GGMultiGravityImpl.mesa
Copyright © 1986 by Xerox Corporation. All rights reserved.
Last edited by Bier on June 3, 1986 2:42:42 pm PDT
Contents: Performs hit testing similar to GGGravity. Instead of returning a single nearest feature, we return the N (or fewer) nearest features which are within a given tolerance distance from the test point. The algorithm used is described in [Cyan]<Gargoyle>Documentation>MultiGravity.tioga.
DIRECTORY
GGBasicTypes, AtomButtons, GGCaret, GGCircles, GGLines, GGInterfaceTypes, GGModelTypes, GGMultiGravity, GGSegmentTypes, GGStatistics, GGUtility, GGVector, RealFns, Rope;
GGMultiGravityImpl: CEDAR PROGRAM
IMPORTS AtomButtons, GGCaret, GGCircles, GGLines, GGStatistics, GGVector, RealFns
EXPORTS GGMultiGravity = BEGIN
Arc: TYPE = GGBasicTypes.Arc;
AlignmentCircle: TYPE = GGInterfaceTypes.AlignmentCircle;
AlignmentLine: TYPE = GGInterfaceTypes.AlignmentLine;
AlignmentPoint: TYPE = REF AlignmentPointObj;
AlignmentPointObj: TYPE = GGInterfaceTypes.AlignmentPointObj;
Caret: TYPE = GGInterfaceTypes.Caret;
Circle: TYPE = GGBasicTypes.Circle;
Edge: TYPE = GGBasicTypes.Edge;
FeatureData: TYPE = REF FeatureDataObj;
FeatureDataObj: TYPE = GGModelTypes.FeatureDataObj;
GargoyleData: TYPE = GGInterfaceTypes.GargoyleData;
GoodCurve: TYPE = REF GoodCurveObj;
GoodCurveObj: TYPE = GGMultiGravity.GoodCurveObj;
GoodPoint: TYPE = REF GoodPointObj;
GoodPointObj: TYPE = GGMultiGravity.GoodPointObj;
GoodPointType: TYPE = GGMultiGravity.GoodPointType;
JointGenerator: TYPE = GGModelTypes.JointGenerator;
Line: TYPE = GGBasicTypes.Line;
NearDistances: TYPE = REF NearDistancesObj;
NearDistancesObj: TYPE = GGMultiGravity.NearDistancesObj;
NearFeatures: TYPE = REF NearFeaturesObj;
NearFeaturesObj: TYPE = GGMultiGravity.NearFeaturesObj;
NearPoints: TYPE = REF NearPointsObj;
NearPointsAndCurves: TYPE = REF NearPointsAndCurvesObj;
NearPointsAndCurvesObj: TYPE = GGMultiGravity.NearPointsAndCurvesObj;
NearPointsObj: TYPE = GGMultiGravity.NearPointsObj;
ObjectBag: TYPE = REF ObjectBagObj;
ObjectBagObj: TYPE = GGInterfaceTypes.ObjectBagObj;
Outline: TYPE = GGModelTypes.Outline;
OutlineDescriptor: TYPE = REF OutlineDescriptorObj;
OutlineDescriptorObj: TYPE = GGModelTypes.OutlineDescriptorObj;
Point: TYPE = GGBasicTypes.Point;
Segment: TYPE = GGSegmentTypes.Segment;
SegmentGenerator: TYPE = GGModelTypes.SegmentGenerator;
Sequence: TYPE = GGModelTypes.Sequence;
Slice: TYPE = GGModelTypes.Slice;
SliceDescriptor: TYPE = GGModelTypes.SliceDescriptor;
TriggerBag: TYPE = REF TriggerBagObj;
TriggerBagObj: TYPE = GGInterfaceTypes.TriggerBagObj;
MultiGravityPool:
TYPE =
REF MultiGravityPoolObj;
MultiGravityPoolObj:
TYPE =
RECORD [
distances: NearDistances,
features: NearFeatures,
bestpoints: BestPoints,
bestcurves: BestCurves
];
BestCurves:
TYPE =
REF BestCurvesObj;
BestCurvesObj:
TYPE =
RECORD [
size: NAT,
max, min: REAL,
overflow: BOOL,
curves: SEQUENCE len: NAT OF GoodCurve];
BestPoints:
TYPE =
REF BestPointsObj;
BestPointsObj:
TYPE =
RECORD [
size: NAT,
max, min: REAL,
overflow: BOOL,
points: SEQUENCE len: NAT OF GoodPoint];
Shared with GGGravityImpl
EmptyBag:
PROC [objectBag: ObjectBag]
RETURNS [
BOOL] = {
RETURN[
objectBag.slopeLines = NIL AND
objectBag.angleLines = NIL AND
objectBag.radiiCircles = NIL AND
objectBag.distanceLines = NIL AND
objectBag.midpoints = NIL AND
objectBag.intersectionPoints = NIL];
};
EmptyTriggers:
PROC [triggerBag: TriggerBag]
RETURNS [
BOOL] = {
RETURN[
triggerBag.outlines = NIL AND
triggerBag.slices = NIL AND
triggerBag.intersectionPoints = NIL AND
triggerBag.anchor = NIL
];
};
Problem: PUBLIC SIGNAL [msg: Rope.ROPE] = CODE;
Arbitration
[Artwork node; type 'ArtworkInterpress on' to command tool]
We arbitrate between those points which are within an epsilon-width ring of the nearest point.
Map:
PUBLIC
PROC [testPoint: Point, criticalR:
REAL, currentObjects: ObjectBag, activeObjects: TriggerBag, gargoyleData: GargoyleData, intersections:
BOOL]
RETURNS [resultPoint: Point, feature: FeatureData] = {
Dispatches to StrictDistance, InnerCircle, or does nothing depending on the currently selected gravity type. If intersections is TRUE, compute the intersections of the objects that are in the bags.
