LSPieceImpl.mesa
Maureen Stone April 29, 1983 2:37 pm took out an INLINE for spying
Michael Plass August 26, 1982 1:41 pm
Maureen Stone December 11, 1984 6:10:24 pm PST
DIRECTORY
Complex,
Cubic,
LSPiece,
Real USING [RealException],
RealFns USING[SqRt],
Seq,
Vector;
LSPieceImpl: PROGRAM
IMPORTS
Complex, Cubic, Real, Vector, RealFns
EXPORTS LSPiece =
BEGIN OPEN Seq;
SingularSystem: SIGNAL = CODE;
useAve: BOOLEANFALSE;
errInc: BOOLEANTRUE; --make the error exit on increasing error conditional
onlyOnMaxItr: BOOLEANFALSE; --an extreme case, for instrumentation
atLeastOnce: BOOLEANTRUE; --initial approximation is often bad
FitPiece: PUBLIC SAFE PROCEDURE
[z: ComplexSequence, t: RealSequence,
metrics: LSPiece.Metrics,
from, thru: NAT,
initFree, finalFree: BOOLEANFALSE,
initTangent, finalTangent: Complex.Vec ← [0,0],
useOldTValues: BOOLEANFALSE]
RETURNS [b: Cubic.Bezier, err: REAL, iterations: INT, maxDev: REAL] = TRUSTED {
f: Cubic.Coeffs; -- the current approximation
l: NAT ← z.length;
nSamples: NAT(IF from>thru THEN from-thru ELSE z.length-from+thru)+1;
Wrap: PROC [i: NAT] RETURNS [NAT] = INLINE {RETURN[IF i>=l THEN i-l ELSE i]};
ArcLengthInitialTValues: PROCEDURE = {
arcLen: REAL ← 0;
t[from] ← 0;
FOR i:NAT ← Wrap[from+1], Wrap[i+1] UNTIL i=Wrap[thru+1] DO
arcLen ← arcLen + Complex.Abs[Complex.Sub[z[i],z[IF i=0 THEN l-1 ELSE i-1]]];
t[i] ← arcLen;
ENDLOOP;
FOR i:NAT ← Wrap[from+1], Wrap[i+1] UNTIL i=Wrap[thru+1] DO
t[i] ← t[i]/arcLen
ENDLOOP;
};
Error: PROCEDURE RETURNS [s: REAL] = {
OPEN f;
maxDevSqr: REAL ← 0;
s ← 0;
FOR i:NAT ← from, Wrap[i+1] DO
ti:REAL ← t[i];
x:REAL ← ((c3.x*ti+c2.x)*ti+c1.x)*ti+c0.x;
y:REAL ← ((c3.y*ti+c2.y)*ti+c1.y)*ti+c0.y;
zi: Complex.Vec ← z[i];
d:REAL ← (zi.x-x)*(zi.x-x) + (zi.y-y)*(zi.y-y);
s ← s+d;
IF d>maxDevSqr THEN maxDevSqr ← d;
IF i=thru THEN EXIT
ENDLOOP;
maxDev ← RealFns.SqRt[maxDevSqr];
IF useAve THEN s ← s/nSamples;
};
Adjustment: PROCEDURE [z: Complex.Vec, t: REAL]
RETURNS [delta:REAL] = INLINE {
OPEN f;
x,dx,ddx: REAL;
y,dy,ddy: REAL;
derivSqrDist: REAL;
derivDerivSqrDist: REAL;
x ← ((c3.x*t+c2.x)*t+c1.x)*t+c0.x;
dx ← (3*c3.x*t+2*c2.x)*t+c1.x;
ddx ← 6*c3.x*t+2*c2.x;
y ← ((c3.y*t+c2.y)*t+c1.y)*t+c0.y;
dy ← (3*c3.y*t+2*c2.y)*t+c1.y;
ddy ← 6*c3.y*t+2*c2.y;
derivSqrDist ← (x-z.x)*dx + (y-z.y)*dy;
derivDerivSqrDist ← dx*dx + dy*dy + (x-z.x)*ddx + (y-z.y)*ddy;
delta ← IF derivDerivSqrDist=0 THEN 0 ELSE -derivSqrDist/derivDerivSqrDist;
};
AdjustTValues: PROCEDURE RETURNS [maxChange: REAL] = {
delta: REAL;
maxChange ← 0;
FOR i:NAT ← from, Wrap[i+1] DO
delta ← Adjustment[z[i],t[i]];
IF ABS[delta] > maxChange THEN maxChange ← ABS[delta];
t[i] ← t[i]+delta;
IF i=thru THEN EXIT
ENDLOOP;
};
Rescale: PROCEDURE = INLINE {
t0: REAL ← t[from];
interval: REAL ← t[thru]-t0;
FOR i:NAT ← from, Wrap[i+1] DO
t[i] ← (t[i]-t0)/interval;
IF i=thru THEN EXIT
