(Slide.jam) =
(fonts.jam).run
(colors.jam).run
(utils.jam).run
(frame) {
black -1 inch 0 inch 14 inch 1 .maskrectangle
black -1 inch 8 inch 14 inch 1 .maskrectangle
black 0 inch -1 inch 1 11 inch .maskrectangle
black 12 inch -1 inch 1 11 inch .maskrectangle
cyan -0.5 inch -0.5 inch 13 inch 9 inch .maskrectangle
blue -0.5 inch 7.5 inch 13 inch 1.0 inch .maskrectangle
white 30 LOGO 10.5 inch 7.6 inch .setxy (XEROX) .show
15 CLSSM 9.0 inch 5.0 .setxy (Mik Lamming PARC EDL) (white) drop
} .cvx .def
(ip) { % (procedureName) ip
(name) .exch .def
t name .cvx .exec
(Making Interpress file: ) name .ropeconcat (.ip) .ropeconcat =
{ 9.2 inch 0.75 inch .translatet 90 .rotatet name .cvx .exec } .cvx name (.ip) .ropeconcat .makeinterpress
} .cvx .def
% EXAMPLE - 36 [ (slide1) (slide2) ... (slide47) ] (thumbnails) ShowInNs
(ShowInNs) { % nXX [(p1) (p2) .. (pn) ] funcXX ShowInNs
(funcXX) .exch .def
(listXX) .exch .def
(nXX) .exch .def
{
listXX .length nXX 1 .sub .gt {
(first8XX) listXX 0 nXX .subarray .def
(listXX) listXX nXX listXX .length nXX .sub .subarray .def
first8XX { } .cvx .arrayforall funcXX .cvx .exec
} .cvx {
listXX .length 0 .gt {
listXX { } .cvx .arrayforall
nXX listXX .length .sub { (dummy) } .cvx .rept
funcXX .cvx .exec
} .cvx .if
.exit
} .cvx .ifelse
}.cvx .loop
} .cvx .def
(dummy) {} .cvx .def
(PrintInNs) { % filename nXX [(p1) (p2) .. (pn) ] funcXX PrintInNs
(funcXX) .exch .def
(listXX) .exch .def
(nXX) .exch .def
(filename) .exch .def
filename [ ] {
(page ) .print .dup = % display the page #
9.2 inch 0.75 inch .translatet 90 .rotatet
listXX .length nXX 1 .sub .gt {
(first8XX) listXX 0 nXX .subarray .def
(listXX) listXX nXX listXX .length nXX .sub .subarray .def
first8XX { } .cvx .arrayforall funcXX .cvx .exec
listXX .length 0 .eq
} .cvx {
listXX .length 0 .gt {
listXX { } .cvx .arrayforall
nXX listXX .length .sub { (dummy) } .cvx .rept
funcXX .cvx .exec
} .cvx .if
.true
} .cvx .ifelse
}.cvx .writeinterpress
} .cvx .def
(RawPrintInNs) { % filename nXX [(p1) (p2) .. (pn) ] funcXX RawShowInNs
(funcXX) .exch .def
(listXX) .exch .def
(nXX) .exch .def
(filename) .exch .def
filename [ ] {
listXX .length nXX 1 .sub .gt {
(page ) .print .dup = % display the page #
(first8XX) listXX 0 nXX .subarray .def
(listXX) listXX nXX listXX .length nXX .sub .subarray .def
first8XX { } .cvx .arrayforall funcXX .cvx .exec
listXX .length 0 .eq
} .cvx {
listXX .length 0 .gt {
listXX { } .cvx .arrayforall
nXX listXX .length .sub { (dummy) } .cvx .rept
funcXX .cvx .exec
} .cvx .if
.true
} .cvx .ifelse
}.cvx .writeinterpress
} .cvx .def
(blockOf1) {
.dup =
.cvx .dosave
} .cvx .def
(blockOf2) {
{ 12 inch 0 inch .translatet 90 .rotatet
{.dup = 0 inch 0 inch .translatet 0.6 .scalet .cvx .dosave} .cvx .dosave
{.dup = 0 inch 6 inch .translatet 0.6 .scalet .cvx .dosave} .cvx .dosave
} .cvx .dosave
} .cvx .def
(blockOf6) {
0 10.25 inch .translatet -90 .rotatet
black 0 0 10.25 inch 13.25 inch .maskrectangle