ENABLE UNWIND => gargoyleData.multiGravityPool ← NewMultiGravityPool[]; -- in case an ABORT happened while pool was in use
GGStatistics.StartInterval[$MultiMap, GGStatistics.GlobalTable[]];
SELECT AtomButtons.GetButtonState[gargoyleData.hitTest.gravButton]
FROM
on =>
SELECT gargoyleData.hitTest.gravityType
FROM
strictDistance =>
[resultPoint, feature] ← StrictDistance[testPoint, criticalR, currentObjects, activeObjects, gargoyleData];
innerCircle =>
[resultPoint, feature] ← InnerCircle[testPoint, criticalR, gargoyleData.hitTest.innerR, currentObjects, activeObjects, gargoyleData, intersections];
ENDCASE => ERROR;
off => {
resultPoint ← testPoint;
feature ← NIL;
};
ENDCASE => ERROR;
GGStatistics.StopInterval[$MultiMap, GGStatistics.GlobalTable[]];
};
PrepareWinner:
PROC [nearPointsAndCurves: NearPointsAndCurves, index:
NAT]
RETURNS [resultPoint: Point, feature: FeatureData] = {
WITH nearPointsAndCurves[index] SELECT FROM
goodPoint: GoodPoint => {
resultPoint ← goodPoint.point;
ExtractResultFromPoint[goodPoint, goodPoint.featureData]; -- stuffs hit info into featureData
feature ← goodPoint.featureData;
};
goodCurve: GoodCurve => {
resultPoint ← goodCurve.point;
ExtractResultFromCurve[goodCurve, goodCurve.featureData]; -- stuffs hit info into featureData
feature ← goodCurve.featureData;
};
ENDCASE => ERROR;
};
StrictDistance:
PUBLIC
PROC [testPoint: Point, criticalR:
REAL, objectBag: ObjectBag, sceneBag: TriggerBag, gargoyleData: GargoyleData]
RETURNS [resultPoint: Point, feature: FeatureData] = {
Someday, GoodPoint and GoodCurve should become a single variant record and distances will be unnecessary.
nearPointsAndCurves: NearPointsAndCurves;
count: NAT;
[nearPointsAndCurves, count] ← MultiStrictDistance[testPoint, criticalR, objectBag, sceneBag, gargoyleData];
IF count = 0 THEN RETURN [testPoint, NIL];
IF count = 1 THEN RETURN PrepareWinner[nearPointsAndCurves, 0]
ELSE {
Otherwise, let's do arbitration.
distances: NearDistances ← NARROW[gargoyleData.multiGravityPool, MultiGravityPool].distances;
features: NearFeatures ← NARROW[gargoyleData.multiGravityPool, MultiGravityPool].features;
nearestDist: REAL;
bestSceneObject: INT;
neighborCount: NAT ← 1;
s: REAL = 0.072; -- 1/1000 inches
FOR i:
NAT
IN [0..count)
DO
WITH nearPointsAndCurves[i]
SELECT
FROM
goodPoint: GoodPoint => {
distances[i] ← goodPoint.dist;
features[i] ← goodPoint.featureData};
goodCurve: GoodCurve => {
distances[i] ← goodCurve.dist;
features[i] ← goodCurve.featureData;};
ENDCASE => ERROR;
ENDLOOP;
nearestDist ← distances[0];
FOR i:
NAT
IN [1..count)
DO
IF distances[i] - nearestDist < s THEN neighborCount ← neighborCount + 1;
ENDLOOP;
IF neighborCount = 1
THEN
RETURN PrepareWinner[nearPointsAndCurves, 0];
We have more than one "equally close" features. Now we choose on the following basis:
1) Prefer scene objects to alignment lines.
2) Prefer points to lines.
Later, we will prefer objects that say the testpoint is "inside" them to those that don't.
bestSceneObject ← -1;
FOR i: NAT IN [0..neighborCount) DO
IF features[i].type = outline OR features[i].type = slice THEN {
SELECT features[i].resultType FROM
joint, controlPoint, intersectionPoint =>
RETURN PrepareWinner[nearPointsAndCurves, i];
ENDCASE => IF bestSceneObject = -1 THEN bestSceneObject ← i;
};
REPEAT
FINISHED => {
IF bestSceneObject >= 0 THEN
RETURN PrepareWinner[nearPointsAndCurves, bestSceneObject]
ELSE RETURN PrepareWinner[nearPointsAndCurves, 0];
};
ENDLOOP;
RETURN PrepareWinner[nearPointsAndCurves, 0];
};
};
ResultFeatureType: TYPE = {joint, segment, controlPoint, slice, distanceLine, slopeLine, angleLine, symmetryLine, radiiCircle, intersectionPoint, midpoint, anchor};
InnerCircle:
PUBLIC
PROC [testPoint: Point, criticalR:
REAL, innerR:
REAL, currentObjects: ObjectBag, activeObjects: TriggerBag, gargoyleData: GargoyleData, intersections:
BOOL]
RETURNS [resultPoint: Point, feature: FeatureData] = {
count: NAT;
nearPointsAndCurves: NearPointsAndCurves;
[nearPointsAndCurves, count] ← MultiInnerCircle[testPoint, criticalR, innerR, currentObjects, activeObjects, gargoyleData, intersections];
IF count = 0 THEN RETURN [testPoint, NIL];
IF count = 1 THEN RETURN PrepareWinner[nearPointsAndCurves, 0]
ELSE {
Otherwise, let's do arbitration.
distances: NearDistances ← NARROW[gargoyleData.multiGravityPool, MultiGravityPool].distances;
features: NearFeatures ← NARROW[gargoyleData.multiGravityPool, MultiGravityPool].features;
neighborCount: NAT ← 1;
s: REAL = 0.072; -- 1/1000 inches
nearestDist: REAL;
FOR i:
NAT
IN [0..count)
DO
WITH nearPointsAndCurves[i]
SELECT
FROM
goodPoint: GoodPoint => {
distances[i] ← goodPoint.dist;
features[i] ← goodPoint.featureData};
goodCurve: GoodCurve => {
distances[i] ← goodCurve.dist;
features[i] ← goodCurve.featureData;};
ENDCASE => ERROR;
ENDLOOP;
nearestDist ← distances[0];
FOR i:
NAT
IN [1..count)
DO
IF distances[i] - nearestDist < s THEN neighborCount ← neighborCount + 1;
ENDLOOP;
IF neighborCount = 1
THEN
RETURN PrepareWinner[nearPointsAndCurves, 0];
Now we choose on the following basis:
1) Prefer scene objects to alignment lines.
Later, we will prefer objects that say the testpoint is "inside" them to those that don't.