ENDLOOP;
};
basis: ARRAY [0..8) OF Cubic.Coeffs;
free: ARRAY [0..8) OF BOOLEAN;
a: ARRAY [0..8) OF REAL;
nFree: NAT;
SetupBasis: PROCEDURE = {
FOR i:NAT IN [0..8) DO free[i] ← FALSE ENDLOOP;
basis[0] ← Cubic.BezierToCoeffs[[[1,0],[1,0],[0,0],[0,0]]]; a[0] ← z[from].x;
basis[1] ← Cubic.BezierToCoeffs[[[0,1],[0,1],[0,0],[0,0]]]; a[1] ← z[from].y;
IF initFree THEN free[0] ← free[1] ← TRUE;
IF initTangent=[0,0] THEN {
basis[2] ← Cubic.BezierToCoeffs[[[0,0],[1,0],[0,0],[0,0]]]; free[2] ← TRUE;
basis[3] ← Cubic.BezierToCoeffs[[[0,0],[0,1],[0,0],[0,0]]]; free[3] ← TRUE;
}
ELSE {
basis[2] ← Cubic.BezierToCoeffs[[[0,0],initTangent,[0,0],[0,0]]]; free[2] ← TRUE;
basis[3] ← Cubic.BezierToCoeffs[[[0,0],Complex.Mul[initTangent,[0,1]],[0,0],[0,0]]]; a[3] ← 0;
};
IF finalTangent=[0,0] THEN {
basis[4] ← Cubic.BezierToCoeffs[[[0,0],[0,0],[1,0],[0,0]]]; free[4] ← TRUE;
basis[5] ← Cubic.BezierToCoeffs[[[0,0],[0,0],[0,1],[0,0]]]; free[5] ← TRUE;
}
ELSE {
basis[4] ← Cubic.BezierToCoeffs[[[0,0],[0,0],finalTangent,[0,0]]]; free[4] ← TRUE;
basis[5] ← Cubic.BezierToCoeffs[[[0,0],[0,0],Complex.Mul[finalTangent,[0,1]],[0,0]]]; a[5] ← 0;
};
basis[6] ← Cubic.BezierToCoeffs[[[0,0],[0,0],[1,0],[1,0]]]; a[6] ← z[thru].x;
basis[7] ← Cubic.BezierToCoeffs[[[0,0],[0,0],[0,1],[0,1]]]; a[7] ← z[thru].y;
IF finalFree THEN free[6] ← free[7] ← TRUE;
nFree ← 0; FOR i:NAT IN [0..8) DO IF free[i] THEN nFree ← nFree + 1 ENDLOOP;
};
EvalBasis: PROCEDURE [i: NAT, t: REAL] RETURNS [Complex.Vec] = {
b: Cubic.Coeffs ← basis[i];
RETURN[[
((b.c3.x*t+b.c2.x)*t+b.c1.x)*t+b.c0.x,
((b.c3.y*t+b.c2.y)*t+b.c1.y)*t+b.c0.y
]]
};
rightSide: Column;
leftSide: Matrix;
unknown: Column;
arrayStorage: ARRAY [0..8*(8+1+1)) OF REAL;
descriptorStorage: ARRAY [0..8) OF Row;
AllocateArrayDescriptors: PROCEDURE[n: NAT] = {
p: LONG POINTER;
IF n>8 THEN ERROR;
p ← @descriptorStorage;
leftSide ← DESCRIPTOR[p, n];
p ← @arrayStorage;
FOR i: NAT IN [0..n) DO
leftSide[i] ← DESCRIPTOR[p, n];
p ← p + n*SIZE[REAL];
ENDLOOP;
rightSide ← DESCRIPTOR[p, n];
p ← p + n*SIZE[REAL];
unknown ← DESCRIPTOR[p, n];
p ← p + n*SIZE[REAL];
};
SolveCurve: PROCEDURE = {
singular: BOOLEANFALSE;
FOR i: NAT IN [0..nFree) DO
FOR j: NAT IN [0..nFree) DO leftSide[i][j] ← 0 ENDLOOP;
rightSide[i] ← 0;
ENDLOOP;
FOR k: NAT ← from, Wrap[k+1] DO
tk: REAL = t[k];
row: NAT ← 0;
FOR i: NAT IN [0..8) DO IF free[i] THEN {
gi: Complex.Vec ← EvalBasis[i,tk];
column: NAT ← 0;
FOR j: NAT IN [0..8) DO
gj: Complex.Vec ← EvalBasis[j,tk];
IF free[j] THEN
leftSide[row][column] ← leftSide[row][column] + Vector.Dot[gi,gj]
ELSE
rightSide[row] ← rightSide[row] - a[j]*Vector.Dot[gi,gj];
IF free[j] THEN column ← column + 1;
ENDLOOP;
rightSide[row] ← rightSide[row] + Vector.Dot[z[k],gi];
row ← row + 1;
};
ENDLOOP;
IF k=thru THEN EXIT
ENDLOOP;
SolveLinearSystem[leftSide, rightSide, nFree, unknown!