white 0.025 inch 0.025 inch 10.2 inch 13.2 inch .maskrectangle
1.3 .scalet
34 79 .translatet
{.dup = 4 inch 0 inch .translatet 1 4 .div .scalet .cvx .dosave} .cvx .dosave
{.dup = 0 inch 0 inch .translatet 1 4 .div .scalet .cvx .dosave} .cvx .dosave
{.dup = 4 inch 3 inch .translatet 1 4 .div .scalet .cvx .dosave} .cvx .dosave
{.dup = 0 inch 3 inch .translatet 1 4 .div .scalet .cvx .dosave} .cvx .dosave
{.dup = 4 inch 6 inch .translatet 1 4 .div .scalet .cvx .dosave} .cvx .dosave
{.dup = 0 inch 6 inch .translatet 1 4 .div .scalet .cvx .dosave} .cvx .dosave
} .cvx .def
(eightCribs) { % (p1) (p2) (p3) (p4) (p5) (p6) (p7) (p8) eightCribs
{
(p8XX) .exch .def
(p7XX) .exch .def
(p6XX) .exch .def
(p5XX) .exch .def
(p4XX) .exch .def
(p3XX) .exch .def
(p2XX) .exch .def
(p1XX) .exch .def
black 0 0 13.25 inch 10.25 inch .maskrectangle
white 0.025 inch 0.025 inch 13.2 inch 10.2 inch .maskrectangle
0.6 inch 0.1 inch .translatet
{
0.1 0.1 .translatet
0 inch 0 .translatet p5XX cribSheet
3.0 inch 0 .translatet p6XX cribSheet
3.0 inch 0 .translatet p7XX cribSheet
3.0 inch 0 .translatet p8XX cribSheet
} .cvx .dosave
{
0.1 5.0 inch .translatet
0 inch 0 .translatet p1XX cribSheet
3.0 inch 0 .translatet p2XX cribSheet
3.0 inch 0 .translatet p3XX cribSheet
3.0 inch 0 .translatet p4XX cribSheet
} .cvx .dosave
} .cvx .dosave
} .cvx .def
(cribSheet) { % (p1) cribSheet
{
.dup =
black 0.05 inch .setstrokewidth wireFrame .maskstroke
0.3 inch 3.0 inch .translatet 1 5 .div .scalet .cvx .dosave
} .cvx .dosave
} .cvx .def
(wireFrame) { % draws a crib sheet sized wire frame at 0 0
0 inch 0 inch .moveto 0 inch 5 inch .lineto 3 inch 5 inch .lineto 3 inch 0 inch .lineto 0 inch 0 inch .lineto
} .cvx .def
(thumbnails) {
{ 0 0 inch .translatet stripOf6} .cvx .dosave
{ 0 1.5 inch .translatet stripOf6} .cvx .dosave
{ 0 3 inch .translatet stripOf6} .cvx .dosave
{ 0 4.5 inch .translatet stripOf6} .cvx .dosave
{ 0 6 inch .translatet stripOf6} .cvx .dosave
{ 0 7.5 inch .translatet stripOf6} .cvx .dosave
} .cvx .def
(stripOf6) {
{.dup = 10 inch 0 .translatet 1 8 .div .scalet .cvx .dosave} .cvx .dosave
{.dup = 8 inch 0 .translatet 1 8 .div .scalet .cvx .dosave} .cvx .dosave
{.dup = 6 inch 0 .translatet 1 8 .div .scalet .cvx .dosave} .cvx .dosave
{.dup = 4 inch 0 .translatet 1 8 .div .scalet .cvx .dosave} .cvx .dosave
{.dup = 2 inch 0 .translatet 1 8 .div .scalet .cvx .dosave} .cvx .dosave
{.dup = 0 0 .translatet 1 8 .div .scalet .cvx .dosave} .cvx .dosave
} .cvx .def
(showtime) .true .def
(Dunnx) 0 inch .def
(Dunn) { % (p1) Dunn - scales and centers slides for DunnSnap
{
% 0.375 inch 0.85 inch .translatet
% 1.1 .scalet
11 52 .translatet
1.15 .scalet
.cvx .dosave
{
black
-2 inch -2 inch 16 inch 2 inch .maskrectangle
-2 inch 0 inch 2 inch 16 inch .maskrectangle
12 inch 0 inch 2 inch 16 inch .maskrectangle
-2 inch 8 inch 16 inch 4 inch .maskrectangle
} .cvx .dosave
showtime { Dunnx -0.3 inch .setxy 18 CLSSM white .date .show } .cvx .if