FOR i:
NAT
IN [0..neighborCount)
DO
IF features[i].type = outline
OR features[i].type = slice
THEN {
RETURN PrepareWinner[nearPointsAndCurves, i];
};
REPEAT
FINISHED => RETURN PrepareWinner[nearPointsAndCurves, 0];
ENDLOOP;
};
};
NearestNeighborsPlusSome:
PROC [q: Point, initialD:
REAL, currentObjects: ObjectBag, activeObjects: TriggerBag, anchor: Caret, gargoyleData: GargoyleData, distinguishedPointsOnly:
BOOL ← FALSE]
RETURNS [g: NearPointsAndCurves, count:
NAT] = {
};
Multi-Gravity Routines
MultiMap:
PUBLIC
PROC [testPoint: Point, criticalR:
REAL, currentObjects: ObjectBag, activeObjects: TriggerBag, gargoyleData: GargoyleData, intersections:
BOOL]
RETURNS [nearPointsAndCurves: NearPointsAndCurves, count:
NAT] = {
Dispatches to MultiStrictDistance or MultiInnerCircle as appropriate.
ENABLE UNWIND => gargoyleData.multiGravityPool ← NewMultiGravityPool[]; -- in case an ABORT happened while pool was in use
GGStatistics.StartInterval[$MultiMap, GGStatistics.GlobalTable[]];
SELECT AtomButtons.GetButtonState[gargoyleData.hitTest.gravButton]
FROM
on =>
SELECT gargoyleData.hitTest.gravityType
FROM
strictDistance =>
[nearPointsAndCurves, count] ← MultiStrictDistance[testPoint, criticalR, currentObjects, activeObjects, gargoyleData];
innerCircle =>
[nearPointsAndCurves, count] ← MultiInnerCircle[testPoint, criticalR, gargoyleData.hitTest.innerR, currentObjects, activeObjects, gargoyleData, intersections];
ENDCASE => ERROR;
off => {
nearPointsAndCurves ← NIL;
count ← 0;
};
ENDCASE => ERROR;
GGStatistics.StopInterval[$MultiMap, GGStatistics.GlobalTable[]];
};
MultiStrictDistance:
PUBLIC
PROC [testPoint: Point, criticalR:
REAL, currentObjects: ObjectBag, activeObjects: TriggerBag, gargoyleData: GargoyleData]
RETURNS [nearPointsAndCurves: NearPointsAndCurves, count:
NAT] = {
Returns up to MaxFeatures closest features, their closest points, and their distances from the testpoint. Features outside of the critical radius, criticalR, will not be included. The results will be located in nearPointsAndCurves[0] .. nearPointsAndCurves[count-1].
bestCurves: BestCurves;
bestPoints: BestPoints;
pointCount, curveCount: NAT;
IF EmptyBag[currentObjects]
AND EmptyTriggers[activeObjects]
THEN
RETURN[NIL, 0];
[bestCurves, curveCount] ← CurvesInTolerance[currentObjects, activeObjects, testPoint, gargoyleData, criticalR];
SortCurves[bestCurves, curveCount];
[bestPoints, pointCount] ← PointsInTolerance[bestCurves, curveCount, currentObjects, activeObjects, testPoint, criticalR, gargoyleData, FALSE];
SortPoints[bestPoints, pointCount];
count ← MIN[pointCount + curveCount, MaxFeatures];
nearPointsAndCurves ← NEW[NearPointsAndCurvesObj[count]];
MergePointsAndCurves[bestPoints, pointCount, bestCurves, curveCount, nearPointsAndCurves, count];
};
MultiInnerCircle:
PUBLIC
PROC [testPoint: Point, criticalR:
REAL, innerR:
REAL, currentObjects: ObjectBag, activeObjects: TriggerBag, gargoyleData: GargoyleData, intersections:
BOOL]
RETURNS [nearPointsAndCurves: NearPointsAndCurves, count:
NAT] = {
Returns up to MaxFeatures closest features, their closest points, and their distances from the testpoint. Features outside of the critical radius, criticalR, will not be included. The results will be located in nearPointsAndCurves[0] .. nearPointsAndCurves[count-1]. If any points are within the inner radius innerR, then only points (e.g. vertices, control points, and intersection points) will be mentioned. Otherwise, nearPointsAndCurves will consist of a mixture of points and curves. However, if criticalR = innerR THEN only points or only curves will be returned.
bestCurves: BestCurves;
bestPoints: BestPoints;
pointCount, curveCount: NAT;
IF EmptyBag[currentObjects] AND EmptyTriggers[activeObjects] THEN RETURN[NIL, 0];
[bestCurves, curveCount] ← CurvesInTolerance[currentObjects, activeObjects, testPoint, gargoyleData, criticalR];
SortCurves[bestCurves, curveCount];
[bestPoints, pointCount] ← PointsInTolerance[bestCurves, curveCount, currentObjects, activeObjects, testPoint, criticalR, gargoyleData, intersections];
SortPoints[bestPoints, pointCount];
IF pointCount > 0
AND bestPoints[0].dist < innerR
THEN {
count ← pointCount;
nearPointsAndCurves ← NEW[NearPointsAndCurvesObj[count]];
NearPointsFromPoints[bestPoints, pointCount, nearPointsAndCurves];
}
ELSE {
count ← MIN[pointCount + curveCount, MaxFeatures];
nearPointsAndCurves ← NEW[NearPointsAndCurvesObj[count]];
MergePointsAndCurves[bestPoints, pointCount, bestCurves, curveCount, nearPointsAndCurves, count];
};
};
ExtractResultFromCurve:
PROC [curve: GoodCurve, feature: FeatureData] = {
SELECT feature.type
FROM
outline => {
feature.hitPart ← curve.hitData;
feature.resultType ← outline;
};
slice => {
feature.hitPart ← curve.hitData;
feature.resultType ← slice;
};
slopeLine => feature.resultType ← slopeLine;
angleLine => feature.resultType ← angleLine;
radiiCircle => feature.resultType ← radiiCircle;
distanceLine => feature.resultType ← distanceLine;
ENDCASE => SIGNAL Problem[msg: "Unimplemented result type."];
};
ExtractResultFromPoint:
PROC [goodPoint: GoodPoint, feature: FeatureData] = {
SELECT goodPoint.type
FROM
outline => {
