File: GGAngleImpl.mesa
Last edited by Bier on June 4, 1985 6:15:52 pm PDT
Author: Eric Bier on June 4, 1985 6:15:53 pm PDT
Contents: Gargoyle requires a precise set of angle operations defined with angle "theta" in the range -180 < theta <= 180. "theta" is an absolute angle (ie a position around the circle). Given two positions angles T1 and T2 we can find the incremental clockwise angle CT between them or the incremental counter-clockwise angle CCT where -360 < CT <= 0 and 0 <= CCT < 360. When we add two angles, we are adding an incremental angle to a position angle to get a new position angle. We subtract two position angles to get an incremental angle.
DIRECTORY
Real,
RealFns,
GGAngle;
GGAngleImpl: CEDAR PROGRAM
IMPORTS Real, RealFns
EXPORTS GGAngle =
BEGIN
Normalize: PUBLIC PROC [anyRange: REAL] RETURNS [range180: REAL] = CHECKED {
Takes an angle in degrees and puts it in 180 < theta <= 180 form.
IF anyRange > 180 THEN {
Find the integer number of times 360 goes into it and subtract that many 360's.
realNumberOf360s: REAL ← anyRange/360;
fixNumberOf360s: NAT ← Real.FixC[realNumberOf360s];-- FixC truncates
numberToSubtract: REAL ← fixNumberOf360s*360.0;
RETURN[anyRange-numberToSubtract];
};
IF anyRange <= -180 THEN {
Find the integer number of times 360 goes into its negative and add (that many + 1) 360's.
realNumberOf360s: REAL ← -anyRange/360;
fixNumberOf360s: NAT ← Real.FixC[realNumberOf360s];-- FixC truncates
numberToAdd: REAL ← (fixNumberOf360s + 1)*360.0;
RETURN[anyRange+numberToAdd];
};
range180 ← anyRange
}; -- end of Normalize
Add: PUBLIC PROC [position, increment: REAL] RETURNS [finalPosition: REAL] = CHECKED {
All angles in degrees
finalPosition ← position + increment; -- -540 < finalPosition < 540
IF finalPosition > 180 THEN finalPosition ← finalPosition - 360
ELSE IF finalPosition <= -180 THEN finalPosition ← finalPosition + 360;
}; -- end of Add
ClockwiseAngle: PUBLIC PROC [fromPosition, toPostion: REAL] RETURNS [increment: REAL] = CHECKED {
All angles in degrees. -360 < increment <= 0
increment ← 0;
IF fromPosition < 0 THEN {-- start in lower semi-circle.
Proceed clockwise until you encounter theta = 180 or "toPostion".
IF -180 < toPostion AND toPostion <= fromPosition THEN RETURN[toPostion - fromPosition]
ELSE increment ← increment + (-180 - fromPosition);
IF 0 <= toPostion AND toPostion <= 180 THEN RETURN[increment + (toPostion-180)]
ELSE increment ← increment + 180;
RETURN[increment + toPostion];
}
ELSE { -- start in upper semi-circle.
Proceed clockwise until you encounter "toPostion" or theta = 180
IF fromPosition < toPostion AND toPostion <= 180 THEN RETURN [toPostion - fromPosition - 360]
ELSE RETURN[toPostion - fromPosition];
};
}; -- end of ClockwiseAngle
CounterClockwiseAngle: PUBLIC PROC [fromPosition, toPostion: REAL] RETURNS [increment: REAL] = CHECKED {
All angles in degrees. 0 <= increment < 360.
For example, if the clockwise angle is -90, the counter-clockwise angle will be 270.
increment ← 360 + ClockwiseAngle[fromPosition, toPostion];
IF increment = 360 THEN increment ← 0;
};
ShortestDifference: PUBLIC PROC [position1, position2: REAL] RETURNS [pos1MinusPos2: REAL] = CHECKED {
All angles in degrees. RETURNS ClockwiseAngle or CounterClockwiseAngle. Whichever is smaller. -180< pos1MinusPos2 <= 180.
clockwise: REAL ← ClockwiseAngle[position1, position2];
pos1MinusPos2 ← IF clockwise <= -180 THEN clockwise + 360 ELSE clockwise;
};
Scale: PUBLIC PROC [angle: REAL, scalar: REAL] RETURNS [angleTimesScalar: REAL] = CHECKED {
All angles in degrees. Think of angle as the increment from 0 degrees to angle degrees. Scale this and normalize.
angleTimesScalar ← angle*scalar;
angleTimesScalar ← Normalize[angleTimesScalar];
};
ArcTan: PUBLIC PROC [numerator, denominator: REAL] RETURNS [degrees: REAL] = CHECKED {
Has the effect of calling RealFns.ArcTanDegrees and normalizing the result.
degrees ← RealFns.ArcTanDeg[numerator, denominator];
degrees ← Normalize[degrees]; -- Normalize may not be needed. RealFns seems to do the right thing
};
END.