} .cvx .dosave
} .cvx .def
% Typical use of above : 1 <array of names> (Dunn) ShowInNs
(DunnIP) { % (p1) DunnIP - scales and centers slides for DunnSnap
(name) .exch .def
name Dunn
(Making Interpress file: ) name .ropeconcat (.ip) .ropeconcat =
{ { name Dunn } .cvx .exec } .cvx name (.ip) .ropeconcat .makeinterpress
} .cvx .def
% Typical use of above : 1 <array of names> (DunnIP) ShowInNs
(DunnSnap) { % (p1) DunnSnap - scales and centers slides for DunnSnap
(name) .exch .def
Ektachrome64AtF/5.6L* .preparecolormaps
name =
(Dunnx) 0 .def
{name Dunn (Dunnx) Dunnx 4 inch .add .def} .cvx .dunnsnap
(Dunnx) 0 .def
} .cvx .def
% Typical use of above : 1 <array of names> (DunnSnap) ShowInNs
(t) { e .initdc 75 75 .translatet } .cvx .def
(IdleOff) {
% (ViewerProcessesImpl.IdleOff[NIL]) .interpret .pop
(EndOpsImpl.neverEnableAutoIdle ← TRUE) .interpret .pop
} .cvx .def
(IdleOn) {
% (ViewerProcessesImpl.IdleOn[NIL]) .interpret .pop
(EndOpsImpl.neverEnableAutoIdle ← FALSE) .interpret .pop
} .cvx .def
(Ektachrome64AtF/5.6L*) [
0 0 0 0  1 1 1 1  2 3 3 3  3 4 4 4
4 5 5 5  5 6 6 6  6 8 8 8  7 9 9 9
8 10 10 10  9 11 11 11  10 13 13 13  11 14 14 14
12 15 15 15  13 16 16 16  14 17 17 17  15 18 18 18
16 19 19 19  17 20 20 20  18 21 21 21  19 22 22 22
20 23 23 23  21 24 24 24  22 24 24 24  23 25 25 25
24 26 26 26  25 27 27 27  26 28 28 28  27 29 29 29
28 30 30 30  29 31 31 31  30 32 32 32  31 32 32 32
32 33 33 33  33 34 34 34  34 35 35 35  35 36 36 36
36 37 37 37  37 38 38 38  38 39 39 39  39 40 40 40
40 41 41 41  41 41 41 41  42 42 42 42  43 43 43 43
44 44 44 44  45 45 45 45  46 46 46 46  47 47 47 47
48 48 48 48  49 48 48 48  50 49 49 49  51 50 50 50
52 51 51 51  53 51 51 51  54 52 52 52  55 53 53 53
56 53 53 53  57 54 54 54  58 55 55 55  59 55 55 55
60 56 56 56  61 57 57 57  62 57 57 57  63 58 58 58
64 59 59 59  65 59 59 59  66 60 60 60  67 61 61 61
68 61 61 61  69 62 62 62  70 63 63 63  71 64 64 64
72 64 64 64  73 65 65 65  74 66 66 66  75 67 67 67
76 67 67 67  77 68 68 68  78 69 69 69  79 70 70 70
80 71 71 71  81 72 72 72  82 72 72 72  83 73 73 73
84 74 74 74  85 75 75 75  86 76 76 76  87 76 76 76
88 77 77 77  89 78 78 78  90 79 79 79  91 80 80 80
92 81 81 81  93 81 81 81  94 82 82 82  95 83 83 83
96 83 83 83  97 84 84 84  98 85 85 85  99 86 86 86
100 86 86 86  101 87 87 87  102 88 88 88  103 88 88 88
104 89 89 89  105 90 90 90  106 91 91 91  107 91 91 91
108 92 92 92  109 93 93 93  110 93 93 93  111 94 94 94
112 95 95 95  113 96 96 96  114 96 96 96  115 97 97 97
116 98 98 98  117 99 99 99  118 100 100 100  119 101 101 101
120 102 102 102  121 103 103 103  122 104 104 104  123 105 105 105
124 105 105 105  125 106 106 106  126 107 107 107  127 108 108 108
128 109 109 109  129 110 110 110  130 111 111 111  131 112 112 112
132 113 113 113  133 113 113 113  134 114 114 114  135 115 115 115
136 116 116 116  137 117 117 117  138 118 118 118  139 118 118 118