feature.hitPart ← goodPoint.hitData;
feature.resultType ← outline;
};
slice => {
feature.hitPart ← goodPoint.hitData;
feature.resultType ← slice;
};
intersectionPoint => {
feature.hitPart ← NIL;
feature.resultType ← intersectionPoint;
};
midpoint => {
midPoint features contain a reasonable segNum in their hitPart
feature.resultType ← midpoint;
};
anchor => {
anchors contain the anchor point in their hitPart
feature.resultType ← anchor;
};
ENDCASE => SIGNAL Problem [msg: "Unimplemented result type."];
};
FindIntersections:
PROC [bestCurves: BestCurves, curveCount:
NAT, thisPoint: GoodPoint, q: Point, tolerance:
REAL, h: BestPoints] = {
curveI, curveJ: GoodCurve;
theseIPoints: LIST OF Point;
thisTangency, tangentList: LIST OF BOOL;
success: BOOL;
FOR i:
NAT
IN [0..curveCount)
DO
curveI ← bestCurves[i];
FOR j:
NAT
IN [i+1..curveCount)
DO
curveJ ← bestCurves[j];
[theseIPoints, thisTangency] ← CurveMeetsCurve[curveI, curveJ];
tangentList ← thisTangency;
FOR list:
LIST
OF Point ← theseIPoints, list.rest
UNTIL list =
NIL
DO
thisPoint.point ← list.first;
thisPoint.type ← intersectionPoint;
thisPoint.dist ← GGVector.Distance[thisPoint.point, q];
success ← thisPoint.dist <= tolerance;
IF success
THEN {
featureData: FeatureData ← NEW[FeatureDataObj];
alignmentPoint: AlignmentPoint ←
NEW[AlignmentPointObj ← [
point: thisPoint.point,
tangent: tangentList.first,
curve1: curveI.featureData,
curve2: curveJ.featureData]];
featureData.type ← intersectionPoint;
featureData.shape ← alignmentPoint;
thisPoint.featureData ← featureData;
MergePoint[thisPoint, h];
};
tangentList ← tangentList.rest;
ENDLOOP;
ENDLOOP;
ENDLOOP;
};
PointsInTolerance:
PROC [bestCurves: BestCurves, curveCount:
NAT, objectBag: ObjectBag, sceneObjects: TriggerBag,
q: Point,
t:
REAL, gargoyleData: GargoyleData, intersections:
BOOL]
RETURNS [h: BestPoints, pointCount:
NAT] = {
thisPoint: GoodPoint;
For each gravity active point, find its distance from the testpoint. Package this information up into the thisPoint record. Then call MergePoint, which will add this point to the list of best points, if appropriate.
ProcessPoint:
PROC [thisPoint: GoodPoint, featureData: FeatureData] = {
dSquared: REAL;
dSquared ← GGVector.DistanceSquared[thisPoint.point, q];
thisPoint.hitData ← NIL;
IF dSquared < tSquared
THEN {
thisPoint.dist ← RealFns.SqRt[dSquared];
thisPoint.featureData ← featureData;
MergePoint[thisPoint, h];
};
};
ProcessSlice:
PROC [sliceD: SliceDescriptor, thisPoint: GoodPoint, featureData: FeatureData] = {
[thisPoint.point, thisPoint.dist, thisPoint.hitData, success] ← sliceD.slice.class.closestPoint[sliceD, q, t];
IF success
THEN {
IF thisPoint.dist <
t
THEN {
thisPoint.featureData ← featureData;
MergePoint[thisPoint, h];
};
};
};
ProcessOutline:
PROC [outlineD: OutlineDescriptor, thisPoint: GoodPoint, featureData: FeatureData] = {
[thisPoint.point, thisPoint.dist, thisPoint.hitData, success] ← outlineD.slice.class.closestPoint[outlineD, q, t];
IF success
THEN {
IF thisPoint.dist <
t
THEN {
thisPoint.featureData ← featureData;
MergePoint[thisPoint, h];
};
};
};
sliceD: SliceDescriptor;
outlineD: OutlineDescriptor;
featureData: FeatureData;
success: BOOL;
tSquared: REAL ← t*t;
thisPoint ← NEW[GoodPointObj];
h ← BestPointsFromPool[gargoyleData];
IF intersections THEN FindIntersections[bestCurves, curveCount, thisPoint, q, t, h];
FOR iPoints: LIST OF FeatureData ← objectBag.intersectionPoints, iPoints.rest UNTIL iPoints = NIL DO
featureData ← iPoints.first;
thisPoint.type ← intersectionPoint;
thisPoint.point ← NARROW[featureData.shape, AlignmentPoint].point;
ProcessPoint[thisPoint, featureData];
ENDLOOP;
FOR
midpoints:
LIST
OF FeatureData ← objectBag.midpoints, midpoints.rest
UNTIL midpoints =
NIL
DO
featureData ← midpoints.first;
thisPoint.type ← midpoint;
thisPoint.point ← NARROW[featureData.shape, AlignmentPoint].point;
ProcessPoint[thisPoint, featureData];
ENDLOOP;
FOR
slices:
LIST
OF FeatureData ← sceneObjects.slices, slices.rest
UNTIL slices =
NIL
DO
featureData ← slices.first;
thisPoint.type ← slice;
sliceD ← NARROW[featureData.shape, SliceDescriptor];
ProcessSlice[sliceD, thisPoint, featureData];
ENDLOOP;
FOR
outlines:
LIST
OF FeatureData ← sceneObjects.outlines, outlines.rest
UNTIL outlines =
NIL
DO
featureData ← outlines.first;
thisPoint.type ← outline;
outlineD ← NARROW[featureData.shape];
ProcessOutline[outlineD, thisPoint, featureData];
ENDLOOP;
Handle the anchor.
featureData ← sceneObjects.anchor;
IF featureData #
NIL
THEN {
anchor: Caret;
anchor ← NARROW[featureData.shape];
IF NOT GGCaret.Exists[anchor] THEN ERROR;
thisPoint.type ← anchor;
thisPoint.point ← GGCaret.GetPoint[anchor];
ProcessPoint[thisPoint, featureData];
};
pointCount ← h.size;
};
CurvesInTolerance:
PROC [objectBag: ObjectBag, sceneObjects: TriggerBag, q: Point, gargoyleData: GargoyleData, t:
REAL]
RETURNS [h: BestCurves, curveCount:
NAT] = {
For each slopeLine, find the distance of the slopeLine from the testpoint. Package this information up into the thisCurve record. Then call MergeCurve, which will add this curve to the list of best curves, if appropriate. Do not merge any curves that are farther away than tolerance.
