ImagerPenImpl.mesa
Copyright © 1985 by Xerox Corporation. All rights reserved.
Michael Plass, August 15, 1985 2:16:02 pm PDT
Doug Wyatt, May 19, 1985 5:51:19 pm PDT
~
BEGIN
VEC: TYPE ~ Vector2.VEC;
Transformation: TYPE ~ IITransformation.Transformation;
FactoredTransformation: TYPE ~ IITransformation.FactoredTransformation;
Pen: TYPE ~ REF PenRep;
Degrees: TYPE ~ REAL;
PenRep: TYPE ~ IIPen.PenRep;
Public procedures
MakeTransformedCircle:
PUBLIC
PROC [strokeWidth:
REAL, m: Transformation]
RETURNS [Pen] ~ {
f: FactoredTransformation ~ IITransformation.Factor[m];
RETURN [MakeEllipse[ABS[f.s.x*strokeWidth], ABS[f.s.y*strokeWidth], f.r2]];
};
MakeEllipse:
PUBLIC
PROC [majorAxis, minorAxis:
REAL, theta: Degrees]
RETURNS [p: Pen] ~ {
IF cacheSize > 0 AND (p ← CheckCache[majorAxis, minorAxis, theta])#NIL THEN RETURN
ELSE {
v: VertexList ~ MakeHalfEllipse[majorAxis, minorAxis, theta];
n: NAT ~ CountVertexList[v]-1;
i: NAT ← 0;
p ← NEW[PenRep[n*2]];
FOR t: VertexList ← v, t.link
UNTIL t.link=
NIL
DO
p[i] ← [Real.FScale[t.coord.x, -1], Real.FScale[t.coord.y, -1]];
i ← i + 1;
ENDLOOP;
FOR t: VertexList ← v, t.link
UNTIL t.link=
NIL
DO
p[i] ← [-Real.FScale[t.coord.x, -1], -Real.FScale[t.coord.y, -1]];
i ← i + 1;
ENDLOOP;
IF i#p.size THEN ERROR;
IF cacheSize > 0 THEN EnterCache[majorAxis, minorAxis, theta, p];
FreeVertexList[v];
};
};
Cache stuff
cacheSize: NAT ← 5;
cache: LIST OF CacheRec ← NIL;
cacheHits: INT ← 0;
CacheRec:
TYPE ~
RECORD [
majorAxis, minorAxis, theta: REAL, p: Pen
];
CheckCache:
ENTRY
PROC [majorAxis, minorAxis:
REAL, theta: Degrees]
RETURNS [Pen] ~ {
prev: LIST OF CacheRec ← NIL;
FOR c:
LIST
OF CacheRec ← cache, c.rest
UNTIL c =
NIL
DO
IF c.first.majorAxis = majorAxis
AND c.first.minorAxis = minorAxis
AND (c.first.theta = theta
OR majorAxis=minorAxis)
THEN {
IF prev #
NIL
THEN {
Move to front
prev.rest ← c.rest;
c.rest ← cache;
cache ← c;
};
cacheHits ← cacheHits + 1;
RETURN [c.first.p];
};
prev ← c;
ENDLOOP;
cacheMisses ← cacheMisses + 1;
RETURN [NIL]
};
EnterCache:
ENTRY
PROC [majorAxis, minorAxis:
REAL, theta: Degrees, pen: Pen] ~ {
new: LIST OF CacheRec ← NIL;
prev: LIST OF CacheRec ← NIL;
i: NAT ← 2;
NB: The following code forces a cache size of >= 2
FOR p:
LIST
OF CacheRec ← cache, p.rest
DO
IF p = NIL THEN {new ← LIST[[majorAxis, minorAxis, theta, pen]]; EXIT};
IF i >= cacheSize
AND p.rest#
NIL
THEN {
new ← p.rest;
p.rest ← NIL;
new.rest ← NIL;
new.first ← [majorAxis, minorAxis, theta, pen];
EXIT;
};
i ← i + 1;
ENDLOOP;
new.rest ← cache;
cache ← new;
};
Elliptical pen construction
VertexList:
TYPE ~
REF VertexRep;
VertexRep:
TYPE ~
RECORD [
coord: Vector2.VEC,
rightU, leftV: REAL,
rightClass: INT,
leftLength: INT,
link: REF VertexRep
];
Floor:
PROC [r:
REAL]
RETURNS [i:
INT] ~ {
i ← Real.Round[r];
IF i > r THEN i ← i-1;
};
Round:
PROC [r:
REAL]
RETURNS [
INT] ~ {
RETURN [Floor[r+0.5]];
};
MakeHalfEllipse:
PROC [semiMajorAxis, semiMinorAxis:
REAL, theta:
REAL]
RETURNS [halfPen: VertexList] ~ {
Makes one-half of a polygonal approximation to an elliptical pen, using an algorithm developed by John Hobby and Donald Knuth. Refer to section 25 of Metafont 84 for more details about how it works. The half-pen has all vertices on integer coordinates.