140 119 119 119  141 120 120 120  142 121 121 121  143 122 122 122
144 123 123 123  145 124 124 124  146 124 124 124  147 125 125 125
148 126 126 126  149 127 127 127  150 128 128 128  151 129 129 129
152 130 130 130  153 131 131 131  154 132 132 132  155 133 133 133
156 134 134 134  157 135 135 135  158 136 136 136  159 137 137 137
160 138 138 138  161 139 139 139  162 140 140 140  163 141 141 141
164 142 142 142  165 143 143 143  166 144 144 144  167 145 145 145
168 146 146 146  169 147 147 147  170 148 148 148  171 149 149 149
172 150 150 150  173 151 151 151  174 152 152 152  175 153 153 153
176 154 154 154  177 155 155 155  178 156 156 156  179 157 157 157
180 158 158 158  181 159 159 159  182 160 160 160  183 161 161 161
184 162 162 162  185 164 164 164  186 165 165 165  187 166 166 166
188 167 167 167  189 168 168 168  190 169 169 169  191 171 171 171
192 172 172 172  193 173 173 173  194 174 174 174  195 175 175 175
196 176 176 176  197 177 177 177  198 178 178 178  199 180 180 180
200 181 181 181  201 182 182 182  202 183 183 183  203 184 184 184
204 185 185 185  205 186 186 186  206 187 187 187  207 188 188 188
208 189 189 189  209 190 190 190  210 191 191 191  211 193 193 193
212 194 194 194  213 195 195 195  214 196 196 196  215 198 198 198
216 199 199 199  217 200 200 200  218 202 202 202  219 203 203 203
220 204 204 204  221 206 206 206  222 207 207 207  223 208 208 208
224 210 210 210  225 211 211 211  226 212 212 212  227 214 214 214
228 215 215 215  229 216 216 216  230 217 217 217  231 219 219 219
232 220 220 220  233 221 221 221  234 223 223 223  235 224 224 224
236 226 226 226  237 227 227 227  238 229 229 229  239 230 230 230
240 232 232 232  241 233 233 233  242 235 235 235  243 237 237 237
244 238 238 238  245 240 240 240  246 241 241 241  247 243 243 243
248 244 244 244  249 246 246 246  250 247 247 247  251 249 249 249
252 250 250 250  253 252 252 252  254 253 253 253  255 255 255 255
] .def
(Ektachrome64AtF/5.6L) [
0 0 0 0   1 8 8 8   2 16 16 16  3 20 20 20
4 25 25 25  5 29 29 29  6 33 33 33  7 36 36 36
8 39 39 39  9 42 42 42  10 45 45 45  11 48 48 48
12 50 50 50  13 51 51 51  14 53 53 53  15 55 55 55
16 56 56 56  17 58 58 58  18 60 60 60  19 61 61 61
20 63 63 63  21 65 65 65  22 66 66 66  23 68 68 68
24 69 69 69  25 71 71 71  26 72 72 72  27 74 74 74
28 75 75 75  29 77 77 77  30 78 78 78  31 80 80 80
32 81 81 81  33 82 82 82  34 83 83 83  35 84 84 84
36 85 85 85  37 86 86 86  38 87 87 87  39 88 88 88
40 89 89 89  41 90 90 90  42 91 91 91  43 92 92 92
44 93 93 93  45 94 94 94  46 96 96 96  47 97 97 97
48 98 98 98  49 99 99 99  50 100 100 100 51 101 101 101
52 102 102 102 53 103 103 103 54 104 104 104 55 105 105 105
56 106 106 106 57 107 107 107 58 108 108 108 59 109 109 109
60 110 110 110 61 111 111 111 62 112 112 112 63 113 113 113
64 114 114 114 65 115 115 115 66 116 116 116 67 117 117 117
68 117 117 117 69 118 118 118 70 119 119 119 71 120 120 120