ProcessLine:
PROC [line: Line, thisCurve: GoodCurve, featureData: FeatureData] = {
thisCurve.dist ← GGLines.LineDistance[q, line];
IF thisCurve.dist < t
THEN
{
thisCurve.featureData ← featureData;
thisCurve.point ← GGLines.PointProjectedOntoLine[q, line];
thisCurve.hitData ← NIL;
added ← MergeCurve[thisCurve, h];
}
};
ProcessCircle:
PROC [circle: Circle, thisCurve: GoodCurve, featureData: FeatureData] = {
thisCurve.dist ← GGCircles.CircleDistance[q, circle];
IF thisCurve.dist < t
THEN {
thisCurve.featureData ← featureData;
thisCurve.point ← GGCircles.PointProjectedOntoCircle[q, circle];
thisCurve.hitData ← NIL;
added ← MergeCurve[thisCurve, h];
};
};
ProcessSlice:
PROC [sliceD: SliceDescriptor, thisCurve: GoodCurve, featureData: FeatureData] = {
success: BOOL;
[thisCurve.point, thisCurve.dist, thisCurve.hitData, success] ← sliceD.slice.class.closestSegment[sliceD, q, t];
IF success
THEN {
IF thisCurve.dist < t
THEN {
thisCurve.featureData ← featureData;
added ← MergeCurve[thisCurve, h];
};
};
};
ProcessOutline:
PROC [outlineD: OutlineDescriptor, thisCurve: GoodCurve, featureData: FeatureData] = {
success: BOOL;
[thisCurve.point, thisCurve.dist, thisCurve.hitData, success] ← outlineD.slice.class.closestSegment[outlineD, q, t];
IF success
THEN {
IF thisCurve.dist < t
THEN {
thisCurve.featureData ← featureData;
added ← MergeCurve[thisCurve, h];
};
};
};
line: Line;
circle: Circle;
sliceD: SliceDescriptor;
outlineD: OutlineDescriptor;
featureData: FeatureData;
added: BOOL;
thisCurve: GoodCurve ← NEW[GoodCurveObj];
h ← BestCurvesFromPool[gargoyleData];
FOR
slopeLines:
LIST
OF FeatureData ← objectBag.slopeLines, slopeLines.rest
UNTIL slopeLines =
NIL
DO
featureData ← slopeLines.first;
line ← NARROW[featureData.shape, AlignmentLine].line;
ProcessLine[line, thisCurve, featureData];
ENDLOOP;
FOR
angleLines:
LIST
OF FeatureData ← objectBag.angleLines, angleLines.rest
UNTIL angleLines =
NIL
DO
featureData ← angleLines.first;
line ← NARROW[featureData.shape, AlignmentLine].line;
ProcessLine[line, thisCurve, featureData];
ENDLOOP;
FOR
dLines:
LIST
OF FeatureData ← objectBag.distanceLines, dLines.rest
UNTIL dLines =
NIL
DO
featureData ← dLines.first;
line ← NARROW[featureData.shape];
ProcessLine[line, thisCurve, featureData];
ENDLOOP;
FOR
circles:
LIST
OF FeatureData ← objectBag.radiiCircles, circles.rest
UNTIL circles =
NIL
DO
featureData ← circles.first;
circle ← NARROW[featureData.shape, AlignmentCircle].circle;
ProcessCircle[circle, thisCurve, featureData];
ENDLOOP;
Sensitive Scene Objects.
FOR
slices:
LIST
OF FeatureData ← sceneObjects.slices, slices.rest
UNTIL slices =
NIL
DO
featureData ← slices.first;
sliceD ← NARROW[featureData.shape, SliceDescriptor];
ProcessSlice[sliceD, thisCurve, featureData];
ENDLOOP;
FOR
outlines:
LIST
OF FeatureData ← sceneObjects.outlines, outlines.rest
UNTIL outlines =
NIL
DO
featureData ← outlines.first;
outlineD ← NARROW[featureData.shape, OutlineDescriptor];
ProcessOutline[outlineD, thisCurve, featureData];
ENDLOOP;
curveCount ← h.size;
}; -- end CurvesInTolerance
MergePoint:
PROC [thisPoint: GoodPoint, h: BestPoints] = {
d: REAL ← thisPoint.dist;
n: NAT = MaxFeatures;
SELECT
TRUE
FROM
d > h.max AND h.size < n => {h.max ← d; GOTO Add};
d <= h.max AND h.size < n => GOTO Add;
d < h.max AND h.size = n => GOTO AddAndComputeNewMax;
d > h.max AND h.size = n => GOTO NoChange; -- we already have n and this is no better
d = h.max AND h.size = n => {h.overflow ← TRUE; GOTO NoChange};
ENDCASE => SIGNAL Problem[msg: "Impossible case."];
EXITS
Add => {
d: REAL ← thisPoint.dist;
h[h.size]^ ← thisPoint^;
h.size ← h.size + 1;
h.min ← IF d < h.min THEN d ELSE h.min;
};
AddAndComputeNewMax => {
d: REAL ← thisPoint.dist;
newMax: REAL;
iMax: NAT; bestDist: REAL;
iMax ← 0; bestDist ← 0.0;
FOR i:
NAT
IN [0..MaxFeatures-1]
DO
IF h[i].dist > bestDist THEN {iMax ← i; bestDist ← h[i].dist};
ENDLOOP;
h[iMax].dist ← d;
h[iMax]^ ← thisPoint^;
iMax ← 0; bestDist ← 0.0;
FOR i:
NAT
IN [0..MaxFeatures-1]
DO
IF h[i].dist > bestDist THEN {iMax ← i; bestDist ← h[i].dist};