Real.RealException => CHECKED {singular ← TRUE; CONTINUE}];
IF singular THEN {
IF paranoidAboutSingularSystems THEN SIGNAL SingularSystem;
singularSystemCount ← singularSystemCount + 1;
FOR i:NAT IN [0..8) DO
IF free[i] THEN a[i] ← 0;
ENDLOOP;
}
ELSE {
row: NAT ← 0;
FOR i:NAT IN [0..8) DO
IF free[i] THEN {a[i] ← unknown[row]; row ← row + 1};
ENDLOOP;
};
};
FindCoeffs: PROCEDURE = {
f ← [[0,0],[0,0],[0,0],[0,0]];
FOR i:NAT IN [0..8) DO
f ← [Complex.Add[f.c0,Vector.Mul[basis[i].c0,a[i]]],
Complex.Add[f.c1,Vector.Mul[basis[i].c1,a[i]]],
Complex.Add[f.c2,Vector.Mul[basis[i].c2,a[i]]],
Complex.Add[f.c3,Vector.Mul[basis[i].c3,a[i]]]];
ENDLOOP;
};
olderr: REAL ← 1.0E+20;
IF NOT useOldTValues THEN ArcLengthInitialTValues;
SetupBasis;
AllocateArrayDescriptors[nFree];
FOR iterations IN [0..metrics.maxItr) DO
IF initFree OR finalFree THEN Rescale;
SolveCurve;
FindCoeffs;
err ← Error[];
make the error exit on increasing error conditional
IF NOT onlyOnMaxItr AND (atLeastOnce AND iterations > 0) AND
((errInc AND err>olderr) OR err<metrics.sumErr OR maxDev<metrics.maxDev) THEN EXIT;
olderr ← err;
IF AdjustTValues[]<metrics.deltaT AND NOT onlyOnMaxItr THEN EXIT;
ENDLOOP;
b ← Cubic.CoeffsToBezier[f];
};
Matrix: TYPE = LONG DESCRIPTOR FOR ARRAY OF Row;
Row: TYPE = LONG DESCRIPTOR FOR ARRAY OF REAL;
Column: TYPE = LONG DESCRIPTOR FOR ARRAY OF REAL;
SolveLinearSystem: PROCEDURE [A: Matrix, b: Column, n: NAT, x: Column] = {
solve Ax=b by Gaussian Elimination
FOR i: NAT IN [0..n) DO
bestk: NAT ← i;
FOR k: NAT IN [i..n) DO
IF ABS[A[k][i]] > ABS[A[bestk][i]] THEN bestk ← k;
ENDLOOP;
{t: Row ← A[i]; A[i] ← A[bestk]; A[bestk] ← t};
{t: REAL ← b[i]; b[i] ← b[bestk]; b[bestk] ← t};
FOR k: NAT IN (i..n) DO
IF A[k][i]#0 THEN {
r: REAL = A[k][i]/A[i][i]; -- Singular A causes Real.RealException = divide by zero
FOR j: NAT IN [i..n) DO
A[k][j] ← A[k][j] - A[i][j]*r
ENDLOOP;
b[k] ← b[k] - b[i]*r
};
ENDLOOP;
ENDLOOP;
Now A is upper-triangular, so back substitute
FOR i: NAT IN [0..n) DO x[i] ← 0; ENDLOOP;
FOR i: NAT DECREASING IN [0..n) DO
xi: REAL ← b[i];
FOR j: NAT IN (i..n) DO
xi ← xi - A[i][j]*x[j];
ENDLOOP;
x[i] ← xi / A[i][i];
ENDLOOP;
};
paranoidAboutSingularSystems: BOOLEANFALSE;
singularSystemCount: INT ← 0;
END.
Michael Plass August 18, 1982 10:03 am: Switched to array descriptors to eliminate excess allocations
Michael Plass August 19, 1982 1:17 pm: Cleaned up error calculation.
Michael Plass August 26, 1982 1:41 pm: Allowed the SingularSystem signal to be disabled.