72 121 121 121 73 122 122 122 74 122 122 122 75 123 123 123
76 124 124 124 77 125 125 125 78 126 126 126 79 127 127 127
80 127 127 127 81 128 128 128 82 129 129 129 83 130 130 130
84 131 131 131 85 132 132 132 86 133 133 133 87 134 134 134
88 135 135 135 89 136 136 136 90 136 136 136 91 137 137 137
92 138 138 138 93 139 139 139 94 140 140 140 95 141 141 141
96 142 142 142 97 143 143 143 98 144 144 144 99 144 144 144
100 145 145 145 101 146 146 146 102 147 147 147 103 147 147 147
104 148 148 148 105 149 149 149 106 150 150 150 107 150 150 150
108 151 151 151 109 152 152 152 110 153 153 153 111 153 153 153
112 154 154 154 113 155 155 155 114 155 155 155 115 156 156 156
116 157 157 157 117 158 158 158 118 158 158 158 119 159 159 159
120 160 160 160 121 161 161 161 122 161 161 161 123 162 162 162
124 163 163 163 125 164 164 164 126 165 165 165 127 165 165 165
128 166 166 166 129 167 167 167 130 168 168 168 131 168 168 168
132 169 169 169 133 170 170 170 134 171 171 171 135 172 172 172
136 172 172 172 137 173 173 173 138 174 174 174 139 175 175 175
140 175 175 175 141 176 176 176 142 177 177 177 143 177 177 177
144 178 178 178 145 179 179 179 146 179 179 179 147 180 180 180
148 181 181 181 149 181 181 181 150 182 182 182 151 183 183 183
152 183 183 183 153 184 184 184 154 185 185 185 155 185 185 185
156 186 186 186 157 187 187 187 158 187 187 187 159 188 188 188
160 189 189 189 161 189 189 189 162 190 190 190 163 190 190 190
164 191 191 191 165 192 192 192 166 192 192 192 167 193 193 193
168 194 194 194 169 195 195 195 170 195 195 195 171 196 196 196
172 197 197 197 173 198 198 198 174 198 198 198 175 199 199 199
176 200 200 200 177 200 200 200 178 201 201 201 179 202 202 202
180 203 203 203 181 203 203 203 182 204 204 204 183 205 205 205
184 206 206 206 185 206 206 206 186 207 207 207 187 208 208 208
188 208 208 208 189 209 209 209 190 210 210 210 191 210 210 210
192 211 211 211 193 212 212 212 194 212 212 212 195 213 213 213
196 214 214 214 197 214 214 214 198 215 215 215 199 216 216 216
200 216 216 216 201 217 217 217 202 218 218 218 203 218 218 218
204 219 219 219 205 220 220 220 206 220 220 220 207 221 221 221
208 222 222 222 209 222 222 222 210 223 223 223 211 224 224 224
212 224 224 224 213 225 225 225 214 226 226 226 215 227 227 227
216 227 227 227 217 228 228 228 218 229 229 229 219 230 230 230
220 230 230 230 221 231 231 231 222 232 232 232 223 233 233 233
224 233 233 233 225 234 234 234 226 235 235 235 227 236 236 236
228 236 236 236 229 237 237 237 230 238 238 238 231 239 239 239
232 239 239 239 233 240 240 240 234 241 241 241 235 241 241 241
236 242 242 242 237 243 243 243 238 243 243 243 239 244 244 244
240 245 245 245 241 245 245 245 242 246 246 246 243 247 247 247
244 248 248 248 245 248 248 248 246 249 249 249 247 250 250 250
248 250 250 250 249 251 251 251 250 252 252 252 251 252 252 252
252 253 253 253 253 254 254 254 254 254 254 254 255 255 255 255
] .def