ENDLOOP;
newMax ← h[iMax].dist;
h.overflow ← IF newMax # h.max THEN TRUE ELSE FALSE;
h.max ← newMax;
};
};
MergeCurve:
PROC [thisCurve: GoodCurve, h: BestCurves]
RETURNS [added:
BOOL] = {
d: REAL ← thisCurve.dist;
n: NAT ← MaxFeatures;
SELECT
TRUE
FROM
d > h.max AND h.size < n => {h.max ← d; GOTO Add};
d <= h.max AND h.size < n => GOTO Add;
d < h.max AND h.size = n => GOTO AddAndComputeNewMax;
d > h.max AND h.size = n => GOTO NoChange; -- we already have n and this is no better
d = h.max AND h.size = n => {h.overflow ← TRUE; GOTO NoChange};
ENDCASE => SIGNAL Problem[msg: "Impossible case."];
EXITS
Add => {
d: REAL ← thisCurve.dist;
h[h.size]^ ← thisCurve^;
h.size ← h.size + 1;
h.min ← IF d < h.min THEN d ELSE h.min;
added ← TRUE;
};
AddAndComputeNewMax => {
d: REAL ← thisCurve.dist;
newMax: REAL;
iMax: NAT; bestDist: REAL;
iMax ← 0; bestDist ← 0.0;
FOR i:
NAT
IN [0..MaxFeatures-1]
DO
IF h[i].dist > bestDist THEN {iMax ← i; bestDist ← h[i].dist};
ENDLOOP;
h[iMax].dist ← d;
h[iMax]^ ← thisCurve^;
iMax ← 0; bestDist ← 0.0;
FOR i:
NAT
IN [0..MaxFeatures-1]
DO
IF h[i].dist > bestDist THEN {iMax ← i; bestDist ← h[i].dist};
ENDLOOP;
newMax ← h[iMax].dist;
h.overflow ← IF newMax # h.max THEN TRUE ELSE FALSE;
h.max ← newMax;
added ← TRUE;
};
NoChange => {
added ← FALSE;
};
};
NearPointsFromPoints:
PROC [bestPoints: BestPoints, pointCount:
NAT, nearPointsAndCurves: NearPointsAndCurves] = {
FOR i:
NAT
IN [0..pointCount-1]
DO
nearPointsAndCurves[i] ← bestPoints[i];
ENDLOOP;
};
MergePointsAndCurves:
PROC [bestPoints: BestPoints, pointCount:
NAT, bestCurves: BestCurves, curveCount:
NAT, nearPointsAndCurves: NearPointsAndCurves, count:
NAT] = {
Merge the bestPoints and the bestCurves. There will be count elements in the result.
pointIndex, curveIndex: NAT;
pointDist, curveDist: REAL;
pointIndex ← 0;
curveIndex ← 0;
FOR i:
NAT
IN [0..count-1]
DO
IF pointIndex >= pointCount THEN GOTO NoMorePoints;
IF curveIndex >= curveCount THEN GOTO NoMoreCurves;
pointDist ← bestPoints[i].dist;
curveDist ← bestCurves[i].dist;
IF pointDist <= curveDist
THEN {
nearPointsAndCurves[i] ← bestPoints[pointIndex];
pointIndex ← pointIndex + 1;
}
ELSE {
nearPointsAndCurves[i] ← bestCurves[curveIndex];
curveIndex ← curveIndex + 1;
};
REPEAT
NoMorePoints => { -- finish up with Curves data
FOR k:
NAT ← i, k+1
UNTIL k >= count
DO
nearPointsAndCurves[k] ← bestCurves[curveIndex];
curveIndex ← curveIndex + 1;
ENDLOOP};
NoMoreCurves => { -- finish up with points data
FOR k:
NAT ← i, k+1
UNTIL k >= count
DO
nearPointsAndCurves[k] ← bestPoints[pointIndex];
pointIndex ← pointIndex + 1;
ENDLOOP};
ENDLOOP;
};
SortPoints:
PROC [bestPoints: BestPoints, pointCount:
NAT] = {
Sort the points in order of increasing distance. Since n is likely to be small, bubble sort is sensible:
temp: GoodPointObj;
FOR i:
NAT
IN [0..pointCount-2]
DO
FOR j:
NAT
IN [1..pointCount-i-1]
DO
IF bestPoints[j-1].dist > bestPoints[j].dist
THEN {
temp ← bestPoints[j]^;
bestPoints[j]^ ← bestPoints[j-1]^;
bestPoints[j-1]^ ← temp;
};
ENDLOOP;
ENDLOOP;
SortCurves:
PROC [bestCurves: BestCurves, curveCount:
NAT] = {
Sort the curves in order of increasing distance. Since n is likely to be small, bubble sort is sensible:
temp: GoodCurveObj;
FOR i:
NAT
IN [0..curveCount-2]
DO
FOR j:
NAT
IN [1..curveCount-i-1]
DO
IF bestCurves[j-1].dist > bestCurves[j].dist
THEN {
temp ← bestCurves[j]^;
bestCurves[j]^ ← bestCurves[j-1]^;
bestCurves[j-1]^ ← temp;
};
ENDLOOP;
ENDLOOP;
};
Computing Intersections
FeatureType: TYPE = {sequence, slice, distanceLine, slopeLine, angleLine, symmetryLine, radiiCircle, intersectionPoint, midpoint, anchor};
ClassifyCurve:
PROC [curve: GoodCurve]
RETURNS [class:
NAT, simpleCurve:
REF
ANY] = {
feature: FeatureData ← curve.featureData;
SELECT feature.type
FROM
slice => {
sliceD: SliceDescriptor ← NARROW[feature.shape];
hitData: REF ANY ← curve.hitData;
simpleCurve ← sliceD.slice.class.hitDataAsSimpleCurve[sliceD.slice, hitData];
IF simpleCurve =
NIL
THEN {
simpleCurve ← sliceD;
class ← 5;
RETURN;
};
};
outline => {
The asymmetry here is OK.