undef: INT ~ -99999;
cos: REAL ~ RealFns.CosDeg[theta];
sin: REAL ~ RealFns.SinDeg[theta];
p, q, r, s: VertexList;
Initialize the ellipse data structure by beginning with directions (0, -1), (1, 0), and (0, 1)
BEGIN
alpha, beta, gamma: INT;
[alpha, beta, gamma] ← CalculateGreek[semiMajorAxis, semiMinorAxis, cos, sin];
It is an invariant of the pen data structure that all the points are distinct. This revises the values of alpha, beta, and gamma so that degenerate lines of length 0 will not be obtained.
IF beta = 0 THEN beta ← 1;
IF gamma = 0 THEN gamma ← 1;
IF gamma <=
ABS[alpha]
THEN {
IF alpha > 0 THEN alpha ← gamma - 1
ELSE alpha ← 1 - gamma;
};
s ←
NEW [VertexRep ← [
coord: [alpha, beta],
rightU: undef, leftV: 1,
rightClass: undef, leftLength: gamma - alpha,
link: NIL
]];
r ←
NEW [VertexRep ← [
coord: [gamma, beta],
rightU: 0, leftV: 0,
rightClass: beta, leftLength: beta + beta,
link: s
]];
q ←
NEW [VertexRep ← [
coord: [gamma, -beta],
rightU: 1, leftV: -1,
rightClass: gamma, leftLength: gamma + alpha,
link: r
]];
halfPen ← p ←
NEW [VertexRep ← [
coord: [-alpha, -beta],
rightU: 0, leftV: undef,
rightClass: beta, leftLength: undef,
link: q
]];
END;
Interpolate new vertices in the ellipse data structure until improvement is impossible.
BEGIN
MoveToNextpqr:
PROC
RETURNS [found:
BOOL] ~ {
DO
q ← p.link;
IF q = NIL THEN RETURN [found: FALSE];
IF q.leftLength = 0
THEN {
p.link ← q.link;
p.rightClass ← q.rightClass;
p.rightU ← q.rightU;
FreeNode[q];
}
ELSE {
r ← q.link;
IF r = NIL THEN RETURN [found: FALSE];
IF r.leftLength = 0
THEN {
p.link ← r;
FreeNode[q];
p ← r;
}
ELSE RETURN [found: TRUE];
};
ENDLOOP;
};
RemoveLinepqAndAdjustq:
PROC [u, v:
REAL] ~ {
At this point there is a line of length <= delta from vertex p to vertex q, orthogonal to direction (p.rightU, q.leftV), and there's a line of length >= delta from vertex q to vertex r, orthogonal to direction (q.rightU, r.leftV). The best line to direction (u, v) should replace the line from p to q; this new line will have the same length as the old.
