.PieceProc = {nPatches ← nPatches+1}; StorePatch: PiecewiseCubic.PieceProc = BEGIN interval: REAL ← p.domainEnd-p.domainStart; b: Cubic.Bezier ← [b0: [p.initValue, q.initValue], b1: [p.initValue + p.initSlope*interval/3, q.initValue + q.initSlope*interval/3], b2: [p.finalValue - p.finalSlope*interval/3, q.finalValue - q.finalSlope*interval/3], b3: [p.finalValue, q.finalValue]]; c: Cubic.Coeffs ← Cubic.BezierToCoeffs[b]; x[i] ← [c0:c.c0.x, c1:c.c1.x, c2:c.c2.x, c3:c.c3.x]; y[i] ← [c0:c.c0.y, c1:c.c1.y, c2:c.c2.y, c3:c.c3.y]; knots[i] ← p.domainStart; knots[i+1] ← p.domainEnd; i ← i + 1; END; ValidateCache[h]; PiecewiseCubic.EnumerateCommonPieces[h.patchCache.x,h.patchCache.y,CountPatches]; x ← NEW[PatchSequenceRec[nPatches]]; y ← NEW[PatchSequenceRec[nPatches]]; knots ← NEW[RealSequenceRec[nPatches+1]]; PiecewiseCubic.EnumerateCommonPieces[h.patchCache.x,h.patchCache.y,StorePatch]; END; ValidateCache: PROCEDURE [h: Handle] = BEGIN OPEN h; IF patchCacheValid THEN RETURN; patchCache ← [PiecewiseCubic.Zero[],PiecewiseCubic.Zero[]]; FOR i:NAT DECREASING IN [0..a.length) DO patchCache ← [PiecewiseCubic.Combine[1,patchCache.x,a[i],splineBasis[i].x], PiecewiseCubic.Combine[1,patchCache.y,a[i],splineBasis[i].y]] ENDLOOP; patchCacheValid←TRUE; END; PointSlopeBasis: PUBLIC PROCEDURE [h: Handle, b: Cubic.Bezier] = BEGIN OPEN h,PiecewiseCubic; vx,vy: REAL; closedCurve ← FALSE; initialEndFree ← FALSE; finalEndFree ← FALSE; patchCacheValid ← FALSE; splineBasis ← NEW[SplineBasisRec[8]]; a ← NEW[RealSequenceRec[8]]; free ← NEW[BooleanSequenceRec[8]]; -- (a0,a1) and (a6,a7) are the positions of the endpoints -- a2 is the velocity component parallel to b1-b0 -- a3 is the velocity component perpendicular to b1-b0 -- a4 is the velocity component parallel to b2-b3 -- a5 is the velocity component perpendicular to b2-b3 splineBasis[0] ← [Piece[0,1,1,0,0,0],Zero[]]; a[0] ← b.b0.x; splineBasis[1] ← [Zero[],Piece[0,1,1,0,0,0]]; a[1] ← b.b0.y; [[vx,vy]] ← Complex.Sub[b.b1,b.b0]; splineBasis[2] ← [Combine[3*vx,Piece[0,1,0,1,0,0],0,Zero[]], Combine[3*vy,Piece[0,1,0,1,0,0],0,Zero[]]]; a[2] ← 1; splineBasis[3] ← [Combine[-3*vy,Piece[0,1,0,1,0,0],0,Zero[]], Combine[3*vx,Piece[0,1,0,1,0,0],0,Zero[]]]; a[3] ← 0; [[vx,vy]] ← Complex.Sub[b.b3,b.b2]; splineBasis[4] ← [Combine[3*vx,Piece[0,1,0,0,1,0],0,Zero[]], Combine[3*vy,Piece[0,1,0,0,1,0],0,Zero[]]]; a[4] ← 1; splineBasis[5] ← [Combine[-3*vy,Piece[0,1,0,0,1,0],0,Zero[]], Combine[3*vx,Piece[0,1,0,0,1,0],0,Zero[]]]; a[5] ← 0; splineBasis[6] ← [Piece[0,1,0,0,0,1],Zero[]]; a[6] ← b.b3.x; splineBasis[7] ← [Zero[],Piece[0,1,0,0,0,1]]; a[7] ← b.b3.y; FOR i:NAT IN [0..8) DO free[i] ← FALSE; ENDLOOP; END; SmoothBasis: PUBLIC PROCEDURE [h: Handle, nKnots: NAT] = BEGIN OPEN h; closedCurve ← TRUE; initialEndFree ← FALSE; finalEndFree ← FALSE; patchCacheValid ← FALSE; splineBasis ← NEW[SplineBasisRec[4*nKnots]]; a ← NEW[RealSequenceRec[4*nKnots]]; free ← NEW[BooleanSequenceRec[4*nKnots]]; FOR i:NAT IN [0..nKnots) DO even: PiecewiseCubic.Handle ← EvenBasis[i*1.0/nKnots,1.0/nKnots]; odd: PiecewiseCubic.Handle ← OddBasis[i*1.0/nKnots,1.0/nKnots]; splineBasis[4*i] ← [even,PiecewiseCubic.Zero[]]; splineBasis[4*i+1] ← [PiecewiseCubic.Zero[],even]; splineBasis[4*i+2] ← [odd,PiecewiseCubic.Zero[]]; splineBasis[4*i+3] ← [PiecewiseCubic.Zero[],odd]; ENDLOOP; FOR i:NAT IN [0..4*nKnots) DO a[i] ← 0; free[i] ← TRUE; ENDLOOP; END; EvenBasis: PROCEDURE [center, radius: REAL] RETURNS [PiecewiseCubic.Handle] = BEGIN OPEN PiecewiseCubic; l: REAL ← center-radius; IF l<0 THEN l←l+1; RETURN [Combine[1,Piece[l,l+radius,0,0,0,1], 1,Piece[center,center+radius,1,0,0,0]]] END; OddBasis: PROCEDURE [center, radius: REAL] RETURNS [PiecewiseCubic.Handle] = BEGIN OPEN PiecewiseCubic; l: REAL ← center-radius; IF l<0 THEN l←l+1; RETURN [Combine[1,Piece[l,l+radius,0,0,1,0], 1,Piece[center,center+radius,0,1,0,0]]] END; BSplineBasis: PUBLIC PROCEDURE [h: Handle, nKnots: NAT] = BEGIN OPEN h; closedCurve ← TRUE; initialEndFree ← FALSE; finalEndFree ← FALSE; patchCacheValid ← FALSE; splineBasis ← NEW[SplineBasisRec[2*nKnots]]; a ← NEW[RealSequenceRec[2*nKnots]]; free ← NEW[BooleanSequenceRec[2*nKnots]]; FOR i:NAT IN [0..nKnots) DO elem: PiecewiseCubic.Handle ← BSplineBasisElement[i,nKnots]; splineBasis[2*i] ← [elem,PiecewiseCubic.Zero[]]; splineBasis[2*i+1] ← [PiecewiseCubic.Zero[],elem]; ENDLOOP; FOR i:NAT IN [0..2*nKnots) DO a[i] ← 0; free[i] ← TRUE; ENDLOOP; END; BSplineBasisElement: PROCEDURE [i, n: NAT] RETURNS [f: PiecewiseCubic.Handle] = BEGIN k: REAL ← i-2; IF k<0 THEN k←k+n; f ← PiecewiseCubic.Piece[k/n,(k+1)/n,0,0,0.75*n,0.25]; k←k+1; IF k>n-1 THEN k←k-n; f ← PiecewiseCubic.Combine[1,f,1,PiecewiseCubic.Piece[k/n,(k+1)/n,0.25,0.75*n,0,1]]; k←k+1; IF k>n-1 THEN k←k-n; f ← PiecewiseCubic.Combine[1,f,1,PiecewiseCubic.Piece[k/n,(k+1)/n,1,0,-0.75*n,0.25]]; k←k+1; IF k>n-1 THEN k←k-n; f ← PiecewiseCubic.Combine[1,f,1,PiecewiseCubic.Piece[k/n,(k+1)/n,0.25,-0.75*n,0,0]]; END; CubicBasis: PUBLIC PROCEDURE [h: Handle] = BEGIN OPEN h; zero: PiecewiseCubic.Handle ← PiecewiseCubic.Zero[]; one: PiecewiseCubic.Handle ← PiecewiseCubic.Piece[-10,10,1,0,0,1]; iden: PiecewiseCubic.Handle ← PiecewiseCubic.Piece[-10,10,-10,1,1,10]; sqr: PiecewiseCubic.Handle ← PiecewiseCubic.Piece[-10,10,100,-20,20,100]; cube: PiecewiseCubic.Handle ← PiecewiseCubic.Piece[-10,10,-1000,300,300,1000]; closedCurve ← FALSE; initialEndFree ← TRUE; finalEndFree ← TRUE; patchCacheValid ← FALSE; splineBasis ← NEW[SplineBasisRec[8]]; a ← NEW[RealSequenceRec[8]]; free ← NEW[BooleanSequenceRec[8]]; splineBasis[0] ← [one,zero]; splineBasis[1] ← [zero,one]; splineBasis[2] ← [iden,zero]; splineBasis[3] ← [zero,iden]; splineBasis[4] ← [sqr,zero]; splineBasis[5] ← [zero,sqr]; splineBasis[6] ← [cube,zero]; splineBasis[7] ← [zero,cube]; FOR i:NAT IN [0..8) DO a[i] ← 0; free[i] ← TRUE; ENDLOOP; END; CubicPieceBasis: PUBLIC PROCEDURE [h: Handle] = BEGIN OPEN h; zero: PiecewiseCubic.Handle ← PiecewiseCubic.Zero[]; one: PiecewiseCubic.Handle ← PiecewiseCubic.Piece[0,1,1,0,0,1]; iden: PiecewiseCubic.Handle ← PiecewiseCubic.Piece[0,1,0,1,1,1]; sqr: PiecewiseCubic.Handle ← PiecewiseCubic.Piece[0,1,0,0,2,1]; cube: PiecewiseCubic.Handle ← PiecewiseCubic.Piece[0,1,0,0,3,1]; closedCurve ← FALSE; initialEndFree ← TRUE; finalEndFree ← TRUE; patchCacheValid ← FALSE; splineBasis ← NEW[SplineBasisRec[8]]; a ← NEW[RealSequenceRec[8]]; free ← NEW[BooleanSequenceRec[8]]; splineBasis[0] ← [one,zero]; splineBasis[1] ← [zero,one]; splineBasis[2] ← [iden,zero]; splineBasis[3] ← [zero,iden]; splineBasis[4] ← [sqr,zero]; splineBasis[5] ← [zero,sqr]; splineBasis[6] ← [cube,zero]; splineBasis[7] ← [zero,cube]; FOR i:NAT IN [0..8) DO a[i] ← 0; free[i] ← TRUE; ENDLOOP; END; ParabolaBasis: PUBLIC PROCEDURE [h: Handle] = BEGIN OPEN h; zero: PiecewiseCubic.Handle ← PiecewiseCubic.Zero[]; one: PiecewiseCubic.Handle ← PiecewiseCubic.Piece[-10,10,1,0,0,1]; iden: PiecewiseCubic.Handle ← PiecewiseCubic.Piece[-10,10,-10,1,1,10]; sqr: PiecewiseCubic.Handle ← PiecewiseCubic.Piece[-10,10,100,-20,20,100]; closedCurve ← FALSE; initialEndFree ← TRUE; finalEndFree ← TRUE; patchCacheValid ← FALSE; splineBasis ← NEW[SplineBasisRec[6]]; a ← NEW[RealSequenceRec[6]]; free ← NEW[BooleanSequenceRec[6]]; splineBasis[0] ← [one,zero]; splineBasis[1] ← [zero,one]; splineBasis[2] ← [iden,zero]; splineBasis[3] ← [zero,iden]; splineBasis[4] ← [sqr,zero]; splineBasis[5] ← [zero,sqr]; FOR i:NAT IN [0..6) DO a[i] ← 0; free[i] ← TRUE; ENDLOOP; END; CircleBasis: PUBLIC PROCEDURE [h: Handle] = BEGIN OPEN h; twopi: REAL ← 2*3.1415926; zero: PiecewiseCubic.Handle ← PiecewiseCubic.Zero[]; one: PiecewiseCubic.Handle ← PiecewiseCubic.Piece[0,1,1,0,0,1]; cos: PiecewiseCubic.Handle ← CosBasis[]; sin: PiecewiseCubic.Handle ← SinBasis[]; closedCurve ← TRUE; initialEndFree ← FALSE; finalEndFree ← FALSE; patchCacheValid ← FALSE; splineBasis ← NEW[SplineBasisRec[3]]; a ← NEW[RealSequenceRec[3]]; free ← NEW[BooleanSequenceRec[3]]; splineBasis[0] ← [one,zero]; splineBasis[1] ← [zero,one]; splineBasis[2] ← [cos,sin]; FOR i:NAT IN [0..3) DO a[i] ← 0; free[i] ← TRUE; ENDLOOP; END; EllipseBasis: PUBLIC PROCEDURE [h: Handle] = BEGIN OPEN h; twopi: REAL ← 2*3.1415926; zero: PiecewiseCubic.Handle ← PiecewiseCubic.Zero[]; one: PiecewiseCubic.Handle ← PiecewiseCubic.Piece[0,1,1,0,0,1]; cos: PiecewiseCubic.Handle ← CosBasis[]; sin: PiecewiseCubic.Handle ← SinBasis[]; closedCurve ← TRUE; initialEndFree ← FALSE; finalEndFree ← FALSE; patchCacheValid ← FALSE; splineBasis ← NEW[SplineBasisRec[5]]; a ← NEW[RealSequenceRec[5]]; free ← NEW[BooleanSequenceRec[5]]; splineBasis[0] ← [one,zero]; splineBasis[1] ← [zero,one]; splineBasis[2] ← [cos,sin]; splineBasis[3] ← [sin,zero]; splineBasis[4] ← [zero,cos]; FOR i:NAT IN [0..5) DO a[i] ← 0; free[i] ← TRUE; ENDLOOP; END; CosBasis: PROC RETURNS[PiecewiseCubic.Handle] = {RETURN[LIST[[domainStart: 0, domainEnd: 0.25, initValue: 99.98286, initSlope: 1.302177e-2, finalSlope: -662.7453, finalValue: -1.397745e-4], [domainStart: 0.25, domainEnd: 0.5, initValue: -1.397745e-4, initSlope: -662.7453, finalSlope: 2.099349e-3, finalValue: -99.9828], [domainStart: 0.5, domainEnd: 0.75, initValue: -99.9828, initSlope: 2.099349e-3, finalSlope: 662.7528, finalValue: 6.351456e-6], [domainStart: 0.75, domainEnd: 1, initValue: 6.351456e-6, initSlope: 662.7528, finalSlope: 1.302177e-2, finalValue: 99.98286]]]}; SinBasis: PROC RETURNS[PiecewiseCubic.Handle] = {RETURN[LIST[[domainStart: 0, domainEnd: 0.25, initValue: 1.728265e-4, initSlope: 662.7498, finalSlope: -4.030657e-4, finalValue: 99.98302], [domainStart: 0.25, domainEnd: 0.5, initValue: 99.98302, initSlope: -4.030657e-4, finalSlope: -662.7458, finalValue: 1.005444e-4], [domainStart: 0.5, domainEnd: 0.75, initValue: 1.005444e-4, initSlope: -662.7458, finalSlope: 1.04512e-3, finalValue: -99.98254], [domainStart: 0.75, domainEnd: 1, initValue: -99.98254, initSlope: 1.04512e-3, finalSlope: 662.7498, finalValue: 1.728265e-4]]]}; END. -- Quick approximations cos ← PiecewiseCubic.Combine[1,PiecewiseCubic.Combine[1,PiecewiseCubic.Combine[1, PiecewiseCubic.Piece[0,0.25,1,0,-twopi,0],1, PiecewiseCubic.Piece[0.25,0.5,0,-twopi,0,-1]],1, PiecewiseCubic.Piece[0.5,0.75,-1,0,twopi,0]],1, PiecewiseCubic.Piece[0.75,1,0,twopi,0,1]]; sin ← PiecewiseCubic.Combine[1,PiecewiseCubic.Combine[1,PiecewiseCubic.Combine[1, PiecewiseCubic.Piece[0,0.25,0,twopi,0,1],1, PiecewiseCubic.Piece[0.25,0.5,1,0,-twopi,0]],1, PiecewiseCubic.Piece[0.5,0.75,0,-twopi,0,-1]],1, PiecewiseCubic.Piece[0.75,1,-1,0,twopi,0]];