sliceD: OutlineDescriptor ← NARROW[feature.shape];
hitData: REF ANY ← curve.hitData;
simpleCurve ← sliceD.slice.class.hitDataAsSimpleCurve[sliceD.slice, hitData];
IF simpleCurve =
NIL
THEN {
class ← 0;
RETURN;
};
};
radiiCircle => {
class ← 2;
simpleCurve ← NARROW[feature.shape, AlignmentCircle].circle;
RETURN;
};
slopeLine, angleLine => {
class ← 1;
simpleCurve ← NARROW[feature.shape, AlignmentLine].line;
RETURN;
};
distanceLine => {
class ← 1;
simpleCurve ← NARROW[feature.shape, Line];
RETURN;
};
ENDCASE => {class ← 0; simpleCurve ← NIL; RETURN};
WITH simpleCurve
SELECT
FROM
circle: Circle => class ← 2;
edge: Edge => class ← 3;
arc: Arc => class ← 4;
ENDCASE => ERROR;
};
CurveMeetsCurve:
PROC [c1, c2: GoodCurve]
RETURNS [iPoints:
LIST
OF Point, tangency:
LIST
OF
BOOL] = {
typeOfCurve1, typeOfCurve2: NAT;
simpleCurve1, simpleCurve2: REF ANY;
[typeOfCurve1, simpleCurve1] ← ClassifyCurve[c1];
[typeOfCurve2, simpleCurve2] ← ClassifyCurve[c2];
IF typeOfCurve1 >= typeOfCurve2
THEN
[iPoints, tangency] ← ComputeIntersection[typeOfCurve1][typeOfCurve2][simpleCurve1, simpleCurve2]
ELSE
[iPoints, tangency] ← ComputeIntersection[typeOfCurve2][typeOfCurve1][simpleCurve2, simpleCurve1]
};
IntersectionProc: TYPE = PROC [c1, c2: REF ANY] RETURNS [iPoints: LIST OF Point, tangency: LIST OF BOOL];
ComputeIntersection:
ARRAY [0..5]
OF
ARRAY [0..5]
OF IntersectionProc = [
0) NoOp 1) Line 2) Circle 3) Edge 4) Arc 5) Slice
[NoOpI, NIL, NIL, NIL, NIL, NIL], -- 0) NoOp
[NoOpI, LinLinI, NIL, NIL, NIL, NIL], -- 1) Line
[NoOpI, CirLinI, CirCirI, NIL, NIL, NIL], -- 2) Circle
[NoOpI, EdgLinI, EdgCirI, EdgEdgI, NIL, NIL], -- 3) Edge
[NoOpI, ArcLinI, ArcCirI, ArcEdgI, ArcArcI, NIL], -- 4) Arc
[NoOpI, SlcLinI, SlcCirI, NoOpI, NoOpI, NoOpI] -- 5) Slice
];
NoOpI: IntersectionProc = {
iPoints ← NIL;
tangency ← NIL;
};
LinLinI: IntersectionProc = {
IntersectionProc: TYPE = PROC [c1, c2: REF ANY] RETURNS [iPoints: LIST OF Point, tangency: LIST OF BOOL];
l1: Line ← NARROW[c1];
l2: Line ← NARROW[c2];
point: Point;
parallel: BOOL;
[point, parallel] ← GGLines.LineMeetsLine[l1, l2];
IF NOT parallel THEN {iPoints ← LIST[point]; tangency ← LIST[FALSE]}
ELSE {iPoints ← NIL; tangency ← NIL};
};
CirLinI: IntersectionProc = {
IntersectionProc: TYPE = PROC [c1, c2: REF ANY] RETURNS [iPoints: LIST OF Point, tangency: LIST OF BOOL];
circle: Circle ← NARROW[c1];
line: Line ← NARROW[c2];
points: ARRAY [1..2] OF Point;
hitCount: [0..2];
tangent: BOOL;
[points, hitCount, tangent] ← GGCircles.CircleMeetsLine[circle, line];
FOR i:
NAT
IN [1..hitCount]
DO
iPoints ← CONS[points[i], iPoints];
tangency ← CONS[tangent, tangency];
ENDLOOP;
};
CirCirI: IntersectionProc = {
IntersectionProc: TYPE = PROC [c1, c2: REF ANY] RETURNS [iPoints: LIST OF Point, tangency: LIST OF BOOL];
circle1: Circle ← NARROW[c1];
circle2: Circle ← NARROW[c2];
points: ARRAY [1..2] OF Point;
hitCount: [0..2];
tangent: BOOL;
[points, hitCount, tangent] ← GGCircles.CircleMeetsCircle[circle1, circle2];
FOR i:
NAT
IN [1..hitCount]
DO
iPoints ← CONS[points[i], iPoints];
tangency ← CONS[tangent, tangency];
ENDLOOP;
};
EdgLinI: IntersectionProc = {
IntersectionProc: TYPE = PROC [c1, c2: REF ANY] RETURNS [iPoints: LIST OF Point, tangency: LIST OF BOOL];
edge: Edge ← NARROW[c1];
line: Line ← NARROW[c2];
point: Point;
noHit: BOOL;
[point, noHit] ← GGLines.LineMeetsEdge[line, edge];
IF NOT noHit THEN {iPoints ← LIST[point]; tangency ← LIST[FALSE]}
ELSE {iPoints ← NIL; tangency ← NIL};
};
EdgCirI: IntersectionProc = {
IntersectionProc: TYPE = PROC [c1, c2: REF ANY] RETURNS [iPoints: LIST OF Point, tangency: LIST OF BOOL];
edge: Edge ← NARROW[c1];
circle: Circle ← NARROW[c2];
points: ARRAY [1..2] OF Point;
hitCount: [0..2];
tangent: BOOL;
[points, hitCount, tangent] ← GGCircles.CircleMeetsEdge[circle, edge];
FOR i:
NAT
IN [1..hitCount]
DO
iPoints ← CONS[points[i], iPoints];
tangency ← CONS[tangent, tangency];
ENDLOOP;
};
EdgEdgI: IntersectionProc = {
IntersectionProc: TYPE = PROC [c1, c2: REF ANY] RETURNS [iPoints: LIST OF Point, tangency: LIST OF BOOL];
e1: Edge ← NARROW[c1];
e2: Edge ← NARROW[c2];
point: Point;
noHit: BOOL;
[point, noHit] ← GGLines.EdgeMeetsEdge[e1, e2];
IF NOT noHit THEN {iPoints ← LIST[point]; tangency ← LIST[FALSE]}
ELSE {iPoints ← NIL; tangency ← NIL};
};
ArcLinI: IntersectionProc = {
IntersectionProc: TYPE = PROC [c1, c2: REF ANY] RETURNS [iPoints: LIST OF Point, tangency: LIST OF BOOL];
arc: Arc ← NARROW[c1];