delta: INT ~ q.leftLength;
p.rightClass ← (p.rightClass + q.rightClass) - delta;
p.rightU ← u;
q.leftV ← v;
q.coord ← [x: q.coord.x - delta*r.leftV, y: q.coord.y + delta*q.rightU];
r.leftLength ← r.leftLength - delta;
};
InsertLineBetweenpq:
PROC [u, v:
REAL, delta:
INT] ~ {
s ←
NEW[VertexRep ← [
coord: [q.coord.x + delta*q.leftV, q.coord.y - delta*p.rightU],
rightU: u, leftV: q.leftV,
rightClass: (p.rightClass + q.rightClass)-delta, leftLength: q.leftLength-delta,
link: q
]];
p.link ← s;
q.coord ← [x: q.coord.x - delta*r.leftV, y: q.coord.y + delta*q.rightU];
q.leftV ← v;
q.leftLength ← delta;
r.leftLength ← r.leftLength-delta;
};
DO
u: REAL ~ p.rightU + q.rightU;
v: REAL ~ q.leftV + r.leftV;
delta: INT ← (p.rightClass + q.rightClass) - IntegerDistanceToEllipseTowards[u, v, semiMajorAxis, semiMinorAxis, cos, sin];
IF delta > 0
THEN {
Want to move delta steps back from the intersection vertex q.
delta ← MIN[delta, r.leftLength];
IF delta >= q.leftLength THEN RemoveLinepqAndAdjustq[u, v]
ELSE InsertLineBetweenpq[u, v, delta];
}
ELSE p ← q;
IF NOT MoveToNextpqr[].found THEN EXIT;
ENDLOOP;
END;
Now we use a somewhat tricky fact: the pointer q will be NIL iff the line for the final direction (0,1) has been removed. It that line still survives, it should be combined with a possibly surviving line in the initial direction (0,-1).
BEGIN
IF q #
NIL
THEN {
IF halfPen.rightU=0
THEN {
p ← halfPen;
halfPen ← p.link;
FreeNode[p];
q.coord.x ← -halfPen.coord.x;
};
p ← q;
}
ELSE q ← p;
END;
};
FreeNode:
PROC [p:
REF VertexRep] ~ {p.link ←
NIL};
FreeVertexList:
PROC [p: VertexList] ~ {
UNTIL p = NIL DO t: VertexList ← p.link; p.link ← NIL; p ← t; ENDLOOP
};
CountVertexList:
PROC [p: VertexList]
RETURNS [n:
NAT ← 0] ~ {
UNTIL p = NIL DO p ← p.link; n ← n + 1 ENDLOOP
};
PythAdd:
PROC [a, b:
REAL]
RETURNS [c:
REAL] ~ {
c ← RealFns.SqRt[a*a + b*b];
};
CalculateGreek:
PROC [semiMajorAxis, semiMinorAxis:
REAL, cos, sin:
REAL]
RETURNS [
INT,
INT,
INT] ~ {
a, b, g: REAL;
IF sin = 0.0
OR semiMajorAxis = semiMinorAxis
THEN {
a ← 0;
b ← semiMinorAxis;
g ← semiMajorAxis;
}
ELSE {
d: REAL ← semiMinorAxis*cos;
g ← semiMajorAxis*sin;
b ← PythAdd[g, d];
a ← semiMajorAxis*(g/b)*cos - semiMinorAxis*(d/b)*sin;
g ← PythAdd[semiMajorAxis*cos, semiMinorAxis*sin];
};
RETURN [Round[a], Round[b], Round[g]]
};
IntegerDistanceToEllipseTowards:
PROC [u, v:
REAL, semiMajorAxis, semiMinorAxis:
REAL, cos, sin:
REAL]
RETURNS [
INT] ~ {
Compute the distance from class 0 to the edge of the ellipse in direction (u, v), times PythAdd[u, v], rounded to the nearest integer.
alpha: REAL ~ (u*cos + v*sin);
beta: REAL ~ (v*cos - u*sin);
dReal: REAL ~ PythAdd[semiMajorAxis*alpha, semiMinorAxis*beta];
RETURN [Round[MAX[dReal, u, v]]];
};