line: Line ← NARROW[c2];
points: ARRAY [1..2] OF Point;
hitCount: [0..2];
tangent: BOOL;
[points, hitCount, tangent] ← GGCircles.ArcMeetsLine[arc, line];
FOR i:
NAT
IN [1..hitCount]
DO
iPoints ← CONS[points[i], iPoints];
tangency ← CONS[tangent, tangency];
ENDLOOP;
};
ArcCirI: IntersectionProc = {
IntersectionProc: TYPE = PROC [c1, c2: REF ANY] RETURNS [iPoints: LIST OF Point, tangency: LIST OF BOOL];
arc: Arc ← NARROW[c1];
circle: Circle ← NARROW[c2];
points: ARRAY [1..2] OF Point;
hitCount: [0..2];
tangent: BOOL;
[points, hitCount, tangent] ← GGCircles.CircleMeetsArc[circle, arc];
FOR i:
NAT
IN [1..hitCount]
DO
iPoints ← CONS[points[i], iPoints];
tangency ← CONS[tangent, tangency];
ENDLOOP;
};
ArcEdgI: IntersectionProc = {
IntersectionProc: TYPE = PROC [c1, c2: REF ANY] RETURNS [iPoints: LIST OF Point, tangency: LIST OF BOOL];
arc: Arc ← NARROW[c1];
edge: Edge ← NARROW[c2];
points: ARRAY [1..2] OF Point;
hitCount: [0..2];
tangent: BOOL;
[points, hitCount, tangent] ← GGCircles.ArcMeetsEdge[arc, edge];
FOR i:
NAT
IN [1..hitCount]
DO
iPoints ← CONS[points[i], iPoints];
tangency ← CONS[tangent, tangency];
ENDLOOP;
};
ArcArcI: IntersectionProc = {
IntersectionProc: TYPE = PROC [c1, c2: REF ANY] RETURNS [iPoints: LIST OF Point, tangency: LIST OF BOOL];
arc1: Arc ← NARROW[c1];
arc2: Arc ← NARROW[c2];
points: ARRAY [1..2] OF Point;
hitCount: [0..2];
tangent: BOOL;
[points, hitCount] ← GGCircles.ArcMeetsArc[arc1, arc2];
FOR i:
NAT
IN [1..hitCount]
DO
iPoints ← CONS[points[i], iPoints];
tangency ← CONS[tangent, tangency];
ENDLOOP;
};
SlcLinI: IntersectionProc = {
sliceD: SliceDescriptor ← NARROW[c1];
line: Line ← NARROW[c2];
[iPoints, ----] ← sliceD.slice.class.lineIntersection[sliceD, line];
FOR list:
LIST
OF Point ← iPoints, list.rest
UNTIL list =
NIL
DO
tangency ← CONS[FALSE, tangency];
ENDLOOP;
};
SlcCirI: IntersectionProc = {
sliceD: SliceDescriptor ← NARROW[c1];
circle: Circle ← NARROW[c2];
[iPoints, ----] ← sliceD.slice.class.circleIntersection[sliceD, circle];
FOR list:
LIST
OF Point ← iPoints, list.rest
UNTIL list =
NIL
DO
tangency ← CONS[FALSE, tangency];
ENDLOOP;
};
SeqLineI: IntersectionProc = {
outlineD: OutlineDescriptor ← NARROW[c1];
line: Line ← NARROW[c2];
[iPoints, ----] ← outlineD.slice.class.lineIntersection[outlineD, line];
FOR list:
LIST
OF Point ← iPoints, list.rest
UNTIL list =
NIL
DO
tangency ← CONS[FALSE, tangency];
ENDLOOP;
};
SeqCircleI: IntersectionProc = {
outlineD: OutlineDescriptor ← NARROW[c1];
circle: Circle ← NARROW[c2];
[iPoints, ----] ← outlineD.slice.class.circleIntersection[outlineD, circle];
FOR list:
LIST
OF Point ← iPoints, list.rest
UNTIL list =
NIL
DO
tangency ← CONS[FALSE, tangency];
ENDLOOP;
};
SeqSeqI: IntersectionProc = {
od1: OutlineDescriptor ← NARROW[c1];
od2: OutlineDescriptor ← NARROW[c2];
simpleCurve1, simpleCurve2: REF ANY;
simpleCurve1 ← od1.slice.class.hitDataAsSimpleCurve[od1.slice, hitData1];
simpleCurve2 ← od2.slice.class.hitDataAsSimpleCurve[od2.slice, hitData2];
iPoints ← NIL;
};
Utilities
MaxFeatures: NAT = 20;
BestCurvesFromPool:
PROC [gargoyleData: GargoyleData]
RETURNS [h: BestCurves] = {
h ← NARROW[gargoyleData.multiGravityPool, MultiGravityPool].bestcurves;
h.size ← 0;
h.max ← 0;
h.min ← GGUtility.plusInfinity;
h.overflow ← FALSE;
FOR i:
NAT
IN [0..MaxFeatures-1]
DO
h[i].dist ← GGUtility.plusInfinity;
h[i].featureData ← NIL;
ENDLOOP;
};
BestPointsFromPool:
PROC [gargoyleData: GargoyleData]
RETURNS [h: BestPoints] = {
h ← NARROW[gargoyleData.multiGravityPool, MultiGravityPool].bestpoints;
h.size ← 0;
h.max ← 0;
h.min ← GGUtility.plusInfinity;
h.overflow ← FALSE;
FOR i:
NAT
IN [0..MaxFeatures-1]
DO
h[i].dist ← GGUtility.plusInfinity;
h[i].featureData ← NIL;
ENDLOOP;
};
NewMultiGravityPool:
PUBLIC PROC []
RETURNS [
REF]= {
-- reuseable storage for BestPointAndCurve proc to avoid NEWs
pool: MultiGravityPool ← NEW[MultiGravityPoolObj];
pool.distances ← NEW[NearDistancesObj[MaxFeatures]];
pool.features ← NEW[NearFeaturesObj[MaxFeatures]];
pool.bestpoints ← NEW[BestPointsObj[MaxFeatures]];
pool.bestcurves ← NEW[BestCurvesObj[MaxFeatures]];
FOR i:
NAT
IN [0..MaxFeatures)
DO
pool.bestpoints[i] ← NEW[GoodPointObj];
pool.bestcurves[i] ← NEW[GoodCurveObj];
ENDLOOP;
RETURN[pool];
};
InitStats:
PROC [] = {
interval: GGStatistics.Interval;
interval ← GGStatistics.CreateInterval[$MultiMap];
GGStatistics.AddInterval[interval, GGStatistics.GlobalTable[]];
};
InitStats[];
END.